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Abstract

Background: Association mapping studies of quantitative trait loci (QTL) for canine hip dysplasia (CHD) can
contribute to the understanding of the genetic background of this common and debilitating disease and might
contribute to its genetic improvement. The power of association studies for CHD is limited by relatively small
sample numbers for CHD records within countries, suggesting potential benefits of joining data across countries.
However, this is complicated due to the use of different scoring systems across countries. In this study, we
incorporated routinely assessed CHD records and genotype data of German Shepherd dogs from two countries (UK
and Sweden) to perform genome-wide association studies (GWAS) within populations using different variations of
CHD phenotypes. As phenotypes, dogs were either classified into cases and controls based on the Fédération
Cynologique Internationale (FC) five-level grading of the worst hip or the FCI grade was treated as an ordinal trait. In
a subsequent meta-analysis, we added publicly available data from a Finnish population and performed the GWAS
across all populations. Genetic associations for the CHD phenotypes were evaluated in a linear mixed model using
62,089 SNPs.

Results: Multiple SNPs with genome-wide significant and suggestive associations were detected in single-
population GWAS and the meta-analysis. Few of these SNPs overlapped between populations or between single-
population GWAS and the meta-analysis, suggesting that many CHD-related QTL are population-specific. More
significant or suggestive SNPs were identified when FCl grades were used as phenotypes in comparison to the
case-control approach. MED13 (Chr 9) and PLEKHA7 (Chr 21) emerged as novel positional candidate genes
associated with hip dysplasia.

Conclusions: Our findings confirm the complex genetic nature of hip dysplasia in dogs, with multiple loci associated with
the trait, most of which are population-specific. Routinely assessed CHD information collected across countries provide an
opportunity to increase sample sizes and statistical power for association studies. While the lack of standardisation of CHD
assessment schemes across countries poses a challenge, we showed that conversion of traits can be utilised to overcome
this obstacle.
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Background

Canine hip dysplasia (CHD), a condition involving ab-
normal development of the coxofemoral (hip) joint, is
one of the most common orthopaedic disorders in dogs
and has been reported for more than 177 dog breeds,
with a prevalence varying from 0.9 to 75.3%, according
to the Orthopedic Foundation for Animals (OFA) [1].
CHD can lead to lameness, arthritis and hip pain and
thus has a profound effect on animal welfare. CHD is
recognised as a heritable disease, and several studies
aimed to identify underlying genetic risk factors [2—4].
The inheritance pattern of CHD has been shown to be
polygenic in GSDs [5] and regional and chromosomal
heritability analyses of CHD in Labrador retrievers also
indicated that the genetic architecture of CHD is based
on many genes with small or moderate effect [4]. Identi-
fication of potential risk loci involved in CHD and a bet-
ter understanding of the genetic architecture of this
disease could help to address the severe welfare conse-
quences, e.g. by promoting early genetic screening and
improving breeding schemes [6, 7].

In a previous genome-wide association study (GWAS)
on CHD and hip osteoarthritis in 721 dogs from eight
breeds, SNPs associated with CHD were detected, sug-
gesting several positional candidate genes [3]. Other
studies using GWAS for CHD have not detected consist-
ent genomic positions of quantitative trait loci (QTL) [4,
8-11], which might be explained by differing features
across studies, including sample sizes, the CHD-related
trait used as phenotype and population structure, in
addition to different breeds. Merging CHD records and
genotype data across countries might improve the statis-
tical power of GWAS by increasing the currently limited
sample size of genotyped animals within countries. Fur-
thermore, the use of multiple populations, and thus in-
creased diversity, might also enable the detection of
further QTL for this complex disease, as shown in stud-
ies of human complex traits [12]. However, CHD breed-
ing and assessment schemes vary between countries; the
OFA screening system is used in the United States and
Canada, while most European countries record CHD
using the five-grade approach proposed by the FCI (Féd-
ération Cynologique Internationale) and others measure
the severity of CHD using hip scores established by the
BVA/KC (British Veterinary Association/Kennel Club)
(e.g. UK, Australia) [13]. The challenges and caveats of
analysing CHD data from different countries have been
previously addressed in cross-country genetic evaluation
studies of CHD [14] in which conversion of BVA/KC
scores into FCI grades slightly improved prediction ac-
curacy of estimated breeding values for CHD, thus indi-
cating the potential benefits of such approaches.

In the current study, we combined CHD phenotype
and genotype data from British and Swedish German

Page 2 of 12

Shepherd dogs (GSDs) with publicly available data from
a Finnish GSD population [11] to study the genetic
architecture of CHD. We performed both single-
population genome-wide association studies (GWAS)
and a meta-analysis (GWAS across populations), with
two aims: (I) to compare the consistency of results from
different datasets and the performance of different
phenotype classifications and (II) to identify potential
novel loci influencing CHD by utilising multiple
populations.

Results

Population structure

The underlying genetic population structure of GSDs (from
UK, Sweden and Finland) within and across populations was
examined by PCA using a pruned genotype data set (com-
prising 5167 variants). In the multi-population PCA, includ-
ing the UK, Swedish and Finnish dogs analysed for the meta-
analysis, the first two PCs explained 2.89 and 0.94% of the
variance, respectively. Figure 1 shows that overlaps exist be-
tween the populations, but a separation of clusters for the
three countries is also visible, particularly associated with
PC2.

Association mapping

The associations between 62,089 SNPs and CHD records
within populations and in a subsequent meta-analysis
across populations was analysed by genome-wide associ-
ation studies (GWAS). We took two approaches, the
first was based on hip scores and the second was a case-
control analysis, where dogs with the lowest scores (FCI-
A or BVA/KC score 0—10) were treated as controls and
all other dogs were considered cases. The quantile-
quantile (QQ) plots (Fig. S1) and genomic inflation fac-
tor (\) (ranging from 0.96 to 1.03), indicate that both
within-population and meta-analysis GWAS were ad-
equately controlled for population stratification.

ECI grades for the worse hip were used as phenotypes
for the within-population GWAS of Swedish and Finnish
dogs. For the UK dogs, the hip status was screened by
the BVA/KC scheme, where aggregated scores for bilat-
eral joints (total hip score; HS) are given. To enable a
combined analysis with Swedish and Finnish FCI grades
in a meta-analysis, we transformed UK HS to FCI
grades. UK single-population GWAS were performed for
both HS and FCI grades. The results were highly similar
(e.g. more than half of the top 1% significant SNPs over-
lapped) and therefore the results for UK HS are pre-
sented in the supplement (Fig. S2, Table S1).

Five genome-wide significant associations were identi-
fied for the UK FCI approach on Chr 21 (39.2-39.4
Mbp) (Table 1, Fig. 2). In addition, across all within-
population and meta-analyses, 32 suggestive associations
(allowing one false-positive per genome scan) were
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Fig. 1 Principal component analysis for meta-analysis of the pruned genomic data. Eigenvalues for the first two principal components are plotted
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identified, with most of them exclusively associated with
a single population and phenotype approach (Table 1).
Direct overlaps (shared SNPs) were only found between
the FCI and case-control approaches for the Finnish
population (on Chr 1) and between the FCI approach in
the Finnish and meta-analysis GWAS (on Chr 9). Re-
peating the GWAS for the Finnish population [11] with
altered phenotypes, regions with suggestive associations
to CHD were detected on Chr 1 (45.1-46.6 Mbp) and
on Chr 9 (31.3-36.8 Mbp). For the UK population, in
addition to the genome-wide significant region on Chr
21, a region with suggestive association to FCI was de-
tected on Chr 7 (58.5-58.8 Mbp). For the Swedish popu-
lation, only single SNPs on Chr 8 and 25 showed
suggestive associations with CHD. In the meta-analysis
GWAS, for the FCI grade approach, the region on Chr 9
was detected (in the same region as the Finnish FCI
grade GWAS), while for the case-control approach one
SNP showed suggestive association on Chr 7, 5 Mbp

upstream from the region showing a suggestive associ-
ation in the UK population.

The locations of SNPs with significant and suggestive
association were mapped to the CanFam3.1 assembly
and an area of 200 kb around these SNPs was scanned
for genes, revealing 39 positional candidate genes (6
genes with an intragenic SNP; Table 1). Analysis of these
39 genes in Enrichr revealed that the trait “Body mass
index” in the GWAS Catalog 2019 was the fifth most
significantly enriched term (adjusted p-value =0.009;
genes: GGNBP2, DHRS11, ZNHIT3, LHXI, PIGW,
AATF, MRM1, MYO19, PLEKHA7, Table S3).

Comparison of populations

To identify whether there was evidence of common gen-
etic architecture of CHD in the individual GSD popula-
tions, we examined the overlap between SNPs identified
in GWAS for individual populations (UK, SWE and
FIN). There were no overlaps in the top 0.1% SNPs
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Table 1 SNPs with suggestive association identified within all CHD phenotype approaches in single-population and meta-analysis
GWAS. GWAS were performed for 180 (UK), 402 (Swedish), 775 dogs (Finnish) and 1357 (meta-analysis) dogs, respectively. The
Finnish-population and meta-analysis GWAS are based on data provided by Mikkola et al. [11] and the Finnish-population GWAS is a
repetition of the original GWAS with altered phenotypes (see Materials and methods for further details)

SNP ID Chr  Pos (bp) AF® B+SE p-value Trait Gene(s)®

BICF2523248027 1 45,161,186 039  0.13£003 1.14E-05 FIN case-control TIAM2, TFB1M, CLDN20, NOX3

BICF2523248027 1 45,161,186 039 038 +0.09 1.17E-05 FIN-FCI TIAM2, TFBIM, CLDN20, NOX3

BICF2P468585 1 45382633 039 013+003 7.28E-06 FIN case-control NOX3

BICF2P468585 1 45382633 039 040+ 009 4.21E-06 FIN-FCI NOX3

BICF2P1037296 1 46,268586 042 038 +0.09 1.56E-05 FIN-FCI ARID1B

BICF2522930063 7 11,089390 020 -0.11+003  596E-06 Meta-analysis case-control  NSLI, TATDN3, ENSCAFG00000029517,
FLVCR1, VASH2, ANGEL2, RPS6KCT

BICF2G630561445 7 58512418 015 063 £0.13 2.85E-06 UK-FCI DSCI1, DSC2, DSC3

BICF2G630561553 7 58588983 026 054 £0.11 1.86E-06 UK-FCI DSC2, DSC3

BICF2P566919 7 58676276 016 059 +0.13 144E-05 UK-FCI

BICF2G630561779 7 58,791,059 015 063 £0.13 4.35E-06 UK-FCI

TIGRP2P 100978 7 58,825,151 015 063+013 4.35E-06 UK-FCI

BICF2G630561837 7 58845222 015 061 +0.13 7.57E-06 UK-FCI

BICF2G630562441 7 59795168 015 059+ 0.13 1.35E-05 UK-FCI

BICF2P321938 8 65857629 033 037 £008 2.59E-06 SWE-FCI

BICF2523027935 9 31,300,189 049 034+ 008 1.42E-05 FIN-FCI ANKFN1, NOG

BICF2P742007 9 31,387,114 044 036 £0.08 7.51E-06 FIN-FCI ANKFNT, NOG

BICF2G630834826 9 31477907 045 034 +£0.08 1.52E-05 FIN-FCI ANKFN1, NOG, C17orf67, DGKE

BICF2G630835183 9 32155751 049 035+ 008 991E-06 FIN-FCI

BICF2G630835188 9 32,166,146 048 035+ 0.08 6.99E-06 FIN-FCI

BICF2G630835202 9 32181375 049 034 +008 1.35E-05 FIN-FCI

BICF2G630835214 9 32190814 049 034+ 008 148E-05 FIN-FCI

BICF2G630835223 9 32271830 047 036 £0.08 7.23E-06 FIN-FCI ccbcis2

BICF2G630836291 9 34,689,620 038 035+ 008 1.59E-05 FIN-FCI MED?13, INTS2, BRIP1

BICF2G630836291 9 34689620 032 028+ 006 3.13E-06 Meta-analysis-FCl MED13, INTS2, BRIP1

BICF2G630836293 9 34,700358 037 035 +£008 1.37E-05 FIN-FCI MED13, INTS2, BRIP1

BICF2G630836293 9 34,700358 032 028 +£0.06 2.57E-06 Meta-analysis-FCI MED?13, INTS2, BRIP1

BICF2G630836294 9 34,723,827 037 036+ 008 1.05E-05 FIN-FCI MED13, INTS2, BRIP1

BICF2G630836294 9 34,723,827 032 028 £0.06 2.39E-06 Meta-analysis-FCl MED13, INTS2, BRIP1

BICF2G630837240 9 36,579,921 046 —-035+008 921E-06 FIN-FCI ZNHIT3, MYO19, PIGW, GGNBP2, DHRST1,
MRM1, LHX1, AATF

BICF2G630837405 9 36,837,067 046  0.36 £ 0.08 3.63E-06 FIN-FCI LHXT, AATF, ACACA

BICF2G630442661 15 12679667 015 -035+008 881E-06 Meta-analysis-FCl SPATAG6, SLC5A9, TRABD2B

BICF2P110724 21 39,241,001 0.11 085+ 0.16 4.00E-07*  UK-FCI SOX6, ENSCAFG00000030220, PLEKHA7

BICF2P689487 21 39,270,633 0.1 0.86 = 0.16 381E-07%  UK-FCI SOX6, ENSCAFG00000030220, PLEKHA7

TIGRP2P285227 21 39,296,148 0.1 085+ 0.16 400E-07*  UK-FCI SOX6, ENSCAFG00000030220, PLEKHA7

TIGRP2P285228 21 39,304,525 011 085 £ 0.16 4.00E-07*  UK-FCI SOX6, ENSCAFG00000030220, PLEKHA7

BICF2P865829 21 39,466,638  0.11 083 £ 0.16 363E-07%  UK-FCI ENSCAFG00000030220, PLEKHA7

TIGRP2P333312 25 46422704 008 —-027+006  1.28E-05 SWE case-control AGAP1

$AF; allele frequency for the population the significant/ suggestive SNP was identified in (allele frequency within all populations is given in Table S2)
*Genome-wide significant p-value after Bonferroni correction
SGenes located within 200 kb of SNPs. Genes are highlighted in bold if a significant or suggestive SNP was intragenic. Empty entries indicate there are no genes
within 200 kb of the SNP
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Fig. 2 Manhattan plots for all CHD phenotype approaches in single-population and meta-analysis GWAS. The Finnish-population and meta-
analysis GWAS are based on data provided by Mikkola et al. [11] and the Finnish-population GWAS is a repetition of the original GWAS with
altered phenotypes. Manhattan plots were produced for the GWAS in UK (n = 180), Swedish (n=402) and Finnish (n=775) German Shepherd
dog populations and for the meta-analysis GWAS (n = 1357). Genome-wide significance level is indicated by the red line and a suggestive
association by the blue line
A\

between the three populations, however, in pairwise
comparisons of the top 1% SNPs (621 or 622 per popu-
lation) across populations, there were some overlaps
(UK-FIN 6, UK-SWE 8 and SWE-FIN 9 for FCI grade;
UK-FIN 11, UK-SWE 6 and SWE-FIN 4 for case-
control). Based on hypergeometric tests, these results do
not suggest a level of overlap beyond what would be ex-
pected by chance (except for the UK-FIN case-control

comparison where the probability of 11 or more overlaps
occurring by chance is 0.05).

Discussion

GSDs represent one of the largest purebred dog popula-
tions in Europe and as a large-sized breed prone to
CHD, long-term routine CHD screens (by various orga-
nisations) provide a unique opportunity to analyse the
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genetic architecture of CHD in genetic association stud-
ies. However, the inconsistent CHD scoring systems
across countries requires specific strategies to enable
joint GWAS. In this study, we combined CHD pheno-
type and SNP genotype data from two countries (UK
and Sweden) with publicly available data from a Finnish
GSD population [11] to perform single-population and
meta-analysis GWAS for CHD, employing various ap-
proaches to define the phenotype. We used these ana-
lyses to investigate the performance of combined
analyses and to identify novel risk loci for CHD.

QTLs for CHD

We identified five genome-wide significant and several
suggestive associations between different CHD pheno-
types and SNPs in GWAS of UK, Swedish and Finnish
populations, where the Finnish population GWAS is a
repetition of the original GWAS in Mikkola et al. [11]
using altered phenotypes. There were no SNPs with sig-
nificant or suggestive associations that overlapped be-
tween the single-population analyses and the top regions
were located on different chromosomes for each popula-
tion (e.g. Chr 1 and 9 for FIN, Chr 7 and 21 for UK).
Similarly, comparison with reported associations be-
tween SNPs and CHD in two previous studies of Ger-
man GSD populations (FCI screening scheme using a
case-control approach: FCI grades A vs. C-D) also indi-
cated primarily population-specific associations; these
were found on Chr 19, 24, 26 and 34 [9] and on Chr 1,
3,4, 8,9, 16, 19, 26, and 33 [15]. Most of these regions
did not overlap with the regions identified in our study,
but a QTL was found by Marschall and Distl [15] on
Chr 9 at 37.4 Mb, which may be the same locus as the
one identified at 36.6 Mb in our study for the repeated
GWAS of the Finnish population (FIN-FCI). The limited
overlap between genomic regions identified for popula-
tions examined in this study and in the literature sug-
gests a primarily population-specific genetic architecture
of CHD. The fact that allele frequencies at significant
and suggestive SNPs were similar across populations
suggests that the lack of consistency was not due to lim-
ited power of the genotype datasets (Table S2). However,
the lack of consistency could be an artifact of small sam-
ple sizes, especially for the UK population, which de-
creased the power to detect QTL.

The inconsistency of identified SNPs associated with
CHD is also seen in comparisons with studies of other
dog breeds. For example in Bernese mountain dogs,
SNPs significantly associated with FCI grades were iden-
tified on Chr 14 and 37 [8], while in Labrador retriever
dogs, Sanchez-Molano et al. [4] identified SNPs with
chromosome-wide significance associated with HS on
Chr 1, 2, 11, 15, 21 and 23 [4]; and a study on the Nor-
berg angle phenotype in 69 breeds found only one
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significant SNP on Chr 28 [10]. While we found no sig-
nals on most of these chromosomes, we did identify
genome-wide significant SNPs for UK FCI on Chr 21 in
the same region of the QTL for HS and various other
CHD-associated traits reported by Séanchez-Molano
et al. [4]. There is however some evidence for a common
genetic basis of CHD between dog breeds, as Mikkola
et al. [16] demonstrated a significant across-breed asso-
ciation with CHD at four out of 46 risk loci identified in
previous studies. As described above, CHD is a complex
trait and the growing evidence points to a polygenic
architecture. There were a few overlaps between highly
significant SNPs in the different populations covered by
this study but reviewing this and previously published
studies, the identified genomic regions generally differ
between populations and breeds and furthermore, a
major risk loci for CHD has yet to be identified. If the
genetic architecture of CHD is largely population-
specific, the benefit of multi-population panels is ques-
tionable. In our study, most of the suggestive SNPs iden-
tified in the meta-analysis overlapped with suggestive
SNPs identified in the Finnish population (Chr 1 and 9).
This is not surprising since the number of Finnish GSDs
exceeded the sample sizes of the UK and Swedish popu-
lations and thus, findings might be biased towards the
Finnish population. However, other suggestive associa-
tions on Chr 7 and 15 were identified in the meta-
analysis case-control and FCI analyses, respectively, but
were not picked up in any of the single-population ana-
lyses, suggesting that the multi-population approach can
in some cases provide increased power for QTL
detection.

Technical implications for single and multi-population
approaches

The approach for routine CHD scoring (e.g. FCI grades
or BVA/KC scores), and thus the assessed CHD pheno-
type, depends on the geographical location of the dog
population. For multi-population approaches with differ-
ing scoring schemes, we suggest the conversion of BVA/
KC scores into FCI grades, as previously described in the
literature [13]. We tested the conversion of both BVA/
KC HS and worst hip score (WHS) into FCI grades and
found that the two phenotypes were highly correlated
(r =0.997; only one dog was grouped into a different FCI
grade between the two approaches). Therefore, we con-
clude that both BVA/KC score phenotypes are equally
suitable for multi-population GWAS. The GWAS results
for UK FCI and UK HS were similar, indicating that the
conversion from BVA/KC scores to FCI grades was suc-
cessful. In addition to the choice of BVA/KC phenotype,
the CHD phenotypes can be treated as ordinal or case-
control response variables. In this study, we performed
single and multi-population (meta-analysis) GWAS for



Wang et al. BMIC Genomics (2021) 22:636

both response variable types, but unlike some previous
studies [8, 15, 17], we did not exclude intermediate phe-
notypes (FCI-B dogs) in order to maximize the sample
size. Despite this difference, we were able to replicate
the identified regions previously reported in the original
GWAS for the Finnish population [11, 17], which indi-
cates that including this category is a valid option.

There was not strong consistency between the analyses
of ordinal variables and the case-control approach for
significant or suggestive SNPs; aside from suggestive
SNPs for the Finnish population on Chr 1, no overlaps
were found between the two CHD phenotype ap-
proaches. Furthermore, more significant or suggestive
SNPs were found using HS or FCI grades than using the
case-control classification. In the case of the UK popula-
tion (the smallest sample), there is a peak on Chr 21 for
both FCI grades and the case-control classification, al-
though there was no suggestive association for the latter.
The significant region on Chr 7 was only detected for
FCI. The selection of extreme phenotypes of a quantita-
tive trait to generate a case-control approach in GWAS
has previously been shown to increase the power of as-
sociation studies [18]. Because we included all individ-
uals and did not focus on the extremes, the case-control
approach may have been less informative in our study.
We also explored the use of an alternative case-control
approach in which dogs with FCI scores A and B were
classified as controls (instead of only the ‘A’ dogs). No
suggestive associations were found with the meta-
analysis but the previously noted regions on Chr 1 and 7
were identified in the Finnish and UK populations, re-
spectively (results not shown). We conclude that neither
of the case-control approaches is as sensitive as the ap-
proach based directly on FCI scores.

Finally, we compared significant and suggestive SNPs
found for single population GWAS with the results from
the meta-analysis (multi-population) GWAS. The advan-
tage of using multiple populations has been shown in
humans for a number of phenotypes [12]. Those authors
hypothesized that genetic loci underlying a specific
phenotype were the same across populations but there
was heterogeneity in effect size. Consequently, they con-
cluded that incorporating multiple populations in the
genetic discovery of complex traits would be beneficial
in terms of identifying causal (rare) variants. As dis-
cussed above, most suggestive SNPs identified in our
meta-analysis overlapped with suggestive SNPs identified
in the Finnish population (Chr 1 and 9), presumably due
to its larger sample size, but two additional regions were
only detected in the meta-analysis analysis.

Potential candidate genes and mechanisms
The 200 kb regions surrounding suggestive SNPs were
investigated for potential candidate genes. In the
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following discussion, we focus primarily on those in
which suggestive or genome-wide significant SNPs are
located. The regions identified on Chr 1 and Chr 9
include the NADPH Oxidase 3 (NOX3) and Ankyrin
Repeat And Fibronectin Type III Domain Containing
1 (ANKFENI) genes previously reported in the original
GWAS by Mikkola et al. [17].

In addition to these previously highlighted candidates,
we also identified a nearby candidate gene on Chr 9 as-
sociated with CHD: the Mediator Complex Subunit 13
(MED13) gene, which encodes the mediator complex
subunit 13 and plays a key role in transcription regula-
tion, harboured six suggestive SNPs for the meta-
analysis and repeated Finnish FCI GWAS. In mice, a
transcriptional regulatory mechanism for the control of
skeletal muscle glucose homeostasis controlled by
MEDI13 was shown through skeletal muscle-specific de-
letion of the gene [19]. Furthermore, it was previously
reported that hip dysplasia was one of the clinical fea-
tures of a human patient with MEDI3 mutations [20].
Interestingly, targeted sequencing of a 7-Mb region on
Chr 9 revealed a variant in MEDI3 that segregated be-
tween CHD cases and controls in the original analysis in
the Finnish population [17]. The functional prediction of
the variant showed no significant effect in the original
work, however, in our study, using the FCI phenotype
for both the Finnish population and in the meta-analysis
resulted in the detection of multiple suggestive, intra-
genic SNPs. The meta-analysis case-control GWAS also
revealed a candidate region on Chr 7, with a suggestive
SNP within the Vasohibin 2 (VASH2) gene. Among
other functions, VASH2 has been reported to be in-
volved in mammary tumour development in dogs [21]
and to enhance angiogenesis in mice [22]. In a study on
soft tissue gene expression in CHD, the biological func-
tion “angiogenesis” was enriched by differentially
expressed genes between CHD affected and unaffected
dogs [23]. In humans, enhanced angiogenesis is a well-
known consequence of osteoarthritis [24]. It is possible
that the association with the variant in the VASH2 gene
reflects the osteoarthritis aspect of the FCI score
(reflected in the higher grades).

A broader analysis of the genes located within 200 kb
of suggestive SNPs revealed that several of them
(GGNBP2, DHRSI11, ZNHIT3, LHXI, PIGW, AATEF,
MRM1I, MYO19, PLEKHA?7) were previously associated
with body-mass index (BMI) in GWAS studies. Pleck-
strin Homology Domain Containing A7 (PLEKHA?) is
particularly interesting because a genome-wide signifi-
cant SNP (on Chr 21) for UK FCI was located within
this gene. The prevalence of hip dysplasia was previously
associated with BMI in dogs [25], suggesting obesity as a
possible risk factor for CHD. Thus, it is possible that
some of the heritable component of HD is related to
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BMI. Unfortunately, as we did not have information on
body size for all of the dogs, we could not fit this as a
fixed effect in our models.

Conclusions

Despite the efforts from various breeding programs,
CHD remains a common disease in dogs with a large
impact on animal welfare, but the biological basis is not
well-understood. In this study, we confirmed the com-
plex genetic nature of the trait, with multiple loci associ-
ated with CHD in German Shepherd dogs and also
observed that most associated SNPs are population-
specific. However, some genomic regions were only
identified in the meta-analysis of three populations, thus
indicating that routinely assessed CHD information col-
lected across countries provides an opportunity to in-
crease sample sizes and statistical power for association
studies. The lack of standardisation of CHD assessment
schemes poses a challenge, but conversion of traits can
be utilised to overcome this obstacle. Further investiga-
tion into the population-specific nature of CHD will help
to uncover the biological basis of this disease and will in-
form selection schemes.

Materials and methods

Genotypes

For the UK and Swedish populations, DNA was ex-
tracted from saliva samples collected with Performagene
PG-100 swabs (UK dogs) and blood (Swedish dogs). The
dogs were genotyped using the Illumina CanineHD
Whole-Genome Genotyping BeadChip featuring 172,115
SNPs. Quality control procedures were carried out, as
previously described in Friedrich et al. [26]. Filtering was
imposed in GenomeStudio version 2.0 for sample call
rate > 90%, SNP call rate > 98%, reproducibility (GTS) >
0.6 and low or confounded signal characterised by AB R
mean (mean normalized intensity of the AB cluster) >
0.3. SNPs were also filtered using PLINK version 1.9 [27,
28] to remove those with minor allele frequency
(MAF) <0.05 and significant deviations from Hardy-
Weinberg equilibrium (HWE) (Bonferroni-corrected p-
value of 0.05 = 4.5 x 1077), resulting in 78,088 autosomal
SNPs. For the meta-analysis, we used publicly available
data for a Finnish GSDs population from a study by
Mikkola et al. [11]. In their study, DNA was extracted
from preserved blood samples and dogs were genotyped
with the same genotype array as described above. For
quality control, we filtered their data for a sample call
rate > 90%, a SNP call rate > 98%, MAF > 0.05 and devia-
tions from HWE in PLINK version 1.9 [27, 28], which
resulted in 75,271 autosomal SNPs. As final step, we ex-
tracted SNPs that overlapped between the UK, Swedish
and Finnish populations (n = 62,089), which were used
for all subsequent analyses. Most of the SNPs that did
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not overlap between the two datasets had been removed
due to the very stringent filtering for SNP call rate.

Canine hip dysplasia (CHD) phenotypes
CHD records for genotyped UK dogs were provided by
the British Kennel Club (KC) and for Swedish dogs by
Svenska Kennelklubben (SKK). GSDs from the UK
population were bred by multiple breeders and primarily
were pet dogs. All GSDs from the Swedish population
were bred within the breeding program of the Swedish
Armed Forces (SAF), which was founded in 2004 with
the purpose of breeding working dogs. The CHD re-
cords for the Finnish dogs we used for the meta-analysis
are publicly available from the study of Mikkola et al.
[11] and they were chosen based on Finnish Kennel Club
data with balanced sampling for the dog’s function
(working dogs, show dogs, working and show dogs). For
the UK dogs, the hip status was screened by the BVA/
KC scheme. In this scheme, determined by the severity
of HD-related measurements from normal to severe, ag-
gregated scores for bilateral joints (total hip score; HS)
are given from 0 to 106 (0 to 53 for each joint). The
Swedish and Finnish dogs were scored according to the
five-grade FCI scheme, where the CHD severity of the
hip joint is classified into A, B, C, D or E grades. The
ECI score was only available for the worst hip joint in
the Swedish population, thus for data compatibility, we
also used the FCI score for the worst hip joint in the
Finnish population in this analysis.

To analyse the performance of different CHD pheno-
types for the single and multi-populations GWAS, vari-
ous approaches were used (Table 2).

Table 2 Different phenotypic approaches used to analyse CHD
in GWAS

Approach

Phenotype for GWAS

Single populations

UK HS Total hip score

UK FCI HS converted to FCI*

UK case-control Cases (BVA/KC scores >=11) vs. controls
(scores 0-10)

SWE FCl grades FCl grades

SWE case-control  Cases (FCI grades B-E) vs. controls

(FCl grade A)

FIN FCI grades FCl grades

FIN case-control Cases (FCl grades B-E) vs. controls

(FCl grade A)
Meta-analysis
FCl grades FCl grades with HS-transformed UK dogs*

Cases (FCl grades B-E for SWE and FIN,
BVA/KC > =11 for UK) vs. controls
(FCl grade A for SWE and FIN, scores 1-10 for UK)

*Conversion from BVA/KC scores to FCl grades: 0-10=A, 11-25=B, 26-35=C,
36-50=D, 51-106 =E

Case-control
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Table 3 Number of dogs in the different CHD phenotype categories

BVA/KC scores FClI grades UK SWE FIN Meta-analysis
0-10 Grade A 87 152 358 597

11-25 Grade B 75 128 74 277

26-35 Grade C 6 81 126 213

36-50 Grade D 5 33 162 200

51-106 Grade E 7 8 55 70

In total 180 402 775 1357

# of case/control 93/87 250/152 417/358 760/597

As a first approach for the single population analysis,
HS and FCI-transformed HS as described below (UK
population) and FCI grades (Swedish and Finnish popu-
lations) were used as the response variables. We re-
peated the single-population GWAS for the Finnish
population because we used a different CHD phenotype
(ECI of the worst hip joint only, inclusion of FCI B dogs)
in contrast to the original GWAS performed by Mikkola
et al. [11]. In addition to HS, dogs in the UK also had
scores for their worst hip (WHS). In an initial analysis,
we tested both HS and WHS and found a high correl-
ation between the GWAS results (r for p-values =0.93
and r for effect sizes = 0.98). Therefore, in the following,
we focus on HS. In a second approach, dogs were classi-
fied into cases and controls. Based on a previous com-
parison of different CHD scoring systems [29], GSDs
with a total hip score <10 (UK population) or grade A
(Swedish and Finnish population) were considered as
controls. The remaining dogs were treated as cases. In
contrast to the methodology described in Mikkola et al.
[11], we did not exclude intermediate dogs (FCI-B), as
this would have decreased the sample size substantially
for the UK population. The number of dogs in the dif-
ferent categories can be found in Table 3.

The meta-analyses required alignment of the FCI and
BVA/KC scoring schemes. BVA/KC total hip scores for
UK dogs were converted into FCI five-level grades fol-
lowing a recommended conversion (0-10=A, 11-25=

B, 26-35=C, 36-50=D, 51-106=E) [13]. As CHD
phenotypes for the meta-analysis GWAS, we again used
two approaches: (I) the FCI grade (using the above con-
version for UK GSDs) and (II) a grouping into cases and
controls as described above (A = controls, B-E = cases).
CHD records and genotypes were available for 180 UK,
402 Swedish and 775 Finnish GSDs (1357 in total)
(Table 3).

Analysis of population structure

To identify underlying population structure, principle
component analysis (PCA) was performed within and
across all three populations using PLINK version 1.9 [27,
28]. A pruned SNP dataset was used to account for link-
age disequilibrium as recommended in the PLINK docu-
mentation. Therefore, the combined SNP dataset was
pruned based on the variance inflation factor with de-
fault parameters set by PLINK (windows size = 50, shift
steps of SNP numbers =5, the variance inflation factor
threshold = 2), resulting in 5167 SNPs. Then, the PCA
was performed using this pruned dataset separately
within and across populations.

Building the genetic model

To build the genetic model, the genetic structure and
non-genetic factors were tested for their effect on CHD
phenotypes. In addition to the first two principal compo-
nents (PCs) obtained from the PCA, the following non-

Table 4 Fixed effects analysed for their effect on CHD phenotypes. Factors fitted in the final model for the GWAS are indicated by

g
X

Sex Birth year Birth month Age radiographing PC1 PC2 Population

FCl grade UK na.

SWE X na.

FIN X X X X X na.

Meta-analysis X X X X
Cases vs. controls UK na.

SWE X X na.

FIN X X X X na.

Meta-analysis X

n.a. not applicable



Wang et al. BMIC Genomics (2021) 22:636

genetic factors were tested for each CHD phenotype
within populations and for the meta-analysis (across
populations): sex, birth year, birth month and age at
radiographing. Additionally, for the meta-analyses,
‘population’ was also fitted in the model. All factors were
fitted as fixed effects in a linear model in R [30] and
backward elimination was implemented using the ‘ste-
pAIC’ function of the R package ‘MASS’ to remove one
factor at a time and select the model with the lowest
Akaike information criterion (AIC). The final genetic
models for the CHD phenotypes are shown in Table 4.

Genome-wide association study (GWAS)

The GWAS to identify associations between markers
and HD was performed using GEMMA [31] on the
62,089 common SNPs for the single and meta-analysis
approaches. The univariate linear mixed model was fit-
ted as below:

y=1lu+Xb+cf+Za+e

with the following terms: y is a vector of CHD pheno-
types (depending on the approach), u is the overall
mean, b is a vector of fixed effects (as described in Table
4) with X as the corresponding incidence matrix, c is a
vector of filtered SNPs (alleles coded as 0/1) with S as
the corresponding regression coefficients, Z is the inci-
dence matrix for the vector of random polygenic effects,
@, and e is a vector of residuals. The vectors of polygenic
effects and residuals follow multivariate normal (MVN)
distributions given by MVN(0,02G) and MVN(0,02I),
respectively, where G is the genomic relationship matrix
composed of the filtered, common SNPs, I is the identity
matrix and o2 and o2 are the genetic variance associated
with G and the environmental variance, respectively.

To correct for multiple testing, the Bonferroni correc-
tion was applied to account for the number of tests
carried out per marker. Accordingly, genome-wide sig-
nificant markers had P-values <8.1E-07 (adjusted P-
value = 0.05/62,089). Since the Bonferroni correction is
very stringent, especially for genetic studies in pedigree
dogs, which have high levels of linkage disequilibrium
across the genome, we also identified markers with sug-
gestive associations. Markers with suggestive associa-
tions were determined by allowing one false-positive per
genome scan (adjusted P-value < 1.6E-05=1/62,089;
suggestive association). To compare the results across
datasets, we further examined the overlaps between
SNPs identified across analyses.

Analysis of candidate genes

The locations of SNPs with significant or suggestive as-
sociation were mapped to the CanFam3.1 assembly.
BEDTools [32] was then used to identify potential
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candidate genes by extracting genes harbouring signifi-
cant or suggestive SNPs and genes in close proximity
(within 200 kb). In a previous study of the UK and Swed-
ish GSDs [26], we determined the size of the region
around identified SNPs that should be scanned for can-
didate genes by calculating the squared correlation (r?)
between all pairs of SNPs within 10 Mb. Then, the aver-
age r* was calculated for bins of increasing distance be-
tween SNPs to identify the distance around SNPs at
which average r* drops below 0.5. The longest bin for
which average r* > 0.5 was 200 kb and thus this distance
was chosen as the region around associated SNPs to be
investigated. Since this study is based on the same sam-
ples, we applied the same 200 kb region criterion. All po-
tential candidate genes were submitted together to
Enrichr [33], which is a tool that contains a large collec-
tion of diverse gene set libraries and allowed us to map a
set of genes for enriched biological processes, candidate
pathways and previous GWAS results. In Enrichr, a
Fisher’s exact test is performed, which assumes a bino-
mial distribution and independence of the probability of
any gene belonging to any set [33].
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