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Abstract—Data-driven methods are attracting more and more
attention in the field of electrical impedance tomography. Many
learning-based tomographic algorithms have been presented
and investigated in the past few years. However, few related
studies pay attention to the symmetrical geometrical structure
of tomographic sensors and the possible benefits it may bring to
learning-based image reconstruction. Aiming to this, we propose
the concept of electrical impedance maps, which can better
reflect the nature of geometry of tomographic sensors and have
similar properties to images. Then we design a fully convolutional
network to build the relationship between electrical impedance
maps and conductivity distribution images. The effectiveness and
performance of our method is evaluated by both simulation
and experimental datasets with different conductivity distribution
patterns.

Index Terms—electrical impedance tomography, convolutional
neural network, data-driven imaging

I. INTRODUCTION

ELECTRICAL impedance tomography (EIT) is one
kind of imaging modality with the properties of non-

invasiveness, low cost and easy to deploy, which allows it to be
applied in a wide range of scenarios, such as industrial process
monitoring [1], [2], cell culture observation [3], etc. The main
algorithmic problem in EIT is conductivity distribution recon-
struction based on differential voltage measurements through
solving an inverse problem [4]. Although numerous methods
with regard to this issue have been investigated and published
over the past decades, robust and high-resolution conductivity
reconstruction is still challenging due to its nonlinearity and
ill-posedness.

Recently, as the advancement of deep learning theory and
computation power of hardware, an increasing number of
researchers attempt to seek new possibilities to address non-
linear ill-posed inverse problem with the assistance of deep
learning algorithms [5]. For example, Zheng et al. developed
an auto-encoder based method to achieve image reconstruction
in electrical capacitance tomography (ECT) [6], [7]. Tan
et al. employed a convolutional neural network (CNN) to
establish the relationship between electrical resistance tomog-
raphy (ERT) measurements and the conductivity distribution

[8]. Klosowski et al. proposed two EIT image reconstruction
methods based on fully-connected neural network (FCNN) and
CNN respectively [9]. Even though these approaches seem to
have better performance on simulation datasets compared with
traditional tomographic algorithms, there are still some critical
issues that need to be addressed.

First of all, none of these previous studies take the ge-
ometrical structure of EIT sensors into account during the
design of their network architectures. In fact, the geometry
of frequently-used EIT sensors has a high degree of spatial
symmetry. This characteristic may help us dramatically reduce
the number of parameters of the network without any negative
impacts on its performance, and allow the network to leverage
feature patterns hiding in measurements more easily, which
will further improve the quality of reconstructed images.

Furthermore, for data-driven methods, the generalization
ability is one of the most important criteria to evaluate their
performance. However, to the best of our knowledge, there are
few related studies which pay attention to this issue. Most of
the existing data-driven image reconstruction approaches were
only tested on samples which have a high degree of similarity
with training samples. Verifying the generalization ability of
learning-based tomographic algorithms is a prerequisite of
practical applications.

In this work, we mainly focus on these two issues, develop-
ing a novel deep-learning based image reconstruction method
for EIT and evaluate its effectiveness on samples in multiple
different testing datasets which are obviously different from
training samples. Our contributions are summarized as below:

• We propose the concept of electrical impedance maps
(EIMs), which can better reflect the nature of geometry
of EIT sensors and therefore benefit image reconstruction
compared with differential voltage measurement vectors
which are widely used in various learning-based methods
at current time.

• We design a fully convolutional network architecture to
process EIMs and reconstruct conductivity distribution
images. Our presented method is expected to outperform



other existing data-driven methods.

• We carry out simulation and experiments to collect data
with different conductivity distribution patterns, and use
them to evaluate the effectiveness and performance of the
proposed image reconstruction approach.

II. METHODOLOGY

A. Electrical impedance maps
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Fig. 1: Examples of a 16-electrode EIT sensor with different inside
conductivity distributions. The conductivity is 0.1 S/m for the back-
ground material, and is 0.000075 S/m for the observation target. (a)
One circle at upper left corner. (b) One circle at upper right corner.

In order to demonstrate the special symmetrical geometry
of EIT sensors, we plot Fig. 1. The EIT sensors in Fig.
1 (a) and (b) are exactly the same, and their conductivity
distributions are symmetric about the midline between e1 and
e2 (ei represents electrode i in Fig. 1). The differential voltage
measurement between e15 and e16 in (a) should have the
same value with the measurement between e3 and e4 in (b)
when we select e1 and e2 as the excitation electrode pair.
Similarly, the differential voltage measurements between e15
and e16 in both (a) and (b) should be the same when the
excitation electrode pairs for (a) and (b) are e15, e16 and e3, e4
respectively. Inspired by this characteristic, we can arrange the
measurements as a feature map, i.e. the electrical impedance
map (EIM).

In this paper, the adjacent measurement strategy is applied,
and 208 differential voltage measurements can be eventually
obtained. These measurements then are arrayed to form a
16*16 EIM, which is shown in Fig. 2. The measurement
between e j and e j+1 when the current supply connects with
ei and ei+1 is filled in the intersection of the ith row and
the j th column, and the rest of EIM is padded with 0. Each
element in the same row shares the same excitation electrode
pair, and each element in the same column shares the same
measurement electrode pair.

Fig. 3 shows the EIMs of conductivity distributions in
Fig. 1. It is straightforward to observe that the two EIMs
have the same feature patterns. The only difference is the
locations of these patterns. For instance, the same feature
pattern appears at the bottom right corner in the left EIM
and the top left corner in the right EIM. This observation
and previous analysis about symmetry suggest that the same

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

shared excitation electrode pair

shared m
easurem

ent electrode pair

Fig. 2: Electrical impedance maps

Fig. 3: Examples of EIM. The left one corresponds to Fig.1 (a), and
the right one corresponds to Fig.1 (b).

pattern appearing at different positions of the EIM may imply
that the same objective distributes at different locations in
the reconstructed conductivity distribution image. This spatial
invariant property is similar to images. We therefore manage
to use CNN to process EIMs.

B. Network architecture

CNN is powerful to analyze data that comes in the form
of multiple arrays [10]. Local patch connectivity and weight
sharing enable CNN to detect useful feature patterns with a
much smaller number of parameters compared with FCNN.
This technique has achieved great success in various applica-
tion scenarios, especially in image processing [11], [12].

The architecture of CNN for processing electrical
impedance maps (CNN-EIM) in this paper is shown in Fig. 4.
It has 5 convolutional layers and 4 deconvolutional layers.
Batch normalization [13] is applied to accelerate training
process and prevent overfitting to a certain degree. The filter
size, padding and stride for all convolutional layers are 3*3, 1
and 1 respectively. The same parameters are 2*2, 0, 2 for the
deconvolutional layers and 2*2, 0, 2 for the max pool layers.

We denote the input (i.e. EIM) as v, the output (i.e.
reconstructed image of conductivity distribution) as x̂, the
ground truth conductivity distribution as x and the network
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Fig. 4: The framework of CNN-EIM.

CNN-EIM as f (·; θ), where θ represents the parameters of
CNN-EIM. v can be mapped to x̂ by f (·; θ), i.e.

x̂ = f (v; θ). (1)

x̂ is expected to be as close as possible to the ground
truth conductivity distribution x. This goal can be achieved
by updating the parameters of CNN-EIM θ to minimize the
loss function Lrecon(v, x; θ) which is shown as follows:

Lrecon(v, x; θ) = E ‖x − f (v; θ)‖22 . (2)

However, directly optimizing Lrecon(v, x; θ) may lead to
poor generalization ability and unsmooth reconstructed im-
ages. We introduce two regularization terms to prevent this
issue to some extent, i.e. the total variation regularization
term Ltv [14] and the `2 norm regularization term L`2 . The
complete loss function L(v, x; θ) is

L(v, x; θ) = Lrecon + λ1Ltv + λ2L`2 (3)

where λ1 and λ2 are hyperparameters for trade-off among
different loss terms.

III. EXPERIMENTS

A. Data acquisition

COMSOL and MATLAB joint simulation is used to solve
the forward problem of a 16-electrode EIT as shown in Fig. 1
to produce training and testing samples. The inner diameter of
the sensing region is 2 m. The conductivity is 0.05 S/m for the
background media and 0.0001 S/m for the observation target.
The simulation is divided into four different groups according
to the number of the observation targets (the number is from
1 to 4). We only consider circular observation targets during
simulation, but their diameters and positions are random.

Eventually we obtain 29511 samples, 5261 with 1 circle,
7771 with 2 circles, 7997 with 3 circles and 8482 with
4 circles. Each sample includes a 208-dimensional vector
which represents differential voltage measurements and a
3228-dimensional vector which represents the corresponding
conductivity distribution and will be transformed to a 64*64
image.

We established four datasets on the basis of the simulation
data, i.e. the training set, validation set, testing set and 3
circles set. The training set contains 15514 samples, while

the validation set and testing set have 3000 samples for each.
These three datasets consist of samples with 1, 2 and 4 circles.
Samples with 3 circles are grouped into the 3 circles set for
further evaluation of the genralization ability of our method,
and therefore are not included by the training, validation and
testing sets.

We also carry out experiments on our EIT platform [15]
to verify the practical effectiveness of our data-driven im-
age reconstruction approach. We collect samples from two
different sensors, i.e. the conventional EIT sensor with an
internal diameter of 287 mm and the miniature EIT sensor
with 16 planar electrodes which inner diameters is 15 mm.
More details are discussed in section IV. B.

B. Implementation details

1) Calibration and normalization: The data needs to be
calibrated at first, which can reduce the negative impacts of
shape and size of sensors. It can be implemented according to
Eq. (4)

vci, j =
vi, j − vei, j

vei, j
(4)

where vei, j is the ith row j th column element in the EIM
when the sensing region is filled with the background media,
vi, j is the measurement before calibration and vci, j is the
measurement after calibration. In the next step, we apply Eq.
(5) to normalize the calibrated data , which can reduce the
difficulty in training.

vni, j =
vci, j − µi, j

σi, j
(5)

where µi, j and σi, j represent the mean and the standard
deviation of all vci, j in training samples respectively.

2) Baselines: In order to better evaluate our approach, we
select two learning-based image reconstruction methods as
baselines, i.e. CNN for random electrical impedance maps
(CNN-REIM) and FCNN for electrical impedance vectors
(FCNN-EIV).

The input of CNN-REIM is a REIM which is a 16*16 matrix
and formed by randomly rearranging the elements in the EIM.
Note that different EIM generates its corresponding REIM



Fig. 5: Training and testing curves for different tomographic methods. The results are the average for 3 runs, and the shadow represents the
standard deviation. The right picture is a zoomed-in version of the left one.

based on the same mapping. The structure of CNN-REIM is
exactly the same with that of CNN-EIM.

According to Reciprocity Theorem, a 208-dimensional mea-
surement vector can be compressed to a 104-dimensional
measurement vector (i.e. EIV) that acts as the input of FCNN-
EIV. The convolutional layers in CNN-EIM are replaced by
fully-connected layers in FCNN-EIV which are shown in
TABLE I. The deconvolutional parts for both two networks
are the same.

TABLE I: FCNN-EIV SPECIFICATION

Layer Number of Neurons rp

fc1 256 42
fc2 512 1.78
fc3 1024 1.78
fc4 2048 3.56
fc5 4096 14.22

rp is the ratio between the number of learnable parameters
of the fully-connected layer in FCNN-EIV and the convolution
layer in CNN-EIM. Obviously, CNN-EIM has a much smaller
number of parameters in comparison with FCNN-EIV.

3) Training: Adam [16] is employed to optimize the net-
works in this work. Learning rate α is 0.0005. Weights
for regularization terms λ1 and λ2 are 500 and 0.00001
respectively. Total number of training epoch is 200. Batch size
of each update is 128. Training is implemented on 2 * Nvidia
Quadro P5000. The training time is about 15 mins for CNN
and 21 mins for FCNN.

IV. RESULTS AND DISCUSSIONS

A. Learning curves

The training and testing curves of different methods are
illustrated in Fig. 5, where MSE is the mean square error that

equals to Lrecon. We do not plot curves of the validation set
in Fig. 5 for clarity as they are very close to the curves of the
testing set.

We can observe that CNN-EIM achieves the best perfor-
mance both in training, testing and 3 circles sets. CNN-EIM
converges the fastest during training and has the smallest MSE
in testing. From Fig. 5, it also not difficult to find out that
CNN-EIM is also less prone to overfitting in comparison
with the other two methods. All of these demonstrate the
effectiveness of our method.

Moreover, compared with FCNN-EIV, CNN-REIM per-
forms better during training, whilst its testing results on both
the testing and 3 circles sets are worse. This suggests that
randomly arranging the differential voltage measurements to
form feature maps can not bring any benefits for learning-
based image reconstruction.

B. Image reconstruction

The quality of reconstructed image of CNN-EIM is tested
on both simulation samples from the testing and 3 circles
datasets and experimental samples from two different EIT
sensors.

1) Simulation results: Fig. 6 shows the reconstructed im-
ages of different algorithms based on simulation data. The
sparse Bayesian learning method (SBL) proposed by Liu et
al. [4] is used for comparison. The samples in the first 5 rows
of the figure are from the testing set which have the same
image patterns (number of circles) with the training samples
but do not appear in training. The last two samples are from
the 3 circles set that has a different image pattern from the
training set.

It is obvious that image quality of CNN-EIM is the best
compared to other methods. Additionally, it can produce
satisfactory image reconstruction results for the samples with
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Fig. 6: Image reconstruction results based on simulation data.

3 circles in testing even though it has never seen this type
of samples during training. This fact demonstrates the better
generalization ability of CNN-EIM in comparison with the
other methods.

2) Experimental results: Fig. 7 illustrates the reconstructed
images of CNN-EIM based on experimental data. For the
conventional EIT sensor, the inner diameter is 287 mm. The
imaging object is an acrylic rod of which the diameter is
around 50 mm, and the background media is saline with the
conductivity of around 0.05 S/m. The miniature sensor has

an inner diameter of 15 mm. The imaging object is MCF-7
human breast cancer spheroid of which the diameter is 0.55
mm. The background substance is cell culture media with the
conductivity of around 20 S/m.

It obvious that the setup of the conventional EIT experiment
is quite close to its counterpart in simulation. It is not surprised
that CNN-EIM is able to provide a satisfactory result under
this situation.

Image reconstruction using data produced by the miniature
sensor is much more challenging for the learning-based algo-
rithms presented in this paper as there is a significant differ-



ence between the setups of EIT systems generated training and
testing samples. However, CNN-EIM can also reconstruct a
conductivity distribution image that is quite close to the ground
truth distribution as shown in Fig. 7. This further demonstrates
the stronger generalization ability of our method.

MCF-7 cell 
spheriod

Ground Truth CNN-EIM

Microbiology 

Experimental 

Platform

Conventional

Experimental 

Platform

Fig. 7: Image reconstruction results based on experimental data.

V. CONCLUSIONS

In this paper, we propose the concept of EIMs which are
able to better reflect the nature of the symmetrical geometry
of EIT sensors and therefore benefit data-driven image recon-
struction for EIT. A fully-convolutional neural network (CNN-
EIM) is presented to map EIMs to conductivity distribution
images. The performance of our method is evaluated by both
simulation and experimental datasets. The results show that
our approch can achieve higher quality for image reconstruc-
tion and better generalization ability with a smaller number of
learnable parameters. This demonstrates the effectiveness of
EIMs and uncover new possible directions for future research
which may link EIMs to other more advanced deep learning
algorithms and generate better results.
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