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A general framework for customized transition to smart homes
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Abstract

Smart homes have the potential to achieve efficient energy consumption: households can profit from appropriately
scheduled consumption. By 2020, 35% of all households in North America and 20% in Europe are expected to become
smart homes. Developing a smart home requires considerable investment, and the householders expect a positive return.
In this context, this work addresses the following question: what and/or when equipment should be bought for a specific
site to gain a positive return on the investment? This work proposes a framework to guide the smart-home transition
considering customized electricity usage. The framework is based on linear models and gives a simple payback analysis
of each combination of equipment acquisition for any specific user taking into account geographical location and local
conditions. It also possible to use the framework for equipment sizing. The results quantify the dependence of the simple
payback on the site and the application.

Keywords: Smart Home, Energy Management System, Simple Payback, Return on Investment, Optimization.

1. Introduction

With the growth of smart grids worldwide [1, 2] and
the increased use of demand-response pricing mechanisms
in the residential sector, the number of smart homes is
expected to increase significantly. Governments support
this trend for two reasons. First, distributed generation by
smart homes allows investment in the grid infrastructure
to be postponed. Second, the environmental impact is
reduced if local renewable generation is used. Smart home
owners may be interested in making a profit (or at least
reducing their electricity bill) or maintaining a certain level
of comfort via the scheduling of appliances [3].

The adoption of key devices for a transition to smart
homes is highly dependent on cost concerns [4]. House-
holders need to know, at least, the simple payback period
of the investment in smart-home transition. A possibility
for the investment is the acquisition of smart-home com-
ponents (SHCs), which is defined to be the appliances, ma-
chines, and technologies available for smart homes, such as
photovoltaic panels (PVs), wind turbines (WTs), combined
heating and power (CHP), energy storage systems (ESSs),
water heaters (WHs), electric vehicles (EVs), heating, ven-
tilation, and air-conditioning (HVAC), and solar collectors
(SCs). As mentioned in [5], “... the consideration of either
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net present values or discounted payback periods are the
most useful approaches as these consider the future value
of money”. In this paper, the simple payback period is
used instead of net present values (NPV) or discounted
payback periods (DPP), since there is no real data avail-
able for maintenance costs of all specific SHCs for a specific
user considered in this paper. The framework provides
the householder with the annual savings. If the house-
holder has an estimation for maintenance cost, she/he can
compute, for example, the annual cash net flow and then
the NPV. Thus, the last step of the proposed framework
has the flexibility to incorporate other economic measures.
Throughout this work, the term “payback” designates sim-
ple payback.

A challenge for householders that wish to transform
their homes into smart homes is the lack of practical tools
to carry out an economic analysis to select the best com-
bination of SHCs to acquire. If householder h living at
a specific location (latitude and longitude) is able to buy
any of the SHCs in the set {SHC1,SHC2,. . . ,SHC10}, then
the householder has 1024 combinations of SHCs to choose
from. This naturally brings up the question of which is the
most profitable set of SHCs for householder h? This work
is motivated by the need to answer this question. The
main contributions of this work are a general framework
that gives a payback analysis of each SHC combination for
a specific user, taking into account geographical location
and local conditions, and an investigation into whether
there is a synergistic effect between the payback period
and the return on investment.

The remainder of this paper is organized as follows.
Section 2 presents related work, and Section 3 presents the
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proposed framework. Section 4 discusses the mathemati-
cal model, which is based on [3], and gives computational
results. Section 5 provides concluding remarks.

2. Related Work

To the best of our knowledge, a general framework that
provides a payback analysis of each possible SHC acqui-
sition combination for a specific user taking into account
geographical location and local conditions is not yet avail-
able. In Section 2.1, the literature related to the topic is
summarized, and in Section 2.2, the contributions of this
work are explained.

2.1. Literature Summary
Xu et al. [6] propose a scheduling model that finds the

best combination and the optimal capacities of batteries,
water tanks, and ice/heat storage units under time-of-use
electricity prices. They consider PV, SC, WH, CHP, and
HVAC as well as these storage devices. Their mixed-
integer linear programming (MILP) problem minimizes
the total cost of electricity, natural gas, and the invest-
ment cost of the storage devices. For each of the three
cities considered, the authors compare a solution from a
deterministic scenario with solutions that consider the so-
lar radiation and demand profiles to be uncertain. Their
tree method considers the expected cost in all scenarios
jointly. The costs are minimized and projected over a one-
year horizon. The results show that thermal storage units
and water tanks are profitable, but batteries have short
lifetimes and high investment costs.

Van der Stelt et al. [7] present a techno-economic anal-
ysis of household batteries and community energy storage,
i.e., an ESS shared by several houses, for residential pro-
sumers with smart appliances. Using real demand and PV
generation data from 39 households in the Netherlands,
the authors calculate the levelized costs of energy and the
payback period for the ESS systems. Shiftable appliances
are also considered. They formulate an MILP problem
that minimizes the cost of energy acquisition from the grid.
They assume that the user can inject electricity into the
grid but without remuneration. The horizon is one year.
They find that the savings are too small to recover the
investment costs within the lifetime of the systems: the
payback period ranges from 26 to 43 years.

Akinyele & Rayudu [8] present a comprehensive review
of energy storage technologies with their technological de-
velopment status and capital costs. They show a high cost
(500–2500 $/kWh) for lithium-ion batteries.

Monyei et al. [9] propose a biased load manager home
energy management system for low-cost residential build-
ings using the Matlab simulation environment. A case
study in Naira (Nigeria) shows that the payback period is
between 8.4 and 25 years.

Barbieri et al. [10] study the profitability of µ-CHP
systems for residential buildings. They show that the Stir-
ling engine has the best performance, with a payback pe-
riod of 7 and 14 years if prices are respectively 3000 and
6000€/kW. They build a simulation model in Excel in
which there is a scheduling optimization problem for a µ-
CHP component that is solved by a genetic algorithm.

Asaee et al. [11] investigate, in a Canadian context, the
energy system, greenhouse gas (GHG) emissions, and eco-
nomic performance of a co-generation system based on an
internal combustion engine (ICE). The analysis is based
on the whole building through simulation with the ESP-r
software. As the capital cost estimation was not avail-
able, the measure used was the tolerable capital cost. The
results showed that the ICE is cost-effective.

Barbieri et al. [12] conclude, in 2012 for the UK, that
the absence of subsidies and, in particular, a reduction in
taxes on natural gas did not make certain µ-CHP tech-
nologies attractive. Later, Conroy et al. [13] studied a
Stirling engine in the UK, comparing the economic perfor-
mance and the GHG of the µ-CHP against a condensing
gas boiler. They found that the payback period is 13.8
years higher than that for the boiler. Their study was
based on field trial data for June 2004 to July 2005.

In the UK context, Merkel et al. [14] propose a schedul-
ing MILP formulation to minimize the total annual cost.
While the µ-CHP is more detailed, the thermal storage
is represented by a temporal balancing equation and the
boiler has power-limit constraints. They use three weeks
per season with a scaling factor to represent a year. They
find that the payback for a system with boilers and µ-
CHP is not economical in three of the five buildings. For
the other two buildings, the payback periods are 18.6 and
19.2 years. With thermal storage and µ-CHP, the system
is profitable for all five buildings, with a payback period
between 13.1 and 17.3 years.

Six et al. [15] study market opportunities for µ-CHP
in Flanders using simulation with TRNSYS. The results
show that the payback period is longer than the life-span
of the project.

Dufo-López et al. [16] present an hourly management
method for energy generated in grid-connected wind farms
using battery storage (wind–battery systems) and hydro-
gen (wind–hydrogen system); these are analyzed techni-
cally and economically. They calculate the investment cost
and discounted present values for large systems (2.5MW
for WT and 2MWh for batteries). They perform a simu-
lation over one year with the GRHYSO software to repre-
sent the system life-span of 20 years. They find that when
the electricity selling price is higher than the market av-
erage, a system composed of batteries and WTs is more
cost-effective than wind-only systems.

Akter et al. [5] present an Australian case: they pro-
pose a framework that assesses a battery system with PVs.
The results show that the payback period and net present
value (NPV) of this system are worse than those for sys-
tems with PVs only. PVs are found to be profitable in
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on-grid systems but unprofitable in off-grid systems be-
cause of the waste of energy, after a threshold of installed
capacity. The authors consider different tariffs and reduc-
tions in CO2 emissions, using simulation to explore the
scenarios for a project with a life-span of 25 years.

Cherrington et al. [17] perform a financial analysis of
two installations in Cornwall (UK) to determine the im-
pact of different feed-in tariffs (FITs) in a PV system with
a capacity around 2 kW. The capital cost is £11000. Given
annual inflation of 8%, a grid injection limit from PV gen-
eration of 50%, an annual efficiency loss, and an annual
reduction in the total installation cost, the authors find
payback periods in the range of 9–12 years and net profit in
the range of £14400–32543. However, a similar study [18]
that considers a PV system of 3 kW with the same capital
cost and annual inflation of 6% shows that PV without
FIT is not profitable in 17 of 20 British cities. With FIT
and a grid injection limit from PV generation of 50%, in
all 20 cities the PV capital cost is decreased by £1000–
7000. The authors perform a simulation using the PVSyst
software in which the PV generation profiles are estimated
by the average of twelve PV hourly outputs.

Aagreh et al. [19] present a feasibility analysis for a
small hotel of combinations of PV, WT, an off-grid sys-
tem with a battery, and an on-grid system. They perform
a simulation with the HOMER software for a 25-year hori-
zon. In the on-grid case, when the price for selling elec-
tricity back to the grid is null, the payback period for the
PV system exceeds the lifespan. When the selling price is
half of the market price, PVs become profitable for small
capacities. WT systems without batteries and PVs are
profitable (see Tables 2 and 3 of [19]) for the cases consid-
ered. The payback periods for a system with batteries are
not given.

Mamouri & Bénard [20] present an evaluation of solar
water heaters in 26 dispersed locations in Michigan for an
average life-span of 20 years. They use the System Advi-
sor Model simulation software and find a payback period
between 8.1 and 9.3 years.

Xie et al. [21] study a detailed house design using the
SketchUp modeling software. They analyze the payback
for PVs, SC, a hybrid of PV and thermal panels (PVT),
heat pumps, phase-changing materials, and µ-CHP sys-
tems. The results show payback periods of at least 6.5,
13, and 11 years for WH, µ-CHP, and PVs/PVT, respec-
tively.

To the best of our knowledge, there are no studies of
EV payback in the context of smart homes. However, a
comprehensive ownership cost model to calculate the costs
of purchase and use has been developed [22].

The work in [23] proposes a techno-economic analysis
for home automation, which is defined to be a home with
the integration of technologies that is controlled manually
by a single component (HEMS) but without optimization
strategies. Three scenarios are considered in a northern
Italian house. The first scenario considers the transition
from current home to a home automation system concept

with a focus on lighting. The second scenario considers,
beyond the home automation concept, the replacement of
old appliances by smart appliances that are more efficient
in terms of consumption. The third scenario considers the
two previous ones plus PV. A yearly consumption estima-
tion is considered for each electrical device, so consumption
savings are directly reported for each device. Considering
a required rate of return of 4%, the authors conclude that
the first scenario has the highest economic viability fol-
lowed by the second scenario with a positive return. How-
ever, the third scenario has a negative payback. A main
difference between this work and that in [23] is that this
work uses optimization for every possible scenario.

Meena et al [24] study the profitability of a system
composed of WT, PV, and battery in an Indian context.
For a fixed power demand, the size of these components
is optimized to maximize the NPV. A heuristic is used
for the resolution. Although the authors consider main-
tenance costs, the replacement cost of batteries once war-
ranty ends is not taken into account. The results show
that the best sizing is 2kW for WT, 4.2kW for PV and
11.2kWh of battery capacity, with a payback period of 5
years and an NPV of USD$20 for a required rate of re-
turn of 5%. A main difference between this work and that
in [24] is that this work uses exact methods and detailed
appliance models for power demand, and it explores the
use of many SHC.

2.2. Contributions
The literature has focused on payback for isolated or a

few combinations of SHCs. The results suggest that each
system will have its own payback. However, current re-
search does not explore every SHC acquisition possibility
for a specific user independently of geographical location.
As mentioned in [8], the benchmarking costs of ESS de-
pend on the application and on the site. This work as-
sumes that every system depends on the application, in
our case, a specific consumption pattern, that changes for
each user. The goal is a tool to assist householders in their
decisions about the transition to a smart home.

From Section 2.1, one can note that the majority of
the literature uses simulation methods to analyze the prof-
itability of some combinations of SHCs. In a simulation,
one creates a behavioral model of the smart home in order
to simulate it. Behavioral modes need decision rules at
each time step that must be explicitly configured by the
user. Based on the decision rules, the behavioral model
computes the state of each SHC at each time step know-
ing the events that occur between consecutive time steps.
An example of a decision rule is the following: For the set
{ESS, HVAC, WT}, if an amount of energy is available
at a time step with high prices, divide it as follows: send
x% to ESS, y% to HVAC and z% to WH. Note that x,
y and z are decided in advance by the user. In practice,
setting it up is time consuming because there are many
combinations to be configured, and for each combination
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there are many time steps. In addition, the optimality of
the solution cannot be guaranteed.

Optimization methods overcome these issues, but they
can oversimplify the problem during the modeling stage.
Within the literature that uses optimization methods to
analyze the profitability of some sets of SHC, only Xu et
al. [6] have explored multiple combinations for the follow-
ing set of SHCs: ESS, WH, ice/heat storage. However,
many other sets are possible, not only considering differ-
ent appliances, but also different sizes for them. The main
contribution of this work is to explore every SHC acqui-
sition combination for a specific user taking into account
geographical location and local conditions. Moreover, rep-
resentative appliance models are used and their integra-
tion is considered. The result is a tool that determines the
best investment in the transition from an existing home to
a smart home.

3. Framework

The proposed framework is illustrated in Figure 1: the
ellipses represent optimization problems and the rectangles
represent results.

APF

D

C

Select efficient point

Current
House

Problem

Discomfort ≤ D’ APF

D

C

D’

Create
Cd

Scenario
House-c
Problem

c ⊆ SHC-, solve

Paybacks and
Investment

Returns

Solve

Obtain

Begin

End

Figure 1: Proposed framework.

Let SHC− be the set of SHC that are not already avail-
able at the house. The goal is to calculate the payback
period and the return on investment of every combination
in SHC−. The first step is to determine the compromise
between cost and comfort level. These are conflicting ob-
jectives, and there are multiple Pareto-optimal solutions.
Hence, multi-objective optimization (MOO) [25] can be
applied to obtain an approximate Pareto front (APF) of
this trade-off.

A detailed MILP model was presented in [3] to find an
optimal trade-off between cost and comfort by minimizing
a weighted sum of the two objectives. This work adapts

it to the APF approach. Let T be the set of time steps.
The model schedules the energy consumption for one day
divided into |T | = 144 time intervals with fixed length of
10 minutes. The appliances are grouped as follows:

• A: Set of electrical appliances;

• AI ⊆ A: Set of appliances with uninterruptible opera-
tion;

• A∗I : Set of tasks for appliances in AI .

• AP ⊆ A: Set of appliances with interruptible phases;

• A∗P : Set of tasks for appliances in AP ;

• A∗ = {A∗P ∪A∗I}: Set of tasks for appliances in A.

Let X be the space of all variables and Ξ ∈ X a so-
lution. The full set of constraints in X is available in [3],
which are omitted here. The functions fc, ft, fu, and fd

represent, respectively, the total cost, the thermal discom-
fort, the usage-time discomfort, and the total discomfort:

• fc(Ξ) =
∑
t∈T

(
Ct

b − Ct
s + Ct

CHP

)
+ Cev,

• ft(Ξ) =
∑
t∈T

∑
a∈A

V t
a ,

• fu(Ξ) = r1

∑
k∈A∗

p

Pk∑
p=1

Ψk,p +
∑

k∈A∗
I

ζk

+ r2
∑
t∈T

∑
k∈A∗

U t
k

where variables: Ct
b [$] and Ct

s [$] represent the cost at
t ∈ T of buying and selling energy, respectively, Ct

CHP [$]
is the combined heating power (CHP) operation cost at
t ∈ T , Cev [$] is the fuel cost for a hybrid vehicle, V t

a [oC]
is the discomfort related to the deviation from the target
temperature of appliance a at t ∈ T , U t

k [hour] is the dis-
comfort related to the deviation from the target time for
task k at t ∈ T , ζk [hour] is the discomfort related to the
omission of task k ∈ A∗I and Ψk,p [hour] is the discomfort
related to the omission of phase p of task k ∈ A∗P . For
parameters, let define Pk as the number of phases of task
k ∈ A∗P , r1 ∈ R as the discomfort factor per task not per-
formed and r2 ∈ R as the discomfort factor per usage-time
deviation.

Let define the “Current House Problem” to be
min

Ξ
[fc(Ξ), fd(Ξ) = αtft(Ξ) + αufu(Ξ)] (1)

Ξ ∈ XBASE (2)
where αt [discomfort/oC] and αu [discomfort/hour] are
discomfort factors. XBASE represents the same space of
X , but every variable of an appliance a ∈ SHC− is set
to zero in XBASE . The first step uses the above model
to compute an APF, which is shown in the first rectangle
in Figure 1. The next step is to select an efficient point
on the APF. Suppose the decision-maker has selected a
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point with discomfort level D′: see the red point in the
second rectangle in Figure 1. Then, D′ is used in the con-
straint Cd : fd(Ξ) ≤ D′. This is represented by the third
rectangle.

For each subset c ⊆ SHC−, the framework solves the
optimization problem SHPc with the constraint Cd and
the constraint(s) for the components in c. The flow conser-
vation constraint is modified to consider the components
from the current house in addition to the components of
c. Suppose SHC− = {PV,WH,EV} and c = {EV,WH}.
Then SHPc is the MILP problem

min
Ξ

fc(Ξ) (3)

fd(Ξ) ≤ D′ (4)
Ξ ∈ X EV (5)
Ξ ∈ XWH (6)
Ξ ∈ XBASE (7)

Objective function (3) minimizes the consumer cost. Con-
straint (4) ensures a maximum discomfort level D′. In
Constraints (5) and (6), X EV and XWH means a set of fea-
sible points for EV andWH constraints, respectively. Con-
straints (5) and (6) control the operation of the EV and
WH, respectively. Finally, (7) are the constraints from (2)
with the flow conservation constraint adjusted to consider
the EV and WH.

The payback is computed in the last framework step,
which is represented by the last rectangle in Figure 1. Let
Dp be the project duration, PayB the payback period, sslp

the savings over the life-span, T I the total investment, and
IR the return on investment. The payback is calculated [5,
Section 3.4] as PayB = DpT I/sslp and IR = sslp − T I . If
PayB is greater than the life-span then the project is not
cost-effective.

4. Results and Discussion

In this section, the framework is applied to three case
studies. This work considers an horizon of 25 years, and
the exchange rates used are 1USD = 0.71GBP, 1USD =
1.27CAD, and 1USD = 3.3BRL. The houses have appli-
ances with distinct daily tasks At, a fridge, a shower, and
an HVAC system. The houses considered are located in
Belo Horizonte (BH), Brazil; London, U.K.; and Montreal,
Canada. The MILP problems were solved using Gurobi
8.0.0.

For BH and London, this work does not consider in-
flation; it assumes that the customer wishes to acquire a
system now. A total of 1024 systems are evaluated based
on an annual savings approach: 365 days are optimized
and the sum of the daily savings gives the annual savings.
The total saving for a specific project is the product of the
annual saving and the duration.

For Montreal, this work considers inflation: the cost of
the SHCs and electricity prices change over time. A total
of 64 systems are evaluated. The optimization is applied

daily from 2019 to 2080, covering projects starting between
2019 and 2055, since each has a duration of 25 years. If a
project starts in January 2020, sum of savings of the next
365 × 25 days is done to obtain the total savings. At the
end, the output is: which and when the SHCs for a specific
user in Montreal should be acquired such that it will be
profitable.

For the appliances a ∈ AIEUI ∪ AP hases, a dataset
with real daily load profiles is available [26]. A set of load
profiles is created for each day of the week. In the opti-
mization, for each day of the week, a load profile is ran-
domly selected from the corresponding set. Thermal mass
of building, solar radiation, wind speed, etc., are consid-
ered in constraints proposed in [3], which are also used in
this work. For more details, hypotheses and justifications
for all decisions related to the SHC models and pricing
policies are defined in [3]. In addition, αu = αt = 1.

4.1. BH Case
The BH house does not have PV, Battery, WT, SC,

WH, EV, or µ-CHP. Let use SHC− = {PV 3.5 kW, PV
6.5 kW, Battery 26 kWh, Battery 13 kWh, WT 3kW, WT
7kW, SC, WH, EV, µ-CHP}. When similar components
are in the same subset c ⊆ SHC−, they are replaced by
a new component with a capacity equal to the sum of
the capacities of these components. The house does not
have the infrastructure for natural gas, so the ICE is set
to µ-CHP. Table 1 summarizes the set SHC−. The first
column lists the element and the second column gives its
brand and model. In the second column, some SHCs have
the number of units that must be acquired to achieve the
desired capacity, for instance, the PV 3.5kW need 14 units
of CS CS5P-250M to achieve a capacity of 3.5kW. The
third column gives the warranty, which is considered to
be the life-span, and the fourth and fifth columns give the
prices, in USD and BRL respectively. The sixth column
gives the total price including installation cost and addi-
tional materials. Unless otherwise stated, no maintenance
costs is considered: when the warranty ends, the SHC is
replaced. The total daily distance (in km) for EVs is drawn
from the uniform distribution U[0,70]. The PV simulation
model considers many parameters such as sun position,
PV orientation, ground reflectance, latitude, longitude and
solar radiation. For the solar radiation, the percentage of
clouds are used for each month from [27], which is shown
in Figure 2. This avoids overestimating the solar radiation
by assuming clear skies. The other parameters are set as
in [3].

4.1.1. APF Results
The ε-constraint [36, Algorithm 1] is used to obtain an

APF, which is shown in Figure 3. The efficient solutions
found in Figure 3 could be presented to the DM, but to
aid the selection process MDIPNW [37] was used to select
an efficient point such as the one with coordinate (C’,D’).
With this coordinate, the framework creates a constraint
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Table 1: SHC summary for BH case
SHC Brand and Model Life-span (years) Price (USD) Price (R$) Total Cost (R$)
PV 3.5 kW 14 × CS CS5P-250M 25a 14 × 225 [28] 11781b 17671.50
Battery 26 kWh 2 × Tesla Powerwall 10 [29] 12500 [29] 41250b 61875
WT 3kW 3 × Bergey Excel 1 kW 5a 3 × 4995c 49450.5b 74175.75
SC Coupled Tempersol [30] 5a 1400 [30] 2100
WH Rheem 80G 10 [31] 1899 [31] 6266.7b 9400.05
EV 2018 Nissan Leaf 5a 30000 [32] 120000 [33] 43500
µ-CHP Yanmar CP5WN-SNB 2a 3950 [34] 5925
PV 6.5 kW 26 × CS CS5P-250M 25 a 26 × 225 [28] 21879b 32818.5
Battery 13 kWh 1 Tesla Powerwall 10 [29] 6600 [29] 21780b 32670

WT 7kW Bergey Excel 1 kW +
Bergey Excel 6 kW 5a 10000c 330000b 49500

WT 10 kW Bergey Excel 10 kW 10 [35] 31770c 104841b 104841
a: According to the manufacturers’s datasheet c: Given by the manufacturer
b: Value converted from USD to BRL CS: Canadian Solar

Figure 2: Percentage of time spent in each cloud cover band at BH,
categorized by the percentage of the sky covered by clouds: clear <
20%; mostly clear < 40%; partly cloudy < 60%; mostly cloudy <
80%; overcast > 80%. Source: [27].

Cd to control the maximum level of discomfort. It is worth
mentioning that MDIPNW is not an exclusive method to
help in selecting efficient points. Other methods exist and
can be applied; see e.g. [38].

Figure 3: APF and point selected to construct Cd.

4.1.2. Solving SHPc

For each subset c ⊆ SHC− defined in Section 4.1, the
problem SHPc is solved. The number of sets is 2n − 1
because c = ∅ represents the existing scenario, which was
handled in the first step of the framework.

4.1.3. Payback and Investment Return
Since some SHCs have life-spans below 25 years, the

total cost was increased in proportion. For instance, the
3 kW WT has a life-span of five years, so five units are
needed to cover 25 years.

For each SHPc, the total investment is found by sum-
ming the total cost of each component of c, as well as the
payback and the return on investment: see the formulas
given in Section 3.

4.1.4. BH Results

Table 2: BH results
Component Payback Return on investment

(years) (thousand R$)
PVs, 3.5 kW 7.57 40.632
PVs, 6.5 kW 8.59 62.656
PVs, 10 kW 9.13 87.784
WTs, 7 kW 19.58 68.489
WTs, 10 kW 22.60 41.809

SC 11.41 12.513

Table 2 summarizes some cost-effective combinations.
An interesting finding is the relationship between the re-
newable generators. The expected synergy does not oc-
cur: the sum of their separate investment returns (IRs) is
greater than the combined IR.

In this case, batteries are too expensive. Every set c
with a battery has an IR lower than that without a battery;
sometimes the former value is negative. The price of a
Tesla battery pack must decrease to 223.5 USD to pay for
itself without renewable generation. Systems composed of
a battery and renewable generation have a negative IR. In
these systems, the price of a 26 kWh battery must be 1650
USD to match the IR of a 3.5 kW PV system; 100 USD to
match that of an SC system; and 1500 USD to match that
of a 7 kW WT system.

The price of an EV must be at most 58073 R$ to be
cost-effective. If the DM is going to buy a car costing x
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R$, the price of an EV must be at most x + 58073 R$.
If one considers a life-span of 10 years for EVs, the price
must be at most 116140 R$.

SC is a better option for water heating because a) WH
systems, or b) WH and SC systems, or c) µ-CHP, WH,
and SC systems are not cost-effective. µ-CHP is not cost-
effective even if its price is halved because of its short
life-span; it starts to be profitable if its life-span increases
to 13 years. However, the payback could be interesting
if a µ-CHP powered by natural gas were available. In an
industrial context, [39] showed a payback in less than five
years for a µ-CHP powered by natural gas in a city near
BH.

For this customer, the set {10 kW PV,SC, 7 kW WT}
gives the best IR (141.282 thousand R$) with a payback in
17.14 years. The set {3.5 kW PV} has the smallest positive
payback.

4.2. London Case
The same SHC− as for BH is considered. The acqui-

sition price per kWh is that for the tariff HomeEnergy Fix
Mar 2019, from British Gas. The time of use has two
stages: £0.175 from 7:00 a.m. to 10:59 p.m. and £0.0912
otherwise [46, 47]. The selling price per kWh is set to
£0.0524 following the FIT export tariff in [48]. The price
of natural gas is £0.0361/kWh from the tariff Safeguard
PAYG [47]. The fuel price is set to the average diesel price
in April 2018 [49]: £1.25/L. The ground temperature was
obtained from [50], and the house’s heat resistance is based
on [51, Table 2]. The Weibull parameter for wind speed is
taken from [52, Table 8.5 - London Array I]. The nominal
power of 5 kW for HVAC is considered to be at least 50% of
the measuring heating capacity from [53]. The total daily
distance (in km) for EVs is drawn from the uniform distri-
bution U[0,70]. The parameters for the economic analysis
are given in Table 3. It is similar to Table 1, but some
elements in the column “Price (£)” include the total cost
of equipment and installation. Other costs are added in
the column “Total Cost (£).” Unless otherwise stated, no
maintenance costs is considered: when the warranty ends,
the SHC is replaced. For the solar radiation, the percent-
age of clouds is used for each month from [27], which is
shown in Figure 4. The other parameters are set as in [3].

Figure 4: Percentage of time spent in each cloud cover band at Lon-
don. Source: [27].

4.2.1. London Results
Table 4 summarizes some cost-effective combinations.

PVs have a payback inversely proportional to the nomi-
nal power, and the best IR is for the medium size. The
estimates computed by the proposed framework are worse
than [17] and better than [18]. Compared with [17], the
payback period found by the proposed framework is 5 to
7 years longer, and the IR is £12k to 30k lower for the
3.5 kW PV. An important difference between this study
and [17] is that this work does not consider annual infla-
tion of 8%. For a payback of 12 years in this study, the
total savings over 25 years increase by £1500, which hap-
pens if electricity increases by 8% annually. For [18], in
London, a 3 kW PV system with FIT has to cost at most
£5 k to be self-sustaining. If the 3.5 kW PV costs £8.6 k, it
will still have a positive IR. A difference between this work
and that in [18] is that this work uses a detailed optimiza-
tion method over a whole year. Thus, the PV energy will
be used in an optimal way, which can reduce the payback
period.

The framework can be used also to determine the best
sizing for some SHCs. From Table 2, the best capacity size
for PV is between 3.5kW and 10kW based on the economic
measures. The framework could be executed again replac-
ing the PV 3.5kW and PV 10kW by PV 5kW and PV
8.5kW, respectively, so that find a better approximation
for the best size of the PV.

SC would not be cost-effective even if its life-span were
25 years. If its price drops to £2065, it starts to be prof-
itable. A two-year life-span for WH makes it a costly op-
tion. It must increase its life-span to 14 years or decrease
its price to £192 to become cost-effective.

Only the 10 kW WT has a positive IR. For an annual
mean wind speed above 7m/s, since the 10 kW WT has a
cost of £5640/kW, this result is in line with [54, Table 13]
that specifies a viable initial cost below £7548/kW for the
generation capacity.

As for BH, batteries are too expensive. Lower battery
capacities have lower losses. For the system with a 10 kW
WT and a 13 kWh battery, the battery cost must decrease
to 1000 USD to match the IR of the corresponding system
without a battery. With the exception of systems with
a 10 kW WT, every system composed of ESS and PVs or
ESS and SC has a negative IR.

Although batteries are not profitable, EV is cost-effective
if the life-span is 10 years: the payback is 23.81 years with
an IR of £2.731 k. Taking into account the UK plug-in
grant [55] of £4500, the payback drops to 18.94 years with
an IR of £13.981 k.

BlueGen is unprofitable: the payback is 83 years. It re-
mains unprofitable if the life-span of this µ-CHP increases
to 25 years. However, with a life-span of 25 years and the
same costs as in [14], the payback is 17.52 years, which
is in line with the results of [14]. Given the FIT tariff of
£0.1454 in June 2018 for CHP [48], BlueGen is profitable
(17.91 years and £22.84 k). If an ICE were used, such as
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Table 3: SHC summary for London case
SHC Brand and Model Life-span (years) Price (USD) Price (£) Total Cost (£)
PV 3.5 kW CS CS5P-250M 25a 5906.25 [40] 5906.25
Battery 26 kWh 2 × Tesla Powerwall 10 [29] 12500 [29] 8875b∗ 13312.50
WT 3kW 3 × Bergey Excel 1 kW 5a 15000 [41] 15000.00
SC Pure Energy 16 15a 4500 [42] 4500.00

WH Megaflo Eco Unvented
Indirect 300L 2a 1319.5∗ [43] 1979.25

EV 2018 Nissan Leaf 5a 21990 [44] 21990.00
µ-CHP BlueGen 10a 15500∗ [45] 23250.00
PV 6.5 kW CS CS5P-250M 25a 10968.75 [40] 10968.75
Battery 13 kWh 1 Tesla Powerwall 10 [29] 6600 [29] 4686b∗ 7029.00

WT 7kW Bergey Excel 1 kW +
Bergey Excel 6 kW 5a 36000d 36000.00

WT 10 kW Bergey Excel 10 kW 10 [35] 31770c 22556.7b∗ 33835.05
a: According to the manufacturers’s datasheet CS: Canadian Solar
b: Value converted from USD to GBP d: Sum of 1 WT 1kW and 1 WT 6kW from [41]
c: Given by the manufacturer *: Does not include installation cost

Table 4: London results
Component Payback Return on investment

(years) (thousand R$)
PVs, 3.5 kW 17.30 2.789
PVs, 6.5 kW 18.72 3.619
PVs, 10 kW 22.01 2.241
WTs, 10 kW 9.09 98.676

the one in Table 1, the µ-CHP would never be profitable.
The best payback is for {10 kWWT}. With the plug-in

grant and an EV lifespan of 10 years, the best set becomes
{10 kW WT, EV} (11.34 years and £120.558 k).

4.3. Montreal Case
In Montreal, it is generally believed that PV is not

profitable because of the low price of electricity. The appli-
ances that are not currently available are PV, EV, battery,
and SC. Thus, the set SHC− is composed of PV 3.5 kW,
Battery 26 kWh, SC, EV, PV 6.5 kW, and Battery 13 kWh.
Although Montreal is cold for almost half of the year, SC
is used [56]. CHP is discouraged by governmental pro-
grams for GHG reductions; even natural gas is considered
undesirable [57].

The acquisition price per kWh is given in [58]. Be-
yond a fixed price for electricity availability, the tariff can
be seen as an inclining block rate (IBR) with two blocks:
$0.0591/kWh if the consumption is below 36 kWh per day
and $0.0912/kWh otherwise. To represent this, one may
consider a block with a capacity of 36 kWh and a discount
of 35% that can be completely used. Note that the utility
does not pay for electricity injected into the grid but gives
the customer a credit in kWh that is valid for two years.
It is considered to be equivalent to the utility buying elec-
tricity at the selling price, but this work assumes that the
compensation can be applied after two years.

The fuel prices are set to the average diesel price in
April 2018 [59]: 1.40 CAD. The nominal power for HVAC

is set to 5 kW. The ground temperature is assumed to be
between 5oC and 10oC, following [60, Figure 12]. The
house’s heat resistance is taken from sections 34 and 37
of Quebec’s Regulation Respecting Energy Conservation in
New Buildings. The total daily distance (in km) for EVs
is drawn from the uniform distribution U[0,70]. The other
parameters are set as in [3].

According to Hydro-Québec [61], electricity prices fol-
low the consumer price index (CPI), which varies between
0.5% and 3% annually for 1997 to 2017 [62]. Ran et al. [63,
page 23] show that from 2010 to 2017 there was a 61% re-
duction in the residential PV system cost benchmark and
from 2016 to 2017 there was a 6% reduction. This work
assumes that PV prices fall by 6% per year, but, to take
into account the effect of learning curves [64], the percent-
age is multiplied by 0.98 at the beginning of each year to
give a more conservative decrease. Following [65, page 12],
this work considered a decreasing cost of 10.3% per year
for batteries; this is multiplied by 0.9 each year to give a
more conservative decrease. The same value is used for the
decreasing cost of EVs, since batteries are considered a key
component in terms of overall cost and performance [66].
SC technologies are already well developed and can be
bought at low prices [67], so an annually decreasing cost
is not applied. The parameters for the economic analysis
are given in Table 5. The installation costs, a component
of the Total Cost, were provided by local suppliers.

4.3.1. Montreal Results
For the solar radiation, this work considered the per-

centage of clouds for each month [27], which is shown in
Figure 5.

The annual savings for some subsets c ⊆ SHC− are
shown in Figure 6. The total savings, for the duration
of the project, are given in Figure 7. For example, in
Figure 6, each year from 2019 to 2079 has an annual saving
for each component. For instance, the 3.5 kW PV has an
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Table 5: SHC summary for Montreal case
SHC Brand and Model Life-span (years) Price (USD) Price (CAD) Total Cost (CAD)
PV 3.5 kW 14 × CS CS5P-250M 25a 14 × 225 [28] 4533.9b 10881.3
Battery 26 kWh 2 × Tesla Powerwall 10 [29] 12500 [29] 15875b 23812.50
SC Heliodyne GOBI 408-001 10a 1070.99 [68] 1360.16b 2040.24
EV 2018 Nissan Leaf 5a 30000 [32] 38100b 38100
PV 6.5 kW 26 × CS CS5P-250M 25a 26 × 225 [28] 8420.1b 20208.24
Battery 13 kWh 1 Tesla Powerwall 10 [29] 6600 [29] 8382b 12573
a: According to the manufacturers’s datasheet
b: Value converted from USD to CAD CS: Canadian Solar

Figure 5: Percentage of time spent in each cloud cover band at Mon-
treal. Source: [27].

annual saving of $297 in 2019, increasing to $381 in 2079.
There is no significant difference between 13 kW and 26 kW
batteries.

2019 2024 2029 2034 2039 2044 2049 2054 2059 2064 2069 2074 2079
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Figure 6: Annual saving ($) for some c ⊆ SHC−.

Figure 8 shows the payback for the 3.5 kW PV. In Fig-
ures 8 to 12 the x axis gives the start year for the project
and the y axis gives the payback in years. The dashed
red line indicates the life-span of 25 years. Three possible
scenarios for inflation is considered. If it is 3% for 25 years
after the installation year (2019), the expected payback
is around 24 years. If it is 0.5% for 25 years after 2024,
the payback is 25 years. If it is between 0.5% and 3%,
the 3.5 kW PV will have a payback below its life-span be-
tween 2019 and 2024. An upper bound (UB) on the start
of the project is 2024, since the system starts to be cost-
effective for the most conservative value of inflation. A
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PV 3.5kW Battery 26kW SC Battery 13kW

Figure 7: Total savings ($) from the year that project starts for some
c ⊆ SHC−.

lower bound (LB) is 2019 since the system is cost-effective
for 3% inflation.

Figure 8: Payback for 3.5 kW PV in Montreal.

For a 6.5 kW PV system, the LB is 2019 and the UB
is 2025. For 10 kW of PV, the LB is 2020 and the UB is
2025.

The SC system will not be profitable until 2028, as
shown in Figure 9. With 1.75% inflation, the payback is
38 years if the project starts in 2019. A similar system
had a payback above 75 years [69]. In this work, the heat-
transfer fluid is a closed loop of water with self-draining.
In [69], it is a glycol-based coolant with a circulation pump.
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The system considered in this work is around three times
less expensive than the glycol-based one, which explains
the difference in the payback results.

Figure 9: Payback for SC in Montreal.

Batteries are not used since there is a flat tariff so they
are not cost-effective. EV is cost-effective after 2037: see
Figure 10. The EV payback increases with the price of
electricity. This is because the main source of savings is
the replacement of fuel by electricity.

Figure 10: Payback for EV in Montreal.

If the EV life-span is 10 years, the payback is positive
after 2021; see Figure 11. If one includes the purchase
rebate of $8000 from the Drive Electric program of the
Quebec government [70], the EV payback occurs between
2028 and 2031.

To summarize, in a scenario with higher inflation, the
best option is to install a PV system in 2019–2020 and to
use an EV after 2028 if the life-span is 5 years. Under
conservative inflation, the best option is to install a PV
system in 2024–2025 and to use an EV after 2031 if the
life-span is 5 years. Batteries and SC should not be used.

4.4. Discussion
In this section, a comparison between the results of two

previous examples is made and the framework generaliza-
tion is discussed.

Figure 11: Payback for EV with life-span of 10 years in Montreal.

Figure 12: Payback for EV with purchase rebate in Montreal.

Table 6 shows the positive payback (+) and the neg-
ative payback (-) of some SHCs for the Belo Horizonte
user and the London user. For PVs, the better capacity
in terms of payback is highlighted. While the EV can be
interesting for the London project, it is not of interest for
the Belo Horizonte project. On the other hand, the SC
can be worthwhile for the Belo Horizonte project, but not
for the London project. This shows the dependence of the
payback on the location and on the application of each
given project.

Table 6 shows also a possible use of the framework for
the determination of an approximate SHC size. For the
London project, the PV should have a capacity between
3.5kW and 10kW. The framework could be run again re-
placing PV 3.5kW and PV 10kW by, for instance, PV
5kW and PV 8.5kW, respectively. This can help deter-
mine the good size for PV for the London project. For
Belo Horizonte, the best PV capacity is estimated to be
at least 10kW. If the user have yet space for extra panels,
the framework could be run using higher PV capacities to
determine if better results can be obtained.

The framework presented in this work is applicable to
any location worldwide so long as the necessary input data
for the framework can be acquired, so it is general. How-
ever, it does not mean that a user living in Belo Horizonte
should directly use the results of the previous examples.
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Table 6: Payback for different projects and cities.
SHC London Belo Horizonte
EV + -
SC - +

PV 3.5kW capacity + +
PV 6.5kW capacity Better +
PV 10kW capacity + Better

As stated before, the profitability of a project depends not
only on the site but also on the application. For two house-
holders in the same city, the inputs can be different and so
will be the results of the framework. A simple example is a
householder that lives in a house surrounded by buildings
and another whose house has no nearby neighbours. The-
isolar insolation will likely differ between them and this
difference can significantly affect the profitability of PVs.
As for any optimization model, a user must operaate the
framework using one’s own data; in the case of this paper:
data from its house structure, its consumption, the prices
from its utility company, the local weather, etc.

A real application of the framework requires represen-
tative data for a given householder h. There are at least
two ways to obtain this data. The first one is to use
data available for the nearest geographical locations for
weather, consumption behavior, and so on. Such data can
be obtained from third-parties such as handbooks, litera-
ture, government reports, weather reports and databases,
as was done for this work. However, these data may have
low representation quality for some householders. The sec-
ond option is to use sensors for data collection on solar
radiation, temperatures, the power consumption of each
appliance, etc. Although the second option requires an
extra initial investment, it would more accurately rep-
resent householder h, so framework results are likely to
be more representative. Data colleaction is a key compo-
nent of a smart home, so its daily scheduling would have
higher quality input, and more accurate results would be
expected.

5. Conclusions

Transforming a house into a smart home requires con-
siderable investment. This work proposed a framework
to guide the transition to smart homes given customized
electricity usage. The framework gives a payback analysis
of each SHC acquisition combination for a specific user.
The framework was tested on examples in Belo Horizonte,
London, and Montreal. For BH and London, this work
considered 1024 systems based on 8760 optimized hours
(1 year). For Montreal, this work considered 64 systems
based on 534360 optimized hours (60 years). The results
quantify the dependence of the payback period on the site
and on the application. The results also demonstrate the
possibility to use the framework for SHC sizing. Exam-
ples are given to illustrate the versatility of the proposed
framework.
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