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Abstract

In this paper we introduce a new class of bounds for the maximum k-cut problem

on undirected edge-weighted simple graphs. The bounds involve eigenvalues

of the weighted adjacency matrix together with geometrical parameters. They

generalize previous results on the maximum (2-)cut problem and we demonstrate

that they can strictly improve over other eigenvalue bounds from the literature.

We also report computational results illustrating the potential impact of the

new bounds.

Keywords: Max k-cut, Adjacency matrix eigenvalues, Adjacency matrix

eigenvectors

1. Introduction

The partitioning of graphs is an important theme of combinatorial opti-

mization that emerges as a natural modeling of many practical problems from

very diverse fields such as VLSI design [4], physical statistics [20], or network

planning [14]. Basically, it consists in finding a partition of the node set of a5

graph that maximizes some objective function and possibly satisfies some side
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constraints, e.g., with respect to the cardinality of the partition or the number

of nodes in its subsets. In this paper we consider the maximum k-cut problem

denoted by Max k-Cut, where k denotes a positive integer. The objective is

to find a partition of the node set into k subsets so as to maximize the sum of10

the weights of the edges having their endpoints in different subsets.

Our contribution is a new family of bounds on the optimal objective value of

this problem which generalizes previous results for Max 2-Cut and can improve

over other bounds introduced recently for Max k-Cut, for any integer k ≥ 2.

We also provide computational results that illustrate the potential impact of15

these new bounds.

The paper is organized as follows. We establish some notation at the end of

this section. In Section 2 we proceed to a literature review. The new bounds

are introduced in Section 3 and we prove in Section 4 that it is possible to

define perturbations of the weighted adjacency matrix such that these bounds20

dominate (not strictly) a bound stemming from a classical semidefinite relax-

ation. We then investigate in Section 5 the efficient computation of distances

involved in the expression of the new bounds and also present connections with

Max 2-Cut. The computational results are reported in Section 6, and we con-

clude in Section 7.25

We now close the section with some notation. Given a positive integer n, let

[n] stand for the set of integers {1, 2, . . . , n}. Let G = (V,E) be an undirected

simple graph having node set V = [n], edge set E, and let w ∈ RE denote

a weight function on the edges. The weighted adjacency matrix, denoted by

W ∈ Rn×n, is a symmetric matrix with entries defined by Wij = wij if ij ∈ E30

and Wij = 0 otherwise, for all (i, j) ∈ V 2. Let k denote a positive integer. Given

any partition (V1, V2, . . . , Vk) of V into k subsets V1, V2, . . . , Vk (some of which

may be empty), the k-cut defined by this partition is the set δ(V1, V2, . . . , Vk)

of edges in E having their endpoints in different subsets of the partition, and

the weight of the k-cut is the sum of the weights of the edges it contains. The35

maximum weight of a k-cut in G is denoted by mck(G,W ).

Given two disjoint node subsets A,B, let w[A,B] denote the sum of the
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weights of the edges having one endpoint in A and the other in B: w[A,B] =∑
(i,j)∈A×B : ij∈E wij . Similarly, let w[A] represent the sum of the weights of the

edges with both endpoints in A: w[A] =
∑

(i,j)∈A2 :
ij∈E,i<j

wij . Given a real symmetric40

matrix M ∈ Rn×n, let λ1(M) ≤ λ2(M) ≤ . . . ≤ λn(M) denote the eigenvalues

of M in increasing order and let ν1(M), ν2(M), . . . , νn(M) be the corresponding

orthonormal eigenvectors. For the particular case when M = W , we shall more

simply use λi (resp. νi) instead of λi(W ) (resp. νi(W )) for all i ∈ [n]. For

any positive integer q, let ~1q stand for the q-dimensional all-ones vector. Given45

any vector x ∈ Rn, Diag(x) stands for the square diagonal matrix of order n,

having x for diagonal. The Laplacian matrix is L = Diag(W~1n) − W . The

inner scalar product in Rn is denoted by 〈·, ·〉, and the Euclidean norm by ‖ · ‖.

Given α ∈ R and a matrix X, the notation αX represents the matrix obtained

by multiplying all the entries of X by α. Given two matrices X,Y in Rn×n,50

X • Y stands for the quantity
∑n

i=1

∑n
j=1XijYij .

2. Related work

Max k-Cut is a notorious NP-hard problem [23]. In particular, there ex-

ists no polynomial time approximation scheme for Max k-Cut for any k ≥ 2

unless P = NP [2, 23]. Also, there can be no polynomial time approximation55

algorithm with performance ratio 1− 1
34k , unless P = NP [19]. The challeng-

ing task of developing methods for solving this problem has generated many

works stemming from the communities in discrete mathematics and operations

research. The main developed approaches include heuristics [12], approximation

[15] and exact algorithms [1]. In this paper, we are interested in different ways60

of computing bounds for Max k-Cut using information about the spectrum

of W (possibly perturbed, as described later). Therefore the literature review

that follows is focused on the works which, to the best of our knowledge, are

the most relevant ones in this respect. We point out that all the approximation

guarantees mentioned hereafter for randomized algorithms only apply to the65

restricted version of Max k-Cut with all the edge weights nonnegative.
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The simple randomized algorithm, which consists of assigning each vertex

uniformly at random to one of the k subsets, has an approximation guarantee of(
1− 1

k

)
. For the particular case k = 2, i.e., the Max Cut problem, Goemans

and Williamson [17] designed a 0.87856-approximation algorithm based on a

semidefinite relaxation of the problem. Their work was subsequently extended

to k ≥ 2 by Frieze and Jerrum [15] making use also of a semidefinite relaxation

which can be formulated as follows:

Z∗kSDP = max
k − 1

k

∑
ij∈E

wij (1−Xij)

s.t. Xii = 1, ∀i, (1)
(k-SDP )


Xij ≥

−1

k − 1
, ∀i < j, (2)

X � 0, X ∈ Rn×n, (3)

where the constraint X � 0 means that the matrix X is symmetric and posi-

tive semidefinite. Note that, for k = 2, the inequalities (2) can be removed from

the formulation since they are implied by the other constraints. Removing them

leads to the SDP relaxation of Max Cut used by Goemans and Williamson [17],70

and in fact the randomized algorithm proposed by Frieze and Jerrum coincides

with the one by Goemans and Williamson for k = 2. De Klerk et al. pre-

sented another randomized algorithm for Max k-Cut based on a semidefinite

formulation of the Lovász theta function from [13]. They show their algorithm

has the same approximation guarantee as Frieze and Jerrum’s method [15] for75

k ∈ {3, . . . , 10}; and a consequence of Conjecture 9.1 in [13] is that this also

holds for any k ≥ 3 (if the conjecture is true). We report in Table 1 the approx-

imation guarantee of Frieze & Jerrum’s algorithm for Max k-Cut, denoted by

αk, for some values of k (these results were proved by Goemans and Williamson

for k = 2, 3 [17, 18], and De Klerk et al. [13] for k ≥ 3). From the analysis80

carried out in [17, 18, 13], it follows that the upper bound on mck(G,W ) given

by the relaxation (k-SDP ) satisfies mck(G,W ) ≥ αkZ
∗
kSDP .

The semidefinite relaxation (k-SDP ) may be strengthened with different

families of linear inequalities that are valid for the k-cut polytope, i.e., the
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Table 1: Approximation guarantees of Frieze and Jerrum’s algorithm for Max k-Cut in the

case when all the edge weights are nonnegative [17, 18, 13]

k 2 3 4 5 6 7 8 9 10

αk 0.87856 0.836008 0.857487 0.876610 0.891543 0.903259 0.912664 0.920367 0.926788

convex hull of all the incidence vectors in RE of the k-cuts in G (see, e.g., [3, 24]85

for k = 2 and [10, 11, 26] for k ≥ 3).

Differently from the works mentioned above which rely on a semidefinite re-

laxation, another line of research [28, 22] derives upper bounds for Max k-Cut

from the spectrum of the Laplacian or the weighted adjacency matrix. Our

work investigates further this last line of research that we now present.90

For the particular case when k = 2, Mohar and Poljak [21] proved the

inequality mc2(G,W ) ≤ n
4λn(L). More recently, van Dam and Sotirov [28]

generalized this result for Max k-Cut:

Theorem 2.1. [28]

mck(G,W ) ≤ n(k − 1)

2k
λn(L). (4)

They also provide several graphs for which this bound is tight together with

some comparisons with other bounds stemming from semidefinite relaxations.95

Also recently, Nikiforov [22] introduced an upper bound for the maximum car-

dinality of a k-cut in G (i.e., the maximum k-cut problem with we = 1, for all

e ∈ E) that is easily extended to the weighted case and can be expressed as

follows.

Theorem 2.2. [22]

mck(G,W ) ≤ k − 1

k

(
w[V ]− λ1n

2

)
. (5)

As noted in [22], the bounds from Theorems 2.1 and 2.2 are equivalent for100

regular graphs but different in general. For k = 2 (Max Cut), an upper bound

on mc2(G,W ) that is at least as good as (5) was introduced in [5], making use

of the eigenvalues and eigenvectors of W . Let dj denote the distance between
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the set of vectors in {−1, 1}n and the linear subspace lin(ν1, ν2, . . . , νj) that is

generated by the first j eigenvectors of W . Then, the result can be formulated105

as follows.

Theorem 2.3. [5] The following inequality holds:

mc2(G,W ) ≤ 1

2
w[V ]− 1

4

λ1n−
∑

l∈[n−1]

(λl+1 − λl) d
2
l

 . (6)

In the next section we shall introduce a generalization of the bound (6) for

Max k-Cut that is less than or equal to (5) for any integer k ≥ 2. This is

obtained by combining ideas from the proofs in [22, 5] leading to Theorems

2.2 and 2.3, and by considering particular pertubations of the entries of the110

matrix W . The new bounds share with (6) the drawback that computing all the

terms involved in their expression is generally NP-hard. However, we show that

truncated variants (obtained by removing some terms of the last sum appearing

in their expression), which are still no greater than (5), can be computed in

polynomial time (see Section 5.2).115

3. Spectral bounds for Max k-Cut

For our purposes and with no loss of generality, we assume that the graph

G is complete (setting zero weights on edges not present in G). In order to

formulate the new bounds, we now introduce quantities to extend the expression

of the bound (5) (implying a potential improvement, i.e., decrease of its value)

by involving almost all of the eigenvalues and eigenvectors of the matrix Ŵ =

W + Q, where Q ∈ Rn × Rn stands for a symmetric matrix satisfying some

conditions to be specified later (the zero matrix is a possible choice for Q). Let

λ̂1 ≤ λ̂2 ≤ . . . ≤ λ̂n stand for the eigenvalues of the matrix W +Q in increasing

order, and let ν̂1, ν̂2, . . . , ν̂n be the corresponding unit and pairwise orthogonal

eigenvectors. Given r ∈ R \ {1}, let d̂j,r denote the distance between the set

of vectors {r, 1}n and the linear subspace lin(ν̂1, ν̂2, . . . , ν̂j) that is generated by

the first j eigenvectors of Ŵ :

d̂j,r = min {‖z − y‖ : z ∈ {r, 1}n , y ∈ lin (ν̂1, ν̂2, . . . , ν̂j)} . (7)
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In the definition of d̂j,r, a vector in {r, 1}n may be interpreted as the incidence

vector of a node subset (that may itself be interpreted as a subset of a partition),

where the nodes in the subset correspond exactly to the entries with value r (as

will be the case in the proof establishing the bound). We now formulate our120

main general result providing an upper bound on mck(G,W ).

Theorem 3.1. For any r ∈ R \ {1} and any symmetric matrix Q ∈ Rn × Rn

satisfying Qij ≤ 0, for all i 6= j, the following inequality holds.

mck(G,W ) ≤ 1

2(r − 1)2
(Ar −Br) , (8)

with Ar and Br defined as follows, Ar =
(
r2 + k − 1

) (
2w[V ]− λ̂1n+ 2

∑n
i=1Qii

)
+ 2(2r + k − 2)

∑
(i,j)∈[n]2 : i<j Qij ,

Br = k
∑

l∈[n−1]

(
λ̂l+1 − λ̂l

)(
d̂l,r

)2
.

(9)

Proof. Let (V1, V2, . . . , Vk) denote a partition of V corresponding to an optimal

solution of Max k-Cut.

For all i ∈ [k], let the vector yi ∈ {r, 1}n be defined as follows: yil = r if

l ∈ Vi and 1 otherwise. We have:

〈yi,Wyi〉 = 2r2w[Vi] + 2
∑

j∈[k]\{i} w[Vj ] + 2r
∑

j∈[k]\{i} w[Vi, Vj ]+

2
∑

(j,l)∈([k]\{i})2 :
j<l

w[Vj , Vl].
(10)

Let us now compute the sum of each term occurring in the right-hand-side of

(10) over all i ∈ [k].∑
i∈[k] 2r2w[Vi] = 2r2 (w[V ]−mck(G,W )) ,∑
i∈[k] 2

∑
j∈[k]\{i} w[Vj ] = 2 (k − 1) (w[V ]−mck(G,W )) ,∑

i∈[k] 2r
∑

j∈[k]\{i} w[Vi, Vj ] = 4r mck(G,W ),∑
i∈[k] 2

∑
(j,l)∈([k]\{i})2 :

j<l

w[Vj , Vl] = 2(k − 2)mck(G,W ).

Thus, we deduce∑
i∈[k]

〈yi,Wyi〉 = 2mck(G,W )(−r2 + 2r − 1) + 2w[V ](r2 + k − 1). (11)

7



Also, we have for all i ∈ [k],

〈yi, Qyi〉 = r2
∑
j∈Vi

Qjj+2r2
∑

(j,l)∈V 2
i : j<l

Qjl+2r
∑

j∈[n]\Vi

Qij+2
∑

(j,l)∈([n]\Vi)
2 :

j<l

Qjl.

(12)

Now let us consider the summation over all i ∈ [k] of the right-hand side in

equation (12). Observe that the coefficient of any125

• diagonal entry Qjj is r2 + k − 1,

• non-diagonal entry Qjl isr
2 + k − 1 if there exists q ∈ [k] such that {j, l} ⊆ Vq, and

2r + k − 2 otherwise.

Let J1 stand for set of pairs (j, l) ∈ [n]2 such that j < l and there exists q ∈ [k]

satisfying {j, l} ⊆ Vq. Similarly, let J2 stand for set of pairs (j, l) ∈ [n]2 such

that j and l belong to different subsets of the partition (V1, V2, . . . , Vk) and

j < l. Using the observation given earlier and the fact that Q is symmetric, we

deduce:

∑
i∈[k]

〈yi, Qyi〉 =
(
r2 + k − 1

)∑
j∈[n]

Qjj + 2
∑

(j,l)∈J1

Qjl

+2 (2r + k − 2)
∑

(j,l)∈J2

Qjl.

Then, using the inequality r2 + k − 1 ≥ 2r + k − 2 together with the fact that

the non-diagonal coefficients of Q are nonpositive, we obtain:∑
i∈[k]

〈yi, Qyi〉 ≤
(
r2 + k − 1

) ∑
j∈[n]

Qjj + 2 (2r + k − 2)
∑

(j,l)∈J1∪J2

Qjl. (13)

We now derive a lower bound on 〈yi, Ŵ yi〉, where Ŵ = W +Q, by making use

of the spectrum of Ŵ . First, we mention some preliminary properties. Since Ŵ

is a real symmetric matrix, we may assume that the eigenvectors ν̂1, ν̂2, . . . , ν̂n

form an orthonormal basis. Considering the expression of yi in this basis: yi =∑
l∈[n] αlν̂l with α ∈ Rn, we have ‖yi‖2 =

∑
l∈[n] α

2
l = n + |Vi|(r2 − 1). Using

8



this equation, we deduce

〈yi, Ŵ yi〉 =
∑

l∈[n] λ̂lα
2
l

= λ̂1
(
n+ |Vi|(r2 − 1)−

∑n
l=2 α

2
l

)
+
∑n

l=2 λ̂lα
2
l

= λ̂1
(
n+ |Vi|(r2 − 1)

)
+
∑n

l=2 (λ̂l − λ̂1)α2
l .

Note that the quantity
∑n

l=j α
2
l can be interpreted as the distance between

the vector yi and the subspace lin (ν̂1, ν̂2, . . . , ν̂j−1). From the definition of the

distances defined above, we have
(
d̂j−1,r

)2
≤
∑n

l=j α
2
l , for all j ∈ {2, 3, . . . , n},

thus implying α2
j ≥

(
d̂j−1,r

)2
−
∑n

l=j+1 α
2
j . By iteratively using the latter

inequality for j = 2, . . . , n in the expression of 〈yi, Ŵ yi〉 above, we deduce

〈yi, Ŵ yi〉 ≥ λ̂1
(
n+ |Vi|(r2 − 1)

)
+

∑
l∈[n−1]

(λ̂l+1 − λ̂l)
(
d̂l,r

)2
.

Summing up these inequalities for all i ∈ [k] we obtain

∑
i∈[k]

〈yi, Ŵ yi〉 ≥ λ̂1n
(
k + r2 − 1

)
+ k

 ∑
l∈[n−1]

(λ̂l+1 − λ̂l)
(
d̂l,r

)2 . (14)

Combining (11), (13) and (14), the result follows.

Remark Enforcing the value ‘1’ among the two possible values for the com-

ponents of the vectors used in the definition of the distances (7) is done only

for simplicity of the presentation. We are basically interested in the distance130

between lin(ν̂1, ν̂2, . . . , ν̂j) and a set of vectors whose components are restricted

to take any of two nonzero values. If we denote by d̂j,r1,r2 the distance be-

tween lin(ν̂1, ν̂2, . . . , ν̂j) and the set of vectors {r1, r2}n with (r1, r2) ∈ R2 and

0 6= r1 6= r2, then dj,r1,r2 = |r1|dj, r2r1 , for all j ∈ [n], and the results obtained by

using such vectors are equivalent to the ones presented.135

Note that all the terms occurring in the expression of Br (see (9) above) are

nonnegative, so that even after removing some or all of the terms involved in the

sum, the expression (8) obtained still provides an upper bound on mck(G,W ).

This is relevant with respect to complexity aspects (see Section 5.2).

In view of the bound (8) on mck(G,W ), one may ask for the best choice140

for the parameter r and the matrix Q. Firstly with respect to the parameter
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r and assuming Q is fixed: if we consider the truncated bound obtained from

(8) by removing Br, it is straightforward to check that the ratio r2+k−1
(r−1)2 is

minimized for r = 1−k. Still assuming Q is fixed, if we now consider the whole

expression of the bound (8), computational experiments show that other values145

of r may lead to strictly better bounds, depending on the instance. However the

improvements that we observed in our experiments by considering other values

than 1− k for r in (8) tend to be rather small (by comparison with the choice

r = 1 − k), and r = 1 − k seems to be a fairly robust choice (more on that in

Section 6).150

In the statement of Theorem 3.1, the matrix Q may be interpreted as a

perturbation of the coefficients of the matrix W . We shall see later how such

perturbations may lead to a value of the bound (8) that is less than or equal

to the bound stemming from Frieze and Jerrum’s semidefinite relaxation (see

Section 4), and we will also observe that the matrix Q may have an important155

impact on the value of the bound (Section 6).

Taking Q = 0 in Theorem 3.1, we obtain the following upper bound with a

simpler expression, where the terms dl,r are defined similarly as d̂l,r above but

using the linear subspace lin (ν1, ν2, . . . , νl) instead of lin (ν̂1, ν̂2, . . . , ν̂l).

Corollary 3.2. For any r ∈ R \ {1}, the following inequality holds.

mck(G,W ) ≤ 1

2(r − 1)2

(r2 + k − 1)(2w[V ]− λ1n)− k
∑

l∈[n−1]

(λl+1 − λl)d
2
l,r

 .

(15)

Observe that the upper bound (6) is a particular case of (15), obtained by160

setting k = 2 and r = 1− k = −1.

We conclude this section by mentioning that the approach for proving The-

orem 3.1 can also be used to obtain lower bounds on the weight of any k-cut

and to generalize results from [6, Section 2.1] for k = 2. Let lck(G,W ) denote

the minimum weight of a k-cut in G and let dj,r denote the distance between

the set of vectors {r, 1}n and the subspace lin(νj , νj+1, . . . , νn) that is generated

10



by the last n− j + 1 eigenvectors of W :

dj,r = min {‖z − y‖ : z ∈ {r, 1}n , y ∈ lin (νj , νj+1, . . . , νn)} . (16)

Proposition 3.3.

lck(G,W ) ≥ 1

2(r − 1)2

(r2 + k − 1)(2w[V ]− λnn) + k
∑

l∈[n−1]

(λl+1 − λl)d
2
l+1,r

 .

(17)

Proof. Similar to that of Theorem 3.1 taking Q = 0. Alternatively, apply The-

orem 3.1 with Q = 0 and the weight matrix −W instead of W , which gives an

upper bound on −lck(G,W ).

Corollary 3.2 and Proposition 3.3 lead to the definition of the spectral bound

gap, which is the difference between the upper and lower spectral bounds:

sbgck =
1

2(r − 1)2

(r2 + k − 1
)
n (λn − λ1)− k

∑
l∈[n−1]

(λl+1 − λl)
(
d
2

l+1,r + d2l,r

) .
4. Improving on the bound Z∗

kSDP165

In this section we show that by making use of a dual optimal solution of

(k-SDP ) it is possible to define a matrix Q in Theorem 3.1 such that the bound

given by (8) is less than or equal to the bound Z∗kSDP .

First note that the upper bound from (k-SDP ) can be expressed as follows:

Z∗kSDP = k−1
k (w[V ] + Z∗1 ), where Z∗1 stands for the optimal objective value of

the SDP problem

(SDPP )



Z∗1 = max
(
− 1

2W
)
•X

s.t. Xii = 1, ∀i ∈ [n],

Xij − zij = − 1
k−1 , ∀i < j, (i, j) ∈ [n]2,

X � 0, Diag(z) � 0,

X ∈ Rn×n, z ∈ R(n
2).

11



The dual problem of (SDPP ) can be expressed as

(SDPD)



Z∗2 = min
∑

i∈[n] Yii −
1

k−1
∑

i<j : (i,j)∈[n]2 Yij

s.t. B(Y ) +W � 0,

Yij ≤ 0,∀i < j, (i, j) ∈ [n]2,

Y ∈ Rn×n, Y symmetric,

where B(Y ) has entriesB(Y )ii = 2Yii,∀i ∈ [n],

B(Y )ij = Yij ,∀i 6= j, (i, j) ∈ [n]2.

One can easily check that strong duality holds and thus Z∗1 = Z∗2 . Let Y ∗ denote

an optimal solution of (SDPD). Then the optimal objective value of (k-SDP )170

can be expressed as: Z∗kSDP = k−1
k

(
w[V ] +

∑
i∈[n] Y

∗
ii − 1

k−1
∑

i<j:(i,j)∈[n]2 Y
∗
ij

)
.

Also, an observation to be used later is that necessarily the smallest eigenvalue

of the matrix B(Y ∗) +W is zero.

We now prove that particular upper bounds given by (8) are always less

than or equal to Z∗kSDP . In the statement of Theorem 3.1, let us take Q =

B(Y ∗). Then, in the expression of the spectral bound Ar −Br, we have (using

λ1(B(Y ∗) +W ) = 0):

Ar =
1

(r − 1)2

(r2 + k − 1
)w[V ] +

∑
i∈[n]

Y ∗ii

+ (2r + k − 1)
∑

i<j : (i,j)∈[n]2
Y ∗ij

 .

And taking for r the value 1 − k, we obtain: A1−k = Z∗kSDP . Since B1−k ≥ 0,

the next result follows.175

Corollary 4.1. In the statement of Theorem 3.1, taking r = 1 − k and Q =

B(Y ∗), the spectral bound (8) is less than or equal to Z∗kSDP .

The last corollary leads to the next result establishing a domination relation

between bounds previously introduced for Max k-Cut.

Proposition 4.2. The best spectral bound Ẑ which can be obtained by the gen-180

eral family described in Theorem 3.1 is always no worse than the bounds given

by Z∗kSDP , (4) and (5).
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Proof. By Corollary 4.1, we have Ẑ ≤ Z∗kSDP .

In the statement of Theorem 3.1, considering the matrix Q = −Diag(W~1n),

setting r = 1−k and removing from (8) the nonnegative term Br, we obtain the185

bound (4), and thus Ẑ dominates (4). (van Dam and Sotirov also present in [28]

a strenghtened version of (4) obtained by considering a particular perturbation

of the diagonal entries of the Laplacian matrix, which leads however to a bound

that is dominated by (i.e. greater than or equal to) Z∗kSDP . One can easily

define a diagonal matrix Q such that their strengthened bound coincides with190

A1−k in (8).)

The fact that Ẑ dominates (5) follows by considering the zero matrix for Q,

r = 1 − k, and removing Br in the expression of the bound given by Theorem

3.1.

In Section 6 we will see on several instances the relevance of the perturbation195

ofW as suggested by Proposition 4.1 and the improvement that may be obtained

over Z∗kSDP by using the whole expression of the bound (8).

5. On the efficient computation of distances

It has been shown [5, Proposition 4.4] that computing the distances (dj,r)n−1j=1

is NP-hard in general. In this section, we shall deal with distances that can be200

computed efficiently. We start by considering the instances of Max k-Cut such

that the all-ones vector is an eigenvector of W (Section 5.1). This case leads to

simple expressions of upper bounds for Max k-Cut and permits us to identify a

family of instances for which the spectral bound (8) coincides with mck(G,W ).

Then, we show in Section 5.2 that, for any fixed positive integer j ≤ n − 1205

and under some additional conditions, the distance dj,r can be computed in

polynomial time.

5.1. On the case when ~1n is an eigenvector of W

In this subsection we specialize Corollary 3.2 for the particular case when

~1n is an eigenvector of W . In particular, we obtain simple expressions of upper210
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bounds on mck(G,W ) that are lower than or equal to the bounds of Theorems

2.1 and 2.2. We start with an auxiliary result on the minimum squared distance

between any vector in {1, r}n and the subspace in Rn that is orthogonal to

lin(~1n) and is denoted by lin(~1n)⊥.

Proposition 5.1. The following equation holds.

min
{
‖y − z‖2 : y ∈ {1, r}n , z ∈ lin(~1n)⊥

}
=


n if r ≥ 1,

nr2 if 0 ≤ r < 1,

min( (s+r−1)2
n , s

2

n ) otherwise,

with n ≡ s mod (1− r), 0 ≤ s < 1− r, for the case when r < 0.215

Proof. Let p ∈ {0, 1, . . . , n} and ŷ ∈ {r, 1}n such that ŷ has exactly p entries

with value r. Let d̂2 denote the squared distance between ŷ and lin(~1n)⊥, that

is, the quantity

d̂2 =
〈ŷ,~1n〉2

n
=

(p (r − 1) + n)
2

n
,

where the first equation follows from the definition of d̂ and the normalization

of the vector ~1n. The minimum of d̂2 is obtained for p = 0 if r ≥ 1, for p = n if

0 < r < 1, and for p =
⌊

n
1−r

⌋
or p =

⌈
n

1−r

⌉
, otherwise.

Using Proposition 5.1 together with the fact that dj,r ≥ dj+1,r, for all j ∈

[n− 1], yields the next result.220

Corollary 5.2. If ~1n is an eigenvector of W associated with the eigenvalue λq,

then

mck(G,W ) ≤
1

2(r−1)2

(
(r2 + k − 1)(2w[V ]− λ1n)− k

n
min((s+ r − 1)2, s2)

∑
l∈[q−1] (λl+1 − λl)

)
(18)

with r < 0 and n ≡ s mod (1− r), 0 ≤ s < 1− r.

For the case of complete graphs with unit edge weights, taking r = 1− k in

(18) leads to the following simpler expression.
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Corollary 5.3. If G is a complete graph and all the edge weights are equal to

one, then

mck(G,W ) ≤ 1

2k

(
(k − 1)n2 −min

(
(s− k)

2
, s2
))

, (19)

with n ≡ s mod k, 0 ≤ s < k.

Proof. The eigenvalues of the adjacency matrix of the complete graph Kn are225

−1 with multiplicity n − 1 and n − 1 with multiplicity 1. The vector ~1n is an

eigenvector associated with the eigenvalue λn = n− 1. The result follows from

(18) with q = n and r = 1− k.

Corollary 5.3 gives an infinite class of graphs (complete graphs such that

min((s − k)2, s2) > 0) where Theorem 3.1 strictly improves on Theorem 2.2.230

The bound (19) has also the feature of coinciding with the optimal objective

value of Max k-Cut for some cases. For completeness, we give the proof of

the next result on the number of edges of Turán graphs, i.e., complete k-partite

graphs (k integer, k ≥ 2), whose partition sets differ in cardinality by at most

one. Let Tn,k stand for the complete k-partite graph on n vertices with partition235

sizes equal to bnk c or dnk e, and let e(Tn,k) denote its number of edges.

Proposition 5.4. The number of edges of a k-partite Turán graph Tn,k is

e (Tn,k) =
1

2k

(
(k − 1)n2 + s2 − sk

)
,

with n ≡ s mod k, 0 ≤ s < k.

Proof. Let n = qk + s with q and s nonnegative integers such that 0 ≤ s < k.
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The number of edges is then equal to(
2
n

)
− s
(

2
q+1

)
− (k − s)

(
2
q

)
= n(n−1)

2 − s q(q+1)
2 − (k − s) q(q−1)

2

= 1
2 (n(n− 1)− q (s (q + 1) + (k − s) (q − 1)))

= 1
2 (n(n− 1)− q (2s+ kq − k))

= 1
2

(
n(n− 1)− n−s

k (2s+ (n− s)− k)
)

= 1
2k (kn(n− 1)− (n− s) (s+ n− k))

= 1
2k

(
(k − 1)n2 + s2 − sk

)
.

Let us recall Turán’s theorem [27].

Theorem 5.5. [27] If G is an n-vertex Kk+1-free graph, then it contains at240

most e (Tn,k) edges.

By Theorem 5.5 and Proposition 5.4, the maximum cardinality of a k-cut

in the complete graph Kn is 1
2k

(
(k − 1)n2 + s2 − sk

)
, with n ≡ s mod k, 0 ≤

s < k. Corollary 5.3 leads to next result.

Proposition 5.6. Let G be a complete graph with all the edge weights equal to

one. If n ≡ 0 mod k, or

n ≡ k
2 mod k and k is even,

then mck(G,W ) coincides with the bound (19).245

Proposition 5.6 generalizes Proposition 4.4 in [6] (the latter being obtained

by setting k = 2 and r = −1). Note that for k = 2, the bound (19) coincides

with mck(G,W ) for all complete graphs with unit weights, whereas this fails for

the bounds of Theorems 2.1 and 2.2 for complete graphs having an odd number

of vertices. More generally, for any complete graph with unit edge weights such250

that n ≡ k
2 mod k, k positive and even, the bound (19) coincides with the
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optimal objective value mck(G,W ) = (k−1)n2

2k − k
8 and strictly improves over

Z∗kSDP , (4) and (5), which are all equal to (k−1)n2

2k for this family of instances.

This is obvious for (4) and (5), since in this case we have λn(L) = n, λ1 = −1.

To see that Z∗kSDP = (k−1)n2

2k , note that a feasible solution of (k-SDP ) is given255

by X = 1
n−1 (nIn − Jn) , z = 0, and a feasible solution of (SDPD) is given by

Y = 1
2In, where In stands for the identity matrix of order n, and Jn for the

all-ones matrix with order n. Since these two solutions have the same objective

value (k−1)n2

2k , the result follows. In fact, this family of instances of Max k-Cut

also illustrates the fact that the gap between (19) and Z∗kSDP (or equivalently260

(4) or (5) for this family of instances) can be arbitrarily large with increasing

values of k.

5.2. Polynomial-time computable distances

Computing all the distances (d̂j,r)n−1j=1 involved in the expression of the

bounds (8) is difficult in general. Even for k = 2, computing the single dis-265

tance dn−1,−1 is NP-hard in general [5]. However, given a fixed positive integer

p ≤ n−1 and assuming all the eigenvalues and eigenvectors are given and ratio-

nal, it has been shown that computing the restricted set of distances (d̂j,−1)pj=1

can be done in polynomial time [7]. We now show that this result can be ex-

tended to the computation of the distances (d̂j,r)pj=1 for any r ∈ R \ {1}.270

Lemma 5.7. Let r ∈ R\{1}. The computation of the distance d̂j,r is equivalent

to an unconstrained quadratic program of the form minz∈{−1,1}n+1 zTQz, where

Q has rank at most j + 2 and no positive diagonal entries.

Proof. The problem of determining the squared distance
(
d̂j,r

)2
can be formu-

lated as follows:

(P1)

 min yTV V T y

y ∈ {r, 1}n,

where V stands for the n × (n − j) matrix having as columns the eigenvectors

ν̂j+1, ν̂j+2, . . . , ν̂n. Using the affine transformation

z =
2

1− r
y − 1 + r

1− r
~1n,
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problem (P1) can be reformulated as follows:

(P2)

 min (1−r)2
4 zTV V T z + 1−r2

2 (~1n)TV V T z + (1+r)2

4 (~1TnV V
T~1n)

z ∈ {−1, 1}n.

Using the fact that for any z ∈ {−1, 1}n we have :

zTV V T z =

n∑
j+1

(zT νi)
2 = n−

j∑
i=1

(zT νi)
2,

problem (P2) is equivalent to

(P3)

 min zTQz + 2bT z + c

z ∈ {−1, 1}n,

where Q = − (1−r)2
4 V jV

T

j , V j stands for the n × j matrix whose columns cor-

respond to the j first eigenvectors ν̂1, ν̂2, . . . , ν̂j , b = 1−r2
4 V V T~1n, and c =

n
4 (1− r)2 + 1

4 (1 + r)2
(
~1TnV V

T~1n

)
. (P3) can be reformulated as

(P4)

 min zTQz

z ∈ {−1, 1}n+1
,

where Q is an (n + 1) × (n + 1) matrix with rows and columns indexed on

{0, 1, . . . , n}, and entries defined as follows.

Qil =


0 if i = l = 0,

bi+l if {i, l} ∩ {0} 6= ∅ and i+ l 6= 0,

Qil otherwise.

(Given an optimal solution z∗ for (P4), an optimal solution for (P3) is given by

z∗i = z∗0z
∗
i , for all i ∈ {1, 2, . . . , n}.)275

Note that the matrix Q has rank at most j+ 2. This can be seen as follows.

By definition Q has rank at most j. Adding to Q a row corresponding to vector

b, the resulting (n+ 1)× n matrix Q′ has rank at most j + 1. Adding to Q′ the

column vector (0, b)T , we obtain Q and its rank is at most j + 2.

The next result directly follows from Lemma 5.7 above and Theorem 2 from280

[7]. It extends a polynomiality result about the complexity of computing the

distance d̂j,−1 for a fixed positive integer j ≤ n− 1 (see Corollary 2.7 in [6]).
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Theorem 5.8. Let r ∈ R\{1}. For a fixed positive integer j ≤ n−1, assuming

the eigenvalues and eigenvectors of the matrix Q as mentioned in Proposition

5.7 are given and rational, the distance d̂j,r can be computed in polynomial time.285

6. Computational experiments

In this section, we report computational results to illustrate the quality

of the new bounds in comparison to other spectral bounds and the Frieze &

Jerrum bound. We do not concern ourselves with the computational effort

to obtain the distances involved in the new bounds, which we compute using290

a straightforward enumeration procedure. Developing efficient algorithms for

determining them and dealing with large instances is a challenging matter for

future research work. In the present study, we consider graphs having up to 30

nodes, and with the practical setting described hereafter, the computation of a

single bound involving the distances (denoted Sp in what follows) for a fixed295

value of the parameter r takes about 45 minutes, whereas it is negligible (less

than one second) for the other bounds (denoted FJ , vDS and N hereafter).

6.1. Practical setting

All the computational experiments were performed on a laptop using a pro-

cessor Intel Core i7-2640M CPU @ 2.80GHz x 4, 7.7 Gio RAM. Our implemen-300

tation is in C, and the SDPs were solved using CSDP [9]. The graphs used in

our experiments are as follows, where d stands for a real value in [0, 1]:

• gka1b, gka2b, gka6a, gka7a: these are four instances of unconstrained

binary quadratic programs of the form: maxx∈{0,1}n x
TQx, taken from

[16], where Q is a symmetric matrix of order n ≤ 30. In our experiments,305

the matrix Q is re-interpreted as the weighted adjacency matrix of a graph

of order n, ignoring the diagonal coefficients. The off-diagonal coefficients

of Q are integers in [0, 100] for gka1b, gka2b and integers in [−100, 100]

for gka6a, gka7a.
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• Cn: the cycle with n nodes.310

• Kn: the complete graph with n nodes.

• Pi(n, d): planar graphs of order n, with density parameter d ∈ [0, 1] (so

that the number of edges is about 3(n− 2)d), i = 1, 2, . . . , 8.

• Ri(n, p): random graphs with order n and density parameter d (so that

the number of edges is about n(n−1)
2 d), i = 1, 2, . . . , 12.315

Except for the four instances from [16], all the instances were generated using

rudy [25]. (We indicate in Appendix A the input data to generate the instances

different from the ones taken from [16].)

In our experiments, we consider both the cases of unit and non-unit edge

weights. For the instances from [16], setting the nonzero entries of Q to value320

one is indicated by the the notation (unit) next to the name of the instance. For

the case of non-unit edge weights, except for the four instances from [16] (for

which we use the original weights), these are uniformly and randomly generated

in [−100, 100] using rudy [25].

The computational results are reported using the following notation:325

• FJ : upper bound from (k-SDP ).

• vDS: upper bound from [28] (Theorem 2.1).

• N : upper bound from [22] (Theorem 2.2).

• Sp: upper bound from Corollary 3.2 with the value for r that is mentioned

in parentheses.330

• FJ + Sp: upper bound from Theorem 3.1 with the value for r that is

mentioned in parentheses and the matrix Q = B(Y ∗) as described in

Section 4.

• For Sp and FJ +Sp, we also report in additional columns the best upper

bound from testing all the values {−k + 0.5q : q = 0, 1, ..., 4} for r and335
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selecting the value rbest that gives the lowest bound (reported in paren-

theses).

6.2. Computational results

The results for instances of Max 3-Cut (resp. Max 4-Cut and Max 5-

Cut) are reported in Table 2 (resp. 4, 6) for the case of unit weights and in340

Table 3 (resp. 5, 7) for non-unit weights (see the previous section).

If we first consider the bounds not involving semidefinite programming, i.e.

vDS, N and Sp, the best results were obtained with Sp (for k = 3, 4, 5) with the

exception of two instances from [16] for the case of unit weights. In particular

for the case of non-unit weights the gaps are significant between Sp on the one345

hand and vDS and N on the other hand. The instance K30 with unit weights

for Max 4-Cut (see Table 4) illustrates our discussion following Proposition

5.6 on cases when Sp coincides with mck(G,W ) and strictly improves over FJ ,

vDS and N .

Considering now the bounds using (k-SDP ) (i.e. FJ and FJ + Sp), they350

clearly (non strictly) dominate the other bounds. The improvements over FJ

obtained with FJ +Sp seem modest for the case of unit weights but tend to be

more important for the case of non-unit weights.

Finally, concerning the question raised in Section 3 about the best value of

the parameter r and its impact on the spectral bound from Theorem 3.1, our355

experiments suggest that the best values may be close to 1 − k, but possibly

different. This is illustrated, for example, by the values of Sp on the planar

instances from Table 3. The results also show that small modifications of this

parameter may lead to substantial improvements of the bound, in particular

for the case of non-unit weights and without perturbations of the weighted360

adjacency matrix.
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Table 2: Computational results on upper bounds for Max 3-Cut and unit weights

Instance |V | |E| FJ vDS N Sp FJ + Sp Sp FJ + Sp

(r = −2) (r = −2) (r = rbest) (r = rbest)

gka1b (unit) 20 187 133.33 133.33 138.00 137.25 133.17 137.25 (-2.0) 133.17 (-2.0)

gka2b (unit) 30 429 300.00 300.00 306.00 304.82 300.00 304.82 (-2.0) 300.00 (-2.0)

gka6a (unit) 30 174 156.05 197.81 171.08 162.25 154.81 162.25 (-2.0) 154.81 (-2.0)

gka7a (unit) 30 211 180.69 214.56 195.26 186.87 178.97 186.87 (-2.0) 178.97 (-2.0)

C30 30 30 30.00 40.00 40.00 38.75 30.00 38.17 (-2.5) 30.00 (-2.0)

K30 30 435 300.00 300.00 300.00 300.00 300.00 300.00 (-2.0) 300.00 (-2.0)

P1(30, .7) 30 58 57.00 116.70 72.71 65.50 56.90 65.50 (-2.0) 56.90 (-2.0)

P2(30, .7) 30 58 56.34 136.83 75.05 67.06 56.23 67.06 (-2.0) 56.23 (-2.0)

P3(30, .9) 30 75 70.06 143.74 81.62 76.27 69.73 76.27 (-2.0) 69.73 (-2.0)

P4(30, .9) 30 75 70.29 171.67 82.84 77.03 70.09 77.03 (-2.0) 70.09 (-2.0)

R1(30, .25) 30 109 104.82 138.91 119.87 112.04 104.05 112.04 (-2.0) 104.05 (-2.0)

R2(30, .25) 30 109 103.95 155.33 117.09 110.07 103.16 110.07 (-2.0) 103.16 (-2.0)

R3(30, .5) 30 218 187.87 218.32 199.63 192.62 186.26 192.62 (-2.0) 186.26 (-2.0)

R4(30, .5) 30 218 185.84 222.24 194.68 188.89 184.24 188.89 (-2.0) 184.24 (-2.0)

R5(30, .8) 30 348 270.25 285.63 280.02 275.02 268.99 275.02 (-2.0) 268.99 (-2.0)

R6(30, .8) 30 348 270.26 291.34 281.34 275.60 268.98 275.60 (-2.0) 268.98 (-2.0)
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Table 3: Computational results on upper bounds forMax 3-Cut and non-unit weights

Instance |V | |E| FJ vDS N Sp FJ + Sp Sp FJ + Sp

(r = −2) (r = −2) (r = rbest) (r = rbest)

gka1b 20 187 7547.21 8451.14 7921.31 7698.05 7502.65 7698.05 (-2.0) 7502.65 (-2.0)

gka2b 30 429 16605.75 18564.99 17148.43 16791.01 16521.28 16791.01 (-2.0) 16521.28 (-2.0)

gka6a 30 174 2454.64 4470.14 3631.95 2972.53 2365.88 2972.53 (-2.0) 2365.88 (-2.0)

gka7a 30 211 2671.19 6728.62 3960.69 3166.80 2545.51 3166.80 (-2.0) 2545.51 (-2.0)

C30 30 30 1122.00 2530.93 1638.77 1496.45 1122.00 1492.34 (-2.5) 1122.00 (-2.0)

K30 30 435 4289.89 7774.93 5314.43 4565.10 4091.73 4565.10 (-2.0) 4091.73 (-2.0)

P5(30, .7) 30 58 1373.12 4079.19 2541.64 2002.70 1354.35 1969.65 (-1.5) 1353.04 (-1.5)

P6(30, .7) 30 58 1103.17 3565.42 2187.73 1665.76 1083.47 1652.84 (-1.5) 1079.88 (-1.5)

P7(30, .9) 30 75 824.25 3470.83 1747.35 1302.61 791.01 1280.31 (-1.5) 791.01 (-2.0)

P8(30, .9) 30 75 1659.94 4287.78 3429.51 2620.02 1645.23 2545.28 (-1.5) 1644.77 (-1.5)

R7(30, .25) 30 109 2316.90 5051.98 3421.89 2883.97 2281.90 2883.97 (-2.0) 2281.90 (-2.0)

R8(30, .25) 30 109 2286.42 5540.40 3726.62 2947.49 2221.64 2947.49 (-2.0) 2221.64 (-2.0)

R9(30, .5) 30 218 2186.70 4476.53 3062.93 2524.49 2047.29 2524.49 (-2.0) 2047.29 (-2.0)

R10(30, .5) 30 218 3112.21 6667.96 4360.54 3717.39 3013.75 3717.39 (-2.0) 3013.75 (-2.0)

R11(30, .8) 30 348 4312.47 6578.78 5196.61 4629.66 4171.72 4629.66 (-2.0) 4171.72 (-2.0)

R12(30, .8) 30 348 4085.90 7113.67 5390.40 4519.50 3931.45 4519.50 (-2.0) 3931.45 (-2.0)

23



Table 4: Computational results on upper bounds for Max 4-Cut and unit weights

Instance |V | |E| FJ vDS N Sp FJ + Sp Sp FJ + Sp

(r = −3) (r = −3) (r = rbest) (r = rbest)

gka1b (unit) 20 187 150.00 150.00 155.25 154.67 150.00 154.67 (-3.0) 150.00 (-3.0)

gka2b (unit) 30 429 337.50 337.50 344.25 343.07 337.00 343.07 (-3.0) 337.00 (-3.0)

gka6a (unit) 30 174 168.90 222.54 192.46 180.36 168.40 180.36 (-3.0) 168.40 (-3.0)

gka7a (unit) 30 211 198.96 241.37 219.67 208.57 197.71 208.57 (-3.0) 197.71 (-3.0)

C30 30 30 30.00 45.00 45.00 40.95 30.00 40.95 (-3.0) 30.00 (-3.0)

K30 30 435 337.50 337.50 337.50 337.00 337.00 337.00 (-3.0) 337.00 (-3.0)

P1(30, .7) 30 58 58.00 131.29 81.80 73.68 58.00 73.23 (-2.5) 58.00 (-3.0)

P2(30, .7) 30 58 58.00 153.94 84.44 76.93 58.00 75.94 (-2.5) 58.00 (-3.0)

P3(30, .9) 30 75 75.00 161.70 91.82 85.49 75.00 85.49 (-3.0) 75.00 (-3.0)

P4(30, .9) 30 75 75.00 193.13 93.19 86.36 75.00 86.13 (-2.5) 75.00 (-3.0)

R1(30, .25) 30 109 109.00 156.28 134.86 124.21 109.00 124.21 (-3.0) 109.00 (-3.0)

R2(30, .25) 30 109 108.98 174.75 131.73 122.35 108.98 122.35 (-3.0) 108.98 (-3.0)

R3(30, .5) 30 218 205.72 245.61 224.58 215.03 204.83 215.03 (-3.0) 204.83 (-3.0)

R4(30, .5) 30 218 204.92 250.02 219.02 211.42 204.26 211.42 (-3.0) 204.26 (-3.0)

R5(30, .8) 30 348 300.77 321.33 315.02 307.25 299.46 307.25 (-3.0) 299.46 (-3.0)

R6(30, .8) 30 348 301.18 327.75 316.51 308.68 299.98 308.68 (-3.0) 299.98 (-3.0)
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Table 5: Computational results on upper bounds for Max 4-Cut and non-unit weights

Instance |V | |E| FJ vDS N Sp FJ + Sp Sp FJ + Sp

(r = −3) (r = −3) (r = rbest) (r = rbest)

gka1b 20 187 8332.67 9507.53 8911.47 8652.01 8309.91 8652.01 (-3.0) 8309.91 (-3.0)

gka2b 30 429 18409.31 20885.61 19291.98 18763.12 18336.08 18763.12 (-3.0) 18336.08 (-3.0)

gka6a 30 174 2514.45 5028.91 4085.94 3271.60 2419.39 3221.83 (-2.5) 2413.12 (-2.5)

gka7a 30 211 2735.57 7569.69 4455.78 3580.26 2653.06 3515.72 (-2.5) 2618.38 (-2.0)

C30 30 30 1122.00 2847.29 1843.61 1603.17 1122.00 1603.17 (-3.0) 1122.00 (-3.0)

K30 30 435 4435.21 8746.79 5978.73 4956.97 4256.00 4956.97 (-3.0) 4251.25 (-2.5)

P5(30, .7) 30 58 1389.23 4589.09 2859.34 2323.69 1377.79 2246.66 (-2.0) 1373.35 (-2.0)

P6(30, .7) 30 58 1108.82 4011.10 2461.20 1894.45 1097.06 1840.77 (-2.5) 1090.45 (-2.0)

P7(30, .9) 30 75 852.91 3904.68 1965.77 1540.86 830.20 1445.59 (-2.0) 827.43 (-2.0)

P8(30, .9) 30 75 1671.66 4823.75 3858.20 3013.76 1665.97 2921.77 (-2.0) 1662.89 (-2.0)

R7(30, .25) 30 109 2351.97 5683.48 3849.62 3188.21 2332.51 3188.21 (-3.0) 2331.72 (-2.5)

R8(30, .25) 30 109 2330.44 6232.94 4192.45 3396.54 2283.29 3255.73 (-2.5) 2270.30 (-2.0)

R9(30, .5) 30 218 2247.85 5036.09 3445.79 2705.54 2168.96 2705.54 (-3.0) 2140.88 (-2.0)

R10(30, .5) 30 218 3203.67 7501.45 4905.60 4106.77 3120.57 4070.72 (-2.5) 3118.76 (-2.5)

R11(30, .8) 30 348 4428.04 7401.12 5846.18 5111.59 4314.15 5111.59 (-3.0) 4308.57 (-2.5)

R12(30, .8) 30 348 4172.81 8002.88 6064.20 4954.34 4044.38 4948.71 (-2.5) 4016.76 (-2.0)
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Table 6: Computational results on upper bounds for Max 5-Cut and unit weights

Instance |V | |E| FJ vDS N Sp FJ + Sp Sp FJ + Sp

(r = −4) (r = −4) (r = rbest) (r = rbest)

gka1b (unit) 20 187 160.00 160.00 165.60 165.12 160.00 165.12 (-4.0) 160.00 (-4.0)

gka2b (unit) 30 429 360.00 360.00 367.20 366.48 360.00 366.48 (-4.0) 360.00 (-4.0)

gka6a (unit) 30 174 173.79 237.37 205.29 192.65 173.75 191.94 (-3.5) 173.75 (-4.0)

gka7a (unit) 30 211 207.56 257.47 234.31 223.14 207.00 222.62 (-3.5) 207.00 (-4.0)

C30 30 30 30.00 48.00 48.00 43.28 30.00 43.15 (-3.5) 30.00 (-4.0)

K30 30 435 360.00 360.00 360.00 360.00 360.00 360.00 (-4.0) 360.00 (-4.0)

P1(30, .7) 30 58 58.00 140.04 87.25 79.25 58.00 78.46 (-3.0) 58.00 (-4.0)

P2(30, .7) 30 58 58.00 164.20 90.07 82.57 58.00 82.09 (-3.0) 58.00 (-4.0)

P3(30, .9) 30 75 75.00 172.48 97.94 91.74 75.00 91.26 (-3.5) 75.00 (-4.0)

P4(30, .9) 30 75 75.00 206.00 99.41 92.55 75.00 92.04 (-3.5) 75.00 (-4.0)

R1(30, .25) 30 109 109.00 166.70 143.85 133.11 109.00 132.16 (-3.5) 109.00 (-4.0)

R2(30, .25) 30 109 109.00 186.40 140.51 130.64 109.00 130.09 (-3.5) 109.00 (-4.0)

R3(30, .5) 30 218 213.68 261.98 239.56 228.81 213.36 228.79 (-3.5) 213.36 (-4.0)

R4(30, .5) 30 218 213.69 266.69 233.62 224.64 213.13 224.64 (-4.0) 213.13 (-4.0)

R5(30, .8) 30 348 318.42 342.75 336.02 327.59 317.11 327.59 (-4.0) 317.11 (-4.0)

R6(30, .8) 30 348 318.53 349.60 337.61 328.98 317.53 328.98 (-4.0) 317.53 (-4.0)

7. Conclusion

In this paper we introduced a new class of bounds for the Max k-Cut

problem involving the spectrum of the (possibly perturbed) weighted adjacency

matrix. We exhibited a family of instances for which the new bounds are tight.365

We showed that truncated variants of the bounds can be computed in poly-

nomial time. Computational experiments show that the new bounds compare

well with other spectral bounds from the literature. We proved that particu-

lar perturbations of the weighted adjacency matrix could be used so that the

bound obtained using our results dominates (non strictly) the bound from the370

Frieze & Jerrum semidefinite relaxation. Future research will look at developing

efficient methods for computing the distances involved in the expression of the
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Table 7: Computational results on upper bounds for Max 5-Cut and non-unit weights

Instance |V | |E| FJ vDS N Sp FJ + Sp Sp FJ + Sp

(r = −4) (r = −4) (r = rbest) (r = rbest)

gka1b 20 187 8708.12 10141.37 9505.57 9215.10 8699.70 9215.10 (-4.0) 8699.70 (-4.0)

gka2b 30 429 19373.01 22277.99 20578.12 19984.58 19314.46 19984.58 (-4.0) 19314.46 (-4.0)

gka6a 30 174 2532.91 5364.17 4358.33 3607.97 2478.77 3408.51 (-3.0) 2452.83 (-3.0)

gka7a 30 211 2755.71 8074.34 4752.83 3840.87 2705.64 3732.70 (-3.0) 2687.73 (-3.0)

C30 30 30 1122.00 3037.11 1966.52 1674.95 1122.00 1664.52 (-3.5) 1122.00 (-4.0)

K30 30 435 4482.41 9329.91 6377.31 5297.62 4361.68 5150.83 (-3.5) 4315.81 (-3.0)

P5(30, .7) 30 58 1395.68 4895.03 3049.96 2535.54 1387.09 2428.06 (-3.0) 1383.64 (-3.0)

P6(30, .7) 30 58 1111.26 4278.51 2625.28 2110.94 1103.19 1957.86 (-3.0) 1099.47 (-3.0)

P7(30, .9) 30 75 864.80 4164.99 2096.82 1673.72 845.99 1598.45 (-3.0) 845.32 (-3.5)

P8(30, .9) 30 75 1674.19 5145.34 4115.42 3352.09 1670.80 3124.17 (-3.0) 1669.49 (-3.0)

R7(30, .25) 30 109 2358.40 6062.38 4106.26 3396.25 2345.38 3330.54 (-3.5) 2342.37 (-3.0)

R8(30, .25) 30 109 2341.76 6648.47 4471.95 3719.89 2317.87 3546.93 (-3.0) 2307.28 (-3.0)

R9(30, .5) 30 218 2262.05 5371.83 3675.51 2961.17 2219.45 2807.62 (-3.0) 2199.66 (-3.0)

R10(30, .5) 30 218 3231.45 8001.55 5232.64 4457.79 3176.37 4315.86 (-3.0) 3165.59 (-3.0)

R11(30, .8) 30 348 4450.17 7894.53 6235.93 5379.06 4399.91 5363.86 (-3.5) 4376.85 (-3.0)

R12(30, .8) 30 348 4200.29 8536.41 6468.48 5316.22 4118.67 5175.52 (-3.5) 4084.17 (-3.0)

new bounds.
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Appendix A. Input data to generate the test graphs with “rudy”

Instance Command line

C30 rudy -circuit 30

C30 (W ) rudy -circuit 30 -random -100 100 4001

K30 rudy -clique 30 -random 1 1 1000

K30 (W ) rudy -clique 30 -random -100 100 5001

P1(30, .7) rudy -planar 30 70 1001

P2(30, .7) rudy -planar 30 70 2001

P3(30, .9) rudy -planar 30 90 3001

P4(30, .9) rudy -planar 30 90 4001

P5(30, .7) rudy -planar 30 70 1001 -random -100 100 1001

P6(30, .7) rudy -planar 30 70 2001 -random -100 100 2001

P7(30, .9) rudy -planar 30 90 3001 -random -100 100 3001

P8(30, .9) rudy -planar 30 90 4001 -random -100 100 4001

R1(30, .25) rudy -rnd graph 30 25 1001

R2(30, .25) rudy -rnd graph 30 25 2001

R3(30, .5) rudy -rnd graph 30 50 3001

R4(30, .5) rudy -rnd graph 30 50 4001

R5(30, .8) rudy -rnd graph 30 80 5001

R6(30, .8) rudy -rnd graph 30 80 6001

R7(30, .25) rudy -rnd graph 30 25 1001 -random -100 100 1001

R8(30, .25) rudy -rnd graph 30 25 2001 -random -100 100 2001

R9(30, .5) rudy -rnd graph 30 50 3001 -random -100 100 3001

R10(30, .5) rudy -rnd graph 30 50 4001 -random -100 100 4001

R11(30, .8) rudy -rnd graph 30 80 5001 -random -100 100 5001

R12(30, .8) rudy -rnd graph 30 80 6001 -random -100 100 6001
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