THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Cylinders in del Pezzo surfaces

Citation for published version:

Cheltsov, I, Park, J \& Won, J 2016, 'Cylinders in del Pezzo surfaces', International Mathematics Research Notices, vol. 2017, no. 4, pp. 1179-1230. https://doi.org/10.1093/imrn/rnw063

Digital Object Identifier (DOI):
10.1093/imrn/rnw063

Link:

Link to publication record in Edinburgh Research Explorer

Document Version:

Peer reviewed version

Published In:

International Mathematics Research Notices

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

CYLINDERS IN DEL PEZZO SURFACES

IVAN CHELTSOV, JIHUN PARK AND JOONYEONG WON

Abstract

On del Pezzo surfaces, we study effective ample \mathbb{R}-divisors such that the complements of their supports are isomorphic to \mathbb{A}^{1}-bundles over smooth affine curves.

All considered varieties are assumed to be algebraic and defined over an algebraically closed field of characteristic 0 throughout this article.

1. Introduction

1.1. Cylinders. The purpose of this article is to study cylinders in rational surfaces and, more specially, in del Pezzo surfaces. A cylinder in a projective variety X is a Zariski open subset that is isomorphic to $\mathbb{A}^{1} \times Z$ for some affine variety Z. So, if X is a rational surface, then Z is just the projective line with finitely many missing points.

One can easily see that every smooth rational surface contains cylinders ([19, Proposition 3.13]). However, this is no longer true for singular rational surfaces, i.e., there are plenty of singular rational surfaces without any cylinder. Let us explain how to find such rational surfaces. First, let S be a rational surface with quotient singularities and suppose that S has a cylinder U, i.e., a Zariski open subset in S such that $U \cong \mathbb{A}^{1} \times Z$ for some affine curve Z. Consider the following commutative diagram

where p_{Z}, p_{2}, and \bar{p}_{2} are the natural projections to the second factors, ψ is the rational map induced by p_{Z}, π is a birational morphism resolving the indeterminacy of ψ, and ϕ is a morphism. By construction, a general fiber of ϕ is \mathbb{P}^{1}. Let C_{1}, \ldots, C_{n} be the irreducible curves in S such that

$$
S \backslash U=\bigcup_{i=1}^{n} C_{i}
$$

Then the curves C_{1}, \ldots, C_{n} generate the divisor class group $\mathrm{Cl}(S)$ of the surface S because $\mathrm{Cl}(U)=0$. In particular, one has

$$
\begin{equation*}
n \geqslant \operatorname{rank~Cl}(S) \tag{1.1.2}
\end{equation*}
$$

Let E_{1}, \ldots, E_{r} be the π-exceptional curves, if any, and let Γ be the section of \bar{p}_{2} that is the complement of $\mathbb{A}^{1} \times \mathbb{P}^{1}$ in $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Denote by $\tilde{C}_{1}, \ldots, \tilde{C}_{n}$, and $\tilde{\Gamma}$ the proper transforms of the curves C_{1}, \ldots, C_{n}, and Γ on the surface \tilde{S}, respectively. Then $\tilde{\Gamma}$ is a section of ϕ. Moreover, the curve $\tilde{\Gamma}$ is one of the curves $\tilde{C}_{1}, \ldots, \tilde{C}_{n}$ and E_{1}, \ldots, E_{r}. Furthermore, all the other curves among $\tilde{C}_{1}, \ldots, \tilde{C}_{n}$ and E_{1}, \ldots, E_{r} are irreducible components of some fibers of ϕ. We may assume either $\tilde{\Gamma}=\tilde{C}_{1}$ or $\tilde{\Gamma}=E_{r}$.

If $\tilde{\Gamma}=\tilde{C}_{1}$, then ψ is a morphism. Conversely, if ψ is a morphism, then $\tilde{\Gamma}=\tilde{C}_{1}$.

Let $\lambda_{1}, \ldots, \lambda_{n}$ be arbitrary real numbers. Then

$$
K_{\tilde{S}}+\sum_{i=1}^{n} \lambda_{i} \tilde{C}_{i}+\sum_{i=1}^{r} \mu_{i} E_{i}=\pi^{*}\left(K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}\right)
$$

for some real numbers μ_{1}, \ldots, μ_{r}. Let \tilde{F} be a general fiber of ϕ. Then $K_{\tilde{S}} \cdot \tilde{F}=-2$ by the adjunction formula. Put $F=\pi(\tilde{F})$.

If $\tilde{\Gamma}=E_{r}$, then

$$
-2+\mu_{r}=\left(K_{\tilde{S}}+\sum_{i=1}^{n} \lambda_{i} \tilde{C}_{i}+\sum_{i=1}^{r} \mu_{i} E_{i}\right) \cdot \tilde{F}=\pi^{*}\left(K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}\right) \cdot \tilde{F}=\left(K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}\right) \cdot F
$$

If $\tilde{\Gamma}=C_{1}$, then

$$
-2+\lambda_{1}=\left(K_{\tilde{S}}+\sum_{i=1}^{n} \lambda_{i} \tilde{C}_{i}+\sum_{i=1}^{r} \mu_{i} E_{i}\right) \cdot \tilde{F}=\pi^{*}\left(K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}\right) \cdot \tilde{F}=\left(K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}\right) \cdot F .
$$

On the other hand, if $K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}$ is pseudo-effective, then

$$
\left(K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}\right) \cdot F \geqslant 0
$$

because \tilde{F} is a general fiber of ϕ.
Remark 1.1.3. We are therefore able to draw the following conclusions:

- if $K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}$ is pseudo-effective, the \log pair $\left(S, \sum_{i=1}^{n} \lambda_{i} C_{i}\right)$ is not log canonical;
- if $K_{S}+\sum_{i=1}^{n} \lambda_{i} C_{i}$ is pseudo-effective for some real numbers $\lambda_{i}<2$, the rational map ψ cannot be a morphism.
This observation is originated from [19, Lemma 4.11], [19, Lemma 4.14], and [21, Lemma 5.3].
From Remark 1.1.3 it immediately follows that if a rational surface with pseudo-effective canonical class has only quotient singularities then it cannot contain any cylinder. We will present various examples of such surfaces in Section 3.
1.2. Polar cylinders. In general, it seems hopeless to determine which singular rational surfaces have cylinders and which do not have cylinders. This is simply because we do not have any reasonable classification of singular del Pezzo surfaces. Instead of this, we are to consider a similar problem for polarized surfaces, which has a significant application to theory of unipotent group actions in affine geometry (for instance, see [19], [20, [21). To do this, let S be a rational surface with at most quotient singularities.

Definition 1.2.1 ([19]). Let M be an \mathbb{R}-divisor on S. An M-polar cylinder in S is a Zariski open subset U of S such that

- $U=\mathbb{A}^{1} \times Z$ for some affine curve Z, i.e., U is a cylinder in S,
- there is an effective \mathbb{R}-divisor D on S with $D \equiv M$ and $U=S \backslash \operatorname{Supp}(D)$.

With the notation at the beginning, the second condition can be rephrased as follows:

$$
\begin{equation*}
M \equiv \sum_{i=1}^{n} \lambda_{i} C_{i} \tag{1.2.2}
\end{equation*}
$$

for some positive real numbers $\lambda_{1}, \ldots, \lambda_{n}$. We here remark that on a \log del Pezzo surface, numerical equivalence for \mathbb{Q}-divisors coincides with \mathbb{Q}-linear equivalence, i.e., if S is a log del

Pezzo surface and M is a \mathbb{Q}-divisor, then (1.2.2) can be rewritten as

$$
M \sim_{\mathbb{Q}} \sum_{i=1}^{n} \lambda_{i} C_{i}
$$

for some positive rational numbers $\lambda_{1}, \ldots, \lambda_{n}$.
Let $\operatorname{Amp}(S)$ be the ample cone of S in $\operatorname{Pic}(S) \otimes \mathbb{R}$. Denote by $\operatorname{Amp}^{c y l}(S)$ the set

$$
\{H \in \operatorname{Amp}(S): \text { there is an } H \text {-polar cylinder on } S\} .
$$

This set will be called the cone of cylindrical ample divisors of S. We have seen that the set $\mathrm{Amp}^{c y l}(S)$ can be empty. On the other hand, one can show that $\mathrm{Amp}^{c y l}(S) \neq \varnothing$ provided that S is smooth (see [19, Proposition 3.13]).

For smooth del Pezzo surfaces, [5] and [21] have achieved the following:
Theorem 1.2.3. Let S_{d} be a smooth del Pezzo surface of degree d. Then the set Amp ${ }^{\text {cyl }}\left(S_{d}\right)$ contains the anticanonical class if and only if $d \geqslant 4$.

Theorem 1.2.3 has been generalised in [6] as follows:
Theorem 1.2.4. Let S_{d} be a del Pezzo surface of degree d with at most du Val singularities. The set $\operatorname{Amp}^{c y l}\left(S_{d}\right)$ contains the anticanonical class if and only if one of the following conditions holds:

- $d \geqslant 4$,
- $d=3$ and S_{d} is singular,
- $d=2$ and S_{d} has a singular point that is not of type A_{1},
- $d=1$ and S_{d} has a singular point that is not of type $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$, or D_{4}.

In [5] and [6] we have witnessed several vague pieces of evidence for the supposition that a cylinder polarized by an ample divisor can be obtained by manipulating an anticanonically polarized cylinder, if any, on a log del Pezzo surface.

Conjecture 1.2.5. A log del Pezzo surface S has a $\left(-K_{S}\right)$-polar cylinder if and only if $\operatorname{Amp}^{\text {cyl }}(S)=\operatorname{Amp}(S)$.

2. Main Results

2.1. Fujita invariant. To investigate the cones of cylindrical ample divisors on log del Pezzo surfaces, we adopt the concept, so-called, the Fujita invariant of a log pair defined in [15, Definition 2.2]. This was originally introduced by T. Fujita, disguised as its negative value and under the name Kodaira energy ([10], [11], 12], [13]). This plays essential roles in Manin's conjecture (see, for example, [1], [15]).

Let S be a \log del Pezzo surface and A be a big \mathbb{R}-divisor on S. It follows from Cone Theorem (see, for instance, [23, Theorem 3.7]) that the Mori cone $\overline{\mathbb{N E}}(S)$ of the surface S is polyhedral.

Definition 2.1.1. For the log pair (S, A), we define the Fujita invariant of (S, A) by

$$
\mu_{A}:=\inf \left\{\lambda \in \mathbb{R}_{>0} \mid \text { the } \mathbb{R} \text {-divisor } K_{S}+\lambda A \text { is pseudo-effective }\right\} .
$$

The smallest extremal face Δ_{A} of the Mori cone $\overline{\mathbb{N E}}(S)$ that contains $K_{S}+\mu_{A} A$ is called the Fujita face of A. The Fujita rank of (S, A) is defined by $r_{A}:=\operatorname{dim} \Delta_{A}$. Note that $r_{A}=0$ if and only if $-K_{S} \equiv \mu_{A} A$.

Remark 2.1.2. In [15, Definition 2.2], B. Hassett, Sh. Tanimoto, and Yu. Tschinkel define the Fujita invariants only for \mathbb{Q}-factorial varieties with canonical singularities. For general varieties, they define the Fujita invariants by taking the pull-backs to smooth models ([28]).

Let $\phi_{A}: S \rightarrow Z$ be the contraction given by the Fujita face Δ_{A} of the divisor A. Then either ϕ_{A} is a birational morphism or a conic bundle with $Z \cong \mathbb{P}^{1}$ (see, for instance, [7, Subsection 8.2.6]). In the former case, the \mathbb{R}-divisor A is said to be of type $B\left(r_{A}\right)$ and in the latter case it is said to be of type $C\left(r_{A}\right)$.

Now we suppose that S is a smooth del Pezzo surface of degree $d \leqslant 7$. Then the Mori cone $\overline{\mathrm{NE}}(S)$ of the surface S is generated by all the (-1)-curves in S (see [7, Theorem 8.2.23]). Let H be an ample \mathbb{R}-divisor on S.

If H is of type $B\left(r_{H}\right)$, then its Fujita face Δ_{H} is generated by r_{H} disjoint (-1)-curves contracted by ϕ_{H}, where $r_{H} \leqslant 9-d$. If H is of type $C\left(r_{H}\right)$, then Δ_{H} is generated by the (-1)-curves in the $(8-d)$ reducible fibers of ϕ_{H}. Each reducible fiber consists of two (-1)-curves that intersect transversally at a single point.

Suppose that H is of type $B\left(r_{H}\right)$. Let $E_{1}, \ldots, E_{r_{H}}$ be all the (-1)-curves contained in Δ_{H}. These are disjoint and generate the Fujita face Δ_{H}. Therefore,

$$
\begin{equation*}
K_{S}+\mu_{H} H \equiv \sum_{i=1}^{r_{H}} a_{i} E_{i} \tag{2.1.3}
\end{equation*}
$$

for some positive real numbers $a_{1}, \ldots, a_{r_{H}}$. We have $a_{i}<1$ for every i because $H \cdot E_{i}>0$. Vice versa, for every positive real numbers $b_{1}, \ldots, b_{r_{H}}<1$, the divisor

$$
-K_{S}+\sum_{i=1}^{r_{H}} b_{i} E_{i}
$$

is ample. The set of all ample \mathbb{R}-divisor classes of type $B\left(r_{H}\right)$ in $\operatorname{Pic}(S) \otimes \mathbb{R}$ is denoted by $\operatorname{Amp}_{r_{H}}^{B}(S)$.

Suppose that H is of type $C\left(r_{H}\right)$. Note that $r_{H}=9-d$. There are a 0 -curve B and $(8-d)$ disjoint (-1)-curves $E_{1}, E_{2}, E_{3}, \ldots, E_{8-d}$, each of which is contained in a distinct fiber of ϕ_{H}, such that

$$
\begin{equation*}
K_{S}+\mu_{H} H \equiv a B+\sum_{i=1}^{8-d} a_{i} E_{i} \tag{2.1.4}
\end{equation*}
$$

for some positive real number a and non-negative real numbers $a_{1}, \ldots, a_{8-d}<1$. In particular, these curves generate the Fujita face Δ_{H}. Vice versa, for every positive real number b and non-negative real numbers $b_{1}, \ldots, b_{8-d}<1$ the divisor

$$
-K_{S}+b B+\sum_{i=1}^{8-d} b_{i} E_{i}
$$

is ample.
In the case of type $C\left(r_{H}\right)$, put $\ell_{H}=\left|\left\{a_{i} \mid a_{i} \neq 0\right\}\right|$. The \mathbb{R}-divisor H is said to be of length ℓ_{H}. The set of all ample \mathbb{R}-divisor classes of type $C\left(r_{H}\right)$ with length ℓ_{H} in $\operatorname{Pic}(S) \otimes \mathbb{R}$ is denoted by $\operatorname{Amp}_{\ell_{H}}^{C}(S)$. It is clear that

$$
\operatorname{Amp}(S)=\bigcup_{\ell=0}^{8-d} \operatorname{Amp}_{\ell}^{C}(S) \cup \bigcup_{r=0}^{9-d} \operatorname{Amp}_{r}^{B}(S)
$$

Note that $\operatorname{Amp}_{0}^{B}(S)$ is the ray generated by the anticanonical class $\left[-K_{S}\right]$.
2.2. Main Theorems. The goal of the present article is to study the cones of cylindrical ample divisors of smooth del Pezzo surfaces. This continues the work of T. Kishimoto, Yu. Prokhorov, and M. Zaidenberg in 21] and the work of I. Cheltsov, J. Park, and J. Won in [5] and [6].

Theorem 2.2.1. Let S_{d} be a smooth del Pezzo surface of degree d.
(1) For $4 \leqslant d \leqslant 9$,

$$
\operatorname{Amp}^{c y l}\left(S_{d}\right)=\operatorname{Amp}\left(S_{d}\right)
$$

(2) For $d=3$,

$$
\operatorname{Amp}^{c y l}\left(S_{3}\right)=\operatorname{Amp}\left(S_{3}\right) \backslash \operatorname{Amp}_{0}^{B}\left(S_{3}\right)
$$

that is, any ample polarization H of S_{3} admits an H-polar cylinder unless $H \equiv \alpha\left(-K_{S_{3}}\right)$ for some $\alpha>0$.
A. Perepechko verified that $\operatorname{Amp}^{c y l}\left(S_{d}\right)=\operatorname{Amp}\left(S_{d}\right)$ for $d \geqslant 5$ by showing that the ample cones of smooth del Pezzo surfaces of degrees at least 5 are contained in the cones generated by components of a certain effective divisor the complement of the support of which is a cylinder ([36, Subsection 3.2]). However, his method cannot be fully generalised to del Pezzo surfaces of lower degrees. Indeed, he yielded partial description of Amp ${ }^{c y l}\left(S_{4}\right)$ ([36, Theorem 7]) and thereafter J. Park and J. Won showed that $\operatorname{Amp}^{c y l}\left(S_{4}\right)=\operatorname{Amp}\left(S_{4}\right)$ using the same idea as in the present article (35$]$).

The proof of Theorem 2.2.1 is given in Subsection 4.2,
Corollary 2.2.2. Conjecture 1.2 .5 holds for smooth del Pezzo surfaces.
In order to analyze Conjecture 1.2 .5 for smooth del Pezzo surfaces we do not have to study the sets Amp ${ }^{\text {cyl }}(S)$ for del Pezzo surfaces of degrees $\leqslant 3$ since these surfaces do not have ($-K_{S}$)-polar cylinders already. Only Theorem 2.2.1(1) is required. Meanwhile, Theorem 2.2.1(2) completely describes the set $\mathrm{Amp}^{c y l}(S)$ for smooth del Pezzo surfaces of degree 3. After [5] resolved the question whether the anticanonical class lies in $\operatorname{Amp}^{c y l}(S)$ or not for a smooth cubic surface S, Yu. Prokhorov proposed a more general problem:

To describe the cones of cylindrical ample divisors of smooth cubic surfaces.
Theorem 2.2.1(2) gives the complete answer to Yu. Prokhorov's problem. It is however natural that Yu. Prokhorov's problem should be extended to smooth del Pezzo surfaces of degrees $\leqslant 2$. In the present article we also give some partial descriptions for them as follows:

Theorem 2.2.3. Let S_{d} be a smooth del Pezzo surface of degree $d \leqslant 3$ and H be an ample \mathbb{R}-divisor of Fujita rank r_{H} on S_{d}. If $r_{H} \leqslant 3-d$, then no H-polar cylinder exists on S_{d}.

Theorem 2.2.3 immediately shows that

$$
\operatorname{Amp}^{c y l}\left(S_{d}\right) \bigcap\left\{\bigcup_{r=0}^{3-d} \operatorname{Amp}_{r}^{B}\left(S_{d}\right)\right\}=\emptyset
$$

for a smooth del Pezzo surface S_{d} of degree $d \leqslant 3$. The proof of the theorem follows from Theorems 5.2.3 and 5.2.4,

Theorem 2.2.4. Let S be a smooth del Pezzo surface of degree 2. Then

$$
\begin{equation*}
\operatorname{Amp}^{c y l}(S) \supset \bigcup_{r=3}^{7} \operatorname{Amp}_{r}^{B}(S) . \tag{1}
\end{equation*}
$$

(2)

$$
\operatorname{Amp}^{c y l}(S) \bigcap \operatorname{Amp}_{2}^{B}(S) \neq \emptyset
$$

$$
\begin{equation*}
\operatorname{Amp}^{c y l}(S) \supset \bigcup_{\ell=3}^{6} \operatorname{Amp}_{\ell}^{C}(S) \tag{3}
\end{equation*}
$$

(4) For each $0 \leqslant \ell \leqslant 6$

$$
\operatorname{Amp}^{c y l}(S) \bigcap \operatorname{Amp}_{\ell}^{C}(S) \neq \emptyset
$$

In Theorem [2.2.4, (1) follows from Theorem 6.2.2, (2) from Theorem 6.2.3, (3) from Theorem 6.2.10, and (4) from Theorem 6.2.11.

Theorem 2.2.5. Let S be a smooth del Pezzo surface of degree 1. Then
(1) For each $3 \leqslant r \leqslant 8$

$$
\operatorname{Amp}^{c y l}(S) \bigcap \operatorname{Amp}_{r}^{B}(S) \neq \emptyset .
$$

(2) For each $0 \leqslant \ell \leqslant 7$

$$
\operatorname{Amp}^{c y l}(S) \bigcap \operatorname{Amp}_{\ell}^{C}(S) \neq \emptyset .
$$

The statement follows from Propositions 6.3.1 and 6.3.2.

3. Rational singular surfaces without any cylinder

3.1. Examples. Before we proceed, let us remind that a normal surface singularity is Kawamata log terminal if and only if it is a quotient singularity ([17, Corollary 1.9]). A projective surface with quotient singularities is always \mathbb{Q}-factorial.

Definition 3.1.1. A normal projective surface with quotient singularities is called a log Enriques surface if its canonical class is numerically trivial and its irregularity is zero. It is called a log del Pezzo surface if its anticanonical class is ample ([29]).

We are now ready to present several examples of rational singular surfaces without any cylinder.
Example 3.1.2. J. Kollár has constructed a series of rational surfaces with ample canonical classes in [22. The following is an easy example based on his construction.

Let $a_{1}, a_{2}, a_{3}, a_{4} ; w_{1}, w_{2}, w_{3}, w_{4}$ be positive integers such that

- $a_{1} w_{1}+w_{2}=a_{2} w_{2}+w_{3}=a_{3} w_{3}+w_{4}=a_{4} w_{4}+w_{1} ;$
- $\operatorname{gcd}\left(w_{1}, w_{3}\right)=1, \operatorname{gcd}\left(w_{2}, w_{4}\right)=1$.

From the first condition above we obtain

$$
\begin{array}{ll}
w_{1}=\left(a_{2} a_{3} a_{4}-a_{3} a_{4}+a_{4}-1\right), & w_{2}=\left(a_{1} a_{3} a_{4}-a_{1} a_{4}+a_{1}-1\right), \\
w_{3}=\left(a_{1} a_{2} a_{4}-a_{1} a_{2}+a_{2}-1\right), & w_{4}=\left(a_{1} a_{2} a_{3}-a_{2} a_{3}+a_{3}-1\right) .
\end{array}
$$

Let S be the Klein-type hypersurface in $\mathbb{P}\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ defined by the quasi-homogeneous equation of degree $\left(a_{1} a_{2} a_{3} a_{4}-1\right)$

$$
x_{1}^{a_{1}} x_{2}+x_{2}^{a_{2}} x_{3}+x_{3}^{a_{3}} x_{4}+x_{4}^{a_{4}} x_{1}=0 .
$$

By the conditions $\operatorname{gcd}\left(w_{1}, w_{3}\right)=1$ and $\operatorname{gcd}\left(w_{2}, w_{4}\right)=1$ we can easily see that S is well-formed. Therefore,

$$
K_{S}=\mathcal{O}_{S}\left(a_{1} a_{2} a_{3} a_{4}-w_{1}-w_{2}-w_{3}-w_{4}-1\right)
$$

If $a_{1}, a_{2}, a_{3}, a_{4} \geqslant 4$, then $a_{1} a_{2} a_{3} a_{4}-w_{1}-w_{2}-w_{3}-w_{4}-1>0$, and hence K_{S} is ample. By [22, Theorem 39] S is a rational surface of Picard rank three with four cyclic quotient singularities. Therefore, the surface S cannot contain any cylinder. In [16] D. Hwang and J. Keum have constructed another types of singular rational surfaces with ample canonical divisors.
Example 3.1.3. In order to construct smooth surface of general type with $p_{g}=q=0$ for a given self-intersection number of the canonical class, Y. Lee, H. Park, J. Park, and D. Shin generate rational elliptic surfaces with nef canonical classes and quotient singularities of class T and then take their \mathbb{Q}-smoothings in [26], [33], [34]. Many such surfaces are presented in [27]. These rational surfaces meet our conditions not to have any cylinder.

Example 3.1.4 (cf. [30]). Let

$$
E=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})
$$

be the elliptic curve of period $\tau=e^{\frac{2}{3} \pi}$. Its j-invariant is 0 and it is isomorphic to the Fermat cubic curve. It is the unique elliptic curve admitting an automorphism σ of order three such that $\sigma^{*}(\omega)=\tau \omega$, where ω is a non-zero regular 1-form on E. Let S be the quotient surface

$$
E \times E /\langle\operatorname{diag}(-\sigma,-\sigma)\rangle .
$$

Then, $6 K_{S}$ is linearly trivial. Since there is no non-zero regular 1-form on $E \times E$ invariant by $\operatorname{diag}(-\sigma,-\sigma)$, we obtain $h^{1}\left(S, \mathcal{O}_{S}\right)=0$. Therefore, the surface S is a rational surface with quotient singularities whose canonical class is numerically trivial, i.e., it is a log Enriques surface, and hence it cannot contain any cylinder.

Example 3.1.5. This construction is due to K. Oguiso and D.-Q. Zhang ([31, Example 1]). The most extremal rational log Enriques surface of type D_{19} is defined as follows. Let \bar{S}^{\prime} be the quotient surface

$$
E \times E /\left\langle\operatorname{diag}\left(\sigma, \sigma^{2}\right)\right\rangle,
$$

where the notations are the same as in Example 3.1.4. Note that the automorphism σ on E has exactly three fixed points P_{1}, P_{2}, P_{3}, respectively. They correspond to $0, \frac{2}{3}+\frac{1}{3} \tau$, and $\frac{1}{3}+\frac{2}{3} \tau$. The action by $\left\langle\operatorname{diag}\left(\sigma, \sigma^{2}\right)\right\rangle$ on $E \times E$ has nine fixed points and these nine fixed points become du Val singular points of type A_{2} on \bar{S}^{\prime}. Let S^{\prime} be the minimal resolution of \bar{S}^{\prime}. It is a K3 surface with twenty four smooth rational curves. Six of them come from the six fixed curves, $\left\{P_{i}\right\} \times E$, $E \times\left\{P_{i}\right\}$ on $E \times E$. The others come from the nine singular points of type A_{2}. Let σ^{\prime} be the automorphism of S^{\prime} induced by the automorphism $\operatorname{diag}(\sigma, 1)$ on $E \times E$. Our twenty four smooth rational curves on S^{\prime} are σ^{\prime}-invariant. Among these twenty four curves we can find a rational tree of type D_{19}. Let $S^{\prime} \rightarrow \hat{S}$ be the contraction of this tree. Then σ^{\prime} acts on \hat{S} and it fixes two points. The quotient surface $\hat{S} /\left\langle\sigma^{\prime}\right\rangle$ is a rational \log Enriques surface. It follows from Remark 1.1.3 that any rational log Enriques surface cannot contain a cylinder.

Rational log Enriques surfaces of ranks 19 and 18 are completely classified in [32], [37], respectively.

An effective \mathbb{Q}-divisor D on a proper normal variety X is called a tiger if it is numerically equivalent to $-K_{X}$ and (X, D) is not \log canonical. The tiger was introduced by S . Keel and J. Mckernan in their study of log del Pezzo surfaces of Picard rank one ([18]).

Example 3.1.6. M. Miyanishi proposed a conjecture (see [14]) that for a log del Pezzo surface of Picard rank one, its smooth locus has a finite unramified covering that contains a cylinder. It however turned out that the conjecture is answered in negative. S. Keel and J. Mckernan have constructed log del Pezzo surfaces of Picard rank one such that

- they have no tigers;
- their smooth loci have trivial algebraic fundamental groups.

For their construction, see [18, Eample 21.3.3]. If such a surface S contains a cylinder U, then we are able to obtain an effective divisor D such that $S \backslash U=\operatorname{Supp}(D)$. Since S is a log del Pezzo surface of Picard rank one, for some positive rational number λ the divisor λD is linearly equivalent to $-K_{S}$. It immediately follows from Remark 1.1.3 that λD is a tiger. This is a contradiction. Therefore, the surface S cannot contain any cylinder at all.

The rational surfaces in Exmple 3.1.6 are overqualified to be free from cylinders. We may give away the condition of the algebraic fundamental group since we are not considering cylinders in étale covers. On del Pezzo surfaces of Picard rank one with du Val singularities, instead of non-existence of tigers, we can apply a finer condition than Remark 1.1.3 that there is a tiger that does not contain the support of any effective anticanonical divisor (see [6, Remark 3.8]).

Example 3.1.7. Let S be a del Pezzo surface of degree 1 with one of the following types of singularities

$$
2 \mathrm{D}_{4}, \quad 2 \mathrm{~A}_{3}+2 \mathrm{~A}_{1}, \quad 4 \mathrm{~A}_{2} .
$$

Then its divisor class group is generated by the anticanonical class over \mathbb{R}. Therefore, Theorem 1.2 .4 implies that S cannot contain any cylinder at all. The smooth loci of these surfaces are not simply connected ([29]).

Remark 3.1.8. The surfaces in Example 3.1 .7 are the only del Pezzo surfaces with du Val singularities that have no cylinder. The other del Pezzo surfaces with du Val singularities contain cylinders. Indeed, del Pezzo surfaces with one of the types of singularities $2 \mathrm{D}_{4}, 2 \mathrm{~A}_{3}+2 \mathrm{~A}_{1}, 4 \mathrm{~A}_{2}$ are the only ones that contain no $\left(-K_{S}\right)$-cylinder and have Picard rank one (see [6]). Furthermore, since their divisor class groups are generated by the anticanonical classes over \mathbb{R}, they cannot contain any cylinder at all. In [6], all the del Pezzo surfaces with du Val singularities that have no anticanonically polarized cylinders are completely classified. Among them, the surfaces of the three types of singularities above are the only ones of Picard rank one. For those of higher Picard rank without anticanonically polarized cylinders one can always construct cylinders polarized by ample \mathbb{Q}-divisors. These constructions can be made by manipulating various anticanonically polarized cylinders that appear in [6].

4. Cylinders in del Pezzo surfaces of big degree

4.1. Basic cylinders. We here present many examples of cylinders on smooth del Pezzo surfaces. These will be building blocks from which we are able to construct cylinders polarized by various ample divisors.

Before we proceed, note that an (n)-curve on a smooth surface is an integral curve isomorphic to \mathbb{P}^{1} with self-intersection number n.

Example 4.1.1. On \mathbb{P}^{2}, let $L_{i}, i=1, \ldots, r$, be lines meeting altogether at a single point. The complement of the union of these r lines is an \mathbb{A}^{1}-bundle over an $(r-1)$-punctured affine line. Therefore, this is a cylinder in \mathbb{P}^{2}.

Example 4.1.2. Let L and M be a line and a conic on \mathbb{P}^{2} intersecting tangentially at a point. Each divisor $a L+b M$ with positive real numbers a and b defines a cylinder isomorphic to an \mathbb{A}^{1}-bundle over a simply punctured affine line \mathbb{A}_{*}^{1}.

Example 4.1.3. Let C be a cuspidal cubic curve on \mathbb{P}^{2} and T be the Zariski tangent line at its cuspidal point P. Their complement is a cylinder isomorphic to $\mathbb{A}^{1} \times \mathbb{A}_{*}^{1}$. To see this, take the blow up $\pi_{1}: \mathbb{F}_{1} \rightarrow \mathbb{P}^{2}$ at the point P and then take the blow up $\pi_{2}: \tilde{S}_{7} \rightarrow \mathbb{F}_{1}$ at the intersection point of the proper transforms of C and T. Let E_{1} be the exceptional curve on \tilde{S}_{7} contracted by π_{1} and E_{2} be the exceptional curve on \tilde{S}_{7} contracted by π_{2}. In addition, let \tilde{C} and \tilde{T} be the proper transforms of C and T by $\pi_{1} \circ \pi_{2}$. Now we contract \tilde{T}, which is a (-1)-curve on \tilde{S}_{7}. This gives us a birational morphism $\pi: \tilde{S}_{7} \rightarrow \mathbb{F}_{2}$. Then $\pi\left(E_{1}\right)$ is the exceptional section of \mathbb{F}_{2} with self-intersection number -2 and $\pi\left(E_{2}\right)$ is a fiber of \mathbb{F}_{2}. The curve $\pi(\tilde{C})$ is linearly equivalent to $\pi\left(E_{1}\right)+3 \pi\left(E_{2}\right)$ and is a section of \mathbb{F}_{2} with the self-intersection number 4. The three curves $\pi\left(E_{1}\right), \pi\left(E_{2}\right)$, and $\pi(\tilde{C})$ on \mathbb{F}_{2} meet transversally at a single point, and hence their complement is isomorphic to $\mathbb{A}^{1} \times \mathbb{A}_{*}^{1}$. Since

$$
\mathbb{P}^{2} \backslash(C \cup T) \cong \tilde{S}_{7} \backslash\left(\tilde{C} \cup \tilde{T} \cup E_{1} \cup E_{2}\right) \cong \mathbb{F}_{2} \backslash\left(\pi(\tilde{C}) \cup \pi\left(E_{1}\right) \cup \pi\left(E_{2}\right)\right)
$$

the complement of C and T is a cylinder.
Example 4.1.4. On $\mathbb{P}^{1} \times \mathbb{P}^{1}$, let E be a curve of bidegree $(1,0)$ and $F_{i}, i=1, \ldots, r$, be curves of bidegree $(0,1)$. The complement of these curves is isomorphic to an \mathbb{A}^{1}-bundle over a $(r-1)$ punctured affine line. By blowing up $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at the intersection point of E and F_{1} and then
contracting the proper transforms of E and F_{1} to \mathbb{P}^{2}, we may encounter the cylinder described in Example 4.1.1.

Example 4.1.5 ([19, Theorem 3.19]). Let S_{d} be a smooth del Pezzo surface of degree $d \geqslant 2$, not isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Then it can be obtained by blowing up \mathbb{P}^{2} at $(9-d)$ points in general position. Let $\sigma: S_{d} \rightarrow \mathbb{P}^{2}$ be such a blow up and let E_{i} be the exceptional curve, where $i=1, \ldots, 9-d$. Put $P_{i}=\sigma\left(E_{i}\right)$. Suppose that these $(9-d)$ points P_{1}, \ldots, P_{9-d} lie on the union of a line L and a conic C that intersect tangentially at a single point. Note

$$
S_{d} \backslash\left(\tilde{L} \cup \tilde{C} \cup E_{1} \cup \ldots \cup E_{9-d}\right) \cong \mathbb{P}^{2} \backslash(L \cup C) \cong \mathbb{A}^{1} \times \mathbb{A}_{*}^{1},
$$

where \tilde{L} and \tilde{C} are the proper transforms of L and C by σ.
We now suppose that $d \geqslant 4$. There is a conic passing through all the points P_{1}, \ldots, P_{9-d}. So we may assume that P_{1}, \ldots, P_{9-d} lie on C and that L meets C tangentially at a point other than P_{1}, \ldots, P_{9-d}. Then, for a real number $0<\varepsilon<\frac{1}{2}$, the \mathbb{R}-divisor

$$
(1+\varepsilon) \tilde{C}+(1-2 \varepsilon) \tilde{L}+\varepsilon \sum_{i=1}^{9-d} E_{i}
$$

is effective and numerically equivalent to $-K_{S_{d}}$. Therefore, the cylinder

$$
S_{d} \backslash\left(\tilde{L} \cup \tilde{C} \cup E_{1} \cup \ldots \cup E_{9-d}\right)
$$

is $\left(-K_{S_{d}}\right)$-polar.
Example 4.1.6. Let C be an irreducible curve of bidegree $(1,2)$ on $\mathbb{P}^{1} \times \mathbb{P}^{1}$. There are two curves of bidegree $(1,0)$ that intersect C tangentially. Let T be one of them and P be the intersection point of C and T. In addition, let L be the curve of bidegree $(0,1)$ passing through the point P. Then the open set

$$
\mathbb{P}^{1} \times \mathbb{P}^{1} \backslash(C \cup L \cup T)
$$

is a cylinder. To see this, let $\pi: S_{7} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ be the blow up at P and E be its exceptional curve. Denote the proper transforms of the curves C, T, and L by \tilde{C}, \tilde{T}, and \tilde{L}, respectively. The curves \tilde{T} and \tilde{L} are disjoint (-1)-curves. Let $\psi: S_{7} \rightarrow \mathbb{P}^{2}$ be the contraction of \tilde{L} and \tilde{T}. Then, $\psi(E)$ is a line, $\psi(C)$ is a conic, and they meet tangentially. Therefore, the open set above is a cylinder since

$$
\mathbb{P}^{1} \times \mathbb{P}^{1} \backslash(C \cup L \cup T) \cong S \backslash(\tilde{C} \cup \tilde{L} \cup \tilde{T} \cup E) \cong \mathbb{P}^{2} \backslash(\psi(\tilde{C}) \cup \psi(E)) \cong \mathbb{A}^{1} \times \mathbb{A}_{*}^{1}
$$

In particular, for a real number $0<\varepsilon<1$,

$$
(1-\varepsilon) C+(1+\varepsilon) T+2 \varepsilon L \equiv-K_{\mathbb{P}^{1} \times \mathbb{P}^{1}},
$$

and hence the cylinder is $\left(-K_{\mathbb{P}^{1} \times \mathbb{P}^{1}}\right)$-polar.
Example 4.1.7. Let C_{1} and C_{2} be irreducible curves of bidegree $(1,1)$ on $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Suppose that these two curves meet tangentially at a single point P. Let L_{1} and L_{2} be the curves of bidegrees $(1,0)$ and $(0,1)$, respectively, that pass through the point P. We claim that the open set

$$
\mathbb{P}^{1} \times \mathbb{P}^{1} \backslash\left(C_{1} \cup C_{2} \cup L_{1} \cup L_{2}\right)
$$

is a cylinder. Let $\pi: S_{7} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ be the blow up at P and E be its exceptional curve. Denote the proper transforms of C_{i} and L_{i} by \tilde{C}_{i} and \tilde{L}_{i}, respectively, $i=1,2$. The curves \tilde{L}_{1} and \tilde{L}_{2} are disjoint (-1)-curves. Therefore, we obtain a birational morphism $\psi: S_{7} \rightarrow \mathbb{P}^{2}$ by contracting \tilde{L}_{1} and \tilde{L}_{2}. The three curves $\psi(E), \psi\left(\tilde{C}_{1}\right), \psi\left(\tilde{C}_{2}\right)$ are lines intersecting at a single point. Since $\mathbb{P}^{1} \times \mathbb{P}^{1} \backslash\left(C_{1} \cup C_{2} \cup L_{1} \cup L_{2}\right) \cong S_{7} \backslash\left(\tilde{C}_{1} \cup \tilde{C}_{2} \cup \tilde{L}_{1} \cup \tilde{L}_{2} \cup E\right) \cong \mathbb{P}^{2} \backslash\left(\psi\left(\tilde{C}_{1}\right) \cup \psi\left(\tilde{C}_{2}\right) \cup \psi(E)\right) \cong \mathbb{A}^{1} \times \mathbb{A}_{* *}^{1}$,
where $\mathbb{A}_{* *}^{1}$ is a 2-punctured affine line, our claim is confirmed. In particular, the cylinder is $\left(-K_{\mathbb{P}^{1} \times \mathbb{P}^{1}}\right)$-polar because the divisor

$$
(1+\varepsilon) C_{1}+(1-2 \varepsilon) C_{2}+\varepsilon L_{1}+\varepsilon L_{2}
$$

is effective for an arbitrary real number $0<\varepsilon<\frac{1}{2}$ and nemerically equivalent to $-K_{\mathbb{P}^{1} \times \mathbb{P}^{1}}$.
Example 4.1.8. Let C be a cuspidal rational curve in the anticanonical linear system of the Hirzebruch surface \mathbb{F}_{1}. Let M be the 0 -curve that passes through the cuspidal point P. There is a unique 1-curve T that intersects C only at the point P. For an arbitrary real number $0<\varepsilon<1$, the divisor

$$
(1-\varepsilon) C+\varepsilon M+2 \varepsilon T
$$

defines a $\left(-K_{\mathbb{F}_{1}}\right)$-polar cylinder. To see this, take the blow up $\phi: S_{7} \rightarrow \mathbb{F}_{1}$ at the point P. Let E be the exceptional curve. Denote the proper transforms of the curves C, M, and T on S_{7} by \tilde{C}, \tilde{M}, and \tilde{T}, respectively. The \mathbb{R}-divisor $(1-\varepsilon) \tilde{C}+\varepsilon \tilde{M}+2 \varepsilon \tilde{T}+(1+\varepsilon) E$ is numerically equivalent to $-K_{S_{7}}$. Let $\psi: S_{7} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ be the contraction of the (-1)-curve \tilde{M}. Then the \mathbb{R}-divisor $(1-\varepsilon) \psi(\tilde{C})+2 \varepsilon \psi(\tilde{T})+(1+\varepsilon) \psi(E)$ is the divisor in Example 4.1.6 that defines a $\left(-K_{\mathbb{P}^{1} \times \mathbb{P}^{1}}\right)$-polar cylinder.
Example 4.1.9. On the Hirzebruch surface \mathbb{F}_{1}, let M be a 0 -curve and let T be a 1 -curve. Let P be the intersection point of T and M. There is a 3 -curve C that is tangent to the curve T at the point P. Then for an arbitrary real number $0<\varepsilon<1$, the divisor

$$
(1-\varepsilon) C+(1+\varepsilon) T+\varepsilon M
$$

defines a $\left(-K_{\mathbb{F}_{1}}\right)$-polar cylinder. Take the blow up $\phi: S_{7} \rightarrow \mathbb{F}_{1}$ at the point P. Let E be its exceptional curve. Denote the proper transforms of the curves C, M, and T on S_{7} by \tilde{C}, \tilde{M}, and \tilde{T}, respectively. The \mathbb{R}-divisor $(1-\varepsilon) \tilde{C}+(1+\varepsilon) \tilde{T}+\varepsilon \tilde{M}+(1+\varepsilon) E$ is numerically equivalent to $-K_{S_{7}}$. Let $\psi: S_{7} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ be the contraction of the (-1)-curve \tilde{M}. Then the \mathbb{R}-divisor $(1-\varepsilon) \psi(\tilde{C})+(1+\varepsilon) \psi(\tilde{T})+(1+\varepsilon) \psi(E)$ is numerically equivalent to $-K_{\mathbb{P}^{1} \times \mathbb{P}^{1}}$. The curve $\psi(\tilde{C})$ is an irreducible curve of bidegree $(1,1), \psi(\tilde{T})$ is of bidegree $(1,0)$, and $\psi(\tilde{E})$ is of bidegree $(0,1)$. Moreover, these three curves meet at a single point. This easily shows that the divisor $(1-\varepsilon) C+(1+\varepsilon) T+\varepsilon M$ defines a $\left(-K_{\mathbb{F}_{1}}\right)$-polar cylinder.

Example 4.1.10. Let C be a cuspidal rational curve in the anticanonical linear system of the smooth del Pezzo surface S_{7} of degree 7 . There are exactly two 0 -curves M_{1}, M_{2} passing through the cuspidal point P of C. There is a unique 1-curve T that meets C only at the point P. For an arbitrary real number $0<\varepsilon<1$, the divisor

$$
(1-\varepsilon) C+\varepsilon M_{1}+\varepsilon M_{2}+\varepsilon T
$$

defines a $\left(-K_{S_{7}}\right)$-polar cylinder. To see this, take the blow up $\phi: S_{6} \rightarrow S_{7}$ at the point P. Let E be the exceptional divisor. The proper transforms of M_{1} and M_{2} are disjoint (-1)-curves on S_{6}. Let $\psi: S_{6} \rightarrow \mathbb{F}_{1}$ be the birational morphism obtained by contracting these two curves. Then the curve E becomes a 1-curve and the curve T becomes a 0 -curve on \mathbb{F}_{1}. They intersect at a single point Q. The curve C becomes a 3 -curve tangent to $\psi(E)$ at Q. Then Example 4.1.9 shows that the divisor $(1-\varepsilon) C+\varepsilon M_{1}+\varepsilon M_{2}+\varepsilon T$ defines a $\left(-K_{S_{7}}\right)$-polar cylinder.
Example 4.1.11. Let S_{6} be a smooth del Pezzo surface of degree 6. Let C be a cuspidal rational curve in the anticanonical linear system and let P be its cuspidal point. There are three disjoint (-1)-curves E_{1}, E_{2}, E_{3} on S_{6}. Each of them meets C at a single smooth point of C. Let $\phi: S_{6} \rightarrow \mathbb{P}^{2}$ be the birational morphism obtained by contracting E_{1}, E_{2}, E_{3}. Let T^{\prime} be the Zariski tangent line to the cuspidal rational curve $\phi(C)$ at the point $\phi(P)$. There is a unique conic curve T_{0}^{\prime} such that it is tangent to T^{\prime} at the point $\phi(P)$ and passes through the points $\phi\left(E_{1}\right), \phi\left(E_{2}\right), \phi\left(E_{3}\right)$. Let M_{i}^{\prime} be the line through $\phi(P)$ and $\phi\left(E_{i}\right)$. Let T, T_{0}, and M_{i} be
the proper transforms of $T^{\prime}, T_{0}^{\prime}$, and M_{i} by the birational morphism ϕ. For an arbitrary real number $0<\varepsilon<\frac{1}{2}$, the \mathbb{R}-divisor

$$
(1-2 \varepsilon) C+\varepsilon T+\varepsilon T_{0}+\varepsilon M_{1}+\varepsilon M_{2}+\varepsilon M_{3}
$$

is numerically equivalent to the anticanonical class on S_{6}. We take the blow up $\phi: S_{5} \rightarrow S_{6}$ at the point P. Let E be the exceptional curve. The proper transforms of M_{1}, M_{2}, and M_{3} are disjoint (-1)-curves on S_{5}. Let $\psi: S_{5} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ be the birational morphism obtained by contracting these three curves. Then Example 4.1 .7 shows that the \mathbb{R}-divisor above defines a $\left(-K_{S_{6}}\right)$-polar cylinder on S_{6}.

Example 4.1.12. Let S_{5} be a smooth del Pezzo surface of degree 5. In addition, let H be an effective anticanonical divisor on S_{5} that consists of one 1 -curve C and one 0 -curve M meeting tangentially at a single point P. Then there are four 0 -curves $M_{1}, M_{2}, M_{3}, M_{4}$, other than M, passing through the point P. They intersect each other only at the point P. For an arbitrary real number $0<\varepsilon<\frac{1}{2}$, the divisor

$$
(1-\varepsilon) M+(1-2 \varepsilon) C+\varepsilon M_{1}+\varepsilon M_{2}+\varepsilon M_{3}+\varepsilon M_{4}
$$

defines a $\left(-K_{S_{5}}\right)$-polar cylinder. Indeed, to see this, consider the blow up $\phi: S_{4} \rightarrow S_{5}$ at the point P, and then contract the proper transforms of M_{i} 's and M by ϕ to \mathbb{P}^{2}.
Example 4.1.13. Let S_{5} be a smooth del Pezzo surface of degree 5. Let C be a cuspidal rational curve in the anticanonical linear system and let P be its cuspidal point. We have four disjoint (-1)-curves E_{1}, \ldots, E_{4} on S_{5}. Each of them intersects C at a single smooth point of C. Let $\phi: S_{5} \rightarrow \mathbb{P}^{2}$ be the birational morphism obtained by contracting E_{1}, \ldots, E_{4}. Let M_{0}^{\prime} be the conic on \mathbb{P}^{2} determined by the points $\phi\left(E_{1}\right), \ldots, \phi\left(E_{4}\right)$, and $\phi(P)$. For $i=1,2,3,4$, let M_{i}^{\prime} be the line passing through the points $\phi\left(E_{i}\right)$ and $\phi(P)$. Let M_{i} be the proper transform of M_{i}^{\prime} by the birational morphism ϕ. These five curves are 0 -curves on S_{5} passing through P. For an arbitrary real number $0<\varepsilon<\frac{1}{2}$, the divisor

$$
(1-2 \varepsilon) C+\varepsilon M_{0}+\varepsilon M_{1}+\varepsilon M_{2}+\varepsilon M_{3}+\varepsilon M_{4}
$$

defines a ($-K_{S_{5}}$)-polar cylinder. We consider the blow up $\psi: S_{4} \rightarrow S_{5}$ at P. The proper transforms of M_{i} by ψ are mutually disjoint (-1)-curves. We contract these five (-1)-curves to \mathbb{P}^{2}. Then C and the exceptional curve of ψ become a line and a conic meeting tangentially on \mathbb{P}^{2}. Therefore, the effective \mathbb{R}-divisor above defines a cylinder.

Example 4.1.14. We here use the same notations $S_{5}, C, P, E_{1}, \ldots, E_{4}$, and $\phi: S_{5} \rightarrow \mathbb{P}^{2}$ as in Example 4.1.13. Let T_{0}^{\prime} be the Zariski tangent line to the cuspidal rational curve $\phi(C)$ at the point $\phi(P)$. For $i=1,2,3,4$, there is a unique conic curve T_{i}^{\prime} such that it is tangent to T_{0}^{\prime} at the point $\phi(P)$ and passes through the points $\phi\left(E_{1}\right), \ldots, \phi\left(E_{4}\right)$ except $\phi\left(E_{i}\right)$. Let T_{0} and T_{i} be the proper transforms of T_{0}^{\prime} and T_{i}^{\prime} by the birational morphism ϕ. Then, for an arbitrary real number $0<\varepsilon<\frac{1}{3}$, the divisor

$$
(1-3 \varepsilon) C+\varepsilon T_{0}+\varepsilon T_{1}+\varepsilon T_{2}+\varepsilon T_{3}+\varepsilon T_{4}
$$

defines a $\left(-K_{S_{5}}\right)$-polar cylinder. To see this, let $\phi_{1}: S_{4} \rightarrow S_{5}$ be the blow up at the point P. Then the exceptional curve B_{1} of ϕ_{1} intersects the proper transform of C tangentially at a single point Q. Let $\phi_{2}: S_{3} \rightarrow S_{4}$ be the blow up at the point Q and denote its exceptional curve by B_{2}. Let \tilde{C} and \tilde{T}_{i} be the proper transforms of C and T_{i} by the morphism $\phi_{1} \circ \phi_{2}$, where $i=0, \ldots, 4$. In addition, let \tilde{B}_{1} be the proper transform of B_{1} by ϕ_{2}. Then the \mathbb{R}-divisor

$$
(1-3 \varepsilon) \tilde{C}+(1-\varepsilon) \tilde{B}_{1}+(1+\varepsilon) B_{2}+\varepsilon \tilde{T}_{0}+\varepsilon \tilde{T}_{1}+\varepsilon \tilde{T}_{2}+\varepsilon \tilde{T}_{3}+\varepsilon \tilde{T}_{4}
$$

is numerically equivalent to the anticanonical class on S_{3}. Now, contracting the five disjoint (-1)curves $\tilde{T}_{0}, \ldots, \tilde{T}_{4}$ to the Hirzebruch surface \mathbb{F}_{2}, we obtain a birational morphism $\psi_{1}: S_{3} \rightarrow \mathbb{F}_{2}$.

Put $\bar{C}=\psi_{1}(\tilde{C}), \bar{B}_{1}=\psi_{1}\left(\tilde{B}_{1}\right)$, and $\bar{B}_{2}=\psi_{1}\left(B_{2}\right)$. Then

$$
(1-3 \varepsilon) \bar{C}+(1-\varepsilon) \bar{B}_{1}+(1+\varepsilon) \bar{B}_{2}
$$

is numerically equivalent to $-K_{\mathbb{F}_{2}}$. Note that \bar{B}_{1} is the (-2)-curve on \mathbb{F}_{2} and \bar{C} is a 0 -curve. We take the blow up $\phi_{3}: S \rightarrow \mathbb{F}_{2}$ at a general point of \bar{C}. Let B_{3} be its exceptional curve. In addition, let \hat{C}, \hat{B}_{1}, and \hat{B}_{2} be the proper transforms of \bar{C}, \bar{B}_{1}, and \bar{B}_{2} by ϕ_{3}. Finally, by contracting \hat{C} and \hat{B}_{1} in turn, we obtain a birational morphism $\psi_{2}: S \rightarrow \mathbb{P}^{2}$. We immediately see that $\psi_{3}\left(\hat{B}_{2}\right)$ is a cuspidal rational curve and $\psi_{3}\left(B_{3}\right)$ is the Zariski tangent line to $\psi_{3}\left(\hat{B}_{2}\right)$ at its cuspidal point. Even though

$$
(1+\varepsilon) \psi_{3}\left(\hat{B}_{2}\right)-3 \varepsilon \psi_{3}\left(B_{3}\right)
$$

is a non-effective divisor on \mathbb{P}^{2}, the original divisor on S_{5} defines a $\left(-K_{S_{5}}\right)$-polar cylinder since

$$
S_{5} \backslash\left(C \cup T_{0} \cup \ldots \cup T_{4}\right) \cong \mathbb{P}^{2} \backslash\left(\psi_{3}\left(\hat{B}_{2}\right) \cup \psi_{3}\left(B_{3}\right)\right)
$$

(see Example 4.1.3).
Example 4.1.15. Let S_{4} be a smooth del Pezzo surface of degree 4. In addition, let H be an effective anticanonical divisor on S_{4} that consists of one 1-curve C and one (-1)-curve L meeting tangentially at a single point P.

By contracting L, we see from Example 4.1.14 that there are five 0 -curves T_{1}, \ldots, T_{5} passing through the point P such that they intersect each other only at P and meet L and C only at P. Example 4.1.14 immediately shows that

$$
(1-3 \varepsilon) C+(1-\varepsilon) L+\varepsilon \sum_{i=1}^{5} T_{i}
$$

defines a $\left(-K_{S_{4}}\right)$-polar cylinder on S_{4} for $0<\varepsilon<\frac{1}{3}$.
4.2. Proof of Theorem [2.2.1. Let S_{d} be a smooth del Pezzo surface of degree $d \geqslant 3$ and let H be an ample \mathbb{R}-divisor on S_{d}. It is easy to check that S_{d} always contains an H-polar cylinder isomorphic to \mathbb{A}^{2} if $d \geqslant 8$. For this reason, in order to prove Theorem [2.2.1, we assume that $d \leqslant 7$.

Let μ be the Fujita invariant of H, Δ be the Fujita face of H, and r be the Fujita rank of H. Let $\phi: S_{d} \rightarrow Z$ be the contraction given by Δ.

Lemma 4.2.1 (cf. Example 4.1.5). Suppose that H is of type $B(r)$ and $Z \not \approx \mathbb{P}^{1} \times \mathbb{P}^{1}$. If $(d, r) \neq(3,0)$, then S_{d} contains an H-polar cylinder.
Proof. For the case $r=0$ and $d \geqslant 4$, Theorem 1.2 .3 implies the statement. Therefore, we may assume that $r>0$.

Let E_{1}, \ldots, E_{r} be the (-1)-curves that generate the face Δ. Then

$$
K_{S_{d}}+\mu H \equiv \sum_{i=1}^{r} a_{i} E_{i}
$$

for some positive real numbers a_{1}, \ldots, a_{r}. Note that $r \leqslant 9-d$ and E_{1}, \ldots, E_{r} are disjoint.
The surface Z is a smooth del Pezzo surface of degree $(d+r)$. Since $Z \not \approx \mathbb{P}^{1} \times \mathbb{P}^{1}$, either $Z=\mathbb{P}^{2}$ or Z is a blow up of \mathbb{P}^{2} in $(9-d-r)$ points in general position. Let $\psi: Z \rightarrow \mathbb{P}^{2}$ be the blow up. Put $k=9-d$ and $\sigma=\psi \circ \phi$. If $k>r$, denote the proper transforms of these ψ-exceptional curves on S_{d} by E_{r+1}, \ldots, E_{k}. Put $P_{i}=\sigma\left(E_{i}\right)$.

Let C be an irreducible conic in \mathbb{P}^{2} passing through the points P_{2}, \ldots, P_{k}. Such a conic exists because $k \leqslant 6$. Let L be a line in \mathbb{P}^{2} passing through the point P_{1} and tangent to the conic C. Note that L may be tangent to C at one of the points P_{2}, \ldots, P_{k}, say P_{2}.

For a positive real number ε we have $-K_{\mathbb{P}^{2}} \equiv(1+\varepsilon) C+(1-2 \varepsilon) L$. Hence,

$$
-K_{S_{d}} \sim \sigma^{*}\left(-K_{\mathbb{P}^{2}}\right)-\sum_{i=1}^{k} E_{i} \equiv\left\{\begin{array}{l}
(1+\varepsilon) \tilde{C}+(1-2 \varepsilon) \tilde{L}-2 \varepsilon E_{1}+(1-\varepsilon) E_{2}+\varepsilon \sum_{i=3}^{k} E_{i} \\
\text { if } L \text { meets } C \text { at } P_{2} ; \\
(1+\varepsilon) \tilde{C}+(1-2 \varepsilon) \tilde{L}-2 \varepsilon E_{1}+\varepsilon \sum_{i=2}^{k} E_{i} \\
\text { otherwise, }
\end{array}\right.
$$

where \tilde{C} and \tilde{L} are the proper transforms of C and L, respectively, by σ. Thus, we have

$$
H \equiv\left\{\begin{array}{l}
\frac{1}{\mu}\left((1+\varepsilon) \tilde{C}+(1-2 \varepsilon) \tilde{L}+\left(a_{1}-2 \varepsilon\right) E_{1}+\left(a_{2}+1-\varepsilon\right) E_{2}+\sum_{i=3}^{r}\left(a_{i}+\varepsilon\right) E_{i}+\varepsilon \sum_{i=r+1}^{k} E_{i}\right) \\
\text { if } L \text { meets } C \text { at } P_{2} ; \\
\frac{1}{\mu}\left((1+\varepsilon) \tilde{C}+(1-2 \varepsilon) \tilde{L}+\left(a_{1}-2 \varepsilon\right) E_{1}+\sum_{i=2}^{r}\left(a_{i}+\varepsilon\right) E_{i}+\varepsilon \sum_{i=r+1}^{k} E_{i}\right) \\
\text { otherwise. }
\end{array}\right.
$$

For $0<\varepsilon<\frac{a_{1}}{2}$, this defines an H-polar cylinder because

$$
S_{d} \backslash\left(\tilde{C} \cup \tilde{L} \cup E_{1} \cup \ldots \cup E_{k}\right) \cong \mathbb{P}^{2} \backslash(C \cup L)
$$

As in the case where L meets C at P_{2} in the proof of Lemma 4.2.1, it can happen that we should separately deal with the case where two curves meet at one of the centers of blow ups. However, in such a case, we always obtain a bigger coefficient for the exceptional curve over the center than when it is not the case. For this reason, in the sequel, we always omit the proof for such a special case. The proof for a non-special case works almost verbatim for such a special case.

Lemma 4.2.2. Suppose that H is of type $B(8-d)$ and $Z \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$. Then S_{d} contains an H-polar cylinder.

Proof. Let E_{1}, \ldots, E_{r} be the (-1 -curves that generate the face Δ. Note that $r=8-d$. Then

$$
K_{S_{d}}+\mu H \equiv \sum_{i=1}^{r} a_{i} E_{i}
$$

for some positive real numbers a_{1}, \ldots, a_{r}. The (-1)-curves E_{1}, \ldots, E_{r} are disjoint. Put $P_{i}=$ $\phi\left(E_{i}\right)$.

Since $r \leqslant 5$, there is an irreducible curve C of bidegree $(2,1)$ in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ passing through the points P_{1}, \ldots, P_{r}. Let L be a curve of bidegree $(0,1)$ in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ that is tangent to the curve C. Let P be the intersection point of C and L. Then there is a unique curve M of bidegree $(1,0)$ in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ passing through the point P.

For a positive real number ε we have $-K_{\mathbb{P}^{1} \times \mathbb{P}^{1}} \equiv(1-\varepsilon) C+(1+\varepsilon) L+2 \varepsilon M$. Hence,

$$
-K_{S_{d}} \sim \phi^{*}\left(-K_{\mathbb{P}^{1} \times \mathbb{P}^{1}}\right)-\sum_{i=1}^{r} E_{i} \equiv(1-\varepsilon) \tilde{C}+(1+\varepsilon) \tilde{L}+2 \varepsilon \tilde{M}-\varepsilon \sum_{i=1}^{r} E_{i},
$$

where \tilde{C}, \tilde{L}, and \tilde{M} are the proper transforms of C, L, and M, respectively, by ϕ. Thus, we have

$$
H \equiv \frac{1}{\mu}\left((1-\varepsilon) \tilde{C}+(1+\varepsilon) \tilde{L}+2 \varepsilon \tilde{M}+\sum_{i=1}^{r}\left(a_{i}-\varepsilon\right) E_{i}\right) .
$$

Furthermore, we see immediately that

$$
S_{d} \backslash\left(\tilde{C} \cup \tilde{L} \cup \tilde{M} \cup E_{1} \cup \ldots \cup E_{r}\right) \cong \mathbb{P}^{1} \times \mathbb{P}^{1} \backslash(C \cup L \cup M)
$$

By taking $0<\varepsilon<\min \left\{a_{1}, \ldots, a_{r}\right\}$ we obtain an H-polar cylinder on S_{d} (see Example 4.1.6).
Lemma 4.2.3. Suppose that H is of type $C(9-d)$. Then S_{d} contains an H-polar cylinder.
Proof. If the contraction ϕ is a conic bundle, then, as in (2.1.4), we may write

$$
K_{S_{d}}+\mu H \equiv a B+\sum_{i=1}^{m} a_{i} E_{i}
$$

where B is an irreducible fiber of ϕ, E_{i} 's are disjoint (-1)-curves in fibers of ϕ, a is a positive real number, a_{i} 's are non-negative real numbers, and $m=8-d$. We may assume that $a_{1} \geqslant$ $a_{2} \geqslant \ldots \geqslant a_{m}$. Let $\phi_{1}: S_{d} \rightarrow W$ be the birational morphism obtained by contracting the disjoint (-1)-curves E_{1}, \ldots, E_{m}. Thus W is a smooth del Pezzo surface of degree 8, hence either $W \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ or $W \cong \mathbb{F}_{1}$.

Case 1. $a_{m} \neq 0$ and $W \cong \mathbb{F}_{1}$.
There is a (-1)-curve E on S_{d} whose image by ϕ_{1} is the unique (-1)-curve on W. Let $\psi: W \rightarrow \mathbb{P}^{2}$ be the birational morphism given by contracting $\phi_{1}(E)$. Put $\sigma=\psi \circ \phi_{1}$. Denote the points $\sigma\left(E_{i}\right)$ by $P_{i}, i=1, \ldots, m$, the point $\sigma(E)$ by P, and the line $\sigma(B)$ by M. Note that the line M passes through the point P.

Let C be the conic passing through the points P_{1}, \ldots, P_{m}. Such a conic exists because $m \leqslant 5$. Let L be a line that passes through the point P and that is tangent to the conic C. We may assume that the line L is different from M.

For any real number ε we have $-K_{\mathbb{P}^{2}} \equiv(1-\varepsilon) C+(1+2 \varepsilon+a) L-a M$. Hence,

$$
\begin{aligned}
-K_{S_{d}} & \sim \sigma^{*}\left(-K_{\mathbb{P}^{2}}\right)-\sum_{i=1}^{m} E_{i}-E \\
& \equiv(1-\varepsilon) \tilde{C}+(1+2 \varepsilon+a) \tilde{L}+2 \varepsilon E-a B-\varepsilon \sum_{i=1}^{m} E_{i},
\end{aligned}
$$

where \tilde{C} and \tilde{L} are the proper transforms of C and L, respectively, by σ. Thus, we have

$$
H \equiv \frac{1}{\mu}\left((1-\varepsilon) \tilde{C}+(1+2 \varepsilon+a) \tilde{L}+2 \varepsilon E+\sum_{i=1}^{m}\left(a_{i}-\varepsilon\right) E_{i}\right) .
$$

By taking a sufficiently small positive real number ε we obtain an H-polar cylinder on S_{d}.
Case 2. Either $a_{m} \neq 0$ with $W \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ or $a_{m}=0$.
We first assume that $W \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$. Denote the points $\phi_{1}\left(E_{i}\right)$ by $P_{i}, i=1, \ldots, m-1$, the point $\phi_{1}\left(E_{m}\right)$ by P, and the curve $\phi_{1}(B)$ by M. The curve M is a curve of bidegree $(0,1)$ or $(1,0)$ on $\mathbb{P}^{1} \times \mathbb{P}^{1}$. We may assume that it is of bidegree $(0,1)$.

There is a unique curve C of bidegree $(1,2)$ passing through the points $P, P_{1}, \ldots, P_{m-1}$. There is a curve L of bidegree $(1,0)$ that is tangent to C. Let Q be the point at which L meets C and let N be the curve of bidegree $(0,1)$ passing through the point Q.

For an arbitrary real number ε we have $-K_{\mathbb{P}^{1} \times \mathbb{P}^{1}} \equiv(1+\varepsilon) C+(1-\varepsilon) L+(a-2 \varepsilon) N-a M$. Hence,

$$
\begin{aligned}
-K_{S_{d}} & \sim \phi_{1}^{*}\left(-K_{\mathbb{P}^{1} \times \mathbb{P}^{1}}\right)-E_{m}-\sum_{i=1}^{m-1} E_{i} \\
& \equiv(1+\varepsilon) \tilde{C}+(1-\varepsilon) \tilde{L}+(a-2 \varepsilon) \tilde{N}-a B+\varepsilon E_{m}+\sum_{i=1}^{m-1} \varepsilon E_{i},
\end{aligned}
$$

where \tilde{C}, \tilde{L}, and \tilde{N} are the proper transforms of C, L, N, respectively, by ϕ_{1}. Thus, we have

$$
H \equiv \frac{1}{\mu}\left((1+\varepsilon) \tilde{C}+(1-\varepsilon) \tilde{L}+(a-2 \varepsilon) \tilde{N}+\left(a_{m}+\varepsilon\right) E_{m}+\sum_{i=1}^{m-1}\left(a_{i}+\varepsilon\right) E_{i},\right)
$$

By taking a sufficiently small positive real number ε we obtain an H-polar cylinder on S_{d} (see Example 4.1.6).

Now we assume that $W \cong \mathbb{F}_{1}$ and $a_{m}=0$. Let E_{m}^{\prime} be the other (-1)-curve in the fiber of ϕ containing the (-1)-curve E_{m}. Let $\phi_{2}: S_{d} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ be the birational morphism given by contracting the (-1)-curves $E_{1}, \ldots, E_{m-1}, E_{m}^{\prime}$. Since $a_{m}=0$, after replacing ϕ_{1} and E_{m} by ϕ_{2} and E_{m}^{\prime}, we see immediately that the previous argument also works for this case.

Theorem 2.2 .1 immediately follows from Theorem 1.2 .3 and Lemmas 4.2.1, 4.2.2, and 4.2.3,

5. Absence of cylinders

5.1. The main obstruction. We here refine Remark 1.1 .3 for a smooth rational surface as below.

Let S be a smooth rational surface and let A be a big \mathbb{R}-divisor on S. Suppose that S contains an A-polar cylinder, i.e., there is an open affine subset $U \subset S$ and an effective \mathbb{R}-divisor D such that $D \equiv A, U=S \backslash \operatorname{Supp}(D)$, and $U \cong \mathbb{A}^{1} \times Z$ for some smooth rational affine curve Z. Put $D=\sum_{i=1}^{n} a_{i} C_{i}$, where each C_{i} is an irreducible reduced curve and each a_{i} is a positive real number. Let μ be the Fujita invariant of A.

As in (1.1.1), the natural projection $p_{Z}: U \cong \mathbb{A}^{1} \times Z \rightarrow Z$ induces a rational map $\psi: S \rightarrow \mathbb{P}^{1}$ given by a pencil \mathcal{L} on the surface S. If the base locus $\operatorname{Bs}(\mathcal{L})$ of the pencil is non-empty, then it must consist of a single point because $\psi^{*}(Q) \cong \mathbb{P}^{1}$ for a general point Q of \mathbb{P}^{1} and $\operatorname{Supp}\left(\psi^{*}(Q)\right) \backslash \operatorname{Supp}(\operatorname{Bs}(\mathcal{L}))$ contains an affine line.

Theorem 5.1.1. Suppose that the base locus of \mathcal{L} consists of a point P on S. Then, for every effective \mathbb{R}-divisor B on S such that $\operatorname{Supp}(B) \subset \operatorname{Supp}(D)$ and $K_{S}+B$ is pseudo-effective, the log pair (S, B) is not \log canonical at P. In particular, $(S, \mu D)$ is not \log canonical at P.

Proof. The proof is the same as the explanation for Remark 1.1.3, We may assume that the exceptional divisor of π lies over the point P. Since $\operatorname{Supp}(B) \subset \operatorname{Supp}(D)$, the divisor B can be written as $B=\sum_{i=1}^{n} b_{i} C_{i}$, where b_{i} 's are non-negative real numbers. The remaining parts are exactly the same as in the explanation for Remark 1.1.3,

Theorem 5.1.2. Let S_{d} be a smooth del Pezzo surface of degree $d \leqslant 3$ and let D be an effective \mathbb{R}-divisor on S_{d} such that $D \equiv-K_{S_{d}}$. If the log pair $\left(S_{d}, D\right)$ is not log canonical at a point P, then there exists a divisor T in the anticanonical linear system $\left|-K_{S_{d}}\right|$ such that the log pair $\left(S_{d}, T\right)$ is not log canonical at the point P and $\operatorname{Supp}(T) \subset \operatorname{Supp}(D)$.

Proof. See [5, Theorem 1.12] for an effective \mathbb{Q}-divisor. The proof works verbatim for an effective \mathbb{R}-divisor.
5.2. Proof of Theorem 2.2.3. Before we prove Theorem 2.2.3, we introduce two easy results that we use for the proof.
Lemma 5.2.1. Let S be a smooth surface and let D be an effective \mathbb{R}-divisor on S. If the log pair (S, D) is not \log canonical at a point P, then $\operatorname{mult}_{P}(D)>1$.

Proof. For instance, see [25, Proposition 9.5.13].
Lemma 5.2.2. Let S be a smooth del Pezzo surface of degree $d \leqslant 3$ and let

$$
D=\sum_{i=1}^{n} a_{i} D_{i}
$$

be an effective \mathbb{R}-divisor on S such that $D \equiv-K_{S}$, where D_{1}, \ldots, D_{n} are irreducible curves and a_{1}, \ldots, a_{n} are positive real numbers. Then $a_{i} \leqslant 1$ for each $i=1, \ldots, n$.

Proof. For the case where $d=1$, the statement follows from

$$
1=K_{S}^{2}=\sum_{i=1}^{n} a_{i} D_{i} \cdot\left(-K_{S}\right) \geqslant a_{i} D_{i} \cdot\left(-K_{S}\right) \geqslant a_{i}
$$

For the cases where $d=2$ and 3, see [5, Lemmas 3.1 and 4.1], respectively. Their proofs work verbatim for an effective \mathbb{R}-divisor.

Theorem 2.2.3 immediately follows from the following two statements.
Theorem 5.2.3. Let S be a smooth del Pezzo surface of degree $d \leqslant 2$. Let E be a (-1)-curve on S. For a positive real number a the surface S does not contain any $\left(-K_{S}+a E\right)$-polar cylinder.
Proof. Suppose that there exists an effective \mathbb{R}-divisor D such that $D \equiv-K_{S}+a E$ and $S \backslash \operatorname{Supp}(D)$ is isomorphic to $\mathbb{A}^{1} \times Z$ for some affine variety Z.

Let $f: S \rightarrow \bar{S}$ be the contraction of the curve E. Put $\bar{D}=f(D)$. Then \bar{S} is a smooth del Pezzo surface of degree $d+1 \leqslant 3$. Moreover, we have $\bar{D} \equiv-K_{\bar{S}}$.

If $E \subset \operatorname{Supp}(D)$, then

$$
\bar{S} \backslash \operatorname{Supp}(\bar{D}) \cong S \backslash \operatorname{Supp}(D) \cong \mathbb{A}^{1} \times Z,
$$

which implies that $\bar{S} \backslash \operatorname{Supp}(\bar{D})$ is a $\left(-K_{\bar{S}}\right)$-polar cylinder on \bar{S}. This contradicts Theorem 1.2.3, Therefore, $E \not \subset \operatorname{Supp}(D)$. In particular, $D \cdot E \geqslant 0$ and $a \leqslant 1$.

Put $D=\sum_{i=1}^{n} a_{i} D_{i}$, where D_{1}, \ldots, D_{n} are irreducible curves and a_{1}, \ldots, a_{n} are positive real numbers. None of the curves D_{1}, \ldots, D_{n} are contracted by the morphism f and

$$
\sum_{i=1}^{n} a_{i} f\left(D_{i}\right)=\bar{D} \equiv-K_{\bar{S}}
$$

Therefore, we have $a_{i} \leqslant 1$ for each $i=1, \ldots, n$ by Lemma 5.2.2. Since $a \leqslant 1$ too, by the second case in Remark 1.1.3 the linear system \mathcal{L} associated with the cylinder $S \backslash \operatorname{Supp}(D)$ has a base point, say P. Due to Theorem 5.1.1 for every effective \mathbb{R}-divisor B on S such that $K_{S}+B$ is pseudo-effective and $\operatorname{Supp}(B) \subset \operatorname{Supp}(D)$, the \log pair (S, B) is not \log canonical at P. In particular, (S, D) is not \log canonical at the point P.

The inequality

$$
1>1-a=\left(-K_{S}+a E\right) \cdot E=D \cdot E \geqslant \operatorname{mult}_{P}(D) \operatorname{mult}_{P}(E)
$$

and Lemma 5.2.1 show that P lies outside E. Therefore, (\bar{S}, \bar{D}) is not \log canonical at $f(P)$.
Let \bar{T} be the unique divisor in $\left|-K_{\bar{S}}\right|$ that is singular at $f(P)$. Denote by T its proper transform on the surface S. Since $\bar{D} \equiv-K_{\bar{S}}$ and (\bar{S}, \bar{D}) is not \log canonical at the point $f(P)$, it follows from Theorem 5.1.2 that (\bar{S}, \bar{T}) is not \log canonical at $f(P)$ and $\operatorname{Supp}(\bar{T}) \subset \operatorname{Supp}(\bar{D})$. Hence, $\operatorname{Supp}(T) \subset \operatorname{Supp}(D)$.

For every non-negative real number μ, put $D_{\mu}=(1+\mu) D-\mu T$ and $\bar{D}_{\mu}=(1+\mu) \bar{D}-\mu \bar{T}$. Since $-K_{\bar{S}} \cdot \bar{T}=K_{\bar{S}}^{2} \leqslant 3$, the divisor T consists of at most 3 irreducible components. Therefore, $D \neq T$ because the divisor D has at least 8 components by (1.1.2). Put

$$
\nu=\sup \left\{\mu \in \mathbb{R}_{\geqslant 0} \mid D_{\mu} \text { is effective }\right\} .
$$

Then $\operatorname{Supp}(T) \not \subset \operatorname{Supp}\left(D_{\nu}\right)$ and $\operatorname{Supp}(\bar{T}) \not \subset \operatorname{Supp}\left(\bar{D}_{\nu}\right)$. In particular, we have $\nu>0$ since $\operatorname{Supp}(T) \subset \operatorname{Supp}(D)$.

We have $\bar{D}_{\mu} \equiv \bar{D} \equiv \bar{T} \equiv-K_{\bar{S}}$ for each real number μ. This implies that

$$
D_{\mu} \equiv-K_{S}+a_{\mu} E
$$

for some real number a_{μ}. Note that a_{μ} is either linear or constant in μ.
Suppose that $a_{\nu} \geqslant 0$. Then $K_{S}+D_{\nu}$ is pseudo-effective. Therefore, the \log pair $\left(S, D_{\nu}\right)$ is not \log canonical at the point P by Theorem 5.1.1. Then $\left(\bar{S}, \bar{D}_{\nu}\right)$ is not log canonical at $f(P)$. The latter contradicts Theorem 5.1.2 because $\operatorname{Supp}(\bar{T}) \not \subset \operatorname{Supp}\left(\bar{D}_{\nu}\right)$ by the choice of ν.

Suppose that $a_{\nu}<0$. Since $a_{0}=a>0$, there exists a positive real number $\lambda \in(0, \nu)$ such that $a_{\lambda}=0$. It follows from $\lambda<\nu$ that $\operatorname{Supp}(T) \subset \operatorname{Supp}\left(D_{\lambda}\right)$ and $\operatorname{Supp}\left(D_{\lambda}\right)=\operatorname{Supp}(D)$. Therefore,

$$
S \backslash \operatorname{Supp}\left(D_{\lambda}\right) \cong S \backslash \operatorname{Supp}(D) \cong \mathbb{A}^{1} \times Z
$$

is a cylinder. However, this contradicts Theorem 1.2.3 because $a_{\lambda}=0$, i.e., $D_{\lambda} \equiv-K_{S}$.
Theorem 5.2.4. Let S be a smooth del Pezzo surface of degree 1. Let E and F be two disjoint (-1)-curves on S. The surface S contains no $\left(-K_{S}+a E+b F\right)$-polar cylinder for any positive real numbers a and b.

Proof. Suppose that there exists an effective \mathbb{R}-divisor D such that $D \equiv-K_{S}+a E+b F$ and such that $S \backslash \operatorname{Supp}(D)$ is isomorphic to $\mathbb{A}^{1} \times Z$ for some affine variety Z. In the following we seek for a contradiction.

Let $g: S \rightarrow \hat{S}$ be the contraction of the curve E. Put $\hat{D}=g(D)$ and $\hat{F}=g(F)$. Then \hat{S} is a smooth del Pezzo surface of degree 2, \hat{F} is a (-1)-curve, and $\hat{D} \equiv-K_{\hat{S}}+b \hat{F}$. This implies that $E \not \subset \operatorname{Supp}(D)$. Indeed, if $E \subset \operatorname{Supp}(D)$, then

$$
\hat{S} \backslash \operatorname{Supp}(\hat{D}) \cong S \backslash \operatorname{Supp}(D) \cong \mathbb{A}^{1} \times Z
$$

is a \hat{D}-polar cylinder on \hat{S}. This is impossible by Theorem 5.2.3. Similarly, we see that $F \not \subset$ $\operatorname{Supp}(D)$. Therefore, $D \cdot E \geqslant 0, D \cdot F \geqslant 0$ and $a \leqslant 1, b \leqslant 1$.

Write $D=\sum_{i=1}^{n} a_{i} D_{i}$, where D_{1}, \ldots, D_{n} are irreducible curves and a_{1}, \ldots, a_{n} are positive real numbers.

Let $f: S \rightarrow \bar{S}$ be the contraction of the curves E and F. Put $\bar{D}=f(D)$. Then \bar{S} is a smooth cubic surface and $\bar{D} \equiv-K_{\bar{S}}$. None of the curves D_{1}, \ldots, D_{n} are contracted by the morphism f and

$$
\sum_{i=1}^{n} a_{i} f\left(D_{i}\right)=\bar{D} \equiv-K_{\bar{S}} .
$$

Therefore, we have $a_{i} \leqslant 1$ for each $i=1, \ldots, n$ by Lemma 5.2.2. Because $a, b \leqslant 1$, the second case in Remark 1.1.3 implies that the linear system \mathcal{L} associated with the cylinder $S \backslash \operatorname{Supp}(D)$ has a base point, say P. By Theorem 5.1.1 for every effective \mathbb{R}-divisor B on S such that $K_{S}+B$ is pseudo-effective and $\operatorname{Supp}(B) \subset \operatorname{Supp}(D)$, the \log pair (S, B) is not \log canonical at P. In particular, (S, D) is not \log canonical at the point P.

We claim that P belongs to neither E nor F. Indeed, if $P \in E$, then

$$
1>1-a=\left(-K_{S}+a E\right) \cdot E=D \cdot E \geqslant \operatorname{mult}_{P}(D)>1
$$

by Lemma 5.2.1. This shows that $P \notin E$. Similarly, we see that $P \notin F$. Therefore, the birational morphism f is an isomorphism in a neighborhood of the point P. In particular, the log pair (\bar{S}, \bar{D}) is not \log canonical at $f(P)$.

Let \bar{T} be the unique divisor in $\left|-K_{\bar{S}}\right|$ that is singular at $f(P)$. Denote by T its proper transform on the surface S. Since $\bar{D} \equiv-K_{\bar{S}}$ and (\bar{S}, \bar{D}) is not \log canonical at the point $f(P)$, it follows from Theorem 5.1.2 that (\bar{S}, \bar{T}) is not \log canonical at $f(P)$ and $\operatorname{Supp}(\bar{T}) \subset \operatorname{Supp}(\bar{D})$. Hence, $\operatorname{Supp}(T) \subset \operatorname{Supp}(D)$.

For every non-negative real number μ, put $D_{\mu}=(1+\mu) D-\mu T$ and $\bar{D}_{\mu}=(1+\mu) \bar{D}-\mu \bar{T}$. Since $-K_{\bar{S}} \cdot \bar{T}=K_{\bar{S}}^{2}=3$, the divisor T consists of at most 3 irreducible components. Therefore, $D \neq T$ because the divisor D has at least 9 components by (1.1.2). Put

$$
\nu=\sup \left\{\mu \in \mathbb{R}_{\geqslant 0} \mid D_{\mu} \text { is effective }\right\} .
$$

Then $\operatorname{Supp}(T) \not \subset \operatorname{Supp}\left(D_{\nu}\right)$ and $\operatorname{Supp}(\bar{T}) \not \subset \operatorname{Supp}\left(\bar{D}_{\nu}\right)$. In particular, we have $\nu>0$ since $\operatorname{Supp}(T) \subset \operatorname{Supp}(D)$.

We have $\bar{D}_{\mu} \equiv \bar{D} \equiv \bar{T} \equiv-K_{\bar{S}}$ for each real number μ. This implies that

$$
D_{\mu} \equiv-K_{S}+a_{\mu} E+b_{\mu} F
$$

for some real numbers a_{μ} and b_{μ}. From $-K_{S}+E+F \equiv f^{*}\left(\bar{D}_{\mu}\right)=(1+\mu) f^{*}(\bar{D})-\mu f^{*}(\bar{T})$ and $a_{0}=a, b_{0}=b$ we obtain

$$
\left\{\begin{array}{l}
a_{\mu}=\left(\operatorname{mult}_{f(E)}(\bar{T})-\operatorname{mult}_{f(E)}(\bar{D})\right) \mu+a \\
b_{\mu}=\left(\operatorname{mult}_{f(F)}(\bar{T})-\operatorname{mult}_{f(F)}(\bar{D})\right) \mu+b
\end{array}\right.
$$

Suppose that $a_{\nu} \geqslant 0$ and $b_{\nu} \geqslant 0$. Then $K_{S}+D_{\nu}$ is pseudo-effective, and hence the log pair $\left(S, D_{\nu}\right)$ is not \log canonical at the point P by Theorem [5.1.1. Then $\left(\bar{S}, \bar{D}_{\nu}\right)$ is not log canonical at $f(P)$. Since $\operatorname{Supp}(\bar{T}) \not \subset \operatorname{Supp}\left(\bar{D}_{\nu}\right)$, this contradicts Theorem 5.1.2,

Suppose that either $a_{\nu}<0$ or $b_{\nu}<0$. Since $a_{0}=a>0$ and $b_{0}=b>0$, there is a real number $\lambda \in(0, \nu)$ such that either $a_{\lambda}=0, b_{\lambda} \geqslant 0$ or $a_{\lambda} \geqslant 0, b_{\lambda}=0$. Without loss of generality we may assume that $a_{\lambda}=0$. Since $\lambda<\nu, \operatorname{Supp}(T) \subset \operatorname{Supp}\left(D_{\lambda}\right)=\operatorname{Supp}(D)$. Therefore, $S \backslash \operatorname{Supp}\left(D_{\lambda}\right)=S \backslash \operatorname{Supp}(D)$ is a cylinder. However, this contradicts either Theorem 1.2.3 or Theorem 5.2.3 since

$$
D_{\lambda} \equiv-K_{S}+b_{\lambda} F
$$

6. Cylinders in del Pezzo surfaces of small degrees

6.1. Del Pezzo surface of degree 2 without a cuspidal anticanonical divisor. A smooth quartic plane curve can have at most twenty four inflection points. There may be two kinds of inflection points on a smooth quartic curve. One is a point at which its tangent line intersects the quartic with multiplicity 3 , and the other with multiplicity 4 . The former is called an ordinary inflection point and the latter a hyperinflection point. These inflection points can be spotted with the Hessian curve of the given quartic curve. The Hessian curve intersects the quartic curve transversally at ordinary inflection points and meets the quartic curve at hyperinflection points with multiplicity 2. Since the degree of the Hessian curve is 6 , we have
the number of ordinary inflection points $+2 \times$ the number of hyperinflection points $=24$.
Therefore, a smooth quartic plane curve has exactly twelve hyperinflection points if it contains no ordinary inflection point.

A smooth del Pezzo surface of degree 2 is a double cover of \mathbb{P}^{2} ramified along a smooth plane quartic curve. An effective anticanonical divisor on a smooth del Pezzo surface of degree 2 is given by the pull-back of a line on \mathbb{P}^{2} via the double covering map. An effective anticanonical
divisor that is a cuspidal rational curve is given exactly by the pull-back of the tangent line at an ordinary inflection point. The pull-back of the tangent line at a hyperinflection point is an effective anticanonical divisor that is a tacnodal curve, i.e., two (-1)-curves intersecting at a single point tangentially. Consequently, a smooth del Pezzo surface of degree 2 contains twelve effective anticanonical divisors that are tacnodal curves if its anticanonical linear system contains no cuspidal rational curve. Each of the twelve tacnodal curves consists of two distinct (-1)curves intersecting at a single point tangentially. These twenty four (-1)-curves are distinct.

In fact, there are exactly two quartic plane curves without any ordinary inflection point ([8], [24]). One is the Fermat quartic, i.e., the curve defined by

$$
x^{4}+y^{4}+z^{4}=0,
$$

and the other is the curve defined by

$$
x^{4}+y^{4}+z^{4}+3\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)=0 .
$$

As explained above, these have exactly twelve hyperinflection points. The del Pezzo surfaces of degree 2 corresponding these two quartic curves are the only del Pezzo surfaces of degree 2 whose anticanonical linear systems contain no cuspidal rational curves.
6.2. Cylinders in del Pezzo surfaces of degree 2. In order to prove Theorem [2.2.4, let S be a smooth del Pezzo surface of degree 2 and let H be an ample \mathbb{R}-divisor on S. Let μ and r be the Fujita invariant and the Fujita rank of H. Denote by Δ the Fujita face of H. Let $\phi: S \rightarrow Z$ be the contraction given by Δ.

We first consider ample \mathbb{R}-divisors of type $B(r)$. Let E_{1}, \ldots, E_{r} be the r disjoint (-1)-curves that generate the face Δ. We may then write

$$
\begin{equation*}
K_{S}+\mu H \equiv \sum_{i=1}^{r} a_{i} E_{i} \tag{6.2.1}
\end{equation*}
$$

for some positive real numbers a_{1}, \ldots, a_{r} (see (2.1.3)).
Theorem 6.2.2. If the ample \mathbb{R}-divisor H is of type $B(r)$ with $3 \leqslant r \leqslant 7$, then S contains an H-polar cylinder.

Proof. The proof is divided into two cases. One is the case when S has a cuspidal rational curve in $\left|-K_{S}\right|$, and the other is the case when it does not.

Case 1. The surface S has no cuspidal rational curve in $\left|-K_{S}\right|$.
In this case, as mentioned in the previous subsection, S has exactly twelve pairs of (-1)-curves $\left\{C_{i}, C_{i}^{\prime}\right\}, i=1, \ldots, 12$ such that each $C_{i}+C_{i}^{\prime}$ is a tacnodal anticanonical divisor.

Choose one tacnodal anticanonical divisor, say $C_{1}+C_{1}^{\prime}$. Since we have more than seven tacnodal anticanonical divisors, we may assume that

- none of E_{i} are C_{1} or C_{1}^{\prime};
- if $r=6$, then neither $\phi\left(C_{1}\right)$ nor $\phi\left(C_{1}^{\prime}\right)$ is a (-1)-curve.

Let m be the number of the curves E_{i} 's intersecting C_{1} and m^{\prime} be the number of the curves E_{i} 's intersecting C_{1}^{\prime}. We may assume that E_{1}, \ldots, E_{m} intersect C_{1} and that E_{m+1}, \ldots, E_{r} meet C_{1}^{\prime}. Furthermore, we may assume that $m \geqslant m^{\prime}$. Note that $m+m^{\prime}=r$. Furthermore, by the assumption above, $2 \leqslant m \leqslant 5$. Let \bar{C}_{1} and \bar{C}_{1}^{\prime} be the images C_{1} and C_{1}^{\prime} by ϕ, respectively. The curve \bar{C}_{1} is an ($m-1$)-curve on the del Pezzo surface Z. Since $m \geqslant 2$, the complete linear system $\left|\bar{C}_{1}\right|$ induces a birational morphism ψ of Z into \mathbb{P}^{m}. Furthermore, its image is isomorphic
to

$$
\left\{\begin{array}{l}
\mathbb{P}^{2} \text { for } m=2 \\
\mathbb{P}^{1} \times \mathbb{P}^{1} \cong \text { a smooth quadratic surface } \subset \mathbb{P}^{3} \text { for } m=3 ; \\
\mathbb{F}_{1} \cong \text { a smooth rational normal scroll of degree } 3 \text { in } \mathbb{P}^{4} \text { for } m=4 ; \\
\mathbb{P}^{2} \cong \text { a Veronese surface in } \mathbb{P}^{5} \text { for } m=5
\end{array}\right.
$$

Put $\sigma=\psi \circ \phi$.
For $m=2$ and 5 , we have $(7-r)$ disjoint (-1)-curves on Z that are contracted by ψ. These curves do not intersect \bar{C}_{1} but they meet \bar{C}_{1}^{\prime} since $\bar{C}_{1}+\bar{C}_{1}^{\prime}$ is an anticanonical divisor of Z. Let F_{1}, \ldots, F_{7-r} be the pull-backs of these $(7-r)$ disjoint (-1)-curves by ϕ. Then the curve C_{1} intersects exactly m curves $E_{1}, \ldots E_{m}$ and the curve C_{1}^{\prime} meets the other m^{\prime} curves $E_{m+1}, \ldots E_{r}$ and all the $(7-r)$ curves F_{1}, \ldots, F_{7-r}.

For $m=2, \sigma\left(C_{1}\right)$ is a line and $\sigma\left(C_{1}^{\prime}\right)$ is a conic in \mathbb{P}^{2}. For $m=5, \sigma\left(C_{1}\right)$ is a conic and $\sigma\left(C_{1}^{\prime}\right)$ is a line in \mathbb{P}^{2}. They intersect tangentially at a single point. Therefore,

$$
-K_{S} \equiv(1-a \varepsilon) C_{1}+(1+b \varepsilon) C_{1}^{\prime}-a \varepsilon \sum_{i=1}^{m} E_{i}+b \varepsilon \sum_{i=m+1}^{r} E_{i}+b \varepsilon \sum_{i=1}^{7-r} F_{i}
$$

and hence

$$
\mu H \equiv(1-a \varepsilon) C_{1}+(1+b \varepsilon) C_{1}^{\prime}+\sum_{i=1}^{m}\left(a_{i}-a \varepsilon\right) E_{i}+\sum_{i=m+1}^{r}\left(a_{i}+b \varepsilon\right) E_{i}+b \varepsilon \sum_{i=1}^{7-r} F_{i},
$$

where $a=2, b=1$ if $m=2$ and $a=1, b=2$ if $m=5$. For a sufficiently small positive real number ε, H yields a cylinder because

$$
S \backslash\left(C_{1} \cup C_{1}^{\prime} \cup E_{1} \cup \ldots \cup E_{r} \cup F_{1} \cup \ldots \cup F_{7-r}\right) \cong \mathbb{P}^{2} \backslash\left(\sigma\left(C_{1}\right) \cup \sigma\left(C_{1}^{\prime}\right)\right) .
$$

For $m=3$ and 4 , we have $(6-r)$ disjoint (-1)-curves on Z that are contracted by ψ. These curves do not intersect \bar{C}_{1} but they meet \bar{C}_{1}^{\prime} since $\bar{C}_{1}+\bar{C}_{1}^{\prime}$ is an anticanonical divisor of Z. Again we let F_{1}, \ldots, F_{6-r} be the pull-backs of these $(6-r)$ disjoint (-1)-curves by ϕ. Then the curve C_{1} intersects exactly m curves $E_{1}, \ldots E_{m}$ and the curve C_{1}^{\prime} meets the other m^{\prime} curves $E_{m+1}, \ldots E_{r}$ and all the $(6-r)$ curves F_{1}, \ldots, F_{6-r}.

For $m=3, \sigma\left(C_{1}\right)$ is an irreducible curve of bidegree $(1,1)$ in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ since its self-intersection number is 2 . The irreducible curve $\sigma\left(C_{1}^{\prime}\right)$ is also of bidegree $(1,1)$ because $\sigma\left(C_{1}\right)+\sigma\left(C_{1}^{\prime}\right)$ is an anticanonical divisor of $\mathbb{P}^{1} \times \mathbb{P}^{1}$. They intersect tangentially at a single point Q. Let L_{1} and L_{2} be the curves of bidegrees $(1,0)$ and $(0,1)$, respectively, passing through Q. Then,

$$
-K_{S} \equiv(1-2 \varepsilon) C_{1}+(1+\varepsilon) C_{1}^{\prime}+\varepsilon\left(\tilde{L}_{1}+\tilde{L}_{2}\right)-2 \varepsilon \sum_{i=1}^{3} E_{i}+\varepsilon \sum_{i=4}^{r} E_{i}+\varepsilon \sum_{i=1}^{6-r} F_{i},
$$

where \tilde{L}_{1} and \tilde{L}_{2} are the proper transforms of L_{1} and L_{2} by σ, respectively. Therefore

$$
\mu H \equiv(1-2 \varepsilon) C_{1}+(1+\varepsilon) C_{1}^{\prime}+\varepsilon\left(\tilde{L}_{1}+\tilde{L}_{2}\right)+\sum_{i=1}^{3}\left(a_{i}-2 \varepsilon\right) E_{i}+\sum_{i=4}^{r}\left(a_{i}+\varepsilon\right) E_{i}+\varepsilon \sum_{i=1}^{6-r} F_{i} .
$$

For a sufficiently small positive real number ε, we obtain an H-polar cylinder because

$$
S \backslash\left(C_{1} \cup C_{1}^{\prime} \cup \tilde{L}_{1} \cup \tilde{L}_{2} \cup E_{1} \cup \ldots \cup E_{r} \cup F_{1} \cup \ldots \cup F_{6-r}\right) \cong \mathbb{P}^{1} \times \mathbb{P}^{1} \backslash\left(\sigma\left(C_{1}\right) \cup \sigma\left(C_{1}^{\prime}\right) \cup L_{1} \cup L_{2}\right)
$$

(see Example 4.1.7).
For $m=4, \sigma\left(C_{1}\right)$ is a 3 -curve in \mathbb{F}_{1}. The irreducible curve $\sigma\left(C_{1}^{\prime}\right)$ is a 1 -curve intersecting $\sigma\left(C_{1}\right)$ at a single point Q tangentially. Let M be the 0 -curve passing through the point Q.

Example 4.1.9 shows that

$$
-K_{S} \equiv(1-\varepsilon) C_{1}+(1+\varepsilon) C_{1}^{\prime}+\varepsilon \tilde{M}-\varepsilon \sum_{i=1}^{4} E_{i}+\varepsilon \sum_{i=5}^{r} E_{i}+\varepsilon \sum_{i=1}^{6-r} F_{i}
$$

and

$$
\mu H \equiv(1-\varepsilon) C_{1}+(1+\varepsilon) C_{1}^{\prime}+\varepsilon \tilde{M}+\sum_{i=1}^{4}\left(a_{i}-\varepsilon\right) E_{i}+\sum_{i=5}^{r}\left(a_{i}+\varepsilon\right) E_{i}+\varepsilon \sum_{i=1}^{6-r} F_{i},
$$

where \tilde{M} is the proper transform of M. We see also from Example 4.1.9 that H defines a cylinder with a sufficiently small positive real number ε.

Case 2. The surface S possesses a cuspidal rational curve C in $\left|-K_{S}\right|$.
Let P be the point at which the curve C has the cusp. Each E_{i} intersects the curve C at a single smooth point. This cuspidal curve C plays a key role in constructing H-polar cylinders case by case, according to r.

Subcase 1. $r=3$.
In this subcase, the surface S has five 0 -curves F_{1}, \ldots, F_{5} such that

- they pass through P;
- they do not meet each other outside P;
- they are disjoint from the curves E_{1}, E_{2} and E_{3}.
(For the better understanding of this construction, see Example 4.1.13 after contracting the (-1)-curves E_{1}, E_{2}, E_{3} to a smooth del Pezzo surface of degree 5.)

Let $\pi: \tilde{S} \rightarrow S$ be the blow up at the point P and let E be the exceptional curve of π. Then \tilde{S} is a weak del Pezzo surface of degree 1 and it has exactly one (-2)-curve, the proper transform \tilde{C} of C. Denote the proper transforms on \tilde{S} of the curves $E_{1}, E_{2}, E_{3}, F_{1}, \ldots, F_{5}$ by $\tilde{E}_{1}, \tilde{E}_{2}, \tilde{E}_{3}$, $\tilde{F}_{1}, \ldots, \tilde{F}_{5}$. Since these (-1)-curves are disjoint, they give us a contraction $\psi: \tilde{S} \rightarrow \mathbb{P}^{2}$.

Since $\psi(E)$ is a conic and $\psi(\tilde{C})$ is a line on \mathbb{P}^{2}, we immediately see that

$$
-K_{\tilde{S}} \equiv(1-2 \varepsilon) \tilde{C}+(1+\varepsilon) E+\varepsilon \sum_{i=1}^{5} \tilde{F}_{i}-2 \varepsilon\left(\tilde{E}_{1}+\tilde{E}_{2}+\tilde{E}_{3}\right),
$$

and hence

$$
-K_{S} \equiv(1-2 \varepsilon) C+\varepsilon \sum_{i=1}^{5} F_{i}-2 \varepsilon\left(E_{1}+E_{2}+E_{3}\right)
$$

Therefore,

$$
\mu H \equiv(1-2 \varepsilon) C+\varepsilon \sum_{i=1}^{5} F_{i}+\left(a_{1}-2 \varepsilon\right) E_{1}+\left(a_{2}-2 \varepsilon\right) E_{2}+\left(a_{3}-2 \varepsilon\right) E_{3} .
$$

For a sufficiently small positive real number ε, this is an H-polar cylinder because

$$
S \backslash\left(C \cup F_{1} \cup F_{2} \cup F_{3} \cup F_{4} \cup F_{5} \cup E_{1} \cup E_{2} \cup E_{3}\right) \cong \mathbb{P}^{2} \backslash(\psi(E) \cup \psi(\tilde{C})) .
$$

Note that the conic $\psi(E)$ and the line $\psi(\tilde{C})$ meet tangentially.
Subcase 2. $r=4$.
In this subcase, the surface S has three 0 -curves F_{1}, F_{2}, F_{3} such that

- they pass through P;
- they do not intersect each other outside P;
- they are disjoint from the curves $E_{1}, E_{2}, E_{3}, E_{4}$.

In addition, it has two 1-curves G_{1}, G_{2} such that

- they intersect C only at P;
- they do not meet each other outside P;
- they are disjoint from the curves $E_{1}, E_{2}, E_{3}, E_{4}$.
(See Example 4.1.11 after contracting the (-1)-curves $E_{1}, E_{2}, E_{3}, E_{4}$ to a smooth del Pezzo surface of degree 6.)

Let $\pi: \tilde{S} \rightarrow S$ be the blow up at the point P and let E be the exceptional curve of π. Then \tilde{S} is a weak del Pezzo surface of degree 1 and it has exactly one (-2)-curve, the proper transform \tilde{C} of C. Denote the proper transforms on \tilde{S} of the curves $E_{1}, \ldots, E_{4}, F_{1}, F_{2}, F_{3}, G_{1}, G_{2}$ by $\tilde{E}_{1}, \ldots, \tilde{E}_{4}, \tilde{F}_{1}, \tilde{F}_{2}, \tilde{F}_{3}, \tilde{G}_{1}, \tilde{G}_{2}$. Contracting the seven (-1)-curves $\tilde{E}_{1}, \ldots, \tilde{E}_{4}, \tilde{F}_{1}, \tilde{F}_{2}, \tilde{F}_{3}$, we obtain a birational morphism $\psi: \tilde{S} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$. Since $\psi(E)$ and $\psi(\tilde{C})$ are curves of bidegree $(1,1)$ on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and $\psi\left(\tilde{G}_{1}\right), \psi\left(\tilde{G}_{2}\right)$ are curves of bidegrees $(1,0)$ and $(0,1)$, respectively, on $\mathbb{P}^{1} \times \mathbb{P}^{1}$,

$$
-K_{\tilde{S}} \equiv(1-2 \varepsilon) \tilde{C}+(1+\varepsilon) E+\varepsilon\left(\tilde{F}_{1}+\tilde{F}_{2}+\tilde{F}_{3}\right)+\varepsilon\left(\tilde{G}_{1}+\tilde{G}_{2}\right)-2 \varepsilon \sum_{i=1}^{4} \tilde{E}_{i}
$$

and hence

$$
-K_{S} \equiv(1-2 \varepsilon) C+\varepsilon\left(F_{1}+F_{2}+F_{3}\right)+\varepsilon\left(G_{1}+G_{2}\right)-2 \varepsilon \sum_{i=1}^{4} E_{i}
$$

Therefore,

$$
\mu H \equiv(1-2 \varepsilon) C+\varepsilon\left(F_{1}+F_{2}+F_{3}\right)+\varepsilon\left(G_{1}+G_{2}\right)+\sum_{i=1}^{4}\left(a_{i}-2 \varepsilon\right) E_{i} .
$$

For a sufficiently small positive real number ε, this defines an H-polar cylinder because $S \backslash\left(C \cup F_{1} \cup F_{2} \cup F_{3} \cup G_{1} \cup G_{2} \cup E_{1} \cup E_{2} \cup E_{3} \cup E_{4}\right) \cong \mathbb{P}^{1} \times \mathbb{P}^{1} \backslash\left(\psi(E) \cup \psi(\tilde{C}) \cup \psi\left(\tilde{G}_{1}\right) \cup \psi\left(\tilde{G}_{2}\right)\right)$. Note that the curves $\psi(E)$ and $\psi(\tilde{C})$ meet tangentially at one point and the curves $\psi\left(\tilde{G}_{1}\right), \psi\left(\tilde{G}_{2}\right)$ pass through this point (see Example 4.1.7).

Subcase 3. $r=5$.
There are two 0-curves L_{1}, L_{2} such that

- they pass through P;
- they do not intersect each other outside P;
- they are disjoint from the curves E_{1}, \ldots, E_{5}.

In addition, there is a unique 1 -curve T that meets C only at the point P and that does not intersect any of E_{i} 's (see Example 4.1.10).

By contracting the (-1)-curves E_{1}, \ldots, E_{5}, we immediately see from Example 4.1.10 that

$$
-K_{S} \equiv(1-\varepsilon) C+\varepsilon L_{1}+\varepsilon L_{2}+\varepsilon T-\varepsilon \sum_{i=1}^{5} E_{i}
$$

and hence

$$
\mu H \equiv(1-\varepsilon) C+\varepsilon L_{1}+\varepsilon L_{2}+\varepsilon T+\sum_{i=1}^{5}\left(a_{i}-\varepsilon\right) E_{i} .
$$

Example 4.1.10shows that for a sufficiently small positive real number ε, this defines an H-polar cylinder.

Subcase 4. $r=6$ and $Z \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$.

There are exactly two 0 -curves F_{1}, F_{2} passing through the point P and not intersecting any of E_{i} 's. (By contracting E_{1}, \ldots, E_{6} into the surface $\mathbb{P}^{1} \times \mathbb{P}^{1}$, we can easily detect such 0 -curves.)

Let $\pi: \tilde{S} \rightarrow S$ be the blow up at the point P and let E be the exceptional curve of π. Then $\tilde{\tilde{S}}$ is a weak del Pezzo surface of degree 1 and it has exactly one (-2)-curve, the proper transform \tilde{C} of C. Denote the proper transforms on \tilde{S} of the curves $E_{1}, \ldots, E_{6}, F_{1}, F_{2}$ by $\tilde{E}_{1}, \ldots, \tilde{E}_{6}, \tilde{F}_{1}, \tilde{F}_{2}$. Contracting the (-1)-curves $\tilde{E}_{1}, \ldots, \tilde{E}_{6}, \tilde{F}_{1}, \tilde{F}_{2}$, we obtain a birational morphism $\psi: \tilde{S} \rightarrow \mathbb{P}^{2}$. Note that $\psi(C)$ and $\psi(E)$ are a conic and a line meeting tangentially on \mathbb{P}^{2}. Therefore,

$$
-K_{S} \equiv(1-\varepsilon) C+2 \varepsilon\left(F_{1}+F_{2}\right)-\varepsilon \sum_{i=1}^{6} E_{i}
$$

and hence

$$
\mu H \equiv(1-\varepsilon) C+2 \varepsilon\left(F_{1}+F_{2}\right)+\sum_{i=1}^{6}\left(a_{i}-\varepsilon\right) E_{i} .
$$

For a sufficiently small positive real number ε, this defines an H-polar cylinder since

$$
S \backslash\left(C \cup F_{1} \cup F_{2} \cup E_{1} \cup \ldots \cup E_{6}\right) \cong \mathbb{P}^{2} \backslash(\psi(\tilde{C}) \cup \psi(E)) .
$$

Subcase 5. $r=6$ and $Z \cong \mathbb{F}_{1}$.
There is a unique 0 -curve L passing through the point P and not meeting any of E_{i} 's. In addition, there is a unique 1-curve T that intersects C only at the point P and that does not intersect any of E_{i} 's. (By contracting E_{1}, \ldots, E_{6} into the Hirzebruch surface \mathbb{F}_{1}, we can easily detect such curves.)

Example 4.1.8 shows that

$$
-K_{S} \equiv(1-\varepsilon) C+\varepsilon L+2 \varepsilon T-\varepsilon \sum_{i=1}^{6} E_{i}
$$

and hence

$$
\mu H \equiv(1-\varepsilon) C+\varepsilon L+2 \varepsilon T+\sum_{i=1}^{6}\left(a_{i}-\varepsilon\right) E_{i} .
$$

It also shows that for a sufficiently small positive real number ε, this defines an H-polar cylinder since

$$
S \backslash\left(C \cup L \cup T \cup E_{1} \cup \ldots \cup E_{6}\right) \cong \mathbb{F}_{1} \backslash(\phi(C) \cup \phi(L) \cup \phi(T)) .
$$

Subcase 6. $r=7$.
By contracting E_{1}, \ldots, E_{7} we obtain a birational morphism π of S onto the projective plane \mathbb{P}^{2}. The curve $\pi(C)$ is a cuspidal cubic curve passing through all the points $\pi\left(E_{i}\right)$'s. Let T be the Zariski tangent line to the curve $\pi(C)$ at its cuspidal point. We immediately see that

$$
-K_{S} \equiv(1-\varepsilon) \pi^{*}(\pi(C))+3 \varepsilon \pi^{*}(T)-\sum_{i=1}^{7} E_{i} \equiv(1-\varepsilon) C+3 \varepsilon \tilde{T}-\varepsilon \sum_{i=1}^{7} E_{i},
$$

where \tilde{T} is the proper transform of T by π, and hence

$$
\mu H \equiv(1-\varepsilon) C+3 \varepsilon \tilde{T}+\sum_{i=1}^{7}\left(a_{i}-\varepsilon\right) E_{i}
$$

For a sufficiently small positive real number ε, this defines an H-polar cylinder since

$$
S \backslash\left(C \cup \tilde{T} \cup E_{1} \cup \ldots \cup E_{7}\right) \cong \mathbb{P}^{2} \backslash(\pi(C) \cup T)
$$

(see Example 4.1.3).

For the following theorem we assume that $a_{1} \geqslant \ldots \geqslant a_{r}$ in (6.2.1).
Theorem 6.2.3. Suppose that H is of type $B(2)$. If one of the following conditions holds

- $2 a_{2}>1$;
- $2 a_{1}+a_{2}>2$,
then S contains an H-polar cylinder.
Proof. There are five (-1)-curves E_{3}, \ldots, E_{7} on S such that they, together with E_{1} and E_{2}, define a birational morphism $\sigma: S \rightarrow \mathbb{P}^{2}$. Denote the point $\sigma\left(E_{i}\right)$ by P_{i} for $i=1, \ldots, 7$. Let C_{1} be the conic that passes through the points P_{3}, \ldots, P_{7}.

Suppose that the inequality $2 a_{2}>1$ is satisfied.
There is a conic C_{2} passing through the points P_{1}, P_{2} and meeting the conic C_{1} only at a single point. Let T be the tangent line to both the conics C_{1} and C_{2} at the intersection point of C_{1} and C_{2}. For any real number ε we have $-K_{\mathbb{P}^{2}} \equiv(1+\varepsilon) C_{1}+\left(\frac{1}{2}-2 \varepsilon\right) C_{2}+2 \varepsilon T$. Hence,

$$
\begin{aligned}
-K_{S} & \sim_{\mathbb{Q}} \sigma^{*}\left(-K_{\mathbb{P}^{2}}\right)-\sum_{i=1}^{7} E_{i} \\
& \equiv(1+\varepsilon) \tilde{C}_{1}+\left(\frac{1}{2}-2 \varepsilon\right) \tilde{C}_{2}+2 \varepsilon \tilde{T}-\left(\frac{1}{2}+2 \varepsilon\right)\left(E_{1}+E_{2}\right)+\varepsilon \sum_{i=3}^{7} E_{i}
\end{aligned}
$$

where $\tilde{C}_{1}, \tilde{C}_{2}, \tilde{T}$ are the proper transforms of C_{1}, C_{2}, and T, respectively. Thus, we have

$$
\begin{aligned}
H \equiv & \frac{1}{\mu}\left\{(1+\varepsilon) \tilde{C}_{1}+\left(\frac{1}{2}-2 \varepsilon\right) \tilde{C}_{2}+2 \varepsilon \tilde{T}+\right. \\
& \left.+\left(a_{1}-\frac{1}{2}-2 \varepsilon\right) E_{1}+\left(a_{2}-\frac{1}{2}-2 \varepsilon\right) E_{2}+\varepsilon \sum_{i=3}^{7} E_{i} \cdot\right\}
\end{aligned}
$$

Since $a_{1}-\frac{1}{2} \geqslant a_{2}-\frac{1}{2}>0$, for a sufficiently small positive real number ε this defines an H-polar cylinder on S.

Suppose that the inequality $2 a_{1}+a_{2}>2$ is satisfied.
Let L be a line passing through the point P_{2} and tangent to the conic C_{1}. Let C_{3} be the conic that intersects C_{1} only at the point where C_{1} and L meet and that passes through P_{1}. For any real numbers β and ε we have

$$
-K_{\mathbb{P}^{2}} \equiv(1+2 \varepsilon) C_{1}+(\beta-\varepsilon) C_{3}+(1-2 \beta-2 \varepsilon) L
$$

Hence,

$$
\begin{aligned}
-K_{S} & \sim_{\mathbb{Q}} \sigma^{*}\left(-K_{\mathbb{P}^{2}}\right)-\sum_{i=1}^{7} E_{i} \\
& \equiv(1+2 \varepsilon) \tilde{C}_{1}+(\beta-\varepsilon) \tilde{C}_{3}+(1-2 \beta-2 \varepsilon) \tilde{L}+(\beta-\varepsilon-1) E_{1}-2(\beta+\varepsilon) E_{2}+2 \varepsilon \sum_{i=3}^{7} E_{i},
\end{aligned}
$$

where \tilde{C}_{3}, \tilde{L} are the proper transforms of C_{3}, L, respectively. Thus, we have

$$
\begin{aligned}
H \equiv & \frac{1}{\mu}\left\{(1+2 \varepsilon) \tilde{C}_{1}+(\beta-\varepsilon) \tilde{C}_{3}+(1-2 \beta-2 \varepsilon) \tilde{L}+\right. \\
& \left.+\left(a_{1}+\beta-\varepsilon-1\right) E_{1}+\left(a_{2}-2 \beta-2 \varepsilon\right) E_{2}+2 \varepsilon \sum_{i=3}^{7} E_{i}\right\}
\end{aligned}
$$

By putting $\beta=\frac{3}{2} \varepsilon+1-a_{1}$ with a sufficiently small positive real number ε, we are able to obtain an H-polar cylinder on S.

From now on, we suppose that the ample \mathbb{R}-divisor H is of type $C(7)$ with length ℓ. Then the morphism $\phi: S \rightarrow Z$ is a conic bundle, i.e., $Z=\mathbb{P}^{1}$. We may write

$$
K_{S}+\mu H \equiv a B+\sum_{i=1}^{\ell} a_{i} E_{i}
$$

where a and a_{i} are positive real numbers, B is an irreducible fiber of ϕ, and E_{i} 's are disjoint (-1)-curves in fibers of ϕ. There exist $(6-\ell)$ disjoint (-1)-curves $\hat{E}_{1}, \ldots, \hat{E}_{6-\ell}$ such that they are in fibers of ϕ and they generate the face Δ together with B and E_{i} 's. Let $\phi_{1}: S \rightarrow W$ be the birational morphism obtained by contracting the disjoint (-1)-curves $E_{1}, \ldots, E_{\ell}, \hat{E}_{1}, \ldots, \hat{E}_{6-\ell}$. Let \hat{E}_{j}^{\prime} be the (-1)-curve such that $\hat{E}_{j}+\hat{E}_{j}^{\prime}$ is a fiber of ϕ.

Lemma 6.2.4. Suppose that the surface S has no cuspidal rational curve in $\left|-K_{S}\right|$. If the ample \mathbb{R}-divisor H is of type $C(7)$ with length $3 \leqslant \ell \leqslant 6$, then S contains an H-polar cylinder.

Proof. The surface S has exactly twelve pairs of (-1)-curves $\left\{C_{i}, C_{i}^{\prime}\right\}, i=1, \ldots, 12$ such that each $C_{i}+C_{i}^{\prime}$ is a tacnodal anticanonical divisor. Choose one tacnodal anticanonical divisor, say $C_{1}+C_{1}^{\prime}$. Since we have more than ten tacnodal anticanonical divisors, we may assume that

- none of E_{1}, \ldots, E_{ℓ} are C_{1} or C_{1}^{\prime};
- none of $\hat{E}_{1}, \hat{E}_{1}^{\prime} \ldots, \hat{E}_{6-\ell}, \hat{E}_{6-\ell}^{\prime}$ are C_{1} or C_{1}^{\prime};
- neither $\phi_{1}\left(C_{1}\right)$ nor $\phi_{1}\left(C_{1}^{\prime}\right)$ is a (-1)-curve on W.

Each of E_{i} and \hat{E}_{j} intersects exclusively either C_{1} or C_{1}^{\prime} once. Note that if \hat{E}_{i} intersects C_{1}, then \hat{E}_{i}^{\prime} meets C_{1}^{\prime} and if \hat{E}_{i} intersects C_{1}^{\prime}, then \hat{E}_{i}^{\prime} meets C_{1}. Let m_{1} (resp. m_{1}^{\prime}) be the number of E_{i} with $E_{i} \cdot C_{1}=1$ (resp. $E_{i} \cdot C_{1}^{\prime}=1$) and let m_{0} (resp. m_{0}^{\prime}) be the number of \hat{E}_{j} with $\hat{E}_{j} \cdot C_{1}=1$ (resp. $\hat{E}_{j} \cdot C_{1}^{\prime}=1$). Put $m=m_{0}+m_{1}$ and $m^{\prime}=m_{0}^{\prime}+m_{1}^{\prime}$. We may assume that

- $m \geqslant m^{\prime}$;
- if $m=m^{\prime}$, then $m_{1} \geqslant m_{1}^{\prime}$;
- $E_{1}, \ldots, E_{m_{1}}$ intersect C_{1} and $E_{m_{1}+1}, \ldots, E_{\ell}$ intersect C_{1}^{\prime};
- $\hat{E}_{1}, \ldots, \hat{E}_{m_{0}}$ intersect C_{1} and $\hat{E}_{m_{0}+1}, \ldots, \hat{E}_{6-\ell}$ intersect C_{1}^{\prime}.

Since $m+m^{\prime}=6$ and neither $\phi_{1}\left(C_{1}\right)$ nor $\phi_{1}\left(C_{1}^{\prime}\right)$ is a (-1)-curve on W, we have three possibilities, $(5,1),(4,2),(3,3)$ for $\left(m, m^{\prime}\right)$.

Suppose that $\left(m, m^{\prime}\right)=(5,1)$ and $W \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$. Then $\phi_{1}\left(C_{1}\right)$ is a 4 -curve. We may assume that this is an irreducible curve of bidegree (1,2). Then $\phi_{1}\left(C_{1}^{\prime}\right)$ is a curve of bidegree $(1,0)$. The curves $\phi_{1}\left(C_{1}\right)$ and $\phi_{1}\left(C_{1}^{\prime}\right)$ meets tangentially at a single point Q. Let L be the curve of bidegree $(0,1)$ passing through Q. Note that $\phi_{1}(B)$ is a curve of bidegree $(0,1)$ since $B \cdot C_{1}=B \cdot C_{1}^{\prime}=1$. We immediately see from Example 4.1.6 that for an arbitrary real number ε

$$
\begin{equation*}
-K_{S}+a B \equiv(1-\varepsilon) C_{1}+(1+\varepsilon) C_{1}^{\prime}+(a+2 \varepsilon) \tilde{L}-\sum_{i=1}^{m_{1}} \varepsilon E_{i}-\sum_{i=1}^{m_{0}} \varepsilon \hat{E}_{i}+\sum_{i=m_{1}+1}^{\ell} \varepsilon E_{i}+\sum_{i=m_{0}+1}^{6-\ell} \varepsilon \hat{E}_{i}, \tag{6.2.5}
\end{equation*}
$$

where \tilde{L} is the proper transform of L by ϕ_{1}. In a similar way, we obtain

$$
\begin{equation*}
-K_{S}+a B \equiv(1+\varepsilon) C_{1}+(1-\varepsilon) C_{1}^{\prime}+(a-2 \varepsilon) \tilde{L}+\sum_{i=1}^{m_{1}} \varepsilon E_{i}+\sum_{i=1}^{m_{0}} \varepsilon \hat{E}_{i}-\sum_{i=m_{1}+1}^{\ell} \varepsilon E_{i}-\sum_{i=m_{0}+1}^{6-\ell} \varepsilon \hat{E}_{i} . \tag{6.2.6}
\end{equation*}
$$

Example 4.1.6 also shows that the complements of the supports of the right hand sides of (6.2.5) and (6.2.6) are cylinders for a sufficiently small positive real number ε.

Suppose that $\left(m, m^{\prime}\right)=(4,2)$. Then $\phi_{1}\left(C_{1}\right)$ is a 3 -curve, and hence $W \cong \mathbb{F}_{1}$. There is a unique 0 -curve M on S such that $\phi_{1}(M)$ is the 0 -curve passing through the intersection point
of $\phi_{1}\left(C_{1}\right)$ and $\phi_{1}\left(C_{1}^{\prime}\right)$. From Example 4.1.9 we obtain

$$
\begin{equation*}
-K_{S}+a B \equiv(1-\varepsilon) C_{1}+(1+\varepsilon) C_{1}^{\prime}+(a+\varepsilon) M-\sum_{i=1}^{m_{1}} \varepsilon E_{i}-\sum_{i=1}^{m_{0}} \varepsilon \hat{E}_{i}+\sum_{i=m_{1}+1}^{\ell} \varepsilon E_{i}+\sum_{i=m_{0}+1}^{6-\ell} \varepsilon \hat{E}_{i} \tag{6.2.7}
\end{equation*}
$$

for an arbitrary real number ε. We can also obtain

$$
\begin{equation*}
-K_{S}+a B \equiv(1+\varepsilon) C_{1}+(1-\varepsilon) C_{1}^{\prime}+(a-\varepsilon) M+\sum_{i=1}^{m_{1}} \varepsilon E_{i}+\sum_{i=1}^{m_{0}} \varepsilon \hat{E}_{i}-\sum_{i=m_{1}+1}^{\ell} \varepsilon E_{i}-\sum_{i=m_{0}+1}^{6-\ell} \varepsilon \hat{E}_{i} . \tag{6.2.8}
\end{equation*}
$$

With a sufficiently small positive real number ε, these two divisors on the right hand sides define cylinders (see Example 4.1.9).

Suppose that $\left(m, m^{\prime}\right)=(3,3)$. Then $\phi_{1}\left(C_{1}\right)$ and $\phi_{1}\left(C_{1}^{\prime}\right)$ are 2-curves, and hence $W \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$. Moreover, $\phi_{1}\left(C_{1}\right)$ and $\phi_{1}\left(C_{1}^{\prime}\right)$ are irreducible curves of bidegree (1,1) intersecting tangentially at a single point Q. Let L_{1} and L_{2} be the curves of bidegrees $(1,0)$ and $(0,1)$, respectively, passing through Q. The curve $\phi_{1}(B)$ is a curve of bidegree $(1,0)$ or $(0,1)$. Without loss of generality, we may assume that $\phi_{1}(B)$ is a curve of bidegree $(1,0)$. Then for an arbitrary real number ε (6.2.9)

$$
-K_{S}+a B \equiv(1-2 \varepsilon) C_{1}+(1+\varepsilon) C_{1}^{\prime}+(a+\varepsilon) \tilde{L}_{1}+\varepsilon \tilde{L}_{2}-\sum_{i=1}^{m_{1}} 2 \varepsilon E_{i}-\sum_{i=1}^{m_{0}} 2 \varepsilon \hat{E}_{i}+\sum_{i=m_{1}+1}^{\ell} \varepsilon E_{i}+\sum_{i=m_{0}+1}^{6-\ell} \varepsilon \hat{E}_{i},
$$

where \tilde{L}_{1} and \tilde{L}_{2} are the proper transforms of L_{1} and L_{2} by ϕ_{1}. In particular, the complement of the support of the divisor on the right hand side is a cylinder for a sufficiently small positive real number ε (see Example 4.1.7).

Now we construct H-polar cylinders case by case, according to the length ℓ.
Case 1. $\ell=6$ and $W \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$.
If $m=5$, then we use (6.2.5) to obtain

$$
\mu H \equiv(1-\varepsilon) C_{1}+(1+\varepsilon) C_{1}^{\prime}+(a+2 \varepsilon) \tilde{L}+\left(a_{6}+\varepsilon\right) E_{6}+\sum_{i=1}^{5}\left(a_{i}-\varepsilon\right) E_{i}
$$

If $m=3$, then we apply (6.2.9) to yield

$$
\mu H \equiv(1-2 \varepsilon) C_{1}+(1+\varepsilon) C_{1}^{\prime}+(a+\varepsilon) \tilde{L}_{1}+\varepsilon \tilde{L}_{2}+\sum_{i=1}^{3}\left(a_{i}-2 \varepsilon\right) E_{i}+\sum_{i=4}^{6}\left(a_{i}+\varepsilon\right) E_{i} .
$$

These show that S has an H-polar cylinder.
Case 2. $\ell=6$ and $W \cong \mathbb{F}^{1}$.
Suppose that $m=5$. Then $\phi_{1}\left(C_{1}\right)$ is a 4 -curve and $\phi_{1}\left(C_{1}^{\prime}\right)$ is a 0 -curve. They meet tangentially at a single point. There is a (-1)-curve E on S such that $\phi_{1}(E)$ is the negative section of $W \cong \mathbb{F}^{1}$. The curve $\phi_{1}(B)$ is equivalent to $\phi_{1}\left(C_{1}^{\prime}\right)$. Therefore,

$$
-K_{S}+a B \equiv(1-\varepsilon) C_{1}+(1+a+2 \varepsilon) C_{1}^{\prime}+2 \varepsilon E+(a+2 \varepsilon) E_{6}-\varepsilon \sum_{i=1}^{5} E_{i}
$$

and

$$
\mu H \equiv(1-\varepsilon) C_{1}+(1+a+2 \varepsilon) C_{1}^{\prime}+2 \varepsilon E+\left(a_{6}+a+2 \varepsilon\right) E_{6}+\sum_{i=1}^{5}\left(a_{i}-\varepsilon\right) E_{i}
$$

Suppose that $m=4$. Then we apply (6.2.7) to obtain

$$
\mu H \equiv(1-\varepsilon) C_{1}+(1+\varepsilon) C_{1}^{\prime}+(a+\varepsilon) M+\sum_{i=1}^{4}\left(a_{i}-\varepsilon\right) E_{i}+\sum_{i=4}^{6}\left(a_{i}+\varepsilon\right) E_{i} .
$$

The divisors on the right hand sides produce H-polar cylinders on S.
From now, we consider the cases where $\ell<6$. By contracting \hat{E}_{1}^{\prime} instead of \hat{E}_{1}, if necessary, we may always assume that $W \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$.

Case 3. $\ell=5$.
If $\left(m_{1}, m_{0}\right)=(5,0)$, we apply (6.2.5) to yield

$$
\mu H \equiv(1-\varepsilon) C_{1}+(1+\varepsilon) C_{1}^{\prime}+(a+2 \varepsilon) \tilde{L}+\varepsilon \hat{E}_{1}+\sum_{i=1}^{5}\left(a_{i}-\varepsilon\right) E_{i} .
$$

If $\left(m_{1}, m_{0}\right)=(4,1)$, then we use (6.2.6) to obtain

$$
\mu H \equiv(1+\varepsilon) C_{1}+(1-\varepsilon) C_{1}^{\prime}+(a-2 \varepsilon) \tilde{L}+\varepsilon \hat{E}_{1}+\left(a_{5}-\varepsilon\right) E_{5}+\sum_{i=1}^{4}\left(a_{i}+\varepsilon\right) E_{i} .
$$

If $\left(m_{1}, m_{0}\right)=(3,0)$, then (6.2.9) shows

$$
\mu H \equiv(1-2 \varepsilon) C_{1}+(1+\varepsilon) C_{1}^{\prime}+(a+\varepsilon) \tilde{L}_{1}+\varepsilon \tilde{L}_{2}+\varepsilon \hat{E}_{1}+\sum_{i=1}^{3}\left(a_{i}-2 \varepsilon\right) E_{i}+\sum_{i=4}^{5}\left(a_{i}+\varepsilon\right) E_{i} .
$$

In each case, the divisor on the right hand side produces an H-polar cylinder on S with a sufficiently small positive real number ε.

Case 4. $\ell=4$.
Suppose that $\left(m_{1}, m_{0}\right)=(4,1)$. When we obtain the birational morphism ϕ_{1}, we contract \hat{E}_{1}^{\prime} instead of \hat{E}_{1}. Then this new contraction maps S onto \mathbb{F}_{1}. The curve C_{1} meets E_{1}, \ldots, E_{4} and the curve C_{1}^{\prime} intersects \hat{E}_{1}^{\prime} and \hat{E}_{2}. We apply (6.2.7) to this new set-up. Then we obtain

$$
\mu H \equiv(1-\varepsilon) C_{1}+(1+\varepsilon) C_{1}^{\prime}+(a+\varepsilon) M+\varepsilon \hat{E}_{1}^{\prime}+\varepsilon \hat{E}_{2}+\sum_{i=1}^{4}\left(a_{i}-\varepsilon\right) E_{i} .
$$

If $\left(m_{1}, m_{0}\right)=(3,2)$, then we apply (6.2.6) to yield

$$
\mu H \equiv(1+\varepsilon) C_{1}+(1-\varepsilon) C_{1}^{\prime}+(a-2 \varepsilon) \tilde{L}+\left(a_{4}-\varepsilon\right) E_{4}+\sum_{i=1}^{2} \varepsilon \hat{E}_{i}+\sum_{i=1}^{3}\left(a_{i}+\varepsilon\right) E_{i} .
$$

If $\left(m_{1}, m_{0}\right)=(3,0)$, then use (6.2.9), and obtain

$$
\mu H \equiv(1-2 \varepsilon) C_{1}+(1+\varepsilon) C_{1}^{\prime}+(a+\varepsilon) \tilde{L}_{1}+\varepsilon \tilde{L}_{2}+\left(a_{4}+\varepsilon\right) E_{4}+\sum_{i=1}^{3}\left(a_{i}-2 \varepsilon\right) E_{i}+\sum_{i=1}^{2} \varepsilon \hat{E}_{i} .
$$

If $\left(m_{1}, m_{0}\right)=(2,1)$, then we contract \hat{E}_{2}^{\prime} instead of \hat{E}_{2} when we obtain the birational morphism ϕ_{1}. This new contraction sends S to \mathbb{F}_{1}. The curve C_{1} meets $E_{1}, E_{2}, \hat{E}_{1}, \hat{E}_{2}^{\prime}$ and the curve C_{1}^{\prime} intersects E_{2} and E_{4}. Apply (6.2.8) to the new contraction, and we obtain

$$
\mu H \equiv(1+\varepsilon) C_{1}+(1-\varepsilon) C_{1}^{\prime}+(a-\varepsilon) M+\varepsilon \hat{E}_{1}+\varepsilon \hat{E}_{2}^{\prime}+\sum_{i=1}^{2}\left(a_{i}+\varepsilon\right) E_{i}+\sum_{i=3}^{4}\left(a_{i}-\varepsilon\right) E_{i} .
$$

These four equivalences show that S has an H-polar cylinder if $\ell=4$.

Case 5. $\ell=3$.
If $\left(m_{1}, m_{0}\right)=(3,2)$, then we contract \hat{E}_{1}^{\prime} and \hat{E}_{2}^{\prime} instead of \hat{E}_{1} and \hat{E}_{2} when we obtain the birational morphism ϕ_{1}. Then new contraction maps S to $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Therefore, it is enough to consider the case $\left(m_{1}, m_{0}\right)=(3,0)$ below.

If $\left(m_{1}, m_{0}\right)=(2,3)$, then apply (6.2.6) and we obtain

$$
\mu H \equiv(1+\varepsilon) C_{1}+(1-\varepsilon) C_{1}^{\prime}+(a-2 \varepsilon) \tilde{L}+\left(a_{3}-\varepsilon\right) E_{3}+\sum_{i=1}^{2}\left(a_{i}+\varepsilon\right) E_{i}+\sum_{i=1}^{3} \varepsilon \hat{E}_{i} .
$$

If $\left(m_{1}, m_{0}\right)=(3,0)$, then we use (6.2.9) to get

$$
\mu H \equiv(1-2 \varepsilon) C_{1}+(1+\varepsilon) C_{1}^{\prime}+(a+\varepsilon) \tilde{L}_{1}+\varepsilon \tilde{L}_{2}+\sum_{i=1}^{3}\left(a_{i}-2 \varepsilon\right) E_{i}+\sum_{i=1}^{3} \varepsilon \hat{E}_{i} .
$$

Suppose that $\left(m_{1}, m_{0}\right)=(2,1)$. Then we contract \hat{E}_{2}^{\prime} and \hat{E}_{3}^{\prime} instead of \hat{E}_{2} and \hat{E}_{3}. This new contraction reduces this case to the case where $\left(m_{1}, m_{0}\right)=(2,3)$ above.

Consequently, these two equivalences verify that S has an H-polar cylinder.
Theorem 6.2.10. If the ample \mathbb{R}-divisor H is of type $C(7)$ with length $3 \leqslant \ell \leqslant 6$, then S contains an H-polar cylinder.

Proof. Due to Lemma 6.2.4, we may assume that there exists a cuspidal rational curve C in $\left|-K_{S}\right|$. Let P be the point at which the curve C has the cusp. Each E_{i} intersects the curve C at a single smooth point.

We construct H-polar cylinders case by case, according to the length ℓ.
Case 1. $\ell=6$ and $W \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$.
There are two 0 -curves F_{1}, F_{2} passing through the point P and not meeting any of E_{i} 's. Note that the curve B must intersect one of the 0 -curves F_{1}, F_{2}. We may assume that it intersects F_{1}. Then $B \equiv F_{2}$. We see that

$$
-K_{S} \equiv(1-\varepsilon) C+2 \varepsilon F_{1}+(a+2 \varepsilon) F_{2}-a B-\varepsilon \sum_{i=1}^{6} E_{i},
$$

and hence

$$
\mu H \equiv(1-\varepsilon) C+2 \varepsilon F_{1}+(a+2 \varepsilon) F_{2}+\sum_{i=1}^{6}\left(a_{i}-\varepsilon\right) E_{i} .
$$

Let $\pi: \tilde{S} \rightarrow S$ be the blow up at the point P and let E be the exceptional curve of π. Then \tilde{S} is a weak del Pezzo surface of degree 1 and it has exactly one (-2)-curve, the proper transform \tilde{C} of C. Denote the proper transforms on \tilde{S} of the curves $E_{1}, \ldots, E_{6}, F_{1}, F_{2}$ by $\tilde{E}_{1}, \ldots, \tilde{E}_{6}, \tilde{F}_{1}, \tilde{F}_{2}$. Contracting the (-1)-curves $\tilde{E}_{1}, \ldots, \tilde{E}_{6}, \tilde{F}_{1}, \tilde{F}_{2}$, we obtain a birational morphism $\psi: \tilde{S} \rightarrow \mathbb{P}^{2}$.

For a sufficiently small positive real number ε, the divisor above defines an H-polar cylinder since

$$
S \backslash\left(C \cup F_{1} \cup F_{2} \cup E_{1} \cup \ldots \cup E_{6}\right) \cong \mathbb{P}^{2} \backslash(\psi(\tilde{C}) \cup \psi(E)),
$$

where $\psi(\tilde{C})$ and $\psi(E)$ are a conic and a line meeting tangentially at a single point on \mathbb{P}^{2}.
Case 2. $\ell=6$ and $W \cong \mathbb{F}_{1}$.
In this case, we have only one 0 -curve F passing through the point P and not intersecting any of E_{i} 's. Instead, we consider the Zariski tangent line M to C at the point P. This is a 1-curve.

Note that the curve $\phi_{1}(B)$ is a 0 -curve and it intersects the unique (-1)-curve on \mathbb{F}_{1}. We have

$$
-K_{S} \equiv(1-\varepsilon) C+2 \varepsilon M+(a+\varepsilon) F-a B-\varepsilon \sum_{i=1}^{6} E_{i}
$$

and hence

$$
\mu H \equiv(1-\varepsilon) C+2 \varepsilon M+(a+\varepsilon) F+\sum_{i=1}^{6}\left(a_{i}-\varepsilon\right) E_{i} .
$$

For a sufficiently small positive real number ε, this defines an H-polar cylinder (see Example 4.1.8).

Case 3. $\ell=5$.
There are two 0-curves L_{1}, L_{2} such that

- they pass through P;
- they do not meet each other outside P;
- they are disjoint from the curves E_{1}, \ldots, E_{5}.

In addition, there is a unique 1-curve T that intersects C only at P and that does not meet any of E_{i} 's (see Example 4.1.10). Note that the curve B is a 0 -curve. It may be assumed to intersect L_{1} but not L_{2}. Then

$$
-K_{S} \equiv(1-\varepsilon) C+\varepsilon L_{1}+(a+\varepsilon) L_{2}+\varepsilon T-a B-\varepsilon \sum_{i=1}^{5} E_{i},
$$

and hence

$$
\mu H \equiv(1-\varepsilon) C+\varepsilon L_{1}+(a+\varepsilon) L_{2}+\varepsilon T+\sum_{i=1}^{5}\left(a_{i}-\varepsilon\right) E_{i} .
$$

For a sufficiently small positive real number ε, this defines an H-polar cylinder (see Example 4.1.10).

Case 4. $\ell=4$.
The surface S has three 0 -curves F_{1}, F_{2}, F_{3} such that

- they pass through P;
- they do not intersect each other outside P;
- they are disjoint from the curves $E_{1}, E_{2}, E_{3}, E_{4}$.

In addition, it has two 1-curves G_{1}, G_{2} such that

- they meet C only at P;
- they do not intersect each other outside P;
- they are disjoint from the curves $E_{1}, E_{2}, E_{3}, E_{4}$
(see Example 4.1.11). The curve B is a 0 -curve. We may assume that it intersects F_{1}, F_{2} but not F_{3}. Then

$$
-K_{S} \equiv(1-2 \varepsilon) C+\varepsilon\left(F_{1}+F_{2}\right)+(a+\varepsilon) F_{3}+\varepsilon\left(G_{1}+G_{2}\right)-a B-2 \varepsilon \sum_{i=1}^{4} E_{i} .
$$

Therefore,

$$
\mu H \equiv(1-2 \varepsilon) C+\varepsilon\left(F_{1}+F_{2}\right)+(a+\varepsilon) F_{3}+\varepsilon\left(G_{1}+G_{2}\right)+\sum_{i=1}^{4}\left(a_{i}-2 \varepsilon\right) E_{i} .
$$

For a sufficiently small positive real number ε, this defines an H-polar cylinder as shown in Example 4.1.11.

Case 5. $\ell=3$.
In this case, the surface S has five 0 -curves F_{1}, \ldots, F_{5} such that

- they pass through P;
- they do not intersect each other outside P;
- they are disjoint from the curves E_{1}, E_{2}, E_{3}
(see Example 4.1.13). The curve B is a 0 -curve. We may assume that it meets $F_{1}, F_{2}, F_{3}, F_{4}$ but not F_{5}. Then

$$
-K_{S} \equiv(1-2 \varepsilon) C+\varepsilon \sum_{i=1}^{4} F_{i}+(a+\varepsilon) F_{5}-a B-2 \varepsilon\left(E_{1}+E_{2}+E_{3}\right) .
$$

Therefore,

$$
\mu H \equiv(1-2 \varepsilon) C+\varepsilon \sum_{i=1}^{4} F_{i}+(a+\varepsilon) F_{5}+\left(a_{1}-2 \varepsilon\right) E_{1}+\left(a_{2}-2 \varepsilon\right) E_{2}+\left(a_{3}-2 \varepsilon\right) E_{3} .
$$

For a sufficiently small positive real number ε, this defines an H-polar cylinder.
Theorem 6.2.11. If H is of type $C(7)$ with $a>\frac{10}{3}$, then S contains an H-polar cylinder.
Proof. Put $\phi_{1}\left(E_{i}\right)=P_{i}$ for $i=1, \ldots, 6$.
Suppose that $W \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$. We may assume that $\phi_{1}(B)$ is a curve of bidegree $(0,1)$. Let C be the curve of bidegree $(1,0)$ passing through the point P_{1}. Let F_{i} be the curve of bidegree $(0,1)$ passing through the point P_{i} for $i=1, \ldots, 6$. We have

$$
-K_{\mathbb{P}^{1} \times \mathbb{P}^{1}} \equiv 2 C+\frac{1}{3} \sum_{i=1}^{6} F_{i} .
$$

We then obtain

$$
-K_{S} \equiv 2 \tilde{C}+\frac{1}{3} \tilde{F}_{1}+\frac{4}{3} E_{1}+\frac{1}{3} \sum_{i=2}^{6} \tilde{F}_{i}-\frac{2}{3} \sum_{i=2}^{6} E_{i},
$$

where \tilde{C} and \tilde{F}_{i} 's are the proper transforms of C and F_{i} 's by ϕ_{1}, respectively. Since $B \equiv \tilde{F}_{i}+E_{i}$ for each i, we have

$$
-K_{S}+a B \equiv 2 \tilde{C}+\frac{1}{3} \tilde{F}_{1}+\frac{4}{3} E_{1}+\left(\frac{a}{5}+\frac{1}{3}\right) \sum_{i=2}^{6} \tilde{F}_{i}+\left(\frac{a}{5}-\frac{2}{3}\right) \sum_{i=2}^{6} E_{i}
$$

Since $\frac{a}{5}-\frac{2}{3}>0$, Example 4.1.4 shows that S has an H-polar cylinder.
We now suppose that $W \cong \mathbb{F}_{1}$. Let C be the negative section of \mathbb{F}_{1}. Note that C cannot pass through any of the points P_{i}. Take the fiber F_{i} of the \mathbb{P}^{1}-bundle morphism of \mathbb{F}_{1} to \mathbb{P}^{1} that passes through the point P_{i} for each i. We have

$$
-K_{\mathbb{F}_{1}} \equiv 2 C+\frac{1}{2} \sum_{i=1}^{6} F_{i} .
$$

We then obtain

$$
-K_{S} \equiv 2 \tilde{C}+\frac{1}{2} \sum_{i=1}^{6}\left(\tilde{F}_{i}-E_{i}\right)
$$

where \tilde{C} and \tilde{F}_{i} 's are the proper transforms of C and F_{i} by ϕ_{1}, respectively. Since $B \equiv \tilde{F}_{i}+E_{i}$ for each i, we have

$$
-K_{S}+a B \equiv 2 \tilde{C}+\left(\frac{a}{6}+\frac{1}{2}\right) \sum_{i=1}^{6} \tilde{F}_{i}+\left(\frac{a}{6}-\frac{1}{2}\right) \sum_{i=1}^{6} E_{i} .
$$

Since $a>3$, Example 4.1.1 verifies that S has an H-polar cylinder.
Theorems 6.2.2, 6.2.3, 6.2.10 and 6.2.11 imply (1), (2), (3), and (4) in Theorem 2.2.4 respectively.
6.3. Cylinders in del Pezzo surfaces of degree 1. In order to prove Theorem 2.2.5, let S be a smooth del Pezzo surface of degree 1 and let H be an ample \mathbb{R}-divisor on S. We use the same notations as those at the beginning of Subsection 6.2,

Again we first consider ample \mathbb{R}-divisors of type $B(r)$. Let E_{1}, \ldots, E_{r} be the r disjoint (-1)curves that generate the face Δ. We may then write

$$
K_{S}+\mu H \equiv \sum_{i=1}^{r} a_{i} E_{i},
$$

for some positive real numbers a_{1}, \ldots, a_{r}. We may assume that $a_{1} \geqslant \ldots \geqslant a_{r}$.
Proposition 6.3.1. Suppose that $r \geqslant 3,2 a_{1}+2 a_{2}+a_{3}>4$, the contraction ϕ is a birational, and $Z \neq \mathbb{P}^{1} \times \mathbb{P}^{1}$. Then S contains an H-polar cylinder.

Proof. Note that Z is a smooth del Pezzo surface of degree $r+1$. Moreover, by our assumption $Z \not \approx \mathbb{P}^{1} \times \mathbb{P}^{1}$. Thus, either $Z=\mathbb{P}^{2}$ or Z is a blow up of \mathbb{P}^{2} at $(8-r)$ points in general position. For both the cases, let $\psi: Z \rightarrow \mathbb{P}^{2}$ be the blow up. If $8-r>0$, denote the proper transforms of these ψ-exceptional curves on S by E_{r+1}, \ldots, E_{8}. Put $P_{i}=\sigma\left(E_{i}\right)$ and $\sigma=\psi \circ \phi$.

Let C be the conic in \mathbb{P}^{2} passing through the points P_{4}, \ldots, P_{8}. Let L be a line passing through the point P_{3} and tangent to the conic C and let Q be the intersection point of the line L and the conic C. For $i=1,2$ let C_{i} be the conic passing through the point P_{i} and intersecting C only at the point Q.

The open subset $U=\mathbb{P}^{2} \backslash\left(L \cup C \cup C_{1} \cup C_{2}\right)$ is a cylinder.
We claim that the cylinder $U^{\prime}:=\sigma^{-1}(U) \simeq U$ is H-polar. Indeed, for a real number ε we have

$$
-K_{\mathbb{P}^{2}} \equiv(1+3 \varepsilon) C+\left(\alpha_{1}-\varepsilon\right) C_{1}+\left(\alpha_{2}-\varepsilon\right) C_{2}+\left(\alpha_{3}-2 \varepsilon\right) L,
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3}>0$ and $2 \alpha_{1}+2 \alpha_{2}+\alpha_{3}=1$. Hence,

$$
\begin{aligned}
-K_{S} & \sim \sigma^{*}\left(-K_{\mathbb{P}^{2}}\right)-\sum_{i=1}^{8} E_{i} \\
& \equiv(1+3 \varepsilon) \tilde{C}+\left(\alpha_{1}-\varepsilon\right) \tilde{C}_{1}+\left(\alpha_{2}-\varepsilon\right) \tilde{C}_{2}+\left(\alpha_{3}-2 \varepsilon\right) \tilde{L}+ \\
& +\left(\alpha_{1}-\varepsilon-1\right) E_{1}+\left(\alpha_{2}-\varepsilon-1\right) E_{2}+\left(\alpha_{3}-2 \varepsilon-1\right) E_{3}+3 \varepsilon \sum_{i=4}^{8} E_{i},
\end{aligned}
$$

where \tilde{L}, \tilde{C} and \tilde{C}_{j} are the proper transforms of the line L and the conics C, C_{j}, respectively. We then obtain

$$
\begin{aligned}
\mu H & \equiv(1+3 \varepsilon) \tilde{C}+\left(\alpha_{1}-\varepsilon\right) \tilde{C}_{1}+\left(\alpha_{2}-\varepsilon\right) \tilde{C}_{2}+\left(\alpha_{3}-2 \varepsilon\right) \tilde{L}+ \\
& +\left(\alpha_{1}+a_{1}-\varepsilon-1\right) E_{1}+\left(\alpha_{2}+a_{2}-\varepsilon-1\right) E_{2}+\left(\alpha_{3}+a_{3}-2 \varepsilon-1\right) E_{3}+\sum_{i=4}^{8}\left(3 \varepsilon+a_{i}\right) E_{i},
\end{aligned}
$$

where $a_{i}=0$ if $i>r$. Put $\alpha_{1}=\frac{3}{2} \varepsilon+1-a_{1}, \alpha_{2}=\frac{3}{2} \varepsilon+1-a_{2}$ and $\alpha_{3}=2 a_{1}+2 a_{2}-6 \varepsilon-3$. Since $2 a_{1}+2 a_{2}+a_{3}>4$, for a sufficiently small positive real number ε, all the coefficients in the divisor above are positive. This proves our claim.

We now suppose that the morphism $\phi: S \rightarrow Z$ is a conic bundle, i.e., $Z=\mathbb{P}^{1}$. We may write

$$
K_{S}+\mu H \equiv a B+\sum_{i=1}^{7} a_{i} E_{i}
$$

where B is an irreducible fiber of ϕ, E_{i} 's are disjoint (-1)-curves in fibers of ϕ, a is a positive real number, and a_{i} 's are non-negative real numbers.
Proposition 6.3.2. If H is of type $C(8)$ with $a>\frac{30}{7}$, then S has H-polar cylinders.
Proof. The proof of Theorem 6.2.11 works almost verbatim for this case.

Acknowledgements. The authors are grateful to the referees for their invaluable comments. In particular, they pointed out gaps in the original proofs of Theorems 6.2.2 and 6.2.10. The gaps have been filled up in the revised version. Their comments enable the authors to improve the results as well as the exposition. The first author was supported within the framework of a subsidy granted to the HSE by the Government of the Russian Federation for the implementation of the Global Competitiveness Program. The second author has been supported by IBS-R003D1, Institute for Basic Science in Korea and the third author by NRF-2014R1A1A2056432, the National Research Foundation in Korea.

References

[1] V.V. Batyrev, Yu. I. Manin, Sur le nombre des points rationnels de hauteur borné des variétés algébriques, Math. Ann. 286 (1990), no. 1-3, 27-43.
[2] F. Campana, Remarks on an example of K. Ueno, Series of congress reports, Classification of algebraic varieties, Editors: C. Faber, G. van der Geer, and E. Looijenga, European Mathematical Society, 2011, 115-121.
[3] I. Cheltsov, Log canonical thresholds of del Pezzo surfaces, Geom. Funct. Anal. 11 (2008), 1118-1144.
[4] I. Cheltsov, Del Pezzo surfaces and local inequalities, Springer Proceedings in Mathematics and Statistics 79 (2014), 83-101.
[5] I. Cheltsov, J. Park, J. Won, Affine cones over smooth cubic surfaces, to appear in J. Eur. Math. Soc., arXiv:1303.2648 (2013).
[6] I. Cheltsov, J. Park, J. Won, Cylinders in singular del Pezzo surfaces, to appear in Compositio Math., arXiv:1311.5257 (2013).
[7] I. Dolgachev, Classical algebraic geometry: Modern view, Cambridge University Press, Cambridge, 2012.
[8] W. L. Edge, A plane quartic curve with twelve undulations, Edinburgh Math. Notes 1945 (1945), no. 35, 10-13.
[9] H. Flenner, M. Zaidenberg, Rational curves and rational singularities, Math. Z. 244 (2003), 549-575.
[10] T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive In Algebraic geometry, Sendai, 1985, volume 10 of Adv. Stud. Pure Math., pp. 167-178. North-Holland, Amsterdam, 1987.
[11] T. Fujita, On Kodaira energy and adjoint reduction of polarized manifolds, Manuscripta Math. 76 (1992), 59-84.
[12] T. Fujita, On Kodaira energy of polarized log varieties, J. Math. Soc. Japan 48 (1996), 1-12.
[13] T. Fujita, On Kodaira energy and adjoint reduction of polarized threefolds, Manuscripta Math. 94 (1997), 211-229.
[14] R.V. Gurjar, D.-Q. Zhang, π_{1} of smooth points of a log del Pezzo surface is finite I, J. Math. Sci. Univ. Tokyo 1 (1994), no. 1, 137-180.
[15] B. Hassett, Sh. Tanimoto, Yu. Tschinkel, Balanced line bundles and equivariant compactifications of homogeneous spaces, Int. Math. Res. Not. 2015 (2015), no. 15, 6375-6410.
[16] D. Hwang, J. Keum, Construction of singular rational surfaces of Picard number one with ample canonical divisor, Proc. Amer. Math. Soc. 140 (2012), no. 6, 1865-1879.
[17] Yu. Kawamata, The cone of curves of algebraic varieties, Ann. of Math. (2) 119 (1984), no. 3, 603-633.
[18] S. Keel, J. McKernan, Rational curves on quasi-projective surfaces, Mem. Amer. Math. Soc. 140 (1999), no. 669, 153 pp.
[19] T. Kishimoto, Yu. Prokhorov, M. Zaidenberg, Group actions on affine cones, Affine algebraic geometry, pp. 123-163, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011.
[20] T. Kishimoto, Yu. Prokhorov, M. Zaidenberg, \mathbb{G}_{a}-actions on affine cones, Transform. Groups 18 (2013), 1137-1153.
[21] T. Kishimoto, Yu. Prokhorov, M. Zaidenberg, Unipotent group actions on del Pezzo cones, Algebraic Geometry 1 (2014), 46-56.
[22] J. Kollár, Is there a topological Bogomolov-Miyaoka-Yau inequality? Pure Appl. Math. Q. 4 (2008), no. 2, 203-236.
[23] J. Kollár, S. Mori, Birational geometry of algebraic varieties Cambridge Tracts in Mathematics 134, Cambridge University Press, 1998.
[24] A. Kuribayashi, K. Komiya, On Weierstrass points of non-hyperelliptic compact Riemann surfaces of genus three, Hiroshima Math. J. 7 (1977), no. 3, 743-768.
[25] R. Lazarsfeld, Positivity in algebraic geometry II Positivity for vector bundles, and multiplier ideals. Ergeb. Math. Grenzgeb. (3) 49, Springer-Verlag, 2004.
[26] Y. Lee and J. Park, A simply connected surface of general type with $p_{g}=0$ and $K^{2}=2$, Invent. Math. 170 (2007), 483-505.
[27] Y. Lee and N. Nakayama, Simply connected surfaces of general type in positive characteristic via deformation theory, Proc. London Math. Soc. (3) 106 (2013), 225-286.
[28] B. Lehmann, Sh. Tanimoto, Yu. Tschinkel, Balanced line bundles on Fano varieties, to appear in J. Reine Angew. Math., arXiv:1409.5901 (2014).
[29] M. Miyanishi, D.-Q. Zhang, Gorenstein log del Pezzo surfaces of rank one, J. Algebra 118 (1988), no. 1, 63-84.
[30] K. Oguiso, T. Truong, Explicit examples of rational and Calabi-Yau threefolds with primitive automorphisms of positive entropy, arXiv:1306.1590 (2013).
[31] K. Oguiso, D.-Q. Zhang, On the most algebraic K3 surfaces and the most extremal log Enriques surfaces, Amer. J. Math. 118 (1996), 1277-1297.
[32] K. Oguiso, D.-Q. Zhang, On the complete classification of extremal log Enriques surfaces, Math. Z. 231 (1999), no. 1, 23-50.
[33] H. Park, J. Park, D. Shin, A simply connected surface of general type with $p_{g}=0$ and $K^{2}=3$, Geom. Topol. 13 (2009), 743-767.
[34] H. Park, J. Park, D. Shin, A simply connected surface of general type with $p_{g}=0$ and $K^{2}=4$, Geom. Topol. 13 (2009), 1483-1494.
[35] J. Park, J. Won, Flexible affine cones over del Pezzo surfaces of degree 4, European J. Math. 2 (2016), no. 1, 304-318.
[36] A. Perepechko, Flexibility of affine cones over del Pezzo surfaces of degree 4 and 5, Funct. Anal. Appl. 47 (2013), no. 4, 284-289.
[37] F. Wang, The classification of \log Enriques surfaces of rank 18, J. Korean Math. Soc. 48 (2011), no. 4, 797-822.

Ivan Cheltsov
School of Mathematics, The University of Edinburgh
James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK.
Laboratory of Algebraic Geometry, National Research University Higher School of Economics
7 Vavilova Str. Moscow, 117312, Russia.
I.Cheltsov@ed.ac.uk

Jihun Park
Center for Geometry and Physics, Institute for Basic Science (IBS)
77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.
Department of Mathematics, POSTECH
77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.
wlog@postech.ac.kr
Joonyeong Won
Algebraic Structure and its Applications Research Center, KAIST
335 Gwahangno, Yuseong-gu, Daejeon, 34143, Korea
leonwon@kias.re.kr

