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Abstract 1 

Nucleosomes composed of histones are the fundamental units around which DNA is 2 

wrapped to form chromatin. Transcriptionally active euchromatin or repressive 3 

heterochromatin is regulated in part by the addition or removal of histone post-translational 4 

modifications (PTMs) by ‘writer’ and ‘eraser’ enzymes, respectively. Nucleosomal PTMs are 5 

recognised by a variety of ‘reader’ proteins which alter gene expression accordingly. The 6 

histone tails of the evolutionarily divergent eukaryotic parasite Trypanosoma brucei have 7 

atypical sequences and PTMs distinct from those often considered universally conserved. 8 

Here we identify 65 predicted readers, writers and erasers of histone acetylation and 9 

methylation encoded in the T. brucei genome and, by epitope tagging, systemically localize 10 

60 of them in the parasite’s bloodstream form. ChIP-seq demonstrated that fifteen candidate 11 

proteins associate with regions of RNAPII transcription initiation. Eight other proteins exhibit 12 

a distinct distribution with specific peaks at a subset of RNAPII transcription termination 13 

regions marked by RNAPIII-transcribed tRNA and snRNA genes. Proteomic analyses 14 

identified distinct protein interaction networks comprising known chromatin regulators and 15 

novel trypanosome-specific components. Notably, several SET- and Bromo-domain protein 16 

networks suggest parallels to RNAPII promoter-associated complexes in conventional 17 

eukaryotes. Further, we identify likely components of TbSWR1 and TbNuA4 complexes 18 

whose enrichment coincides with the SWR1-C exchange substrate H2A.Z at RNAPII 19 

transcription start regions. The systematic approach employed provides detail of the 20 

composition and organization of the chromatin regulatory machinery in Trypanosoma brucei 21 

and establishes a route to explore divergence from eukaryotic norms in an evolutionarily 22 

ancient but experimentally accessible eukaryote. 23 

  24 
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Introduction 1 

Nucleosomes are composed of eight highly conserved core histone subunits (two each of 2 

H2A, H2B, H3 and H4) around which approximately 147 bp of DNA is wrapped. 3 

Nucleosomes are organised into chromatin fibres which provide the dynamic organisational 4 

platform underpinning eukaryotic gene expression regulation. Formation of transcriptionally 5 

active and silent chromatin states depends on the presence of DNA methylation (Suzuki and 6 

Bird, 2008), histone variants (Henikoff and Smith, 2015) and histone post-translational 7 

modifications (PTMs) (Bannister and Kouzarides, 2011). Repressive heterochromatin 8 

generally concentrates at the nuclear periphery, while active euchromatin localizes to the 9 

nuclear interior and can also associate with nuclear pores (Lemaître and Bickmore, 2015; 10 

Taddei et al., 2010). Molecular understanding of the composition and function of distinct 11 

chromatin types in nuclear architecture and gene expression regulation is most advanced in 12 

well-studied eukaryotic models (plants, yeasts, animals) (Allshire and Madhani, 2018). 13 

However, these represent only two eukaryotic supergroups while distinct early-branching 14 

lineages have highly divergent histones and chromatin-associated regulators. One 15 

particularly tractable model for early branching eukaryotes is Trypanosoma brucei, the 16 

causative agent of human sleeping sickness and livestock nagana in Africa, which has 17 

evolved separately from the main eukaryotic lineage for at least 500 million years. Reflecting 18 

their evolutionary divergence, detailed analyses of these parasites have revealed numerous 19 

examples of biomolecular novelty, including RNA editing of mitochondrial transcripts 20 

(Shapiro and Englund, 1995), polycistronic transcription of nuclear genes (Borst, 1986; 21 

Tschudi and Ullu, 1988) and segregation of chromosomes via an unconventional 22 

kinetochore apparatus comprising components distinct from other eukaryotic groups 23 

(Akiyoshi and Gull, 2014). 24 

 25 

During its life cycle, T. brucei alternates between a mammalian host and the tsetse fly 26 

vector, a transition accompanied by extensive changes in gene expression leading to 27 

surface proteome alterations as well as metabolic reprogramming of the parasite (Matthews, 28 

2005; Smith et al., 2017). In the mammalian host, bloodstream form (BF) parasites are 29 

covered by a dense surface coat made of variant surface glycoprotein (VSG). Only a single 30 

VSG gene is expressed from an archive consisting of ~2000 VSG genes and gene 31 

fragments (Horn, 2014). Periodically, T. brucei switches to express a new VSG protein to 32 

which no host antibodies have been produced, contributing to cyclical parasitaemia. 33 

Parasites taken up by the tsetse during blood meals differentiate in the fly midgut to the 34 

procyclic form (PF) which replaces all VSGs with procyclin surface proteins (Roditi and 35 

Liniger, 2002). 36 

 37 

 Cold Spring Harbor Laboratory Press on September 3, 2021 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 4

The T. brucei genome encodes four core histones (H2A, H2B, H3, H4) and a variant for 1 

each core histone type (H2A.Z, H2B.V, H3.V, H4.V), but it lacks a centromere-specific 2 

CENP-A/cenH3 variant (Akiyoshi and Gull, 2014). All trypanosome histones differ 3 

significantly in their amino acid sequence from their counterparts in conventional eukaryotes 4 

(Lowell and Cross, 2004; Lowell et al., 2005; Mandava et al., 2007; Thatcher and Gorovsky, 5 

1994). For example, lysine 9 of histone H3, methylation of which specifies heterochromatin 6 

formation in many eukaryotes, is not conserved. Nonetheless, many histone PTMs have 7 

been detected in T. brucei and its relative T. cruzi (de Jesus et al., 2016; de Lima et al., 8 

2020; Janzen et al., 2006a; Kraus et al., 2020; Mandava et al., 2007), although only a 9 

handful of these have been characterized in some detail.  10 

 11 

Unusually for a eukaryote, most trypanosome genes are transcribed in polycistronic units 12 

which are resolved by trans-splicing of a spliced leader (SL) RNA sequence to the 5′ end of 13 

the mRNA and polyadenylation at the 3′ end (Gunzl, 2010). RNAPII transcription usually 14 

initiates from broad (~10 kb) GT-rich divergent Transcription Start Regions (TSRs; 15 

comparable to promoters of other eukaryotes) enriched in nucleosomes containing the 16 

H2A.Z and H2B.V histone variants as well as the H3K4me (methylation) and H4K10ac 17 

(acetylation) PTMs (Siegel et al., 2009; Wedel et al., 2017; Wright et al., 2010). Conversely, 18 

RNAPII transcription typically terminates at regions of convergent transcription known as 19 

Transcription Termination Regions (TTRs) that are marked by the presence of the DNA 20 

modification base J and the H3.V and H4.V histone variants (Schulz et al., 2016; Siegel et 21 

al., 2009). Less frequently, T. brucei transcription units are arranged head-to-tail requiring 22 

termination ahead of downstream TSRs. TTRs between such transcription units are often 23 

coincident with RNAPI- or RNAPIII-transcribed genes which may act as boundaries that 24 

block the passage of advancing RNAPII into downstream transcription units (Marchetti et al., 25 

1998; Maree and Patterton, 2014; Siegel et al., 2009).  26 

 27 

The consensus view is that trypanosome gene expression is regulated predominantly post-28 

transcriptionally via control of RNA stability and translation (Clayton, 2019). Nonetheless, 29 

numerous putative chromatin regulators can be identified as coding sequences in the T. 30 

brucei genome (Berriman et al., 2005), but their functional contexts are largely unexplored. 31 

Here we undertake cellular localization, genome-wide chromatin association and proteomics 32 

analyses of bioinformatically identified putative readers, writers and erasers of histone acetyl 33 

and methyl marks encoded in the trypanosome genome. The results presented provide an 34 

entry point for understanding similarities and differences between the transcriptional 35 

regulatory machinery of this divergent eukaryote and the eukaryotic norm. 36 

  37 
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Results and Discussion 1 

 2 

Identification of putative chromatin regulators 3 

We identified 65 putative regulators or interpreters of histone lysine acetylation and 4 

methylation by interrogating the trypanosome genome database (TriTrypDB) and using 5 

additional homology-based searches with known chromatin reader, writer and eraser 6 

domains (Table 1; Supplemental Fig. S1A; Supplemental Table S1). These approaches 7 

allowed us to detect 16 potential readers with the following domains: Bromo (Haynes et al., 8 

1992), PHD (Aasland et al., 1995), Tudor (Ponting, 1997), Chromo (Paro, 1990; Singh et al., 9 

1991), PWWP (Stec et al., 2000) and Znf-CW (Perry and Zhao, 2003). With respect to 10 

writers of histone modifications, we found 6 potential histone acetyltransferases (HATs) 11 

belonging to the MYST (MOZ/SAS-related) and GNAT (ELP3-related) families (Lee and 12 

Workman, 2007), 29 SET domain (Dillon et al., 2005) and 3 DOT domain (Feng et al., 2002) 13 

putative histone methyltransferases (HMTs). We also analyzed several predicted 14 

acetyltransferases with non-histone substrates: one lysophospholipid acyltransferase 15 

(LPLAT) (Shindou and Shimizu, 2009) and two GNAT family (RimI-related) N-16 

acetyltransferases (NATs) (Vetting et al., 2008) plus the non-catalytic EAF6 component of 17 

the NuA4 HAT complex (Hishikawa et al., 2008; Roth et al., 2001). Our searches for 18 

potential erasers of histone PTMs identified 7 histone deacetylases (class I, class II and 19 

Sir2-related HDACs) (Grozinger and Schreiber, 2002) and 4 JmjC domain demethylases 20 

(Klose et al., 2006). The function of some of these putative chromatin regulators has been 21 

explored previously (Figueiredo et al., 2009; Maree and Patterton, 2014; Supplemental 22 

Table S2). 23 

 24 

To examine these putative writers, readers and erasers of histone PTMs, each was YFP-25 

tagged and localized in bloodstream form parasites. AGO1 (Shi et al., 2009) and the putative 26 

DNA methyltransferase DMT (Militello et al., 2008) were also included in our analysis since 27 

they are associated with chromatin-based silencing in other eukaryotes (Allshire and 28 

Madhani, 2018; Kloc and Martienssen, 2008; Suzuki and Bird, 2008).  29 

 30 

Additionally, we examined several control proteins with known distinctive nuclear 31 

distributions; these were the trypanosome kinetochore protein KKT2 (Akiyoshi and Gull, 32 

2014), the nucleolar protein NOC1 (Alsford and Horn, 2012), the nuclear pore basket protein 33 

NUP110/MLP1 (DeGrasse et al., 2009) as well as the telomere repeat-binding factor TRF (Li 34 

et al., 2005) and the TATA-binding related protein TBP/TRF4 (Ruan et al., 2004). AGO1 35 

served as a control for cytoplasmic localization (Shi et al., 2004). 36 

 37 
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 1 

Cellular localization of the putative chromatin regulators 2 

Candidate proteins were endogenously tagged with YFP in bloodstream form parasites of 3 

the T. brucei Lister 427 strain. Proteins were tagged N-terminally to avoid interference with 3′ 4 

UTR sequences involved in mRNA stability control (Clayton, 2019). Although the presence 5 

or position of the YFP tag might affect individual protein expression and localization patterns, 6 

this approach provided a consistent pipeline for the systematic analysis of the proteins on 7 

our candidate list. Of the 76 selected proteins (including controls), 74 were successfully 8 

tagged while cells expressing YFP-PHD3 and YFP-ELP3c were not obtained. The tagging 9 

constructs for SET12, SET30 and DOT1 were correctly integrated but YFP-tagged proteins 10 

were not detectable by western analysis suggesting tag failure, low protein abundance or no 11 

expression in bloodstream form parasites.  12 

 13 

Immunolocalization with anti-GFP antibodies was used to identify proteins residing in the 14 

nucleus which might associate with chromatin. The control proteins exhibited localization 15 

patterns expected for telomeres (TRF – nuclear foci), TATA-binding protein (TBP – nuclear 16 

foci), kinetochores (KKT2 – nuclear foci), nucleolus (NOC1 – single nuclear compartment), 17 

nuclear pores (NUP110 – nuclear rim) and cytoplasm (AGO1 – gap in the staining coincident 18 

with the nucleus) (Supplemental Fig. S2). Some cytoplasmic signal was also detected for 19 

nuclear control proteins, but this may correspond to background staining as evidenced by 20 

the signal observed in untagged cells (Fig. 1; Supplemental Fig. S2). Selected proteins were 21 

also imaged with and without antibody staining and for different exposure times 22 

(Supplemental Fig. S3). From this we concluded that fluorescence signal enhancement 23 

through antibody staining was required for optimal imaging of most proteins and that 24 

different exposure times were needed to adjust to the expression level of each protein. 25 

Images with multiple cells per field in different cell cycle stages are also provided 26 

(Supplemental Fig. S4). 27 

 28 

Of the YFP-tagged proteins, 20 were exclusively nuclear, 30 exhibited only a cytoplasmic 29 

localization and 21 were found in both compartments (Table 1; Supplemental Table S1). 30 

Twenty-three candidate and control proteins with exclusive or some nuclear localization 31 

were subsequently found to associate with either sites of RNAPII transcription initiation or 32 

with a subset of RNAPII transcription termination regions coincident with RNAPIII-33 

transcribed genes (see below; Fig. 1), while the remaining proteins that were not detected 34 

on chromatin displayed all three localization patterns (Supplemental Fig. S2). Consistent 35 

with previous observations, HAT1-to-3 decorated nuclear substructures (Kawahara et al., 36 

2008), as did the predicted EAF6 subunit of the NuA4 HAT complex. In contrast, LPLAT1 37 
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gave both nuclear and cytoplasmic signal whereas both NAT2 and NAT3 localized to the 1 

cytoplasm (Supplemental Fig. S2). YFP-tagged ELP3a and ELP3b GNAT acetyltransferases 2 

exhibited nuclear and some cytoplasmic signal. GFP-ELP3b was previously reported to be 3 

concentrated in the nucleolus (Alsford and Horn, 2011), this difference may be a 4 

consequence of using an ectopic overexpression system in that study. Moreover, we did not 5 

detect enrichment of ELP3b over rDNA transcription units by ChIP-seq. Of the 29 identified 6 

putative SET-domain methyltransferases, only eight exhibited some nuclear localization, 7 

while most were concentrated in the cytoplasm. Examination of cells expressing YFP-tagged 8 

predicted reader proteins revealed that BDF1-to-3, BDF5-to-7, PHD1, PHD2, PHD4, CRD1, 9 

TFIIS2-2 and ZCW1 were exclusively nuclear, whereas BDF4 and PHD5 displayed both 10 

nuclear and cytoplasmic localization and the sole Tudor domain protein TDR1 was 11 

cytoplasmic. In agreement with previous analyses (Wang et al., 2010), HDAC3 was 12 

predominantly nuclear whereas HDAC1 was nuclear/cytoplasmic, and both HDAC2 and 13 

HDAC4 resided in the cytoplasm. The Sir2-related proteins Sir2rp1 and Sir2rp2 localized 14 

mostly to the cytoplasm whereas Sir2rp3 was detected in the nucleus as well as in the 15 

cytoplasm. Of the four identified putative demethylases, JMJ2 was nuclear, JMJ1 and CLD1 16 

were cytoplasmic and LCM1 was found in both compartments. Both AGO1 and DMT were 17 

cytoplasmic (Supplemental Fig. S2) suggesting that they are unlikely to be involved in 18 

directing chromatin or DNA modifications.  19 

 20 

Of the 71 proteins we successfully tagged, expressed and localized in bloodstream form 21 

cells, 65 have also been also tagged by the TrypTag project in procyclic form cells (Dean et 22 

al., 2017; Table S1). For most proteins, our results are in agreement with the TrypTag data 23 

and any discrepancies may be indicative of differences in protein localization between the 24 

different developmental forms of T. brucei.  25 

 26 

Many putative chromatin regulators accumulate at RNAPII TSRs 27 

We performed ChIP-seq for all expressed candidate and control proteins except TDR1 and 28 

NOC1 (69 in total) to determine which proteins associate with chromatin and assess their 29 

distribution across the T. brucei genome. Our rationale was that ChIP-seq might register 30 

chromatin association even if cellular localization analysis reported a protein to be 31 

predominantly cytoplasmic. As expected, the kinetochore control protein KKT2 was 32 

specifically enriched over centromeric regions (Fig. 2A). Consistent with their cytoplasmic 33 

localizations, AGO1 and DMT registered no ChIP-seq signal (Supplemental Fig. S5). 34 

Moreover, under our standard fixation and ChIP-seq conditions, no specific enrichment over 35 

any genomic region was detected for 45 of the YFP-tagged proteins, including several that 36 

exhibited clear nuclear localization (Supplemental Fig. S5; Supplemental Table S3).  37 
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 1 

In total, 24 of the YFP-tagged proteins assayed (including the KKT2 control) gave specific 2 

enrichment patterns across the T. brucei genome. Fifteen of our candidate proteins 3 

displayed enrichment that was adjacent to, or overlapping with, the previously reported 4 

H2A.Z peaks indicating that these proteins are enriched at known RNAPII TSRs (Fig. 2A; 5 

Supplemental Fig. S6A). Our ChIP-seq data confirmed that the largest RNAPII subunit 6 

(RPB1) does indeed exhibit peaks at the same locations. The TSR-associated proteins 7 

include BDF1-to-6, CRD1, EAF6, HAT1, HAT2, HDAC1, HDAC3, SET26, SET27, and 8 

ZCW1. These fifteen proteins were always enriched together at RNAPII TSRs. Some of 9 

these proteins also presented peaks that coincide with those of RNAPIII/TTR-enriched 10 

factors in a few locations (see below; Supplemental Fig. S6C) but otherwise they did not 11 

display significant association with any other genomic regions. The fact that six 12 

Bromodomain proteins, two histone acetyltransferases and a NuA4 component are included 13 

in this set is consistent with these acting together to promote RNAPII-mediated transcription, 14 

a hallmark of which is histone acetylation (Roth et al., 2001). Indeed, BDF1, BDF3 and 15 

BDF4 have previously been shown to be enriched at sites of T. brucei RNAPII transcription 16 

initiation where nucleosomes exhibit HAT1-mediated acetylation of H2A.Z and H2B.V and 17 

HAT2-mediated acetylation of histone H4, which are important for normal RNAPII 18 

transcription from these regions (Kraus et al., 2020; Schulz et al., 2015; Siegel et al., 2009). 19 

The remaining 10 proteins we identified as being associated with TSRs have not been 20 

previously shown to act at kinetoplastid RNAPII promoters. 21 

 22 

Putative chromatin regulators exhibit two distinct TSR association patterns 23 

In yeast, where many RNAPII genes are transcriptionally regulated, a group of chromatin 24 

regulators are enriched specifically at promoters where they assist in transcription initiation 25 

while others travel with RNAPII into gene bodies aiding transcription elongation, splicing and 26 

termination (Carrozza et al., 2005; Cheung et al., 2008; Jonkers and Lis, 2015; Joshi and 27 

Struhl, 2005; Kaplan et al., 2003; Keogh et al., 2005; Li et al., 2007; Mason and Struhl, 2003; 28 

Venkatesh and Workman, 2013). We therefore compared the enrichment profiles of the 29 

TSR-associated proteins relative to that of the Chromo domain protein CRD1 which 30 

displayed the sharpest and highest peak signal. We identified 177 CRD1 peaks across the 31 

T. brucei Lister 427 genome which overlap with 136 of the 148 annotated RNAPII TSRs (Fig. 32 

2B). For each TSR-associated factor, normalized reads were assigned to 10 kb windows 33 

upstream and downstream of all CRD1 peak summits. The general peak profile for each 34 

protein was then displayed as a metagene plot and the read distribution around individual 35 

CRD1 peaks represented as a heatmap (Fig. 2C,D; Supplemental Fig. S7). This analysis 36 

indicated that CRD1, SET27, BDF4 and, to a lesser extent, BDF1 and BDF3 exhibit sharp 37 
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peaks at all RNAPII TSRs, similar to RNAPII/RPB1 itself. We refer to these as Class I TSR-1 

associated factors (Fig. 2C). The remaining 10 proteins were more broadly enriched over the 2 

same regions with a slight trough evident in the signal for at least five (BDF2, BDF5, HAT1, 3 

HAT2, SET26), perhaps indicative of two adjacent peaks as observed for H2A.Z (Fig. 2D). 4 

We refer to these as Class II TSR-associated factors. Class II factor profiles are similar to 5 

the previously reported H2A.Z enrichment pattern (Siegel et al., 2009), with the signal 6 

gradually declining over 5-10 kb regions on either side of the CRD1 peak summit. We 7 

observed similar peak widths of Class II factors across all TSRs regardless of polycistron 8 

length, thus there is no apparent relationship between TSR size and the length of the 9 

downstream polycistronic transcription unit. 10 

 11 

Of the 148 annotated T. brucei RNAPII promoters, 99 are bidirectional, initiating production 12 

of stable transcripts in both directions, and 49 are unidirectional, driving transcription in just 13 

one direction. To investigate the relationship between transcription directionality and 14 

enrichment of our candidate proteins, we sorted the heatmaps of Class II factors by their 15 

distribution around CRD1 peaks. We then compared the sorted heatmaps with previously 16 

published RNA-seq data from which the direction of RNAPII transcription was derived 17 

(Naguleswaran et al., 2018). This analysis demonstrated that Class II TSR-associated 18 

factors exhibit specific enrichment in the same direction as RNAPII transcription initiated 19 

from all uni- and bi-directional promoters (Fig. 3A,B). 20 

 21 

Proteins associated with TSRs participate in discrete interaction networks 22 

The analyses presented above suggest that, as in yeast, proteins which exhibit either narrow 23 

(Class I) or broad (Class II) association patterns across RNAPII promoter regions might play 24 

different roles such as defining sites of RNAPII transcription initiation or facilitating RNAPII 25 

processivity through their association with chromatin and interactions with RNAPII auxiliary 26 

factors. Determining how these various activities are integrated through association 27 

networks should provide insight into how the distinct sets of proteins might influence RNAPII 28 

transcription. Therefore, we affinity selected each tagged protein that registered a specific 29 

ChIP-seq signal at TSRs and identified their interacting partners by mass spectrometry. 30 

 31 

Below we detail the interaction networks for the TSR-associated factors (Fig. 4A,B; 32 

Supplemental Table S4), the homologies identified in their key interacting partners through 33 

HHpred searches (Soding et al., 2005; Supplemental Table S5) and discuss possible 34 

functional implications arising from these proteomics data. Interacting partners identified by 35 

mass spectrometry analysis are also included for ten proteins (PHD1, PHD5, HAT3, AGO1, 36 
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NUP110, SET13, SET15, SET20, SET23 and SET25) for which no specific ChIP-seq signal 1 

was obtained (Supplemental Fig. S8). 2 

 3 

 4 

Class I: CRD1, SET27, BDF4, BDF1 and BDF3 5 

 6 

CRD1 and SET27 7 

Affinity selection of YFP-CRD1 and YFP-SET27 (Fig. 4A,B; Supplemental Table S4) 8 

revealed that they both associate strongly with each other, with four uncharacterized 9 

proteins (Tb927.1.4250, Tb927.3.2350 Tb927.11.11840, Tb927.11.13820) and with JBP2. 10 

JBP2 is a TET-related hydroxylase that catalyses thymidine oxidation on route to the 11 

synthesis of the DNA modification base J which is found at transcription termination regions 12 

and telomeres in trypanosomes (Cliffe et al., 2010; Reynolds et al., 2016; Schulz et al., 13 

2016). In addition, SET27 associates with JBP1 - another TET-related thymidine 14 

hydroxylase involved in base J synthesis (Borst and Sabatini, 2008). The Chromo domain of 15 

CRD1 exhibits marginal similarity when aligned with other Chromo domain proteins 16 

(Supplemental Fig. S1B), however its reciprocal association with SET27 suggests that they 17 

might function together as a reader-writer pair at TSRs. In yeast and human cells, the 18 

Set1/SETD1 methyltransferase installs H3K4 methylation at promoters (Shilatifard, 2012) 19 

and T. brucei SET27 might play a similar role at TSRs.  Recently, methylated histone lysine 20 

residues were found to be prevalent at trypanosome TSRs (Kraus et al., 2020). SET27 likely 21 

catalyses the methylation of at least one of these lysines which may then be bound by 22 

CRD1, ensuring SET27 recruitment and persistence of the methylation event(s) that it 23 

installs on histones within resident TSR nucleosomes. The association of the RPB1 and 24 

RPB3 RNAPII subunits with CRD1 underscores its likely involvement in linking such 25 

chromatin modifications with transcription. 26 

 27 

BDF1 and BDF4 28 

Consistent with their colocalization in Class I ChIP-seq peaks, YFP-BDF1 and YFP-BDF4 29 

showed strong reciprocal association with each other (Fig. 4A,B; Supplemental Table S4). 30 

BDF4 also exhibited weak association with BDF3 and the Class II factor BDF5. Bromo 31 

domains are known to bind acetylated histones (Zaware and Zhou, 2019), and are thus 32 

presumably attracted to TSRs due to the presence of highly acetylated histones, particularly 33 

H2A.Z, H2B.V and H4, in resident nucleosomes (Kraus et al., 2020). The coincidence of the 34 

H2A.Z variant with histone modifications associated with active transcription in this 35 

evolutionarily distinct eukaryote suggests that they act together to recruit various chromatin 36 

remodelling and modification activities to ensure efficient transcription. 37 

 Cold Spring Harbor Laboratory Press on September 3, 2021 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 11

 1 

BDF3 (Class I), BDF5 (Class II) and HAT2 (Class II) 2 

BDF3, BDF5 and HAT2 reciprocally associate with each other and a set of six 3 

uncharacterized proteins (Tb927.3.4140, Tb927.4.2340, Tb927.6.1070, Tb927.7.2770, 4 

Tb927.9.13320, Tb927.11.5230) suggesting that these nine proteins may act together in a 5 

complex (Fig. 4A,B; Supplemental Table S4). BDF3 interacts with both Class I and Class II 6 

proteins, suggesting that it may straddle the interface between both classes of factors at 7 

RNAPII TSRs. HAT2 mediates acetylation of histone H4 and promotes normal transcription 8 

initiation by RNAPII (Kraus et al., 2020). The Bromo domains of BDF3 and BDF5 may guide 9 

HAT2 to pre-existing acetylation at TSRs to maintain the required acetylated state for 10 

efficient transcription. We also note that Tb927.3.4140 displays similarity to Poly ADP 11 

Ribose Polymerase (PARP; Supplemental Table S5), suggesting that ribosylation might 12 

contribute to TSR definition by promoting chromatin decompaction as seen upon Drosophila 13 

heat shock puff induction (Sawatsubashi et al., 2004; Tulin et al., 2003; Tulin and Spradling, 14 

2003) and at some mammalian enhancers-promoter regions (Benabdallah et al., 2019). 15 

Tb927.11.5230 contains an EMSY ENT domain whose structure has been determined (Mi et 16 

al., 2018; Supplemental Table S5); such domains are present in several chromatin 17 

regulators. Tb927.4.2340 exhibits similarity to the C-terminal region of the vertebrate TFIID 18 

TAF1 subunit (Supplemental Table S5). Metazoan TAF1 bears two Bromo domains in its C-19 

terminal region whereas in yeast the double Bromo domain component of TFIID is 20 

contributed by the separate Bdf1 (or Bdf2) proteins (Matangkasombut et al., 2000; Timmers, 21 

2020). T. brucei BDF5 contains two Bromo domains and may thus be equivalent to the yeast 22 

TFIID Bdf1 subunit.  23 

 24 

Class II: BDF2, BDF5, BDF6, EAF6, HAT1, HAT2, HDAC1, HDAC3, SET26, ZCW1  25 

 26 

BDF2 and HDAC3 27 

We found that both TSR-enriched histone variants H2A.Z and H2B.V strongly associate with 28 

BDF2 and HDAC3, which interact with each other as well as with four uncharacterized 29 

proteins (Tb927.3.2460, Tb927.6.4330, Tb927.9.4000, Tb927.9.8520; Fig. 4A,B; 30 

Supplemental Table S4). We note that Tb927.9.8520 exhibits similarity to DNA Polymerase 31 

Epsilon (DNAPolE; Supplemental Table S5) and both DNA Polymerase Theta (DNAPolQ) 32 

and DNA Primase were also enriched along with the PARN3 poly(A) specific ribonuclease 33 

and Casein Kinase I (CKI). Moreover, Tb927.3.2460 shows similarity to a nuclear pore 34 

protein while Tb927.6.4330, Tb927.9.4000 and DNAPolQ were previously shown to 35 

associate with the telomere proteins TRF and TelAP1, and DNA primase is known to interact 36 

with TelAP1 (Reis et al., 2018). Here we find that the telomere-associated proteins TRF, 37 
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TIF2, TelAP1 and RAP1 are also enriched in both BDF2 and HDAC3 affinity selections. The 1 

significance of this association is unknown, however BDF2 and HDAC3 have previously 2 

been shown to be required for telomeric VSG expression site silencing (Schulz et al., 2015; 3 

Wang et al., 2010) and RNAi knock-down of Tb927.6.4330 causes defects in telomere-4 

exclusive VSG gene expression (Glover et al., 2016). It was also unexpected to observe 5 

HDAC3 enrichment at RNAPII TSRs given that actively transcribed regions tend to be 6 

hyperacetylated (Kouzarides, 2007). HDAC3 may be required to reverse acetylation 7 

associated with newly deposited histones during S phase (Stewart-Morgan et al., 2020) or to 8 

remove acetylation added during expected H2A-H2B:H2A.Z-H2B.V dimer-dimer exchange 9 

events at TSR regions (Bonisch and Hake, 2012; Millar et al., 2006). 10 

 11 

SET26 and ZCW1 12 

SET26 and ZCW1 associated with each other as well as with most histones and histone 13 

variants (Fig. 4A,B; Supplemental Table S4). In addition, both SET26 and ZCW1 showed 14 

strong interaction with the SPT16 and POB3 subunits of the FACT (Facilitates Chromatin 15 

Transcription) complex which is involved in trypanosome VSG silencing through increased 16 

histone occupancy at VSG expression sites (Denninger and Rudenko, 2014) and is known 17 

to aid transcription elongation in other eukaryotes (Belotserkovskaya et al., 2003). SET26 18 

could perform an analogous role to the yeast Set2 H3K36 histone methyltransferase which 19 

travels with RNAPII and, together with FACT, ensures that chromatin integrity is restored 20 

behind advancing RNAPII. These activities are known to prevent promiscuous transcription 21 

initiation events from cryptic promoters within open reading frames (Carrozza et al., 2005; 22 

Cheung et al., 2008; Joshi and Struhl, 2005; Kaplan et al., 2003; Keogh et al., 2005; Li et al., 23 

2007; Mason and Struhl, 2003; Venkatesh and Workman, 2013). ZCW1 also exhibits strong 24 

association with apparent orthologs of several SWR1/SRCAP/EP400 remodelling complex 25 

subunits (Scacchetti and Becker, 2020; Willhoft and Wigley, 2020), including Swr1/SRCAP 26 

(Tb927.11.10730), Swc6/ZNHIT1 (Tb927.11.6290), Swc2/YL1 (Tb927.11.5830), two RuvB-27 

related helicases (Tb927.4.2000; Tb927.4.1270), actin and actin-related proteins 28 

(Tb927.4.980, Tb927.10.2000, Tb927.3.3020), and the possible equivalents of the 29 

Swc4/DMAP1 (Tb927.7.4040) and Yaf9/GAS41 YEATS domain protein (Tb927.10.11690, 30 

designated YEA1) subunits (Supplemental Table S5; Supplemental Table S6). Most of these 31 

putative TbSWR1-C subunits were also detected as being associated with BDF2 (Fig. 4A,B; 32 

Supplemental Table S4; Supplemental Table S5). Thus, since the yeast Bdf1 and human 33 

BRD8 Bromodomain proteins also associate with SWR1-C/SRCAP-C/EP400, it is likely that 34 

TbBDF2 performs a similar function in engaging acetylated histones. The SWR/SRCAP 35 

remodelling complexes are well known for being required to direct the replacement of H2A 36 

with H2A.Z in nucleosomes residing close to transcription start sites (Mizuguchi et al., 2004; 37 
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Ruhl et al., 2006). The prevalence of both H2A.Z and H2B.V with affinity selected ZCW1 1 

suggests that it may also play a role in directing the T. brucei SWR/SRCAP complex to 2 

TSRs to ensure incorporation of H2A.Z-H2B.V in place of H2A-H2B in resident 3 

nucleosomes.  4 

 5 

 6 

 7 

BDF6, EAF6 and HAT1 8 

BDF6, EAF6 and HAT1 exhibit robust association with each other, with a second YEATS 9 

domain protein - the possible ortholog of acetylated-H2A.Z binding Yaf9/Gas41 10 

(Tb927.7.5310, designated YEA2) and a set of five other uncharacterized proteins 11 

(Tb927.1.650, Tb927.6.1240, Tb927.8.5320, Tb927.10.14190, Tb927.11.3430; Fig. 4A,B; 12 

Supplemental Table S4). Tb927.1.650 is an MRG domain protein with similarity to yeast 13 

Eaf3 while Tb927.10.14190 appears to be orthologous to yeast Epl1, both of which along 14 

with Yaf9 are components of the yeast NuA4 complex (Supplemental Table S5; 15 

Supplemental Table S7). The yeast Yaf9 YEATS protein contributes to both the NuA4 HAT 16 

and SWR1 complexes and can bind acetylated or crotonylated histone tails (Arrowsmith and 17 

Schapira, 2019; Timmers, 2020). In T. brucei, it appears that distinct YEATS domain 18 

proteins contribute to putative SWR1 (YEA1) and NuA4 (YEA2) complexes. HAT1 19 

associates with both BDF6 and EAF6 whereas HAT3, EAF6 and PHD1 reciprocally 20 

associate with each other and share Tb927.11.7880, a YNG2-related ING domain protein, 21 

as a common interactor (Supplemental Fig. S8; Supplemental Table S5; Supplemental 22 

Table S7). Thus, HAT3-EAF6-PHD1-YNG2 perhaps represents a T. brucei subcomplex 23 

analogous to yeast piccolo-NuA4 while HAT1-EAF6-BDF6-EAF3-EPL1-YEA2 may form the 24 

larger NuA4 complex (Doyon and Cote, 2004; Wang et al., 2018). In T. brucei, the 25 

Esa1/TIP60 catalytic MYST acetyltransferase function may be shared between HAT1 and 26 

HAT3. Although we have clearly identified NuA4-like complexes, no association was 27 

detected with a T. brucei Eaf1/EP400-related Helicase-SANT domain protein that provides 28 

the platform for the assembly of distinct modules of the yeast and metazoan NuA4 29 

complexes (Levi et al., 1987; Scacchetti and Becker, 2020).  30 

 31 

Together, BDF6, EAF6, and HAT1 appear part of a putative NuA4-related complex that 32 

functions at T. brucei TSRs. HAT1 has been shown to be required for H2A.Z and H2B.V 33 

acetylation and efficient RNAPII engagement and transcription (Kraus et al., 2020). BDF6, 34 

YEA2 or both may bind acetylated histones at TSRs to promote stable association of 35 

interacting chromatin modification and remodelling activities that enable the required histone 36 
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dynamics to take place in these highly specialized regions and thereby facilitate efficient 1 

transcription. 2 

 3 

HDAC1 4 

We also readily detect HDAC1 enriched broadly over RNAPII TSRs, but notably it does not 5 

associate with any of the other factors we found in these regions (Fig. 4A; Supplemental 6 

Table S4). However, five uncharacterized proteins (Tb927.3.890, Tb927.4.3730, 7 

Tb927.6.3170, Tb927.7.1650, Tb927.9.2070) reproducibly associated with HDAC1. HHpred 8 

searches detected some similarity of Tb927.3.890, Tb927.4.3730 and Tb927.6.3170 to 9 

chromatin-associated proteins (Supplemental Table S5) and Tb927.9.2070 was also 10 

enriched with CRD1. HDAC1 was previously shown to be an essential nuclear protein 11 

whose knock down increases silencing of telomere-adjacent reporters in bloodstream form 12 

parasites (Wang et al., 2010). However, a general role for HDAC1 at RNAPII TSRs was not 13 

anticipated. HDAC1 has been reported to be mainly cytoplasmic in procyclic cells (Wang et 14 

al., 2010) and it is therefore expected to be absent from RNAPII TSRs in insect form 15 

parasites.  16 

 17 

Eight proteins are specifically enriched over RNAPII TTRs coincident with RNAPIII-18 

transcribed genes 19 

Our analysis of ChIP-seq association patterns also revealed a distinct set of eight proteins 20 

which displayed sharp peaks at a subset of RNAPII transcription termination regions that 21 

coincide with RNAPIII-transcribed genes (Fig. 5; Supplemental Fig. S6B).  These 22 

RNAPIII/TTR-associated factors included six of our candidate readers and writers (BDF7, 23 

ELP3b, PHD2, PHD4, TFIIS2-2 and DOT1A) as well as two of the selected control proteins 24 

(TRF and TBP). A total of 154 RNAPII TTRs have been annotated in the Lister 427 genome 25 

(Müller et al., 2018). We observed enrichment of some or all of these eight proteins at the 20 26 

TTRs which overlap with tRNA and/or snRNA genes and also at the single TTR6 (sTTR6) 27 

which lacks such genes (Fig. 5A,B). Consistent with T. brucei snRNA and tRNA genes being 28 

transcribed by RNAPIII (Nakaar et al., 1997; Tschudi and Ullu, 2002), we detected 29 

enrichment of RPC1 (the largest RNAPIII subunit) at these locations (Fig. 5A). However, 30 

although RPC1 associates with sTTR6, it is not enriched at any of the other 133 TTRs 31 

lacking annotated RNAPIII-transcribed genes. Our analysis suggests that an unannotated 32 

RNAPIII transcript is probably produced within sTTR6 but that the majority of RNAPII TTRs 33 

are not associated with RNAPIII transcription or with any of the eight highlighted proteins.  34 

 35 

 Cold Spring Harbor Laboratory Press on September 3, 2021 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 15

These eight RNAPIII/TTR-associated factors were also clearly enriched at the U2 1 

(Tb927.2.5680) and U6 (Tb927.4.1213) snRNA genes and at 53 of the 69 tRNA genes 2 

annotated in the Lister 427 genome assembly (Fig. 5A,B; Supplemental Fig. S6B; 3 

Supplemental Table S8). We observed enrichment of only some of these proteins at 11 of 4 

the other tRNA genes and no association with the remaining 5. Moreover, not all tRNA 5 

genes bound by these proteins coincide with an RNAPII TTR (Supplemental Fig. S6B; 6 

Supplemental Table S8). 7 

 8 

RNAPIII/RPC1 was also enriched over the 5S rRNA cluster together with TBP but not the 9 

other seven members of this protein group (Fig. 5C). However, all eight proteins gave 10 

prominent peaks over the spliced leader gene locus (Fig. 5D). The fifteen RNAPII promoter-11 

associated factors discussed above also exhibit sharp peaks that appear to coincide with 12 

those of the RNAPIII/TTR-associated factors at some locations (Supplemental Fig. S6C); the 13 

significance of this colocation is unknown. 14 

 15 

It was unexpected that the terminal (TTAGGG)n telomere repeat-binding protein TRF was 16 

one of the eight proteins enriched at internal chromosomal regions overlapping RNAPIII-17 

associated TTRs. We hypothesized that enrichment of TRF at this subset of TTRs could 18 

result from the presence of underlying sequence motifs with similarity to canonical 19 

(TTAGGG)n telomere repeats, however sequence scrutiny revealed no significant matches. 20 

T. brucei contains approximately 115 linear chromosomes and consequently has an 21 

abundance of telomeres and telomere binding proteins that cluster at the nuclear periphery 22 

(Akiyoshi and Gull, 2013; DuBois et al., 2012; Reis et al., 2018; Yang et al., 2009).  The 23 

tethering of RNAPIII-transcribed genes to the nuclear periphery, as observed in yeast (Chen 24 

and Gartenberg, 2014; Iwasaki et al., 2010), would bring them in close proximity to 25 

telomeres offering a potential explanation for the association of TRF with these nucleosome 26 

depleted regions.  27 

 28 

In yeasts, both the cohesin and condensin complexes, which shape chromosome 29 

architecture, are enriched or loaded at highly transcribed regions such as tRNA genes 30 

(D'Ambrosio et al., 2008; Gard et al., 2009; Haeusler et al., 2008; Iwasaki et al., 2010). Since 31 

the T. brucei Scc1 cohesin subunit is also enriched over tRNA genes (Muller et al., 2018) it 32 

is possible that the plethora of factors associated with RNAPIII-transcribed genes mediate 33 

the formation of nucleosome depleted boundary structures that facilitate transcription 34 

termination of polycistronic units by obstructing the passage of RNAPII. Since none of the 35 

eight proteins identified decorate RNAPII TSRs, they likely contribute to RNAPII transcription 36 

termination and/or facilitate RNAPIII transcription of tRNA and snRNA genes. 37 
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 1 

Interaction networks of RNAPIII/TTR-associated proteins 2 

To gain more insight into the functional context of the eight proteins found to be enriched at 3 

the subset of TTRs coinciding with RNAPIII-transcribed genes, we applied the same 4 

approach used to identify interacting partners of the promoter-associated factors. Below we 5 

detail the interaction networks of the RNAPIII/TTR-enriched proteins and discuss their 6 

potential functional implications (Fig. 5E,F; Supplemental Table S4; Supplemental Table 7 

S5). 8 

 9 

Affinity selection of the telomere binding protein TRF resulted in enrichment of previously 10 

identified TRF- and telomere-associated proteins (Reis et al., 2018). The interaction of 11 

HDAC3 with TRF and BDF2 and its enrichment over TSRs suggests that HDAC3 functions 12 

at both RNAPII promoters and at subtelomeric regions (Fig. 5E,F). Our proteomic analyses 13 

detected no significant interactions of ELP3b, PHD2 and PHD4 with other proteins (Fig.5E; 14 

Supplemental Table S4). Indeed, none of the eight RNAPIII/TTR-associated factors 15 

displayed reciprocal interactions with each other. This lack of crosstalk suggests that each 16 

protein performs distinct functions at these locations. 17 

 18 

BDF7 and NAP proteins 19 

BDF7 is a Bromodomain protein containing an AAA+ ATPase domain, equivalent to Yta7, 20 

Abo1 and ATAD2 of budding and fission yeast, and vertebrates, respectively.  These 21 

proteins have been implicated in altering nucleosome density to facilitate transcription, and 22 

Abo1 has recently been shown to mediate H3-H4 deposition onto DNA in vitro (Cho et al., 23 

2019; Lombardi et al., 2011; Murawska and Ladurner, 2020). Affinity selected YFP-BDF7 24 

showed strong association with three Nucleosome Assembly Proteins (Tb927.1.2210, 25 

designated NAP1; Tb927.3.4880, designated NAP2; and Tb927.10.15180, designated 26 

NAP3; Fig. 5E,F; Supplemental Table S4), supporting a potential role for BDF7 as a histone 27 

chaperone involved in nucleosome formation. H3.V and H4.V tend to be enriched at the end 28 

of trypanosome polycistronic units where RNAPII transcription is terminated (Siegel et al., 29 

2009), and we find that BDF7 is associated with a subset of these TTRs (Fig. 5B). Thus, it is 30 

possible that BDF7 acts with NAP1-to-3 to mediate H3.V-H4.V deposition at T. brucei 31 

RNAPIII-associated transcription termination regions. Distinct nucleosome depleted regions 32 

are formed over tRNA genes and, as discussed above, the termination of some RNAPII 33 

transcription occurs in regions coincident with RNAPIII-transcribed genes (Marchetti et al., 34 

1998; Maree and Patterton, 2014; Siegel et al., 2009). As suggested previously, it is possible 35 

that a subset of genes transcribed by RNAPIII act as boundaries that block the passage of 36 

advancing RNAPII into convergent or downstream transcription units (Siegel et al., 2009). 37 
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BDF7 may act with associated NAP proteins to promote nucleosome depletion and 1 

termination over such regions. 2 

 3 

TFIIS2-2 and the PAF1 complex  4 

TFIIS2-2 was clearly enriched in the vicinity of RNAPIII-transcribed genes and associated 5 

TTRs and upon affinity selection exhibited strong interaction with PAF1 Complex 6 

components (LEO1/Tb927.9.12900, CTR9/Tb927.3.3220, CDC73/Tb927.11.10230) and with 7 

several RNAPII subunits (Fig. 5E,F; Supplemental Table S4). Yeast Paf1C acts with TFIIS to 8 

enable transcription elongation through chromatin templates (Schier and Taatjes, 2020; Van 9 

Oss et al., 2017). The accumulation of PAF1 complex subunits at these TTR regions 10 

presumably reflects the role that these proteins are known to play in transcription termination 11 

and 3′ end processing of RNAPII transcripts. 12 

 13 

 14 

DOT1A and the RNase H2 complex  15 

The DOT1A and DOT1B histone methyltransferases direct trypanosome H3K76 di- and tri-16 

methylation, respectively (Janzen et al., 2006b). DOT1A is involved in cell cycle progression 17 

while DOT1B is necessary for maintaining the silent state of inactive VSGs and for rapid 18 

transcriptional VSG switching (Figueiredo et al., 2008; Janzen et al., 2006b). Our proteomic 19 

analysis revealed that DOT1A associates with all three subunits of the RNase H2 complex 20 

(RH2A, RH2B and RH2C; Fig. 5E,F; Supplemental Table S4). The RH1 and RH2 complexes 21 

are necessary for resolving R-loops formed during transcription (Cerritelli and Crouch, 22 

2009). While both RH1 and RH2 complexes are involved in antigenic variation, only RH2 23 

has a role in trypanosome RNAPII transcription (Briggs et al., 2019). A recent study 24 

suggests that DOT1B is also required to clear R-loops by suppressing RNA-DNA hybrid 25 

formation and resulting DNA damage (Eisenhuth et al., 2020). DOT1A, which we find to be 26 

enriched at tRNA and snRNA genes (see above), may act with RH2 to prevent the 27 

accumulation of RNA-DNA hybrids at these RNAPIII-transcribed regions. 28 

 29 

TBP, BRF1 and RNAPIII-transcribed genes 30 

TBP (TATA-box related protein) has largely been studied with respect to its role in RNAPII 31 

transcription from spliced leader (SL) RNA gene promoters (Das et al., 2005). However, TBP 32 

was also previously shown to associate strongly with the TFIIIB component BRF1 33 

(Schimanski et al., 2005) and thus, like BRF1, TBP may also promote RNAPIII transcription 34 

(Vélez-Ramírez et al., 2015). Indeed, directed ChIP assays indicate that TBP associates 35 

with specific RNAPIII-transcribed genes (Ruan et al., 2004; Vélez-Ramírez et al., 2015). 36 

Consistent with a dual role, we confirmed that YFP-TBP interacts with both SNAP complex 37 
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components involved in SL transcription and with BRF1 (Fig. 5E,F; Supplemental Table S4). 1 

Our ChIP-seq analysis shows that TBP is concentrated in sharp peaks that coincide with 2 

both RNAPII promoters for SL RNA genes as well as RNAPIII-transcribed tRNA and snRNA 3 

genes (Fig. 5A,D). Additionally, TBP was significantly enriched at arrays of RNAPIII-4 

transcribed 5S rRNA genes (Fig. 5C). Thus, apart from SL RNA gene promoters, TBP 5 

appears to mark all known sites of RNAPIII-directed transcription. 6 

 7 

Conclusions 8 

Using protein domain homology searches, we identified a collection of 65 putative chromatin 9 

regulators in Trypanosoma brucei that were predicted to act as writers, readers or erasers of 10 

histone post-translational modifications. Many of these proteins exhibited a discernible 11 

nuclear localization and displayed distinct patterns of association across the genome, 12 

frequently coinciding with regions responsible for RNAPII transcription initiation and 13 

termination or RNAPIII transcription (Fig. 6).  Robust proteomic analyses allowed the 14 

interaction networks of these proteins to be identified thereby providing further insight into 15 

their possible functions at specific genomic locations by revealing putative complexes likely 16 

involved in the distinct phases of transcription: initiation, elongation and termination. 17 

Counterparts of yeast SWR1 H2A-to-H2A.Z exchange complex and NuA4 HAT complex 18 

components were identified, some of which were enriched where H2A.Z is prevalent at 19 

TSRs. A recent report indicates that both TbSWR1 and TbNuA4 complexes are indeed 20 

involved in the deposition of T. brucei H2A.Z (Vellmer et al. 2021). 21 

 22 

We also demonstrate that two predicted SET domain methyltransferases associate with 23 

putative histone modification reader proteins with which they occupy RNAPII TSRs. 24 

Moreover, our analyses reveal that six of the seven Bromodomain proteins are involved in 25 

four interaction networks enriched at TSRs while the BDF7 network alone marks a subset of 26 

TTRs that are coincident with sites of RNAPIII transcription. The association of SET and 27 

Bromodomain proteins with conserved RNAPII subunits, histone acetyltrasnferases, 28 

chromatin chaperones and remodelling factors suggests that the networks identified play 29 

pivotal roles in defining sites of transcription initiation and termination. 30 

 31 

The data presented here provide a comprehensive depiction of the operational context of 32 

chromatin writers, readers and erasers at important genomic regulatory elements in this 33 

experimentally tractable but divergent eukaryote.  Critically, our analyses identify many novel 34 

proteins unrelated to, or divergent from, known chromatin regulators of conventional 35 

eukaryotes.  This highlights the utility of our approach to reveal novelty in the composition of 36 
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T. brucei chromatin regulatory complexes which differ from the paradigms established using 1 

conventional eukaryotic models.  2 

 3 

Trypanosome gene expression is generally considered to be regulated post-transcriptionally 4 

with a plethora of factors dedicated to sculpting mature mRNAs from nascent polycistronic 5 

transcripts (Clayton, 2019).  The complexity of chromatin regulatory factors that we have 6 

found to be enriched at TSRs and some TTRs may simply represent the core set of proteins 7 

required to mediate efficient and constitutive eukaryotic transcription initiation, elongation 8 

and termination in a chromatin context.  An alternative possibility is that these proteins, with 9 

potentially antagonistic functions, operate in a more complex regulatory landscape where 10 

transcriptional control contributes alongside post-transcriptional mechanisms in ensuring 11 

optimal trypanosome gene expression. 12 

 13 

 14 

 15 

Figure Legends 16 

 17 

Fig. 1. Cellular localization of chromatin-associated T. brucei candidate proteins. 18 

The indicated YFP-tagged proteins expressed in bloodstream Lister 427 cells from their 19 

endogenous genomic loci were detected with an anti-GFP primary antibody and an Alexa 20 

Fluor 568 labelled secondary antibody (red). Nuclear and kinetoplast (mitochondrial) DNA 21 

were stained with DAPI (green). Staining of untagged 427 parasites serves as a negative 22 

control. Representative images are shown for those candidate proteins that gave a specific 23 

ChIP-seq signal. The images are ordered according to ChIP-seq patterns shown in Fig. 2A 24 

and Fig. 5A. Images for all other tagged proteins are included in Supplemental Fig. S2.  25 

Scale bar = 5 µm. 26 

 27 

 28 

 29 

Fig. 2. ChIP-seq reveals two classes of proteins at T. brucei transcription start 30 

regions. 31 

A. A region of Chromosome 7 (coordinates as indicated, kb) is shown with ChIP-seq reads 32 

mapped for the indicated proteins. A single replicate is shown for each protein. Tracks are 33 

scaled separately as reads per million (values shown at the end of each track). The 34 

kinetochore protein KKT2 is included as a positive control and is enriched at centromeric 35 

regions. ChIP-seq performed in Lister 427 cells expressing no tagged protein (untagged) 36 

provides a negative control. ChIP-seq profiles for the different proteins are ordered 37 
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according to their patterns. Previous H2A.Z data (Wedel et al. 2017) and our RPB1 ChIP-1 

seq allowed Transcription Start Regions (TSRs) to be identified. No input data was available 2 

for normalization of H2A.Z reads resulting in a higher read scale. The position of 3 

bidirectional/divergent and unidirectional/single TSRs is indicated with arrows showing the 4 

direction of transcription. The position of convergent and single Transcription Termination 5 

Regions (TTRs) is shown with arrows indicating the direction from which transcription is 6 

halted. The position of tRNA genes (blue bars) and the Chromosome 7 centromere (CEN, 7 

grey oval) are marked. Positions of the various genomic elements (TSRs, TTRs, tRNAs, 8 

CEN) were obtained from annotations of the Lister 427 genome (Muller et al, 2018). 9 

B. Most TSRs annotated in the Lister 427 genome overlap with YFP-CRD1 ChIP-seq peaks. 10 

C. Enrichment profiles of Class I TSR factors. The metagene plots (top) show normalized 11 

read density around all CRD1 peak summits, with individual replicates for each protein 12 

shown separately. Note the different scale for CRD1. The heatmaps (bottom) are an 13 

average of all replicates for each protein and show protein density around individual CRD1 14 

peaks. Scale bars represent reads that were normalized to input and library size. 15 

D. As in (C) for Class II TSR factors. 16 

Fig. 3. Enrichment of Class II proteins at TSRs follows the direction of RNAPII 17 

transcription.  18 

A. SET26 is used as a representative protein of Class II TSR-associated factors. 19 

Comparison of SET26 ChIP-seq data with strand specific RNA-seq data (Naguleswaran et 20 

al., 2018) shows that SET26 reads are enriched in the same direction as RNAPII transcript 21 

reads. Heatmaps show from top to bottom: minus strand reads from unidirectional TSRs 22 

(top), plus and minus strand reads from bidirectional TSRs or from two adjacent 23 

unidirectional TSRs (middle), and plus strand reads from unidirectional TSRs (bottom).  24 

B. Examples from the different heatmap regions described in (A). A single replicate is shown 25 

for each protein. Tracks are scaled separately as reads per million (values shown at the end 26 

of each track). 27 

 28 

 29 

 30 

Fig. 4. Class I and Class II TSR-associated factors define distinct interaction 31 

networks.  32 

A. YFP-tagged proteins found to be enriched at TSRs were analysed by LC-MS/MS to 33 

identify their protein interactions. The data for each plot is based on three biological 34 

replicates. Cut-offs used for significance: log2 (tagged/untagged) > 2 or < -2 and p < 0.01 35 

(Student’s t-test). Enrichment scores for proteins identified in each affinity selection are 36 

presented in Supplemental Table S4. Plots in the same box show reciprocal interactions. 37 
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Proteins of interest are indicated by red font. Uncharacterized proteins common to several 1 

affinity selections are depicted in yellow, green, purple and cyan. Black squares represent 2 

members of the SWR1/SRCAP complex found in the BDF2 and ZCW1 affinity selections. 3 

B. Key proteins identified as being associated with the indicated YFP-tagged bait proteins 4 

(thick oval outlines). Rectangles contain proteins common to several affinity purifications. 5 

Lines denote interactions between proteins. The interactions of BDF3 and BDF5 with BDF4 6 

(dashed lines); BDF5 with ZCW1 (dashed lines); and BDF7 (grey) with ZCW1 and SET26 7 

were not confirmed by reciprocal affinity selections. 8 

 9 

  10 
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Fig. 5. Proteins enriched over RNAPII TTRs coinciding with RNAPIII-transcribed genes 1 

define distinct interaction networks. 2 

The ChIP-seq tracks show a single replicate for each protein and are scaled separately as 3 

reads per million (values shown at the end of each track). 4 

A. Examples of protein enrichment over an snRNA (top panel) and tRNAs (bottom panel).  5 

B. Overlap between TTRs, tRNAs, snRNAs and RNAPIII/TTR-associated factors. The 6 

numbers under the horizontal bar graphs refer to the number of tRNA or snRNA genes 7 

overlapping with each TTR. Presence and absence of overlap with RNAPIII/TTR-associated 8 

factors is indicated by green and empty squares, respectively. cTTRs – convergent TTRs, 9 

sTTRs – single TTRs. 10 

C. Enrichment of the RNAPIII/TTR-associated factors and RPC1 at the 5S rRNA gene 11 

cluster.  12 

D. Enrichment of the RNAPIII/TTR-associated factors and RPC1 at the spliced leader gene 13 

cluster.  14 

E. YFP-tagged proteins found to be enriched at a subset of TTRs were analyses by LC-15 

MS/MS to identify their protein interactions. The data for each plot is based on three 16 

biological replicates. Cut-offs used for significance: log2 (tagged/untagged) > 2 or < -2 and p 17 

< 0.01 (Student’s t-test). Enrichment scores for proteins identified in each affinity selection 18 

are presented in Supplemental Table S4. Significantly enriched proteins are indicated by 19 

black or coloured dots. Proteins of interest are indicated by red font.  20 

F. Key proteins identified as being associated with the indicated YFP-tagged bait proteins 21 

(thick oval outlines). Lines denote interactions between proteins. 22 

 23 

 24 

 25 

 26 

Fig. 6. Model depicting distribution of chromatin regulators across a trypanosome 27 

polycistronic transcription unit. 28 

Diagram shows the five Class I (sharp; green) and ten Class II (broad; purple) TSR-29 

associated factors at a unidirectional/single RNAPII promoter. The arrow indicates the 30 

direction of transcription. The grey rectangle represents a single polycistron. Class II 31 

proteins are enriched in the direction of transcription. The eight proteins found at RNAPII 32 

TTRs associated with RNAPIII-transcribed genes are shown in blue. tRNA and snRNA 33 

genes are represented by the brown rectangle. Proteins within each box were found to 34 

interact in the proteomic experiments. 35 

  36 
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Materials and Methods  1 
 2 

Cell culture 3 

Lister 427 bloodstream form T. brucei was used throughout this study. Parasites were grown 4 

in HMI-9 medium (Hirumi and Hirumi, 1989) at 37oC and 5% CO2. Cell lines with YFP-5 

tagged proteins were grown in the presence of 5 µg/ml blasticidin. The density of cell 6 

cultures was maintained below 3 x 106 cells/ml.  7 

 8 

Protein tagging 9 

Candidate proteins were tagged endogenously on their N termini with YFP using the 10 

pPOTv4 plasmid (Dean et al., 2015). Tagging constructs were produced by fusion PCR of 11 

three fragments: a ~500 bp fragment homologous to the end of the 5′ UTR of each gene, a 12 

region of the pPOTv4 plasmid containing a blasticidin resistance cassette and a YFP tag, 13 

and a ~500 bp fragment homologous to the beginning of the coding sequence of each gene. 14 

Table S9 lists the primers used for tagging. Fusion constructs were transfected into 15 

bloodstream form parasites by electroporation as previously described (Burkard et al., 16 

2007). The cell lines obtained after blasticidin selection were tested for correct integration of 17 

the tagging constructs by PCR and for expression of the tagged proteins via western blotting 18 

analysis.  19 

 20 

Fluorescent immunolocalization 21 

Cells were fixed with 4% paraformaldehyde for 10 min on ice. Fixation was stopped with 0.1 22 

M glycine. Cells were added to polylysine-coated slides and permeabilised with 0.1% Triton 23 

X-100. The slides were blocked with 2% BSA. Rabbit anti-GFP primary antibody (A-11122; 24 

Thermo Fisher Scientific) was used at 1:500 dilution and secondary Alexa fluor 568 goat 25 

anti-rabbit antibody (A-11036; Thermo Fisher Scientific) was used at 1:1000 dilution. Images 26 

were taken with a Zeiss Axio Imager microscope. 27 

 28 

Chromatin immunoprecipitation and sequencing (ChIP-seq) 29 

4 x 108 parasites were fixed with 0.8% formaldehyde for 20 min at room temperature. Cells 30 

were lysed and sonicated in the presence of 0.2% SDS for 30 cycles (30 s on, 30 s off) 31 

using the high setting on a Bioruptor sonicator (Diagenode). Cell debris were pelleted by 32 

centrifugation and SDS in the lysate supernatants was diluted to 0.07%. Input samples were 33 

taken before incubating the rest of the cell lysates overnight with 10 µg rabbit anti-GFP 34 

antibody (A-11122; Thermo Fisher Scientific) and Protein G Dynabeads. The beads were 35 

washed, and the DNA eluted from them was treated with RNase and Proteinase K. DNA 36 

was then purified using a QIAquick PCR Purification Kit (Qiagen) and libraries were 37 
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prepared using NEXTflex barcoded adapters (Bioo Scientific). The libraries were sequenced 1 

on Illumina HiSeq 4000 (Edinburgh Genomics), Illumina NextSeq (Western General 2 

Hospital, Edinburgh) or Illumina MiniSeq (Allshire lab). In all cases, 75 bp paired-end 3 

sequencing was performed. Our subsequent analyses were based on three replicates for 4 

BDF6, CRD1 and DMT; one replicate for ELP3a, NAT2 and SET10; and two replicates for 5 

the remaining YFP-tagged proteins and for the untagged control. 6 

 7 

ChIP-seq data analysis 8 

Sequencing reads were de-duplicated with pyFastqDuplicateRemover (Webb et al., 2018; 9 

https://git.ecdf.ed.ac.uk/sgrannem/pycrac) and subsequently aligned to the Tb427v9.2 10 

genome (Muller et al., 2018) with Bowtie 2 (Langmead and Salzberg, 2012). The default 11 

mode of Bowtie 2 was used which searches for multiple alignments and reports the best one 12 

or, if several alignments are deemed equally good, reports one of those randomly. The ChIP 13 

samples were normalized to their respective inputs (ratio of ChIP to input reads) and to 14 

library size (reads per million). TSR and TTR regions were defined based on annotations of 15 

the Lister 427 genome (Muller et al., 2018). CRD1 peak summits were called using the 16 

narrow peak mode of MACS2 (Feng et al., 2012) followed by manual filtering of false 17 

positives which included peaks not present in all CRD1 replicates, peaks present in the 18 

untagged control and/or peaks with fold enrichment < 6.5. 10 kb regions upstream and 19 

downstream of CRD1 peak summits were divided into 50 bp windows. The metagene plots 20 

display individual ChIP-seq replicates separately and were generated by summing 21 

normalized reads in each 50 bp window and representing them as density centered around 22 

CRD1. The average metagene plots were generated analogously, except that the reads 23 

around all CRD1 peaks were averaged before plotting. Heatmaps represent normalized 24 

reads around individual CRD1 peaks and were generated as an average of all replicates for 25 

each protein.  26 

 27 

Affinity purification and LC-MS/MS proteomic analysis 28 

4 x 108 cells were lysed per IP in the presence of 0.2% NP-40 and 150 mM KCl. Lysates 29 

were sonicated briefly (3 cycles, 12 s on, 12 s off) at a high setting in a Bioruptor 30 

(Diagenode) sonicator. The soluble and insoluble fractions were separated by centrifugation, 31 

and the soluble fraction was incubated for 1 h at 4oC with beads crosslinked to mouse anti-32 

GFP antibody (11814460001; Roche). Resulting immunoprecipitates were washed three 33 

times with lysis buffer and protein was eluted with RapiGest surfactant (Waters) at 55°C for 34 

15 min. Next, filter-aided sample preparation (FASP) (Wiśniewski et al., 2009) was used to 35 

digest the protein samples for mass spectrometric analysis. Briefly, proteins were reduced 36 

with DTT and then denatured with 8 M Urea in Vivakon spin (filter) column 30K cartridges. 37 
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Samples were alkylated with 0.05 M IAA and digested with 0.5 μg MS Grade Pierce Trypsin 1 

Protease (Thermo Fisher Scientific) overnight, desalted using stage tips (Rappsilber et al., 2 

2007) and resuspended in 0.1%TFA for LC-MS/MS. Peptides were separated using RSLC 3 

Ultimate3000 system (Thermo Fisher Scientific) fitted with an EasySpray column (50 cm; 4 

Thermo Fisher Scientific) utilising 2-40-95% non-linear gradients with solvent A (0.1% formic 5 

acid) and solvent B (80% acetonitrile in 0.1% formic acid). The EasySpray column was 6 

directly coupled to an Orbitrap Fusion Lumos (Thermo Fisher Scientific) operated in DDA 7 

mode. “TopSpeed” mode was used with 3 s cycles with standard settings to maximize 8 

identification rates: MS1 scan range - 350-1500 mz, RF lens 30%, AGC target 4.0e5 with 9 

intensity threshold 5.0e3, filling time 50 ms and resolution 60000, monoisotopic precursor 10 

selection and filter for charge states 2-5. HCD (27%) was selected as fragmentation mode. 11 

MS2 scans were performed using Ion Trap mass analyzer operated in rapid mode with AGC 12 

set to 2.0e4 and filling time to 50 ms. The resulting shot-gun data were processed using 13 

Maxquant 1.6.1.0 (T. brucei proteome from 14 May 2019) and visualized using Perseus 14 

1.6.1.3 (Tyanova et al., 2016). 15 

 16 
Data Access 17 

All raw and processed sequencing data generated in this study have been submitted to the 18 

NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession 19 

number GSE150253. 20 

 21 

The proteomics data generated in this study have been submitted to the Proteomics 22 

Identifications Database (PRIDE; https://www.ebi.ac.uk/pride/) under accession number 23 

PXD026743. 24 
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