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Optimal Sizing of a Grid Independent
Renewable Heating System for
Building Decarbonisation
Si Chen1, Daniel Friedrich2 and Zhibin Yu1*

1James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom, 2School of Engineering, The
University of Edinburgh, Edinburgh, United Kingdom

As the use of fossil fuels has led to global climate change due to global warming, most
countries are aiming to reduce greenhouse gas emissions through the application of
renewable energies. Due to the distributed and seasonal heating demand, the
decarbonisation of heating is more challenging, especially for countries that are cold in
winters. Electrically powered heat pumps are considered as an attractive solution for
decarbonising heating sector. Since grid-powered heat pumps may significantly increase
the power demand of the grid, this paper considers using local renewable energy to
provide power for heat pumps, which is known as the grid independent renewable heating
system including photovoltaic, wind turbine, battery storage system and thermal energy
storage. This paper investigates a complete renewable heating system (RHS) framework
and sizing the components to decarbonise building heating. The relationship between the
reduction of gas consumption and the requirement of battery storage system (BSS) under
the corresponding installation capacity of renewable components is analysed with their
technical requirements. Then, according to different investment plans, this paper uses the
particle swarm optimisation algorithm for optimal sizing of each component in the RHS to
find a solution to minimise CO2 emissions. The results verify that the RHS with optimal
sizing can minimise CO2 emissions and reduce the operational cost of natural gas. This
work provides a feasible solution of how to invest the RHS to replace the existing heating
system based on gas boilers and CHPs.

Keywords: building heating decarbonisation, particle swarm optimisation, annual investment cost, renewable
heating system, integrated energy network

INTRODUCTION

In recent decades, the rapid consumption of fossil fuels has greatly reduced global resource reserves
and has led to global climate abnormalities (Ekren and Ekren, 2008; Luna-Rubio et al., 2012; Eltamaly
et al., 2016). In order to reduce the risk of climate change caused by global warming, it is very
important to reduce energy consumption and greenhouse gas (GHG) emissions (Ndwali et al., 2020;
Rinaldi et al., 2021). As part of the European Green Agreement, the European Union (EU) has set a
goal to reduce its GHG emissions by 55% by 2030 and become the world’s first fully climate-neutral
continent by 2050 (Maleki et al., 2016; Yue et al., 2020). Therefore, the EU has supported many
energy projects in the past few years to enhance the role of renewable energy in the European energy
plan (European Commission, 2016). To achieve these challenging goals, the energy structure of most
countries needs to undergo major changes to reduce dependence on fossil fuels and the associated
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GHG emissions (da Silva Lima et al., 2021). Increased use of
renewable energy sources will make important contributions,
such as wind energy, solar energy, hydropower, tides, waves,
geothermal energy, environmental thermal energy, biofuels and
municipal waste (Edenhofer et al., 2011). Due to the non-
dispatchable nature of many renewables, energy storage is also
required. In recent years, the integrated energy network (IEN) has
developed rapidly in terms of energy efficiency improvement,
carbon dioxide emission reduction, and renewable energy
integration.

In countries with cold winters, heating accounts for a large
part of energy consumption and is usually heavily dependent on
the burning of fossil fuels such as natural gas and coal (Liang et al.,
2018). The current energy demand in the building sector, such as
space heating and domestic hot water, accounts for 40% of the
total energy demand in the EU (Tulus et al., 2016). Nearly half of
the total energy consumption in the United Kingdom is used for
heating, and this proportion is even higher in Scotland (Renaldi
et al., 2017). While it is crucial to decarbonise heating, it is
challenging due to the distributed demand and large seasonal
variations. In 2017, the GHG emission of United Kingdom equals
to 460 million tons of CO2, of which nearly 40% came from
natural gas used for heating (Vanlint, 2018). In order to reduce
GHG to net zero by 2050 as part of the government’s carbon plan,
the United Kingdom has pledged to establish more district
heating networks and develop large-scale electrifying heating
(Millar et al., 2021). Nearly 90% of the overall heat demand in
the United Kingdom is provided by natural gas boilers and
combined heat and power (CHP) (Millar et al., 2021). Since
renewable energy can only generate electricity while CHP units
have a strong interdependence between power generation and
thermal power generation, CHPs are widely used to provide
domestic hot water and space heating in district heating
systems. However, CHP technology is entirely focused on
efficiency improvement and cost optimisation and rarely
considers carbon minimisation. In the past, the natural gas
CHP was a good alternative to coal as it could significantly
reduce carbon emissions. However, with the electricity grid
carbon intensity dropping below 300 kg CO2/MWh, natural
gas CHP can only reduce carbon emissions in a few edge
cases. In the United Kingdom, as the installation of renewable
energy increases, the feasibility of fossil fuel cogeneration has
gradually declined. It is estimated that by 2035, the carbon
intensity of electricity will be lower than that of natural gas
(Millar et al., 2021). This will encourage thermoelectricity,
shifting from natural gas boilers to direct electric heating and
electric heat pumps.

Heat pumps (HPs) are considered to be the key technology for
decarbonization in the heating industry (Kim et al., 2014; Al-
Tameemi et al., 2019). The HP uses a small amount of work
energy to convert a low-grade heat source into a higher-grade
heat source. The technical details of HP will not be discussed in
this article since a lot of literature has previously discussed it
(Cengel and Boles, 2007; Ozgener and Hepbasli, 2007; Trillat-
Berdal et al., 2007; Self et al., 2013; Casasso and Sethi, 2014; Arat
and Arslan, 2017; Grassi, 2017). If the heat source is outside air,
the system is called an air source heat pump. If the heat source is

underground soil or groundwater, it is called a geothermal heat
pump. Geothermal heat pump is one of the fastest growing
renewable energy sources in the world (Li et al., 2021). In the
long-term, electrifying heating based on HPs is an attractive
solution for the decarbonized heating sector. However, this
will significantly increase the peak power demand in winter
and will bring further challenges to the national grid in terms
of creating additional power generation capacity and balancing
power generation and demand. In addition, if electric power is
generated from fossil fuels, the decarbonization effect will not be
fully realized. Therefore, this paper considers using local
renewable energy, which is grid-independent, to power the
heat pump for building heating and reduce the usage of
traditional gas boiler for decarbonisation.

The development of IEN is to integrate electricity, heat and gas
systems into an integrated power distribution network. However,
the further integration of heating and power networks has also
expanded the opportunities for demand-side management to
integrate more variable renewable energy generation into the
energy system. Due to the rapid growth, the renewable power
generation has been extensively studied in the past decades
(O’Shaughnessy et al., 2018; Liu et al., 2017). In particular,
solar energy and wind energy are used as sources to supply
power to the grid (Dragicevic et al., 2014; Jamal et al., 2019;
Khezri et al., 2020). However, the main disadvantage of most
renewable energy sources is their intermittent nature, as they
fluctuate on a daily, weekly, and seasonal basis. In order to filter
these changes, battery energy storage systems have been widely
accepted as one of the potential solutions to shift the electrical
load from peak hours to off-peak hours (Yang et al., 2018a; Wali
et al., 2021). The idea of combining power generation cycle and
HP cycle has been extensively studied, such as solar collector - HP
(Trillat-Berdal et al., 2007), PV—HP (Kavian et al., 2020),
HP—thermal energy storage (TES) (Renaldi et al., 2017),
organic Rankine cycle (ORC) - HP water heaters (Liang et al.,
2018). However, due to the large differences in local weather
conditions, occupancy, energy prices, government subsidies and
building types, this optimisation must be done for each
component (Renaldi et al., 2017). When different energy
vectors are intertwined in future smart energy systems,
optimal sizing of each component is especially important. In
the research on the optimal sizing of renewable energy systems,
many papers have considered WT, PV, ESS, and fuel cells (Yang
et al., 2020; Yang et al., 2021). However, the previous published
papers only considered the perspective of electrical power use,
and do not consider both heat demand and electricity generation
together as well as the impact of heating demand that increases
the electrical energy use under the trend of electrified heating in
the future. In addition, most of the literature considers sizing
from the aspect of technical requirements and does not
incorporate future technology and price trends. Therefore,
within the author’s knowledge, the past research has not done
feasibility analysis and optimisation for different power
generation, thermal systems and the investment allocation of
each system.

This paper proposes a complete renewable heating system
(RHS) framework, including PV, WT, BSS, HP, and TES, and
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provides a path to the decarbonisation with yearly investment
decisions. In the context of British tariffs and government
incentives, the size of each component in the system is
optimised according to the annual investment cost (AIC)
limit. Since there are many components in the RHS system
that need to be optimised at the same time, the particle swarm
optimisation (PSO) algorithm is selected for optimal sizing of the
RHS. The optimisation goal is to obtain the least CO2 emissions
by adjusting the size of each component under the prescribed
AIC. As a case study, this work provides a preliminary feasibility
plan for how to invest in RHS to replace the traditional heating
system in the university campus.

RENEWABLE HEATING SYSTEM
MODELLING

Traditional heating systems use combined heat and power
(CHP) and gas boilers to consume gas to generate heat for
space heating of buildings. The use of gas can cause a large
amount of CO2 emissions. In order to reduce greenhouse gas
emissions, one solution is to use electrically driven heat pumps
to heat buildings. However, this will increase the cost in
electricity and have an impact on the electricity grid,
especially in winter when the heat demand is relatively high.
This can lead to extra load to the power grid and affect its

stability. To solve this problem, the usage of local renewable
resources is considered as a substitute. Renewable resources
mainly include wind and solar energy that both depend on
weather conditions. Thus, the heating system requires battery
storage systems and thermal energy storage to compensate the
imbalance between generation and demand for electrical energy
and thermal energy, respectively. The district heating network
of the traditional heating system and the proposed renewable
heating system (RHS) is shown in Figure 1.

Wind Turbine
The role of wind turbines (WT) is to convert wind energy, an
environmentally friendly energy source, into a form of electrical
energy. It is one of the most promising renewable energy sources
and its global installed capacity is increasing year by year (Ren
et al., 2021). According to the direction of their rotation axis,WTs
can be classified into horizontal axis wind turbines (HAWT) and
vertical axis wind turbines (VAWT). HAWT extracts wind
energy on the horizontal axis and the blades rotate due to the
lift provided by the aerodynamic force from wind. Because of it
has higher efficiency than VAWT, the HAWT is more popular in
research. However, HAWT needs to always point to the wind
direction to work effectively. For unpredictable wind directions,
the HAWT needs additional mechanisms to ensure that the
blades are always facing the wind direction. The VAWT has
its blades perpendicular to the ground and rotating around the

FIGURE 1 | Heating system of university campus.
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vertical axis. VAWT can receive wind power from any direction.
Compared with HAWT, VAWT has several advantages,
including no need to face to the wind flow, the ability of
generating electricity at low wind speed, no need for
additional control on yaw and pitch, less maintenance costs,
and less noise (Eriksson et al., 2008; Johari et al., 2018). However,
VAWT has much lower efficiency at high wind speeds than
HAWT, its dynamic stability is relatively poor due to its light
weight, and it is vulnerable to backtracking wind. For the above
reasons, VAWT is often installed in slow and turbulent wind
environments, such as roof top, for low-power generation (Bhutta
et al., 2012), while HAWT is often used for high-power
generation in isolated and remote areas, such as on-shore or
off-shore wind farms (Johari et al., 2018). In recent years, some
researchers have combined the two types of WT together to
improve its operational capabilities (Govind, 2017).

Although HAWT and VAWT have lots of difference in
structure, control strategy and power efficiency, the methods
they use to capture power from wind energy are the same, and
thus can be expressed by the same equation. The available power
output of a WT is proportional to the cube of the wind speed. If
the wind speed is too low, the output power of the WT can be
ignored. When the wind speed increases, the output power of
the WT increases rapidly. Therefore, in order to ensure the
normal operation of a WT, three threshold wind speeds usually
need to be considered, including the cut-in speed, the rated
speed and the cut-out speed (Ren et al., 2016). When the wind
speed is lower than the cut-in speed, the WT stops to avoid
unnecessary mechanical wear and energy consumption; when
the wind speed is higher than the cut-in speed and lower than
the rated speed, the WT controls its rotating speed to track the
maximum power point referring to the current wind speed;
when the wind speed is higher than the rated speed and lower
than the cut-out speed, the WT adjusts its pitch angle to limit
the captured wind power not to exceed the limit of the
generator; when the wind speed exceeds the cut-out speed,
the WT shuts down to protect the rotor and the generator
from the damage of strong wind.

The power output of WT captured from wind is presented as

PWT(h) �
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 Vws(h)<Vcut−in or Vws(h)≥Vcut−out
1
2
ρArCpV

3
ws(h) Vcut−in ≤Vws(h)<Vrate

PWT ,rate Vrate ≤Vws(h)<Vcut−out
(1)

where ρ is the air density, Ar is the swept area of WT that depends
on the turbine radius or length of blades, Vws(h) is the hourly
mean wind speed, and Cp is the power conversion coefficient that
is determined by the aerodynamic structure of the WT. Vcut−in,
Vrate, and Vcut−out denote the cut-in wind speed, rated wind speed
and cut-out wind speed.

When designing a renewable energy system, it is necessary to
determine the suitable capacity of the WT according to the rated
power of the WT and the local wind resources. During the
operation, it is necessary to consider whether the current wind
speed has reached the cut-in speed, rated speed and cut-out

speed, and calculate the power that the WT can generate
according to the wind speed.

Solar Photovoltaic
Solar energy is another well-known clean energy. Since most parts
of the world have sufficient solar irradiance, solar power
generation technology has attracted a large number of
researchers. Photovoltaic (PV) is a device that uses the
photoelectric effect to directly and conveniently convert solar
energy into electricity (Liu et al., 2017). In recent years, with the
development of PV technology and the rapid decline of PV costs,
large-scale grid-connected solar PV power stations have been
built all over the world (Mandal et al., 2012).

However, PV systems are highly dependent on solar radiation
and weather characteristics. Due to the variability of solar
radiation and ambient temperature, the power output of the
PV system is uncertain and random (Mandal et al., 2012). The
uncertainty is from the alternation of day and night, effect of
seasonal changes, and random cloud movement (Jamal et al.,
2017; Jamal et al., 2019). Compared with the distributed PV
system, the power output of the relatively concentrated and single
format PV power generation system in a small area can change
very quickly. An isolated community can be completely or
partially obscured by fast-moving clouds in the span of a few
seconds to a fewminutes (Schmidt et al., 2017). The movement of
the cloud will affect the performance of the PV system, so
prediction must be made to avoid undesirable technical
problems and cost losses (Jamal et al., 2019). Predicting the
power output of a PV system is a challenging task.

For a photovoltaic array composed of PV panels, the
maximum power output can be expressed as (Tao et al., 2010)

PPV(h) � ηpvApvST(h) · [1 − 0.005(Tair(h) − 25)] (2)

where ηpv is the photoelectric conversion efficiency of the PV
array, Apv is the total area of the PV array, ST is the solar radiation
incident on the panel, and Tair is the air temperature of the
ambient in Celsius degree.

The power output of PV system mainly depends on the
amount of solar radiation and the operating temperature of
the installation location. In addition, as the equipment ages,
the photoelectric conversion efficiency and power conversion
efficiency will gradually decrease. But their changes in the system
life cycle are very small, so they can be ignored. Therefore, as long
as the solar radiation and panel temperature are known, the
power output of the PV system can be predicted.

Battery Storage System
As the main renewable energy sources, solar and wind energy are
intermittent and fluctuating weather resources. One of the
possible solutions is to use a hybrid renewable energy system
to integrate various renewable energy sources in the best
combination (Yang et al., 2018a). A good example is the
complementarity of solar and wind energy (Prasad et al.,
2017). However, this approach still has large uncertainties. If
the distributed resources cannot provide sufficient flexibility in
power generation, network operators will have to limit the
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penetration rate of renewable energy to a certain level, which will
adversely affect the use of renewable energy systems (Jamal et al.,
2019). For example, the power generation of the PV system
usually exceeds the residential electricity load during the day
but cannot meet the demand in the late afternoon and evening
when the residential load tends to increase (O’Shaughnessy et al.,
2018). Therefore, in order to highly integrate variable wind and
solar energy and reduce the impact of weather changes on
renewable power generation, energy storage systems have been
widely accepted as one of the potential solutions (e Silva and
Hendrick, 2017; Babacan et al., 2017; Zhang et al., 2018; Ren et al.,
2020). The main function of energy storage system is to
compensate the imbalance between power generation and
demand, transfer energy from periods of high power
generation to periods of low power generation, so that the
system can maintain full functionality under various operating
conditions (Dragicevic et al., 2014).

ESS includes a variety of technologies, such as pumped water
storage, compressed air energy storage, hydrogen storage,
flywheels, supercapacitors, and batteries (da Silva Lima et al.,
2021). The batteries have higher energy density than
supercapacitors, higher charging rate than pumped water
storage and less power loss than flywheels. Therefore, the
battery storage system (BSS) is the most suitable storage system
to store the electricity energy for such localised small-scale
applications due to its advantage of higher charging rate, higher
energy density and shorter response time. The response time of
BSS is between milliseconds and seconds, while that of PHS and
CAES are from a few seconds to minutes (Castillo and Gayme,
2014). Due to their durability, low maintenance and low social
environmental impact, it is expected that the development and use
of BSS will increase significantly in the next decades (da Silva Lima
et al., 2021). Among batteries, the most used are lithium-ion
batteries (LIB) and vanadium redox flow batteries (VRB). The
advantages of LIB are its high energy density, high efficiency, long
lifecycle, and more environment friendly characteristics. However,
due to these advantages of LIB, they are alsowidely used in a variety
of other applications, including small electronic products and
electric vehicles. VRB is a good substitute for LIB because of its
safety, long service life, better scalability and high recyclability (da
Silva Lima et al., 2021). However, the disadvantage of VRB is its low
energy density (Castillo and Gayme, 2014). Therefore, a VRB
requires more floor space than a LIB at the same capacity.

In the charging and discharging behaviour of a battery, the
state of charge (SOC) is often used to reflect the ratio of the
battery’s remaining capacity to its rated capacity (Yang et al.,
2018b). To protect battery lifecycle, it is necessary to limit the
SOCwithin a certain range. During battery charging, the SOC can
be given as (Zhang et al., 2018)

SOCBSS(h) � SOCBSS(h − 1) · (1 − σ) + PBSS(h) · Δh
EBSS,cap

· ηch (3)

and during battery discharging, the SOC can be given as

SOCBSS(h) � SOCBSS(h − 1) · (1 − σ) + PBSS(h) · Δh
EBSS,cap

/ηdch (4)

where σ denotes the self-discharge rate, PBSS denotes the power of
BSS generated or absorbed, EBSS,cap denotes the energy capacity of
BSS, ηch and ηdch denote the battery charge and discharge
efficiency, respectively. Δh represents the time step, in this
article, the time step is calculated in hours.

Heat Pump
Heat pumps are a group of energy systems that can extract heat
energy from lower temperature sources such as ambient air, soil,
water in lakes and rivers, and then upgrade and deliver it at a higher
temperature for heating applications (Watzlaf andAckman, 2006). If
the heat source is outside air, the system is called an air source heat
pump (ASHP). If the heat source is the ground, soil or groundwater,
it is called a geothermal heat pump (GHP). GHP is one of the fastest
growing renewable energy sources in the world (Arat and Arslan,
2017). Compared with traditional heating fuels, such as natural gas,
heating oil and propane, the effectiveness of operational cost of
GHPs is directly related to the cost of electricity that drives the HP
(Self et al., 2013). But the installation costs of GHPs can be an order
of magnitude higher compared to a gas boiler.

Heat energy delivered by the HP normally exceeds its electricity
consumption. Coefficient of performance (COP) defined as the
ratio of heat output to input power is used to describe the energy
performance of heat pumps (Casasso and Sethi, 2014). The COP of
heat pumps can reach 3–5 or more depending on temperature
conditions (Renaldi et al., 2017), which means the heat pump can
provide 3–5 kW of heat by consuming 1 kW of electricity.
Furthermore, the smaller temperature difference between the
heat source and the radiator, the greater the COP of the HP
system. In cold weather, the COP of an ASHP is usually about 2 or
lower. Therefore, GHP have higher efficiency than ASHP because
the underground temperature is closer to the required indoor
conditions than the outdoor air temperature in winter and the
GHP usually use water which reduces the size of the evaporator
heat exchanger due to the higher energy density compared to air.
However, as GHP requires higher installation costs and larger
spaces, ASHP is more suitable for heating smaller spaces.

In HP applications, its COP can be affected by different
variables, such as external temperature, water supply
temperature, inlet water temperature and load factor.
Simplifications can be made to reduce this complexity. The
COP can be calculated as (Ozgener and Hepbasli, 2007):

COPHP �
_QHP

PHP,comp
(5)

where _QHP is the rate of heat transfer in condenser of HP, PHP,comp

is the input power to the compressor.
The rate of heat transfer from the condenser is obtained as

_QHP � _mref (THP − Treturn) (6)

In this study, the air source heat pump is considered. For
simplification, the COP of the HP is modelled as a function of
temperature lift, or the temperature lift is known as the difference
between the supply water temperature Twat and the external air
temperature Ttemp (Renaldi et al., 2017).
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COPHP � a · (Twat − Ttemp) + b (7)

where a and b are the parameters from the linear regression fits of
manufacturer’s data (Renaldi et al., 2017). However, the linear
regression is just an initial fitting for the easy implementation of
modelling. A nonlinear model can be more accurate. Since this
paper aims to provide a feasible solution for investment of heat
pump rather than operational control, the linear regressionmodel
is sufficient for estimating the COP of HP.

Thermal Energy Storage
The outdoor temperature changes between summer and winter
during the year can produce huge changes of heat demand (Xu
et al., 2018). In this case, a lot of heat will be wasted in the summer
when the heating demand is minimal, and there will be
insufficient heat in the winter. In addition, the mismatch
between energy demand and supply is often observed. Among
several storage technologies, thermal energy storage (TES) seems
to be one of the most promising technologies that can compensate
for the intermittent heat generation of new energy sources. The
advantages of using TES in energy systems include improved
overall efficiency, better reliability, bring better economy,
reduced investment, and operating costs, and less pollution and
CO2 emission to the environment (Sarbu and Sebarchievici, 2018).

In recent decades, the TES technology has been widely studied.
Considering the required storage time, the TES system can be
divided into short-term storage and long-term storage. The short-
term storage TES has a charging and discharging cycle of hours to
several days, which is called diurnal thermal energy storage. The
long-term storage TES can store heat for several months and is
called seasonal TES (Dahash et al., 2019; Renaldi and Friedrich,
2019; Maximov et al., 2021). The principle of seasonal TES is to
store heat energy through heating equipment in summer, and then
discharge it for space heating in winter (Kubiński and Szabłowski,
2020). The use of TES can significantly increase the flexibility and
self-consumption of renewable energy for end users (Waser et al.,
2018). Therefore, this concept makes a significant contribution to
the efficient use of renewable energy in district heating systems and
the decarbonization of the building sector.

The most traditional TES design is provided in the form of a
water tank. When there is excess thermal energy on the supply
side, these tanks are charged (heated up), and when the demand
for thermal energy exceeds the supply, these tanks are discharged
(Abdelsalam et al., 2020). In the thermal system, the charging and
discharging process of the storage tank can be carried out by
direct heat exchange. The energy stored in the TES at timeh is
expressed as (Renaldi et al., 2017)

QTES,sto(h) � QTES,sto(h − 1) + [ _QTES,ch(h) − _QTES,dch(h) − _Qloss]
· Δh

(8)

where QTES,sto is the energy stored in TES, _QTES,ch and _QTES,dch

denote the charge the discharge power, _Qloss denotes the standing
losses, which normally can be found frommanufacturer’s datasheet.

Among the performance indicators used to evaluate TES, the
most common is TES efficiency, which is the ratio of the total heat

energy recovered from the heat accumulator at the discharge
temperature to the total heat input at the charging temperature as
(Dahash et al., 2019)

ηTES �
QTES,dch

QTES,ch
(9)

OPTIMAL SIZING OF RENEWABLE
HEATING SYSTEM

Optimisation Problem
The purpose of this study is to find the most effective investment
plan to reduce CO2 emissions in building heating under a given
financial budget. Therefore, the optimisation problem is
transferred to minimising the total CO2 emission in the period
between 2020 and 2050. The objective function is expressed as

min ∑
2050

yi�2020
SCO2(yi) (10)

where SCO2(yi) denotes the annual CO2 emission in year yi, which
is expressed as the product of specific CO2 emission factor for
nature gas, ggas, and heat energy produced by gas boiler, Qgas.

In this paper, the RHS uses the electricity from local renewable
energy. Thus, it is assumed that electricity power generation has
no CO2 emissions in the RHS, and the CO2 emissions are entirely
generated by using the natural gas in the traditional heating
system. This assumption can intuitively indicate the reduction in
the use of traditional heating system and nature gas as well as the
total CO2 emission during operation. The factor of SCO2(yi) can
be used as an indicator to quantify the decarbonization
performance, which is defined as follows.

SCO2(yi) � ggas · Qgas(yi) (11)

This equation only considers the CO2 generated from gas and
assumed that the electricity generation has no CO2 emission in
the RHS. This assumption is simple and directly react the CO2 in
operation. And use this factor as an index to justify the
performance of decarbonisation.

And Qgas can be presented as

Qgas( yi) � ∑
8760

h�1
[ _Qheat(h) − _QHP(h) + _QTES,ch(h) − _QTES,dch(h)]

(12)

where _Qheat(h) is the hourly heat demand of buildings and _QHP(h)
is the hourly heat produced by heat pump, h is the time factor of
hours in a whole year, which in total are 365 days times 24 h. The
_QHP(h) is determined by both the electricity generated from PV,
WT and BSS and its COP as

_QHP(h) � COPHP(Tair(h)) · (PPV(h) + PWT(h) − PBSS(h)) (13)

In practice, the output of power generator and heating
equipment cannot exceed its rated value, and the energy
stored by storage equipment cannot exceed its specified
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capacity. In addition, the annual installed capacity cannot be
negative, which means that the total capacity of each component
cannot be lower than the previous year. The constraints of all
types of components are given as

0≤ PPV ≤ PPV ,rate( yi) (14)

0≤ PWT ≤ PWT ,rate( yi) (15)

0≤ _QHP ≤ _QHP,rate( yi) (16)

SOCmin < SOCBSS(h)< SOCmax (17)

0≤QTES,sto ≤QTES,cap( yi) (18)

PPV ,rate(yi)≥ PPV ,rate( yi − 1) (19)

PWT ,rate(yi)≥ PWT ,rate( yi − 1) (20)

_QHP,rate( yi)≥ _QHP,rate( yi − 1) (21)

EBSS,cap( yi)≥ EBSS,cap( yi − 1) (22)

QTES,cap( yi)≥QTES,cap( yi − 1) (23)

In addition to the above technical constraints, another
constraint is the financial budget. In this study, it is assumed
that the investment plan has an Annual Investment Cost (AIC)
limit. The investment cost in each year can be used to increase the
capacity of any component, but the total cost cannot exceed AIC as

AIC ≥ΔPPV ,rate(yi) · UPV(yi) + ΔPWT ,rate(yi) · UWT(yi)
+ Δ _QHP,rate(yi) · UHP(yi) + ΔEBSS,cap(yi) · UBSS(yi)
+ ΔQTES,cap(yi) · UTES(yi) (24)

where ΔPPV ,cap, ΔPWT ,cap, Δ _QHP,rate, ΔEBSS,cap, and ΔQTES,cap

denote the increased rated power of PV, WT and HP and
capacity of BSS and TES of each year. UPV(yi), UWT(yi),
UHP(yi), UBSS(yi), and UTES(yi) denote the unit cost of each
component in year yi.

The forecasted component unit price in future years is
obtained based on different financial assumptions in recently
published papers (Keiner et al., 2019; Yue et al., 2020; Rinaldi
et al., 2021). In this study, the financial forecast for the unit cost of
components for 2020–2050 is in British pounds, as shown in

Figure 2. The prediction shows that the unit prices of PV, WT,
HP, BSS, and TES will continue to fall in the next few decades,
while the unit price of natural gas and CO2 will increase rapidly in
the coming decades.

Optimisation Approach
From the literature in the past decades, there are four main
optimisation approaches that are commonly used, including the
direct search, calculus-based optimisation, genetic algorithm (GA),
and particle swarm optimisation (PSO). Direct search is a
straightforward optimisation method that does not consider time
delay and derivatives. Thus, the direct search method can be
applied in optimising many nonlinear functions that have less
dependence on its derivatives (Kolda et al., 2003). The most
commonly used Calculus-based Optimisation method is to set the
gradient of the objective function to zero (Kheiri, 2018). Another
calculus-based optimisation method is Newton’s method, which is
similar to the Steepest Descent Method that uses an iterative process
from an initial guessed starting point to finally converge to the
optimum point. The GA is a population-based algorithm to search
for the global-optimum solution. The iterative process of GA will
converge to better solutions based on the breeding of the parents with
higher performance (Elbeltagi et al., 2005; Kheiri, 2018). However, the
GAhas shortages that it requires a large amount of non-optimal data as
the requirement of global search (Kheiri, 2018). The PSO is a
population-based metaheuristic algorithm that attempts to find the
global optimal solution of the optimisation problem by simulating the
social gathering behaviour of animals (Eberhart and Kennedy, 1995;
Kheiri, 2018). This paper chooses the PSOmethod to find the optimal
sizing of RHS due to its strength in finding the global optimal solution
and easy to implement.

PSO method uses a large number of the swarm to search the
optimum point globally and share the information among all swarm
for the next search step. In the PSO algorithm, each feasible solution is
called a particle, which is specified by a vector containing problem
variables (Maleki et al., 2016). Particles can remember their previous
optimal position and share it with others (Shi, 2001). The motion of
each particle is composed of two randomlyweighted influences and an
initial random velocity (Shi, 2001). The PSO algorithm simulates the

FIGURE 2 | Financial assumptions for components of future years.
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sociality of particle, combines the best position of the entire swarmand
the trend of its own movement, effectively avoids the particles and
swarm falling into the local optimal solutions (Baniasadi et al., 2020).

In the PSO algorithm, the state of each particle is represented
by its position xj and velocity vj. The velocity update equation of
the PSO algorithm has three key parameters, including the inertia
constantw, the acceleration constant c1 that controls the direction
of the particles toward its best position in history, and the
acceleration constant c2 that attracts the particles to the best
position of the swarm. The formula for updating the velocity and
position of each particle in the space can be expressed as (Maleki
et al., 2016; Mekontso et al., 2019)

vk+1j � wk · vjk + c1 · r1k · (pkbest,j − xkj ) + c2 · r2k · (gkbest − xkj ) (25)

xk+1j � xkj + vk+1j (26)

where vkj and x
k
j are the velocity and position of the jth particle in

the kth iteration, pkbest,j is the best position achieved by the jth
particle and gkbest is the best position of the swarm, r1 and r2 are the
random factors between 0 and 1.

SIMULATION OF RENEWABLE HEATING
SYSTEM

Heat demand is the most important input parameter for any
heating system optimisation. It is essential to obtain good
performance of the real system. A heat demand model needs
to be established to predict the required heat through weather
conditions such as ambient temperature. Modelling and
simulation of energy systems are usually implemented using
engineering models or data-driven models. The simulation test
uses energy data from the Glasgow University campus as a case
study. In our previous study, both the engineering modelling
approach (Chen et al., 2019) and data-driven approach (Chen
et al., 2020) have been used to predict the heat demand of campus
buildings. The heat demand of the campus and the corresponding
ambient temperature data are shown in Figure 3.

The hourly temperature obtained from the nearest weather
station shows that the local annual temperature fluctuates
between −10°C and 25°C. The heat demand data is recorded at
the University Energy Centre, given as a blue line, varying from
0 kW to 8000 kW. From the data, the temperature is lower in
winter and higher in summer, while the heat demand is the
opposite. The parameters of each component in the RHS are
given in Table 1.

Heat Pump Powered by Local Renewable
Resources
In the previous simulation case, it can be found that the use of HP
will bring additional power load to the grid. This shows that
although the use of HP can greatly reduce CO2 emissions, there is
a potential risk of overloading or even fault occurring in the
power grid. Therefore, the most promising alternative is to use
local renewable resources to generate electricity to drive HP to
heat buildings. This will reduce the impact of the large amount of
electrical energy required by HP on the grid. In this case, it is
assumed that the heating system is independent of the grid, and
only uses renewable energy for power supply to the HP. The
heating system combines the RHS based on local renewable
resources and the traditional heating system using gas boiler.
When renewable resources can generate enough power, the heat
demand is completely supplied by HP, and the unconsumed
power is stored in the BSS. When renewable resources driven HP
cannot provide enough heat for the building, traditional gas
boilers will be used to compensate for the remaining heat
demand by consuming natural gas.

Figure 4 shows an example of monthly heat production when
renewable generation capacity is 10 MW, where the rated power
of PV and WT are both 5 MW. Since this case aims to consider
the role of the BSS rather than its actual size, the capacity of the
BSS is assumed to be large enough to store all unused energy from
renewable energy sources. The blue part, the green part, and the
yellow part in the bar chart represent the heat generated by the
HP driven by power from PV, WT, and BSS, respectively. It can

FIGURE 3 | Heat demand of university campus versus ambient temperature.
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be seen from the results that, due to the large changes in the
illumination time and the angle of solar radiation in high latitude
areas such as Scotland, PV power generation is higher in summer
and lower in winter. WT has the opposite trend as it will produce
more power in winter and less power in summer. From the results
of each month, the heat demand of the building in July, August,
and September is less, so the heat demand can be fully supplied by
HP. In addition, due to the low heat demand, the unconsumed
power generated by renewable resources is stored in the BSS.
Therefore, in October and November, most of the electricity is
provided by the BSS that has stored electricity in the past few
months. From December to April, the heat demand is high, but
the power from renewable energy and BSS are low, so a large
amount of heat is provided by gas boilers for building heating.

It can be seen from the above results that the natural gas
consumption of gas boilers is related to the installed capacity of
renewable energy. Therefore, the relationship between natural gas
consumption and renewable energy installed capacity is shown in
Figure 5A. Without the use of BSS, the gas consumption

decreases slowly as the installed capacity of PV or WT
increases, as shown by the dashed lines. Under the same
installed capacity, WT-driven HP performs better than PV-
driven HP in reduction of gas consumption. The reason is
that WT’s power generation is large in winter and small in
summer, which is more in line with building heat demand.
However, PV power generation has a small amount of power
generation in winter, so the power generation of PV in winter is
not enough to support HP consumption. However, after using
BSS with installed capacity in Figure 5B, the time distribution of
renewable resources has less impact, and the total power
generation is more important. As the installed capacity of
renewable energy increases, the consumption of natural gas
decreases faster since unconsumed electricity is stored in the
BSS and used to assist the renewable energy generation. With the
same installed capacity, PV can generate more electricity than
WT, and thus results in less gas consumption. In this case, HP
driven by PV can reduce gas consumption faster than HP driven
by WT. However, due to the time mismatch between heat
demand and PV power generation, the BSS capacity required
for PV is much higher than that of WT. The required capacity of
BSS corresponding to different renewable energy installation
capacity is shown in Figure 5B. When the PV installed
capacity reaches 15 MW, the gas consumption can be reduced
to zero. The corresponding required BSS is nearly 5 GWh, which
is a very high capacity, while the same installation capacity of WT
requires the BSS for just 1 GWh, which is still a massive capacity.
Therefore, this result only considers the technical requirements
and does not consider the financial feasibility.

The results in Figure 5 are for cases with only a single
renewable generation technology, i.e., either PV or WT but
not at the same time. The result shows that PV driven HP is
better in terms of total power generation but requires more BSS
for energy storage. For this reason, another method is to install
PV and WT at the same time to combine their advantages. The
gas consumption and the required BSS corresponding to the PV
andWT at different rated powers are shown in the 2D surfaces of
Figures 6A,B. When the rated power of PV and WT is greater
than 7 MW, only 2.5 GWh of BSS can reduce natural gas

FIGURE 4 | Example of monthly heat generation from renewables and gas boiler.

TABLE 1 | Model parameters of components in renewable heating system.

Parameters Symbol Value

WT—cut-in wind speed Vcut−in 3.5 m/s
WT—rated wind speed Vrate 14.5 m/s
WT—cut-out wind speed Vcut−out 25 m/s
WT—air density ρ 1.225 kg/m3

WT—swept area Ar 1735 m2

WT—rated power PWT,rate 750 kW
PV—photoelectric conversion efficiency ηpv 0.9
PV—area of unit array Apv 500 m2

PV—rated power PPV ,rate 350 W
BSS—self-discharge rate σ 0.00005
BSS—charge efficiency ηch 0.95
BSS—discharge efficiency ηdch 0.95
HP—linear regression parameter of COP a −0.066
HP—linear regression parameter of COP b 5.7
HP—supply water temperature Twat 60°C
TES—efficiency ηTES 0.9
CO2—natural gas GHG emission — 241 g/kWh
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consumption to zero, which is only half the installed capacity of
PV alone.

Optimal Sizing Considering CO2 Emission
and Financial Cost
The previous case only considered the technical requirements for
the selection of components in RHS. This section considers the
financial cost in reducing CO2 emissions and optimises the
investment capacity of each component for every year. The
financial assumptions for the unit cost of each component in
future years use the predictions given in Figure 2. Due to the
limited AIC, more investment on one component means less
investment on other components. Thus, its sizing needs to be
optimised to find the optimal scheme to achieve the minimum
CO2 emission. The variables for optimisation include the capacity
of PV, WT, BSS, HP, TES considering their constraints described
in Optimisation problem. For this multi-parameter Optimisation
problem, the optimisation method uses the PSO method
described in Optimisation approach to find the most suitable
component size to minimize the total CO2 emissions. Since the
financial assumption for the unit cost of each component in
future years predicted in Figure 2 is in every 5 years, the
optimisation purpose is the total installed amount of each
component in every 5 years. The indicator for the optimisation
is the total amount of CO2 emissions in 5 years. After that, the
optimal size of each period is based on the installation amount of
each component at the previous period and re-run the
optimisation approach according to AIC. Therefore, the

optimisation results of every 5 years are based on the optimal
solution for the current period. It is ensured that the size of the
components in the RHS will increase, and the CO2 emissions will
decrease year by year, and finally achieve the optimal result.

The optimisation result is shown in Figure 7, which shows the
annual investment capacity of each component in the RHS based
on different investment budgets. For example, if the university
plans to spend 100,000 pounds per year, as shown by the blue line,
the optimal capacity of PV,WT, HP, BSS, and TES for investment
according to the optimisation results are given in Figures 7A–E.
Using the optimal scheme, the least CO2 emissions can be
obtained, as shown in Figure 7F. In the blue line, the CO2

emission will still not be reduced to zero by 2050 but will be
reduced from 2.7 tons/year to 0.7 tons/year. If the university plans
to use the grid independent RHS to completely eliminate CO2

emissions by 2050, it will need at least 400,000 pounds per year.
The optimisation results give a preliminary idea of how to
construct the RHS. From the results, in the first 10 years, HP,
as the main component of RHS, has the fastest growth in its
investment capacity. At least after 2030, the investment of TES
will have an effective impact on reducing CO2 emissions. The
investment capacity of PV,WT, and BSS is increased according to
the local renewable energy resources and the unit cost of each
component to achieve the optimal application of renewable
energy.

Compared with different AIC, the more investment, the less
CO2 emissions are obtained, as shown in Figure 8A. Numerically,
if RHS is not invested, the traditional heating system will generate
at least 8 × 105 tons of CO2 from 2020 to 2050. The higher the

FIGURE 5 | Boiler gas consumption and required ESS capacity according to the installation capacity of renewable energy.
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AIC of RHS, the less total CO2 emissions are obtained. If the AIC
reaches £300,000 per year, the total CO2 emissions from 2020 to
2050 can be reduced to 1.6 × 105 tons, which is only 20% of
continuous using the traditional heating system.

The estimated CO2 emissions are based on the output of a
district heating network model, which has been calibrated
based on data from the past few years. The actual CO2

emissions of the entire university are much more
complicated and include commuting and business travel
(Duncan and Haydon, 2019). Therefore, the estimated CO2

emissions in this article are only for preliminary verification of
the feasibility and effectiveness of RHS. In addition, the
investment cost shown in this paper only considers the
predicted unit price of devices. This makes the price and
investment amount of the RHS system look much lower
than expected. The actual cost will also include other cost,
such as the installation fee, maintenance fee, ground rent, etc.
These will greatly increase the complexity of prediction and
optimisation, so this paper does not consider these factors.

In addition to the total CO2 emissions, the operating cost of
natural gas and CO2 is another cost of the heating system, as
shown in Figure 8B. If a traditional heating system is used, the
total operating cost of natural gas and CO2 is approximately
260 million pounds. And if the AIC of RHS reaches £300 k per
annum for 30 years from 2020 to 2050, the total operating cost
will be reduced to 36 million pounds, which is just 14% of the
operating cost of the traditional heating system. This shows that

FIGURE 7 | Optimisation result of installing renewable energy, heat pump and BSS, and the reduction of CO2 emission.

FIGURE 6 | Boiler gas consumption and required BSS capacity
according to the rated power of PV and WT.
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the investment of RHS can reduce operating costs as well, which
is a further benefit and profit for this investment.

CONCLUSION

This paper proposed a complete RHS framework, considering
PV, WT, BSS, HP, and TES. In the RHS, it is analysed
the reduction of gas consumption and the required BSS
under the corresponding installed capacity of renewable
components from their technical requirements. Meanwhile,
in the context of British tariffs and government incentives,
the size of each component in the system is optimised through
the PSO algorithm according to different AICs. The results verify
that the optimal size of RHS provided by this approach can
minimise CO2 emissions and reduce the operating cost of natural
gas. This provides a preliminary feasibility plan for how to
invest in RHS to replace the traditional heating system in the
university campus. In the future work, we will design and
analyse the operation scheme and control strategy of the RHS
system as well as more detailed HP models. This aims to
increase the efficiency and reduce the loss of the RHS system
in order to further reduce the carbon emissions and help to
alleviate the global warming issue.
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