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dSchool of Mathematics, University of Edinburgh, Edinburgh, United Kingdom
eMsunhealth Technology Corp. Ltd

Abstract

In this note, we consider several polynomial optimization formulations of the
maximum independent set problem and the use of the Lasserre hierarchy
with these different formulations. We demonstrate using computational ex-
periments that the choice of formulation may have a significant impact on the
resulting bounds. We also provide theoretical justifications for the observed
behavior.
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1. Introduction

Polynomial optimization and its close connections with semidefinite and
conic optimization have attracted a lot of attention in recent years [1]. It is
well known that semidefinite optimization has had a tremendous impact on
combinatorial optimization, particularly with the groundbreaking results of
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Lovász and Schrijver [2] and Goemans and Williamson [3]. This motivates
the study of the application of polynomial optimization to combinatorial
optimization problems.

Moreover, combinatorial problems can typically be formulated in different
ways, and it is known that different formulations of the same combinatorial
problem may lead to different semidefinite relaxations and hence to different
global bounds; the example of the maximum cut problem is explored from
this perspective in [4].

Finally, various approaches have been proposed to construct hierarchies
of semidefinite relaxations for (binary) combinatorial optimization problems
(and applied to the stable set polytope). Lovász and Schrijver [2] used a
sequence of lift-and-project operations to construct their hierarchy, while
Lasserre’s work [5] starts with a polynomial formulation and progressively
refines it by providing another hierarchy. De Klerk and Pasechnik [6] used
copositive programming to construct another hierarchy and yet another one
follows by the Reformulation-Linearization Technique approach by Sherali
and Adams [7]. All these hierarchies have in common the property of con-
verging to the optimal solution in a finite number of steps and a comparison
among Sherali-Adams, Lovász-Schrijver and Lasserre hierarchies was carried
out by Laurent [8].

In this note, we focus on the Lasserre approach and how it is impacted
by using different polynomial formulations of the same problem. Specifically,
we consider several polynomial optimization formulations of the maximum
independent set problem and the use of the Lasserre hierarchy with these
different formulations. We demonstrate using computational experiments
that the choice of formulation may have a significant impact on the resulting
bounds. We also provide theoretical justifications for the observed behavior.

A specific comparison among hierarchies for the maximum independent
set problem has been considered by Gvozdenović and Laurent [9]. They
proved that the Lasserre’s is tighter than the Lovász-Schrijver’s, and tighter
than De Klerk and Pasechnik’s as well. However, all the comparisons in
the literature used the Lasserre’s hierarchy of one polynomial formulation.
Our results show that this particular formulation is the best among a set of
polynomial formulations, thus confirming the interest of the analysis in [9].

The paper is organized as follows. In Section 2, we give some preliminaries
about polynomial optimization, while Section 3 introduces the maximum in-
dependent set problem and computationally motivates the interest of looking
at different polynomial formulations for the problem. Section 4 provides the
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theoretical content of the paper and in Section 5 we draw some concluding
remarks.

2. Preliminaries

Polynomial optimization is NP-hard in general, and the Lasserre hierarchy
has great theoretical and practical appeal because it provides a sequence of
tractable relaxations whose optimal objective values converge to the global
optimum. We briefly review the construction of the Lasserre hierarchy (in the
dual form). For more details about Lasserre hierarchy, see e.g. [1, 5, 10, 11].

Given polynomials f , g1, . . . , gm, we consider the following general poly-
nomial optimization problem:

fmin = min f(x) : s.t. gj(x) ≥ 0, ∀j = 1, . . . ,m. (1)

Let {xα}α∈Nn be a canonical basis for R[x]. Given y = {yα} ∈ RNn
, we de-

fine Ly : R[x]→ R as the linear functional which maps a polynomial function

f =
∑
α∈Nn

fαx
α
(
fα are the coefficients of f in the canonical basis {xα}α∈Nn

)
to the real value Ly(f) =

∑
α∈Nn

fαyα

The moment matrix Md(y) is the matrix of RNn
d×N

n
d such that its entries

are:

Md(y)(α, β) = yα+β, ∀α, β ∈ Nn
d .

Given a polynomial function θ(x) =
∑

γ∈Nn θγx
γ, the localizing matrix

Md(θ ? y) ∈ RNn
d×N

n
d is the matrix of RNn

d×N
n
d such that its entries are:

Md(θ ? y)(α, β) =
∑
γ∈Nn

θγyα+β+γ, ∀α, β ∈ Nn
d .

Let the degree of gj is 2vj or 2vj − 1. Then, for problem (1), the Lasserre
relaxation of order d provides a lower bound ρd for fmin:

ρd = minLy(f) : s.t. Md(y) � 0, Md−vj(gj?y) � 0,∀j = 1, . . . ,m,

Ly(1) = 1.
(2)

The sequence of Lasserre relaxations of increasing order d = 1, 2, 3, . . .
forms the Lasserre hierarchy.
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3. Maximum independent set

Given a graph G = (V,E), the maximum independent set problem con-
sists of determining the maximum cardinality of any subset of vertices such
that no two vertices in that subset are connected by an edge of G. We con-
sider four different formulations of this problem using quadratic polynomials.
The formulations are:

ρ = max
∑
i∈V

xi

s.t. xixj = 0, ∀(i, j) ∈ E, x2i − xi = 0, ∀i ∈ V. (3)

or s.t. xixj ≤ 0, ∀(i, j) ∈ E, x2i − xi = 0, ∀i ∈ V. (4)

or s.t. xi + xj ≤ 1, ∀(i, j) ∈ E, x2i − xi = 0, ∀i ∈ V. (5)

or s.t. xixj = 0, ∀(i, j) ∈ E, 0 ≤ xi ≤ 1, ∀i ∈ V. (6)

Let us compute the upper bounds arising from the Lasserre relaxation
(2) of order d = 1 for each of the above four formulations. The bounds
are reported in Table 1, where Cn denotes the cycle with n vertices and K4

denotes the complete graph with 4 vertices.

Table 1: Bounds from the Lasserre relaxation of order d = 1 for different formulations

Graph Optimal Bound Bound Bound Bound

bound from (3) from (4) from (5) from (6)

C3 1 1 1 1.5 3

C4 2 2 2 2 4

K4 1 1 1 2 4

C5 2 2.236 2.236 2.5 5

C6 3 3 3 3 6

C7 3 3.318 3.318 3.5 7

Petersen graph 4 4 4 5 10

We observe that the bounds obtained using (3) and (4) are always equal,
and are the best for all of these graphs. On the other hand, the bounds
from (6) are consistently the weakest; indeed the bound obtained using (6) is
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always equal to the trivial upper bound |V |, as we prove formally in Proposi-
tion 4.1 below. Finally, the bounds from (5) are equal or moderately weaker
than those from (3) and (4).

Although these results are only for 7 small graphs, they clearly show that
the choice of formulation dramatically impacts the quality of the resulting
bound. The remainder of this note is concerned with providing some theo-
retical justification for the results in Table 1.

4. Independent Set Formulations and Lasserre Relaxations

4.1. Notation

Let us consider the following polynomials of R|V |

g+ij(x) = xixj, g
−
ij(x) = −xixj, lij(x) = 1− xi − xj, ∀(i, j) ∈ E

h+i (x) = x2i − xi, h−i (x) = −x2i + xi, q
+
i (x) = xi, q

−
i (x) = 1− xi, ∀i ∈ V

f(x) =
∑
i∈V

xi.

Let (ei)i∈V be the canonical basis of R|V |. For a fixed degree d, the
Lasserre relaxations of order d of the above formulations are:

ρd,3 = max Ly(f)

s.t. Md(y) � 0,

Md−1(g
+
ij ? y) = 0, ∀(i, j) ∈ E,

Md−1(h
+
i ? y) = 0, ∀i ∈ V,
Ly(1) = 1.

ρd,4 = max Ly(f)

s.t. Md(y) � 0,

Md−1(g
−
ij ? y) � 0, ∀(i, j) ∈ E,

Md−1(h
+
i ? y) = 0, ∀i ∈ V,
Ly(1) = 1.

ρd,5 = max Ly(f)

s.t. Md(y) � 0,

Md−1(lij ? y) � 0, ∀(i, j) ∈ E,
Md−1(h

+
i ? y) = 0, ∀i ∈ V,
Ly(1) = 1.

ρd,6 = max Ly(f)

s.t. Md(y) � 0,

Md−1(g
+
ij ? y) = 0, ∀(i, j) ∈ E,

Md−1(q
+
i ? y) � 0, ∀i ∈ V,

Md−1(q
−
i ? y) � 0, ∀i ∈ V,
Ly(1) = 1.
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4.2. Value of ρ1,6 for every graph G

Our first result is the proof that the optimal value of the Lasserre relax-
ation of order d = 1 using formulation (6) is equal to |V | for every graph
G.

Proposition 4.1. For every graph G, ρ1,6 = |V |.
Proof. For every feasible solution {yα}, we have 0 ≤ yei ≤ 1, ∀i ∈ V ,
therefore ∑

i∈V

yei = Ly(f) ≤ |V |.

To show attainment, consider y∗ = {y∗α} such that:
y∗0 = 1,

y∗ei = 1, ∀i ∈ V,
y∗2ei = |V |+ 1, ∀i ∈ V,
y∗ei+ej = 0, ∀(i, j) ∈ V 2, i 6= j.

It is straightforward to check that y∗ is a feasible solution of the Lasserre
relaxation of order d = 1 for formulation (6), and that this solution achieves
the objective value |V |.

4.3. Relationship between ρd,3 and ρd,4
The next proposition shows that the set of feasible solutions of the d

order Lasserre relaxation for formulation (3) is a subset of the set of feasible
solutions the relaxation with the same order for formulation (4). Moreover,
for d ≥ 2, the two feasible sets are equal, and hence so are the bounds.

Proposition 4.2. For every graph G and order d ≥ 1, ρd,3 ≤ ρd,4. Moreover,
if d ≥ 2, then ρd,3 = ρd,4.

Proof. The first claim follows from the observation that Md−1(g
+
ij ? y) = 0

implies Md−1(g
−
ij ? y) � 0.

To prove the second claim, let y = {yα} be a feasible solution of the
Lasserre hierarchy of order d for formulation (4). We know that for every

(α, β) ∈ N|V |d−1 × N|V |d−1

Md−1(g
−
ij ? y)(α, β) = −yα+β+ei+ej , ∀(i, j) ∈ E,

Md−1(h
+
i ? y)(α, β) = yα+β+2ei − yα+β+ei = 0, ∀i ∈ V.
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then for every α ∈ N|V |d−2 and k ∈ V ,

Md−1(g
−
ij ? y)(α, α) = −y2α+ei+ej

= −y2α+2ei+ej

= −y2α+2ei+2ej

= −Md(y)(α + ei + ej, α + ei + ej).

and

det
[
Md−1(g

−
ij ? y){α,α+ek},{α,α+ek}

]
=

∣∣∣∣ −y2α+ei+ej −y2α+ek+ei+ej
−y2α+ek+ei+ej −y2α+2ek+ei+ej

∣∣∣∣
=

∣∣∣∣ −y2α+ei+ej −y2α+ek+ei+ej
−y2α+ek+ei+ej −y2α+ek+ei+ej

∣∣∣∣
= y2α+ei+ejy2α+ek+ei+ej − y22α+ek+ei+ej .

Since Md−1(g
−
ij ? y) and Md(y) are semi-definite positive matrices then
Md−1(g

−
ij ? y)(α, α) ≥ 0,

Md(y)(α + ei + ej, α + ei + ej) ≥ 0,

det
[
Md−1(g

−
ij ? y){α,α+ek},{α,α+ek}

]
≥ 0.

Which implies that{
y2α+ei+ej = 0,

−y22α+ek+ei+ej ≥ 0.
and so

{
y2α+ei+ej = 0,

y22α+2ek+ei+ej
= 0.

This proves that Md−1(g
−
ij ? y)(α, α) = 0 for every α ∈ N|V |d−1. Therefore

Md−1
(
g−ij ? y

)
is semi-definite positive matrix with zero on the diagonal. It

is the zero matrix and this proves that y is also a feasible solution of the level
d of the Lasserre hierarchy for formulation (3).

4.4. Relationship between ρd,4 and ρd,5

The next result is that the feasible set of the Lasserre relaxation of order d
using the formulation (4) is a subset of the feasible set of the relaxation of the
same order for formulation (5). Hence, the bound ρd,5 is always dominated
by the bound ρd,4.

Proposition 4.3. For every graph G and order d ≥ 1, ρd,4 ≤ ρd,5.
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Proof. Let y = {yα} be a feasible solution of the relaxation of (4) of order

d. We know that for every (α, β) ∈ N|V |d−1 × N|V |d−1:

Md−1(g
−
ij ? y)(α, β) = −yα+β+ei+ej ∀(i, j) ∈ E,

Md−1(h
+
i ? y)(α, β) = yα+β+2ei − yα+β+ei ∀i ∈ V,

Md−1(lij ? y)(α, β) = yα+β − yα+β+ei − yα+β+ej ∀(i, j) ∈ E.

Let A ∈ RN|V |d−1×N
|V |
d such that: A(α, γ) =


1 if γ = α,

−1 if γ = α + ei,

−1 if γ = α + ej,

0 otherwise.

For every

(α, β) ∈ N|V |d−1 × N|V |d−1:[
AMd(y)AT

]
(α, β) =

∑
γ∈N|V |d

∑
δ∈N|V |d

A(α, γ)Md(y)(γ, δ)AT (δ, β)

=
∑
γ∈N|V |d

∑
δ∈N|V |d

A(α, γ)Md(y)(γ, δ)A(β, δ)

=
∑
γ∈N|V |d

∑
δ∈N|V |d

A(α, γ)yγ+δA(β, δ)

= yα+β − yα+β+ei − yα+β+ej
−yα+ei+β + yα+ei+β+ej + yα+ei+β+ej
−yα+ej+β + yα+ej+β+ei + yα+ej+β+ej

= yα+β − yα+β+ei − yα+β+ej︸ ︷︷ ︸
=Md−1(lij?y)(α,β)

+ yα+β+2ei − yα+β+ei︸ ︷︷ ︸
=Md−1(h

+
i ?y)(α,β)

+ yα+β+2ej − yα+β+ej︸ ︷︷ ︸
=Md−1(h

+
j ?y)(α,β)

+2 yα+β+ei+ej︸ ︷︷ ︸
=−Md−1(g

−
ij?y)(α,β)

which implies that

Md−1(lij ? y) = AMd(y)AT + 2Md−1(g
−
ij ? y)−Md−1(h

+
j ? y)−Md−1(h

+
i ? y).

Since Md(y) � 0 then AMd(y)AT � 0. Moreover{
Md−1(g

−
ij ? y) � 0,

Md−1(h
+
j ? y) = Md−1(h

+
i ? y) = 0.
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Then Md−1(lij ? y) � 0 for all (i, j) ∈ E, and thus y is a feasible solution of
the d order Lasserre relaxation for formulation (5).

4.5. Relationship between ρd,3 and ρd,6
The next result is that the feasible set of the Lasserre relaxation of order

d using (3) is a subset of the feasible set of the relaxation of the same order
for formulation (6). Hence, the bound ρd,6 is always dominated by the bound
ρd,3.

Proposition 4.4. For every graph G and order d ≥ 1, ρd,3 ≤ ρd,6.

Proof. Let y = {yα} be a feasible solution of the relaxation of (3) of order

d. We know that for every (α, β) ∈ N|V |d−1 × N|V |d−1:

Md−1(g
−
ij ? y)(α, β) = −yα+β+ei+ej ∀(i, j) ∈ E,

Md−1(h
+
i ? y)(α, β) = yα+β+2ei − yα+β+ei ∀i ∈ V,

Md−1(q
+
i ? y)(α, β) = yα+β+ei ∀i ∈ V,

Md−1(q
−
i ? y)(α, β) = yα+β − yα+β+ei ∀i ∈ V,

Let A ∈ RN|V |d−1×N
|V |
d such that: A(α, γ) =

{
1 if γ = α + ei,

0 otherwise.
For every

(α, β) ∈ N|V |d−1 × N|V |d−1:[
AMd(y)AT

]
(α, β) =

∑
γ∈N|V |d

∑
δ∈N|V |d

A(α, γ)Md(y)(γ, δ)AT (δ, β)

=
∑
γ∈N|V |d

∑
δ∈N|V |d

A(α, γ)Md(y)(γ, δ)A(β, δ)

=
∑
γ∈N|V |d

∑
δ∈N|V |d

A(α, γ)yγ+δA(β, δ)

= yα+ei+β+ei
= yα+β+2ei − yα+β+ei + yα+β+ei
= Md−1(h

+
i ? y)(α, β) +Md−1(q

+
i ? y)(α, β)

which implies that

Md−1(q
+
i ? y) = AMd(y)AT −Md−1(h

+
i ? y).

9



Since Md(y) � 0 then AMd(y)AT � 0. Moreover Md−1(h
+
i ? y) = 0. Then

Md−1(q
+
i ? y) � 0 for all i ∈ V . On the other hand, let B ∈ RN|V |d−1×N

|V |
d such

that: B(α, γ) =


1 if γ = α,

−1 if γ = α + ei,

0 otherwise.

For every (α, β) ∈ N|V |d−1 × N|V |d−1:

[
BMd(y)BT

]
(α, β) =

∑
γ∈N|V |d

∑
δ∈N|V |d

B(α, γ)Md(y)(γ, δ)BT (δ, β)

=
∑
γ∈N|V |d

∑
δ∈N|V |d

B(α, γ)Md(y)(γ, δ)B(β, δ)

=
∑
γ∈N|V |d

∑
δ∈N|V |d

B(α, γ)yγ+δB(β, δ)

= yα+β − yα+β+ei − yα+ei+β + yα+ei+β+ei
= yα+β − yα+β+ei − yα+β+ei + yα+β+2ei

= Md−1(q
−
i ? y)(α, β) +Md−1(h

+
i ? y)(α, β).

which implies that

Md−1(q
−
i ? y) = BMd(y)BT −Md−1(h

+
i ? y).

Since Md(y) � 0 then BMd(y)BT � 0. Moreover Md−1(h
+
i ? y) = 0. Then

Md−1(q
−
i ?y) � 0 for all i ∈ V . Since Md−1(g

−
ij ?y) = 0, y is a feasible solution

of the d order Lasserre relaxation for formulation (6).

4.6. Relationships with the linear programming relaxations of maximum in-
dependent set

In this section, we establish the relationship among some of the formula-
tions discussed above and two famous linear programming (LP) relaxations
for the maximum independent set problem. More precisely, we consider two
LP formulations and we refer to them as ”weak” and ”strong”. The weak
formulation is that with constraints

xi + xj ≤ 1 ∀(i, j) ∈ E (7)

and nonnegativity, whereas the strong formulation replaces constraints (7)
with constraints ∑

i∈C

xi ≤ 1 ∀C ∈ C, (8)
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where C is the set of all maximam cliques in G.

Proposition 4.5. For every graph G = (V,E), the optimal value of the order
1 of the Lasserre hierarchy for formulation (5) is equal to the value of the
LP relaxation of the weak formulation of the independent set problem.

Proof. Let y = {yα}α be a feasible solution of the order 1 of the Lasserre
hierarchy of formulation (5), then

y0 = 1,

yei = y2ei , ∀i ∈ V,
yei + yej ≤ 1, ∀(i, j) ∈ E.

=⇒


y0 = 1,

0 ≤ yei ≤ 1, ∀i ∈ V,
yei + yej ≤ 1, ∀(i, j) ∈ E,

and (yei)i∈V is a feasible solution of the LP relaxation of the weak formu-
lation of the independent set problem. Conversely, let (xi)i∈V be a feasible
solution of the LP relaxation of the weak formulation of the independent

set problem, let X ∈ R|V |+1 :

{
X0 = 1,

Xi = xi, ∀i ∈ V,
A ∈ R(|V |+1)×(|V |+1) :

A diagonal,

A0,0 = 0,

Ai,i = xi(1− xi) ∀i ∈ V,
and y = {yα}α∈N|V |2

such that


y0 = 1,

yei = y2ei = xi, ∀i ∈ V,
yei+ej = xi × xj, ∀(i, j) ∈ V 2 i 6= j.

Then,
Ly(1) = y0 = 1,

M0(lij ? y) = 1− yei − yej = 1− xi − xj ≥ 0, ∀(i, j) ∈ E,
M0(h

+
i ? y) = y2ei − yei = 0, ∀i ∈ V,

M1(y) = XXT + A � 0.

This proves that y is a feasible solution of the level 1 of the Lasserre
hierarchy of formulation (5) with the value equal to

∑
i∈V yei =

∑
i∈V xi.
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In Theorem 10.4, Conforti et al. [12] proved that ρ1,3 is smaller than
the value of the LP relaxation of the strong formulation of the independent
set problem. In the following proposition, we extend this result to prove a
stronger relationship, namely that between the LP relaxation of the strong
formulation and the order 1 of the Lasserre hierarchy for formulation (4).
Such a result, with a different proof, was given independently by Szegedy
[13].

Proposition 4.6 ([13]). For every graph G = (V,E), the optimal value of
the order 1 of the Lasserre hierarchy for formulation (4) is smaller than the
value of the LP relaxation of the strong formulation of the independent set
problem.

Proof. Let y = {yα}α be a feasible solution of the level one of the Lasserre
hierarchy of formulation (4), then

y0 = 1,

yei = y2ei , ∀i ∈ V,
yei+ej ≤ 0, ∀(i, j) ∈ E.

Let W be a clique of G and X ∈ R|V |+1 such that :
X0 = 1,

Xi = −1, if i ∈ W,

Xi = 0, otherwise.

Then,

0 ≤ XTM1(y)X = y0 − 2
∑
i∈W

yei +
∑
i∈W

y2ei +
∑

(i,j)∈W 2,
i 6=j

yei+ej

≤ y0 − 2
∑
i∈W

yei +
∑
i∈W

yei

≤ 1−
∑
i∈W

yei .

This proves that (yei)i∈V is a feasible solution of the LP relaxation of the
strong formulation of the independent set problem.
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5. Summary of Results and Future Research

Using the notation previously defined, we summarize our results as fol-
lows: For d = 1: ρ1,3 ≤ ρ1,4 ≤ LPstrong ≤ LPweak = ρ1,5 ≤ |V | = ρ1,6, and
for d ≥ 2: ρd,3 = ρd,4 ≤ ρd,5 and ρd,3 = ρd,4 ≤ ρd,6. We believe these results
give an interesting, initial perspective on evaluating the quality of a formula-
tion not only in terms of its relaxation but also with respect to the Lasserre
relaxations originated by it.

In future research, it would be interesting to further study this question
for other combinatorial problems and for the other hierarchies in Section 1.
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