
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparison of machine learning methods for multiphase
flowrate prediction

Citation for published version:
Jiang, Z, Wang, H, Yang, Y & Li, Y 2020, Comparison of machine learning methods for multiphase flowrate
prediction. in 2019 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, pp. 1-
6, 2019 IEEE International Conference on Imaging Systems and Techniques , ABU DHABI, United Arab
Emirates, 8/12/19. https://doi.org/10.1109/IST48021.2019.9010450

Digital Object Identifier (DOI):
10.1109/IST48021.2019.9010450

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2019 IEEE International Conference on Imaging Systems and Techniques (IST)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 22. Dec. 2021

https://doi.org/10.1109/IST48021.2019.9010450
https://doi.org/10.1109/IST48021.2019.9010450
https://www.research.ed.ac.uk/en/publications/3343c892-464b-4081-972b-c6d2ca79e48f


Comparison of machine learning methods for
multiphase flowrate prediction

Zhenyu Jiang, Haokun Wang, Yunjie Yang
Agile Tomography Group, School of Engineering

University of Edinburgh
Edinburgh, UK
y.yang@ed.ac.uk

Yi Li
Division of Marine Science and Technology

Tsinghua Shenzhen International Graduate School
Shenzhen, Guandong,China

liyi@sz.tsinghua.edu.cn

Abstract—In this paper, three prevailing machine learning
methods, i.e. Deep Neural Network (DNN), Support Vector
Machine (SVM) and Gradient Boosting Decision Tree (GBDT)
models were investigated and compared to estimate the flowrate
of oil/gas/water three-phase flow. The time-series differential
pressure signals collected from Venturi tube together with
pressure and temperature measurements were utilized as input.
Multiphase flow experiments were conducted on a laboratory-
scale multiphase flow facility. Experimental results suggest that
DNN and SVM based methods were able to achieve accurate and
reliable estimation of multiphase flowrate, whilst GBDT failed to
fit the estimation process well. Another finding emerged from this
study is that volumetric gas phase flowrate can also be accurately
predicted by implementing SVM model.

Index Terms—deep neural network, flowrate, gradient boosting
decision tree, machine learning, multiphase flow, support vector
machine.

I. INTRODUCTION

Accurate and instantaneous estimation of the multiphase
flowrate is of significant importance to assist petroleum, gas
and other multiphase flow industries to reduce cost, emission
and enhance efficiency. Conventional studies suggest that
separating each phase out of the mixture and then using single-
phase flow meters to perform single-phase flow measurement
is an achievable method [1]. However, this method always
needs complex separating equipments and lack of real-time
sensing capability.

Several attempts have been made to find potential measure-
ment techniques for multiphase flow [2]. Differential pressure
detection based devices such as Venturi tube and orifice
plate, which perform well in single-phase flow metering,
have been tested in multiphase flow measurement [3]. Such
approaches, however, have failed to address accurately detect-
ing multiphase flow, especially in high gas volume fraction
(GVF) scenario. The failure of detecting high GVF multiphase
flow by using Venturi tube is mainly due to the detected
differential pressure crossing Venturi throat is sensitive to
the instantaneous change of liquid amount. In detail, a small
increasing of liquid amount usually leads to a large increasing
of the measured differential pressure across Venturi tube and
so causes gas flowrate overreading [4].

Recent evidence suggests that if the multiphase flowrate
detection could be performed in scenario of assuming that

there is no interaction between each flow phase, then, the
experiment results on detecting GVF over 95% are acceptable
[5]. However, in practical application, multiphase flow usually
contains complex phase components and above assumptions
cannot be satisfied.

To date, machine learning has been applied to explore
new ways of predicting multiphase flowrate. For instance,
Convolutional Neural Networks (CNN) and Flow Adversarial
Networks (FAN) on predicting gas-liquid multiphase flows
have been performed and the behaviour of the two models
were evaluated by Hu [6]. The experimental results reveal that
FAN has better performance on multiphase flowrate prediction
than CNN. Meanwhile, Artificial Neural Network (ANN)
was used to estimate flowrate of air-water two-phase flow
with the measurement error less than 10% [7]. Independent
component and principle component analysis were employed
to reduce the dimensionality of the features and to improve
the efficiency of ANN [8]. However, the ANN model needs
to be specifically tuned for different flow regimes, which is
inconvenient in practical applications. In addition, Support
Vector Machine (SVM) was also applied in multiphase flow
pattern recognition [9], indicating the possibility to train a
more adaptive machine to fit the comprehensive flow regimes
and predict instantaneous flowrate.

In this paper, the feasibility of estimating the flowrate of
gas/oil/water three-phase flow based on Venturi tube and ma-
chine learning methods was investigated. Instantaneous data,
such as the standard pressure, former and posterior differential
pressure and temperature are collected from Venturi tube as
the input of the machine learning models. Three prevailing
machine learning methods, i.e. Deep Neural Network (DNN),
SVM and Gradient Boosting Decision Tree (GBDT), are
implemented and the performance was evaluated by analysing
estimation error.

II. METHODOLOGY

A. Venturi tube for multiphase flowrate measurement

Venturi tube has been implemented for collecting multi-
phase flow data as input for DNN, SVM and GBDT models.
The implemented Venturi tube with upstream diameter D and
throat diameter d has been demonstrated in Fig. 1. It is able
to provides the instantaneous standard pressure (P), former



Fig. 1: Front view of conventional Venturi tube with upstream
diameter D, throat diameter d and detecting parameters includ-
ing standard pressure (P), former differential pressure (∆P1),
posterior differential pressure (∆P2) and temperature (T).

and posterior differential pressure (∆P1 and ∆P2) data as
input to estimate the instantaneous gas and liquid flowrate of
multiphase flow.

B. Deep neural network design and training
Instantaneous values of P, ∆P1, ∆P2 and T are selected as

four input layers for two DNN models to estimate the instan-
taneous liquid and gas flowrate for water-oil-gas multiphase
flow. The structure of the two DNN models are exactly the
same, which contains 50 hidden layers, as shown in Fig. 2.

Fig. 2: Deep Neural Network (DNN) structure with four input
parameters (P, ∆P1, ∆P2 and T), fifty hidden layers and one
output layer for multiphase flowrate estimation.

In detail, liquid and gas instantaneous flowrate are estimated
by two defined DNN models, fl and fg , respectively. It can
be express as:

r̃l = fl(P,∆P1,∆P2, T ; θl)
r̃g = fg(P,∆P1,∆P2, T ; θg)

(1)

where r̃l and r̃g are the estimated liquid and gas flowrate,
respectively. θl and θg are the optimal parameters for liquid
and gas estimation models.

Single phase flow meters are implemented to collect the
liquid and gas flow data in upstream section of Venturi tube
as reference for each model. The loss function for each model
is defined as:

Ll = E[(rl − r̃l)2]
Lg = E[(rg − r̃g)2]

(2)

where E is the expectation function.
For training process, the goal is to minimize the loss

functions by obtaining optimal values of θl and θg . It can be
achieved through back propagation which is detailed in (3):

θl = arg min︸ ︷︷ ︸
θl

Ll(∼; θl)

θg = arg min︸ ︷︷ ︸
θg

Lg(∼; θg)
(3)

The exponential linear unit (ELU) function was selected as
the activation function for each neuron except the output layer,
which can help to accelerate training and prevent over-fitting
to some degree [10]. The inputs will pass the DNN model with
50 hidden layers, and finally the predicted instantaneous liquid
or gas phase flowrate can be obtained at output layer. During
the training process, Levenberg-Marquardt method [11], which
belongs to the “mountain climbing” method and uses gradient
to find the maximum (minimum) value, was implied to obtain
the best solution for flowrate estimation problem.

C. SVM

SVM as a generalized linear classifier working on binary
classification with supervised learning has been proved that
it is able to detect and recognise liquid-gas two phase flow
pattern [9]. However, linear regression or binary classification
model is not suitable for instantaneously detecting multiphase
flow problem, which is a more sophisticated problem and can-
not be regarded as a linear problem. Therefore, an improved
SVM method with Gaussian kernel [12] is implemented in this
paper. The decision function combined with Gaussian kernel
can be formulated as shown in (4):

GSVM (x) = sign(
∑
SV

αnynK(xn, x) + b) (4)

where G(x) is the decision function of SVM model, sign(.) is
signum function, SV is the set of support vector, α is a weight
factor, yn is the volumetric flowrate of each single phase flow,
b is bias and K(.) is the general form of Gaussian kernel with
SVM parameter γ which can be expressed as:

K(x, x′) = exp(−γ
∥∥x− x′∥∥)2 (5)

where K(.) is the kernel function and x is the estimation data
set.

Since SVM performs a significant role in machine learning
and data processing field, hence the evaluation of SVM to
explore how machine learning works in flowrate estimation is
necessary.

D. GBDT

GBDT, also known as Multiple Additive Regression Tree
(MART) [13], is an iterative decision tree algorithm, which
consists of multiple decision trees, is also chosen to be eval-
uated in this paper. To obtain the flowrate, conclusions of all
trees are added together. GBDT is considered to perform the
multiphase flowrate estimation mainly because that it performs
well in dealing with both linear and non-linear regression



problem [14]. The details of GBDT algorithm is shown in
Algorithm. 1.

Algorithm 1 Gradient Boosting Decision Tree (GBDT) algo-
rithm in multiphase flowrate detection.

Input:
The input data set, x;
The output data set, y;
The combined data set of x and y, T =
(x1, y1), (x2, y2)...(xN , yN );
The loss function, L(y, f(x));

Output:
Ensemble of classifiers on the current batch of the regres-
sion tree, F (x);

1: Initializing f0(x) = argmin
∑N
i=1 L(yi, c);

2: Setting iteration number M for samples i = 1, 2, 3...N .
The value of the negative gradient of the loss function in
the current model is calculated and used as the residual
estimate;

3: Calculate the approximate value rmi =
−[∂L(yi,f(xi))

∂f(xi)
]f(x) = fm− 1(x),m = 1, 2...M ;

4: Basing on (x1, rm1), (x2, rm2...(xN , rmN ), fitting a re-
gression tree with leaf node region Rmj , j = 1, 2...J ,
where J is leaf node number of each tree;

5: For j = 1, 2...J , minimizing the loss function by esti-
mating the value of leaf node region by linear search and
calculating cmj = argmin︸ ︷︷ ︸

c

∑
xi∈Rmj

L(yi, fm−1(xi+c));

6: Updating fm(x) = fm−1(x) +
∑j=1
J cmjI(x ∈ Rmj);

7: Calculating F (x) =
∑M
m=1

∑J
j=1 cmjI(x ∈ Rmj);

8: return F (x);

III. RESULTS AND DISCUSSION

In this Section, experimental setup and estimate results
generated by machine learning algorithms are presented in
detail. The performance of the three methods on predict-
ing multiphase flowrate were comprehensively evaluated by
analysing the estimation error and deviation. The flowrate
prediction accuracy of DNN, SVM and GBDT are compared
as well.

A. Experimental setup

A multiphase flow experimental facility at Tsinghua Univer-
sity is utilized which enables wide-range combination of water,
oil or gas single phase flow and separation of three phase flow.
The volumetric flowrate of water, oil and gas single-phase flow
are measured as reference to compare with the DNN,SVM
and GBDT prediction results. Then, three single-phase flow
is mixed as multiphase flow. The pressure and temperature
parameters as training data are measured and recorded before
the multiphase flow passing through into Venturi for DNN
model. The experimental test matrix is demonstrated in Table.
I.

TABLE I: MULTIPHASE FLOW EXPERIMENTAL TEST MATRIX

Liquid flowrate
(m3/h)

Water-Liquid
ratio

Gas flowrate
(m3/h)

Gas volume
fraction

1 0–100% 0–20 0–95%
2 0–100% 0–40 0–95%
3 0–100% 0–60 0–95%
4 0–100% 0–30 0–90%
6 0–100% 0–60 0–90%

To simulate the real industrial flow condition, various flow
conditions are generated by the flow experimental facility to
provide reliable samples assemble to industrial environment.
Instantaneous P, ∆P1, ∆P2 values are provided from Venturi
tube and T is measured by using temperature sensor of
multiphase flow. Each parameter contains 40,000 data as input
for DNN, SVM and GBDT models. Every 100 sets are packed
as a batch, which means that there are 400 batches. Among
the data sets, 75% random sample sets are used to train the
models, 15% are used for validation and the remaining 15%
are used to test the trained models.

B. DNN results without temperature T

Initially, only pressure parameters (without temperature) are
considered as input for DNN model to estimate liquid and gas
flowrate. The liquid and gas flowrate estimation results are
given in Fig. 3.

(a) (b)

Fig. 3: Estimation results of (a) Liquid and (b) Gas flowrate
without temperature of DNN.

The estimation results in Fig. 3 appeared to be not sat-
isfactory. In both regression results, the estimated outputs by
DNN model and the references, which were collected by single
phase flow meters in single phase flow pipes, cannot relate as
a linear relationship, which means the estimated flowrate are
far from the reference. The non-linearity in regression may
be due to the rapid change of flow regimes in Venturi tube
and Venturi tube is not sensitive enough to instantaneously
measure the pressure.

Though by only using instantaneous measured pressure
data, DNN cannot accurately predict multiphase flowrate, the
results in Fig. 3 still indicate that there exists a relationship
between the pressure parameters and flowrate. Therefore, in
the following subsections, temperature as another parameter



will be considered as an additional input to improve the
estimation results. Meanwhile, the collected raw data are re-
calculated by using moving average method [15] to generate
a more smooth data set as input.

C. DNN results with temperature T

In order to mitigate the influence caused by the sudden
change of flow regimes and to obtain more input data sets,
moving average method are applied to P, ∆P1, ∆P2 and T
data. The length of the ‘window’ is four, which means that
the average is taken from first four samples, then, another
average is taken from the second to fifth samples and so on.

The estimation results of trained DNN model by imple-
menting the averaged data considering temperature are shown
in Fig. 4.

(a) (b)

Fig. 4: Estimation results of (a) Liquid and (b) Gas flowrate
by moving time averaged data and including temperature of
DNN.

Comparing the results in Fig. 4 and Fig. 3, it is obvious that
by considering temperature factor and taking moving average
of samples, the estimation results of liquid flowrate are more
accurate. Likewise, the estimation results of gas flowrate are
closer to the best fit line in Fig. 4 compared with the results in
Fig. 3. Additionally, in Fig. 4, the liquid flowrate estimation
results are more accurate than gas flowrate prediction.

Error histograms are calculated and plotted to evaluate the
performance of DNN model, which are shown in Fig. 5.

(a) (b)

Fig. 5: Error histograms of (a) Liquid and (b) Gas flowrate
estimation using DNN.

The estimation errors for liquid phase are controlled within
6%, and 75% errors are within 0.07% range. Meanwhile, for
gas phase estimation, about 80% estimated points range in
0∼1.5%, and almost all errors are below 8%. Small error range
verifies that DNN model is able to accurately estimate liquid
and gas flowrate with a proper input data set.

D. SVM results

The input data sets for SVM model are exactly the same
as the data sets in Section III-C. It is supposed that SVM
could also make successful prediction on multiphase flowrate
estimation. Fig. 6 illustrates SVM model estimation results for
liquid and gas flowrate.

(a) (b)

Fig. 6: Estimation results of (a) Liquid and (b) Gas flowrate
by moving time averaged data and including temperature of
SVM.

In liquid flowrate estimation process, 1273 support vectors
are used to perform the estimation. The liquid flowrate pre-
diction result reveals that the linearity between input sample
sets and reference sets is acceptable. Although there are still
some abnormal points deviating from the standard line, the
correlation is strong.

In gas flowrate estimation process, 5367 support vectors
are used in the training procedures. The regression result is in
good linearity with some extreme points deviate away from
the standard line, which is caused by the changeable gas rate
in Venturi tube.

To evaluate the performance of SVM model, deviations
are plotted in Fig. 7. Compared with DNN model, SVM
model generates more estimated errors in amount in liquid
and gas flowrate estimation. Especially for the gas phase, some
estimated results have deviation more than 10 m3/h and a part
of results have deviation over 5 m3/h. A possible explanation
might be that the performance of SVM model is restricted by
the algorithm principle.

Overall, SVM model is able to perform the estimation of
multiphase flowrate whereas DNN model has better estimation
results in terms of stronger correlation and smaller error range.

E. GBDT results

GBDT is selected as another method to solve flowrate
estimation objective because of its capability in regression and



(a) (b)

Fig. 7: Estimation error of (a) Liquid and (b) gas flowrate
prediction results by using SVM model.

classification. The performance of GBDT mainly depends on
the selection of loss function and in this paper, regression tree
is implemented to perform the estimation. The liquid and gas
flowrate estimation results by using GBDT are shown in Fig.
8.

(a) (b)

Fig. 8: Estimation results of (a) Liquid and (b) Gas flowrate
by moving time averaged data and including temperature of
GBDT.

Contrary to expectations, the fitness for both liquid and gas
flowrate estimation is poor. This result is unexpected which
suggests that GBDT is not a suitable method for estimating
multiphase flowrate. It may because that the parameters mea-
sured by Venturi tube may not fit the GBDT model and the
correlation between the input parameters and flowrate cannot
be properly described by GBDT. It is further suggested that
more sensor parameters may be required to achieve a more
accurate estimation.

Deviation figures reflect the unreliable performance of
GBDT in a more straightforward way, which is demonstrated
in Fig. 9. Only a few estimates are within the acceptable range
and larger deviation occurs, which matches the estimation
performance in Fig. 8. It indicates that the multiphase flowrate
predicted by GBDT model and existing data sets are not
accurate and not reliable.

(a) (b)

Fig. 9: Estimation error of (a) Liquid and (b) gas flowrate
prediction results by using GBDT model.

F. Machine learning models performance comparison and
discussion

The estimation results by implementing DNN, SVM and
GBDT models are evaluated by utilizing Mean Squared Error
(MSE). The calculated MSE values are illustrated in Table. II.

TABLE II: MSE EVALUATION ON MULTIPHASE FLOWRATE
PREDICTION FOR DNN, SVM AND GBDT MODELS

Data type Input parameters Model

MSE of flowrate
estimation

Liquid Gas

Raw data P,∆P1,∆P2 DNN 0.0652 8.603
Moving averaged data P,∆P1,∆P2, T DNN 0.0049 2.0761
Moving averaged data P,∆P1,∆P2, T SVM 0.0169 2.3532
Moving averaged data P,∆P1,∆P2, T GBDT 0.0401 9.4521

Table. II is informative in several ways. First, it is apparent
that averaged sample sets have more adaptivity for each flow
condition than instant sample sets. For DNN model, it is found
that a longer training time is required when taking the moving
averaged sample sets as input in practice. However, MSE for
DNN model suggests that better performance can be expected
when we use moving averaged samples sets. Additionally,
temperature as an important parameter helps to correct the
model weights and bias. From the calculated MSE value for
GBDT model, the highest MSE for gas flowrate estimation
indicates that GBDT fails to tackle the multiphase flowrate
prediction problem. Compared with the results in Section III-C
and III-D, DNN has better performance with the same input
data. Overall, both DNN and fine Gaussian SVM can achieve
satisfactory results in gas flowrate estimation.

IV. CONCLUSION

This paper studied the estimation of instantaneous flowrate
of gas/oil/water three-phase flow by combining Venturi tube
with various machine learning methods, i.e. DNN, SVM and
GBDT. The investigation of the input data sets has shown
that the performance of DNN model on multiphase flowrate
estimation can be improved by using modified data, such as



moving averaged data rather than raw data, and by including
more parameters, such as pressure and temperature as input.
The experimental results demonstrate that DNN is effective
for estimating the flowrate of both liquid and gas phase. It
also obtained superior performance in estimating instantaneous
flowrate whereas many previous studies only reported the
estimation of time-averaged flowrate. This study also shows
that GBDT is not a suitable approach for multiphase flowrate
estimation in cooperation with Venturi tube. The results also
suggest that SVM is effective for gas flowrate estimation. For
liquid flowrate estimation, DNN has the best performance.
In addition, the study has also shown that temperature is an
important factor in multiphase flowrate estimation.

Future study will assess the effect of structure, activation
function, and more pre-process operations on the performance
of DNN model for multiphase flowrate estimation.
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[11] J. J. Moré, “The levenberg-marquardt algorithm: imple-
mentation and theory,” in Numerical analysis. Springer,
1978, pp. 105–116.

[12] S. S. Keerthi and C.-J. Lin, “Asymptotic behaviors of
support vector machines with gaussian kernel,” Neural
computation, vol. 15, no. 7, pp. 1667–1689, 2003.

[13] B. P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, and
G. McGregor, “Boosted decision trees as an alternative
to artificial neural networks for particle identification,”
Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, vol. 543, no. 2-3, pp. 577–584,
2005.

[14] S. A. Naghibi, H. R. Pourghasemi, and B. Dixon,
“Gis-based groundwater potential mapping using boosted
regression tree, classification and regression tree, and
random forest machine learning models in iran,” Envi-
ronmental monitoring and assessment, vol. 188, no. 1,
p. 44, 2016.

[15] H. Akaike, “Maximum likelihood identification of gaus-
sian autoregressive moving average models,” Biometrika,
vol. 60, no. 2, pp. 255–265, 1973.


