

Edinburgh Research Explorer

Nervion: A Cloud Native RAN Emulator for Scalable and Flexible
Mobile Core Evaluation
Citation for published version:
Larrea, J, Marina, MK & Van der Merwe, J 2021, Nervion: A Cloud Native RAN Emulator for Scalable and
Flexible Mobile Core Evaluation. in Proceedings of the 27th Annual International Conference on Mobile
Computing and Networking (MobiCom 2021). Association for Computing Machinery (ACM), pp. 736-748,
27th Annual International Conference on Mobile Computing and Networking, New Orleans, Louisiana,
United States, 31/01/21. https://doi.org/10.1145/3447993.3483248

Digital Object Identifier (DOI):
10.1145/3447993.3483248

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 27th Annual International Conference on Mobile Computing and Networking (MobiCom
2021)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 22. Dec. 2021

https://doi.org/10.1145/3447993.3483248
https://doi.org/10.1145/3447993.3483248
https://www.research.ed.ac.uk/en/publications/bb5540c4-057b-4817-bca0-748a8e7c36ad

Nervion: A Cloud Native RAN Emulator for Scalable and
Flexible Mobile Core Evaluation

Jon Larrea
The University of Edinburgh

UK

Mahesh K. Marina
The University of Edinburgh

UK

Jacobus Van der Merwe
University of Utah

USA

ABSTRACT

Given thewide interest onmobile core systems and their pivotal role
in the operations of current and future mobile network services, we
focus on the issue of their effective evaluation, considering the radio
access network (RAN) emulation methodology. While there exist a
number of different RAN emulators, following different paradigms,
they are limited in their scalability and flexibility, and moreover
there is no one commonly accepted RAN emulator. Motivated by
this, we present Nervion, a scalable and flexible RAN emulator
for mobile core system evaluation that takes a novel cloud-native
approach. Nervion embeds innovations to enable scalability via
abstractions and RAN element containerization, and additionally
supports an even more scalable control-plane only mode. It also
offers ample flexibility in terms of realizing arbitrary RAN emula-
tion scenarios, mapping them to compute clusters, and evaluating
diverse core system designs. We develop a prototype implementa-
tion of Nervion that supports 4G and 5G standard compliant RAN
emulation and integrate it into the Powder platform to benefit the
research community. Our experimental evaluations validate its cor-
rectness and demonstrate its scalability relative to representative
set of existing RAN emulators. We also present multiple case studies
using Nervion that highlight its flexibility to support diverse types
of mobile core evaluations.

CCS CONCEPTS

• Networks → Mobile networks; Network performance evalua-
tion; Cloud computing.

KEYWORDS

Mobile Core Systems, Evaluation, RAN Emulation, Cloud Native

ACM Reference Format:

Jon Larrea, Mahesh K. Marina, and Jacobus Van der Merwe. 2022. Nervion:
A Cloud Native RAN Emulator for Scalable and Flexible Mobile Core Eval-
uation. In The 27th Annual International Conference on Mobile Computing
and Networking (ACM MobiCom ’21), January 31-February 4, 2022, New Or-
leans, LA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3447993.3483248

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8342-4/22/01. . . $15.00
https://doi.org/10.1145/3447993.3483248

1 INTRODUCTION

The core is a key mobile network component that handles the es-
sential control functionality such as mobility, session and security
management, and also bridges data communication between end
devices and external networks like the Internet via the radio access
network (RAN). Driven by the limitations of the traditional mobile
network architecture and the wider trends in the mobile network
industry, such as embracing network softwarization and support-
ing diverse use cases, mobile core networks have received a great
deal of attention from the standardization bodies [1–4] as well as
research [5–21] and open source [22–26] communities.

In this paper, we focus on enabling the evaluation of mobile core
systems in terms of their scalability, responsiveness, support for diverse
services, robustness and so on. This is considering the ever more
critical role of mobile networks play in society, including their use
in public safety, and given the significant part the mobile core plays
in their operations. An effective evaluation methodology to this
end should be able to realistically model the RAN in terms of scale
and control/data plane workload patterns.

RAN emulation has become the commonly used mobile core
system evaluation methodology, as reflected by [6–21], compared
to other alternatives like testbed-based experimental evaluation,
simulation and mathematical analysis. The general idea behind
RAN emulation is to emulate the RAN elements – base stations and
end devices (UEs) – from the perspective of the core system under
test. RAN emulation based core evaluation can also allow seamless
transition to evaluation over a testbed or production network.

As discussed in §5, existing RAN emulators fall into four cate-
gories: full stack emulation, commercial RAN emulators, trace based
emulation and ad-hoc RAN emulators. The full stack emulation
approach represented by OAI [27] and srsLTE [23] has severe scala-
bility limitation and so has not been used for core system evaluation.
Commercial RAN emulators, owing to their limited access within
the research community, are also rarely used in the literature, except
for openEPC [28] which is accessible via Powder [29] and earlier
Phantomnet [30] testbed infrastructures and used in [9, 13, 14]. The
trace based emulation approach used in [7, 8, 11, 12, 17, 21] has
the inherent limitation of being inflexible as the RAN workload
patterns cannot generalize beyond the underlying trace. The last
category of ad-hoc emulators [6, 15, 18–20, 31–33] are commonly
used [6, 10, 15, 18–20, 34, 35] but, as the name suggests, are tied to
the target core system they are designed for. These ad-hoc emu-
lators are also limited in their scalability (e.g., due to being single
process applications) and flexibility (e.g., support only control plane
or data plane but not both). Crucially, there is no one commonly
accepted RAN emulator that can enable comparative evaluation of
different mobile core systems.

Motivated by the above, we present Nervion as a versatile RAN
emulator that takes a novel cloud-native approach to overcome the

https://doi.org/10.1145/3447993.3483248
https://doi.org/10.1145/3447993.3483248
https://doi.org/10.1145/3447993.3483248

ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA Jon Larrea, Mahesh K. Marina, and Jacobus Van der Merwe

aforementioned limitations of existing solutions while maintaining
fidelity of RAN emulation from a mobile core system evaluation
perspective. The Nervion system architecture is designed with
scalability and flexibility in mind. To achieve scalability, Nervion
employs three techniques: (1) abstraction: Nervion abstracts away
RAN internals and protocol layers that are unimportant from the
core system evaluation perspective and this allows for lightweight
realization of RAN elements (UEs and base stations); (2) refactoring:
based on the insight that UE control plane functionality is medi-
ated through its associated base station (eNodeB in 4G and gNodeB
in 5G) while the source/sink for data plane traffic resides in the
UE, UE functionality in Nervion is refactored so that emulated
UEs (called nUEs in Nervion) only handle the data plane whereas
control plane behavior of a UE is proxied by the corresponding
emulated base station in Nervion (called nBS) along with base sta-
tion’s own control plane functionality; and (3) containerization: the
above refactoring allows for nUEs and nBSs to be realized as largely
separate elements with minimal interaction via the Nervion con-
troller. In Nervion, we containerize nUE and nBS so that desired
number of their instances (as per the experiment needs) can be
created across multiple virtual or physical machines, and option-
ally allowing multiple nUEs per container as separate threads for
control-plane focused evaluations.

Nervion provides flexibility in multiple forms. Firstly, it uses the
notion of an emulation scenario to provide a detailed “specification”
of the evaluation scenario, including the number and configura-
tion of the RAN elements as well as RAN control and data plane
workload patterns. Control plane workload in a scenario is defined
as a user-defined sequence of control plane events with specified
intervals between them. The containerization of nUE and nBS al-
lows for a TUN device [36] to be attached to each nUE instance,
thus enabling the use of any application to generate data plane
traffic in the UE. Secondly, Nervion relies on Kubernetes [37], the
widely used open-source container orchestration system, to flexibly
and automatically realize the configuration in the scenario with
the required number of containers and their interconnections over
the underlying compute infrastructure. This allows for easily port-
ing the emulation scenario between different compute clusters so
long as they are orchestrated by Kubernetes. Thirdly, Nervion also
provides flexibility with respect to the interface between emulated
RAN and core system by modularizing the interface; replacing the
module and its associated events allows switching between different
(even non standard compliant) interfaces.

We develop a prototype implementation of Nervion that sup-
ports both 4G and 5G standard compliant RAN emulation from
control as well as data plane perspectives, including a control-plane
only mode. Our choice of standard compliant RAN-core interfaces
for our implementation is considering that the majority of core sys-
tem designs in the literature are based on 3GPP compliant interface
to the RAN for modularity and deployability reasons [7–9, 13–
15, 17]. To enable repeatable experimentation and to allow other
researchers to build on our work, we have created a profile on the
Powder platform [29] with the Nervion implementation.

Using the above outlined implementation, we first validate the
correctness of Nervion and then extensively evaluate it against a
representative set of existing RAN emulators following alternative
approaches [23, 27, 28, 33]. Our evaluations show that Nervion is

significantly more efficient and lightweight compared to OAI [27]
and srsLTE [23] RAN emulators. They also indicate that 4G and
5G versions of Nervion efficiently emulate the RAN compared
to OpenEPC [28] and UERANSIM [33], respectively. These results
highlight the scalability of Nervion relative to these other existing
RAN emulators.

We present several use cases of mobile core evaluation with
Nervion that span both control and data planes. One of them
compares the scalability of multiple different mobile core designs
and implementations: OpenAirInterface [22] (OAI) Core-network,
srsEPC [23], NextEPC [24], MobileStream [14], Free5GC [25], and
Open5GS [26]. This evaluation also demonstrates how Nervion
can elastically use the underlying compute infrastructure (Powder
in our case) to realize the RAN of desired size and configuration,
as well as potential scalability improvement with its control-plane
only mode. We also study the control plane latency with some
of the above mentioned core systems using Nervion. Finally we
also present a data plane focused use case that demonstrates how
Nervion can flexibly create data plane traffic for different types of
services (e.g., mobile broadband and IoT).

To the best of our knowledge, Nervion is by far the most com-
prehensive and versatile RAN emulator supporting scalable and
flexible mobile core evaluation at high fidelity. We make Nervion
publicly available via the Powder facility [38] to benefit the research
community. We believe going forward Nervionwill serve as a com-
mon RAN emulation tool to evaluate newer mobile core systems
designs. In summary, we make the following key contributions:

• We present a new RAN emulator design that takes a unique
cloud-native approach to enable scalable and flexible mobile
core system evaluation (§3.2);

• We develop a prototype implementation of Nervion that
supports 4G and 5G standard compliant RAN emulation
across control and data planes; this implementation is also
integrated into the Powder platform through a profile that
already includes six different mobile core systems to experi-
ment with (§3.3);

• We validate the correctness of Nervion, evaluate it in com-
parisonwith representative set of existing 4G/5GRAN emula-
tors to demonstrate its scalability and flexibility advantages,
and also shows its value for mobile core system evaluation
through multiple diverse use cases (§4).

2 BACKGROUND

4G (LTE)mobile network architecture (Fig. 1) is made up of two
components: the RAN and the Core Network. The RAN comprises
base stations, called eNodeBs (eNBs) in LTE, that connects each
user device, called user equipment (UE), to the core network via the
air interface. The core network, called Evolved Packet Core (EPC)
in LTE, handles both control operations (such as mobility manage-
ment and authentication) and data transport to/from the Internet.
Specifically, the EPC consists of four main entities: (1) the Home
Subscriber Server (HSS), the central database containing relevant
subscriber-related information (including the authentication keys);
(2) the Mobility Management Entity (MME) that is responsible for
control functions including user authentication, session establish-
ment and mobility management; (3) the Serving Gateway (SGW)

Nervion: A Cloud Native RAN Emulator for Scalable and Flexible Mobile Core Evaluation ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA

Figure 1: 4G (LTE) system architecture

which handles the user data traffic to/from the RAN; and (4) the
PDN Gateway (PGW), which connects the EPC with external IP
networks such as the Internet. The SGW and the PGW are typically
merged into a single entity called SPGW.

The S1 interface is used to communicate between RAN and the
EPC, and it has two parts: (i) S1-C for the control-plane to carry
the control signaling traffic between UE/eNB and the MME in EPC;
and (ii) S1-U for the data or user plane (S1-U) to transport user
data traffic between the RAN and SPGW. The S1-C uses S1AP and
Non-Access Stratum (NAS) protocols, respectively, for eNB-EPC
and UE-EPC communication. While S1AP itself runs over SCTP,
NAS messages are encapsulated within S1AP messages en route to
EPC. The S1-U runs over GPRS Tunneling Protocol (GTP), which is
in turn based on UDP.

5G system architecture. Mobile networks are transitioning
towards a newer 5G system architecture [1–4] that has been go-
ing through standardization from 3GPP release 15 onwards. Fig. 2
shows a schematic of this 5G system architecture from the perspec-
tive of 5G core network, referred to as Next Generation Core (NGC),
that reflects its key aspects: control-data plane separation, greater
disaggregation of core functions and also adopts a service-based
architecture. Several of the NGC functions map to their coarse-
grained counterparts in 4G EPC. For example, the control and data
plane parts of SPGW map, respectively, to Session Management
Function (SMF) and User Plane Function (UPF) in NGC. The Access
and Mobility management Function (AMF) corresponds to MME,
whereas Unified Data Management (UDM) represents the HSS func-
tionality. NGC also includes additional new functions such as Net-
work Slice Selection Function (NSSF), Network Exposure Function
(NEF) and Network Repository Function (NRF) to enable a service
based architecture. Moreover, functions in NGC interact with each
other as different services that can each be independently scaled
and flexibly evolved.

The control plane interaction between NGC and 5G RAN is via
the N2 interface, that is based on the NGAP protocol (5G counter-
part of S1AP) over SCTP. As in 4G, the NAS protocol is used for
control plane interaction between UE and NGC via the 5G base sta-
tion (gNB), and NAS messages are encapsulated in NGAP messages.
The data plane interaction between RAN and core in 5G, on the
other hand, is over the N3 interface that is based on GTP/UDP (as
in 4G).

Alternative Core Designs. Limitations of the traditional mo-
bile network architecture, especially that of the 4G EPC, have come
to the fore in recent years due to the growing scale and diversity of
end devices, their varied access patterns, new service requirements,
and the broader softwarization trend in the mobile network indus-
try to shift towards a virtualized and cloud infrastructure based on
commodity hardware. This has resulted in several proposals for al-
ternative core designs in the research literature, including ones that
seek to address the scalability, latency and reliability issues with

Figure 2: 5G system architecture

the EPC (e.g., [13, 14, 17, 18, 20, 21]); to leverage software-defined
networking (SDN) and network function virtualization (NFV) (e.g.,
[5–12, 19]); and to enable deployment of the core over cloud envi-
ronments (e.g., [13]) or at the edge (e.g., [15, 16]).

Containers are a form of operating system (OS) virtualization in
which the application and its dependencies are isolated from other
processes in the OS. As containers run as isolated processes sharing
the OS, they avoid the overhead of starting and managing whole
virtual machines (VMs). One of the most popular containerization
technologies is Docker [39]. Docker uses the Linux resource isola-
tion features (namespaces and cgroups) to package the application
and its dependencies, allowing it to run in any location.

Kubernetes [37] is the widely used open-source container or-
chestration system to manage containerized applications. It allows
automatic deployment, scaling and management of an application
over a compute cluster. In Kubernetes, the basic work unit is the
Pod, which is a high-level abstraction grouping containerized com-
ponents. Kubernetes orchestrates the pods to create even higher
level abstractions, such as Services (set of Pods that work together),
ReplicaSets (maintains a stable set of replica Pods running at any
given time) or Namespaces (partitions of the resources into non-
overlapping sets). Kubernetes’ architecture is based on a master-
slave model, in which the master runs all the orchestration logic,
resource-control and scheduling functionality, whereas the slaves
are the working units on which the containerized parts of applica-
tions are executed. Each slave corresponds with a physical cluster
node, as well as the master node.

3 NERVION

Our overarching objective in this paper is to design a scalable and
flexible RAN emulator for realistic evaluation of mobile core system
designs and implementations. In this section, we first elaborate on
the scalability and flexibility goals along with the challenges they
pose. We then present our design – Nervion– that addresses these
goals. Finally we describe our current prototype implementation of
Nervion.

3.1 Design Goals and Challenges

3.1.1 Scalability. An effective core mobile network RAN emulator
should be able to support the realistic emulation of large-scale RAN
scenarios. It should specifically be able to emulate large numbers
of UEs as well as scalable (and variable) workloads for both control
and data planes. However there is an inherent trade-off between the
scale of the RAN that can be realized for a given compute resource
and its realism. Here the key challenge is to decide how to realize
the RAN scenario in a way that is scalable yet preserves the realism
from the core evaluation viewpoint. Also note that RAN scalability
that can be achieved is limited by certain aspects important for

ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA Jon Larrea, Mahesh K. Marina, and Jacobus Van der Merwe

Figure 3: Schematic representation of the emulated RAN ar-

chitecture inNervion and its interactionwith core network

via the RAN-Core Interface module.

realistic and flexible RAN emulation such as supporting arbitrary
applications for data plane traffic from emulated UEs. Another key
design issue for a RAN emulator to achieve scalability is how to
leverage more than a single machine or process as the underlying
compute resource.

3.1.2 Flexibility. The utility of a RAN emulator depends on being
able to realize RAN scenarios of desired scale and arbitrary work-
loads across both control and data planes. The question is how this
can be achieved automatically through a programmatic interface
rather than having to rely heavily on repeated manual input from
user of the emulator. Another design aspect to be addressed is how
to flexibly and automatically map a desired RAN configuration for
an experiment onto the available compute resources. Also, the RAN
emulator should be flexible enough to accommodate a variety of
core system designs differing in their interfaces to the RAN while
being agnostic to the internals of the core systems. The question
is how to support such flexibility through a modular design of the
RAN emulator.

3.2 Nervion Design

We now present the Nervion system design that addresses the
aforementioned challenges. Nervion not only faithfully emulates
the RAN control plane functionality but also flexibly allows exper-
imenting with diverse types of real traffic loads through the data
plane. AlthoughNervion design is generic, for the sake of concrete-
ness, we present it in the context of 4G/5G RANwith 3GPP standard
compliant interfaces to the mobile core network, as outlined in §2.

3.2.1 Abstraction of RAN Internals. In Nervion, the first step to-
wards realizing a scalable RAN emulator is to abstract away internal
aspects of the RAN that are inconsequential from the core network
perspective. For example, considering the 4G system architecture
(Fig. 1), the core network only sees the S1 interface – S1-C in the
control plane and S1-U in the data plane. Everything beyond the S1
interface is effectively invisible to the core and so is not relevant
to emulate. We use this observation to internally abstract the RAN.
Expanding on the above example, instead of using the standard
protocol stack for communication between UE and eNBwith the dif-
ferent protocol layers (RRC, PDCP, RLC, MAC and PHY), Nervion
uses a TCP connection between the emulated UE and emulated
eNB. This results in lightweight realizations of the emulated UEs
and base stations (BSs) that are referred to in Nervion as nUEs and
nBSs, respectively.

3.2.2 UE Function Refactoring. To further enhance scalability, we
reduce the coupling that exists between a UE and its associated

Figure 4: A Nervion configuration file specifying an emula-

tion scenario with one nBS and one nUE.

BS in the standard RAN architecture. Each RAN element (UE and
BS) in the standard RAN has both control and data planes from
the core perspective but the BS is merely an intermediate relay in
the data plane for traffic between UE and the core. This makes the
BS a bottleneck as it needs to handle all traffic to/from its associ-
ated UEs. In an emulator setting, however, we can deviate from
this standard RAN architecture model, without compromising the
realism from a core system evaluation perspective, as UEs and BSs
can be realized as separate processes that can each communicate
separately with the core. Given this and considering that control
plane messages from each UE are expected to come from its associ-
ated BS from the core perspective, we refactor the UE functionality
in Nervion so that the UE data plane resides in the nUE and its
control plane operations are executed at the corresponding nBS,
along with control plane signalling originating/terminating at the
BS. For coordination and exchange of necessary state information
between nUE and nBS (e.g., IP address assigned to UE by the core in
4G/5G), Nervion uses an internal communication protocol termed
Nervion Control Protocol. The control plane actions from the nUE
side are passed to its corresponding nBS as requests over this con-
trol protocol; the latter completes those actions and returns the
responses to the nUE. The data plane activity from a nUE bypasses
its nBS altogether. Fig. 3 illustrates the resulting emulated RAN
architecture in Nervion which aids in realizing larger scale RAN
scenarios without negatively affecting emulation fidelity.

3.2.3 RAN Element Containerization. The majority of RAN emu-
lators used in the research community employ a multi-threaded
approach within a single process and therefore limited to a sin-
gle physical machine to emulate RAN elements (UEs/BSs). With
Nervion, we distribute RAN emulation over multiple processes
that can be spread across different machines in a compute cluster.
Our distributed approach allows increasing the scale of the RAN
that can be emulated while maintaining realism. While emulated
RAN elements with our approach could in principle be realized
as virtual machines (VMs), containers are lightweight and faster
to set up, in line with our goal to have a scalable RAN emulator.
So we containerize the emulated RAN elements in Nervion (nUE
and nBS), and specifically use Docker [39] for this purpose in our
implementation.

Containerization also provides the required isolation between
multiple emulated UEs (nUEs) when instantiated on a single ma-
chine in terms of data plane traffic. In Nervion, we use a TUN
device [36] in each nUE to route traffic between UE and the core
(e.g., in the case of 4G/5G to intercept the UE application traffic and

Nervion: A Cloud Native RAN Emulator for Scalable and Flexible Mobile Core Evaluation ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA

Figure 5: Nervion over a Kubernetes cluster.

encapsulate it on the corresponding GTP tunnel). This approach
enables us to attach arbitrary applications to send/receive traffic in
the data plane through the TUN device. And containerizing nUEs
allows each nUE to have its own TUN device independent of other
nUEs instantiated on the same physical machine.

When the focus of mobile core system evaluation is solely on the
control plane, isolation between emulated nUEs when realized on
the samemachine (to be able to independently generate/receive data
traffic) is not relevant. For such cases, Nervion design supports a
‘Control-Plane Only’ mode to further increase the scale of the RAN
that can be emulated by leveraging multi-threading in addition to
containerization. Specifically, with this mode, the control plane of
each nUE is realized as a thread within a container, as opposed to
one nUE per container in the ‘full mode’ of Nervion. As a result, the
number of UEs that can be emulated is multiplicatively increased
by the number of nUE threads per container.

3.2.4 Emulation Scenario. With the aim of providing ample flexibil-
ity to create emulated RAN scenarios of desired size and workloads
in control/data planes, Nervion offers the notion of an ‘emulation
scenario’, which is specified as a JSON configuration file (see Fig. 4
for an example) and provided by the user to Nervion via a web
interface. This config file allows specifying information about each
emulated RAN element (nUEs and nBSs) and their control/data
plane behavior. The ‘control_plane’ and ‘traffic_command’ fields
within the description of each nUE, respectively, describe its work-
load in the control and data planes. The control plane workload
is specified as a string of tuples, each with an action (e.g., attach,
detach) followed by time (in seconds) that the nUE in question will
stay in the state resulting from that action. Note that some actions
such as handovers need additional information (e.g., new nBS to
associate with) and that is included following the action name in
the control plane workload specification. The data plane workload
of a nUE is specified with a command to invoke any real applica-
tion or traffic generation tool (e.g., iPerf) to generate the traffic
through the local TUN device. Nervion internally has an entity
called Controller that is responsible for validating and realizing an
input emulation scenario. The validation is done through a parser
that checks the config file if it complies with a set of pre-coded
rules (uniqueness of nBS and nUE ids, each nUE not connected to
more than one nBS at any point in time, etc.)

3.2.5 Orchestration with Kubernetes. We now consider realizing
a given emulation scenario in a flexible and automated manner
over available underlying compute resources (ranging from a single

Figure 6: Generic control-plane event call flow

computer to a compute cluster). This is especially an important
issue when a large-scale RAN scenario needs to be emulated as man-
ually realizing such a scenario is impractical. To this end, we use
the widely used Kubernetes container orchestration system [37].
As described above, emulated RAN elements (nUE and nBS) in
Nervion are containerized1. To simplify the deployment process,
the nUE and the nBS have been merged into a single containerized
entity called an ‘Element’. The Nervion Controller (which itself
is containerized) is the core of the system that is responsible for
deploying as many containers as specified in the configuration file
for an emulation scenario over the Kubernetes cluster. The Con-
troller communicates with the Elements (which later take on the
roles of nUEs/nBSs) through the Nervion Communication Layer
– the same one used for communication between nUEs and nBSs.
It is in the Nervion Communication Layer where the Nervion
Control Protocol (NCP) is implemented. This layer is included on
every Nervion component and is responsible for all internal com-
munication.

Fig. 5 illustrates the integration of Nervion with Kubernetes. To
start with, a Kubernetes cluster is created with the provided com-
pute resources in terms of different worker nodes and their CPU and
memory settings. Then Nervion is deployed over the Kubernetes
cluster, which results in the Controller pod getting instantiated with
an external web service as well as an internal service, the latter for
interaction with the Nervion Elements. When the configuration
file for the emulation scenario is input to the Controller through the
web service, the Controller uses the Kubernetes API to instantiate
the Elements needed by the config file as the rest of the pods in the
Kubernetes deployment. Each of the Elements, upon starting up,
connects with the Controller over NCP to get their role (nBS/nUE)
as well as their interconnections as per the config file. Once the
specified emulation scenario for the emulated RAN is realized over
the cluster, the Controller acts as a monitor to keep track of the
state of the different elements of the RAN deployment and report
it to the user through the web interface.

3.2.6 RAN–Core Interface Module. Even though the specific pro-
tocol used for the interface between the RAN and the core can
be different (e.g., S1AP in 4G and NGAP in 5G), these protocols
generally share a common set of ‘events’. An event here refers to
a set of messages that produces a change of state of a UE for the
core network, such as Attach or Detach. Based on this observation,
Nervion uses an event based RAN-Core interface in which a set
of functions that represents these events implement the necessary
group of messages to produce a change of state in the core network.
In Nervion, this is realized in a modular manner as the RAN-Core
interface module that is situated in between Nervion and the core
1Note that unless specified otherwise, our description in the following refers to the
full mode of Nervion. It is straightforward to adapt to the control-plane only mode
by focusing only on control plane and viewing nUEs as threads within a container.

ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA Jon Larrea, Mahesh K. Marina, and Jacobus Van der Merwe

Figure 7: End-to-end dissection of the data plane at each component as implemented in Nervion.

network. This module realizes the relevant protocol to interface
with the core network (e.g., S1AP or NGAP) while interacting with
Nervion with an event based interface that remains the same re-
gardless of the protocol used.

3.3 Implementation

Nervion has been implemented in two main components: the Con-
troller and the Elements. The Controller is responsible for deploying
the RAN structure based on the provided configuration and stores
all the information about the different entities that make up the
RAN and their status (e.g., nUE Attached, nBS Connected, etc.). On
the other hand, the Element is where the interaction with the core
network happens, either the control-plane executed by the nBS role
or the data-plane in the nUE. The current implementation is meant
to evaluate standard-compliant core networks; the flexibility and
abstraction offered by Nervion, however, would enable extensions
to support future standards, or indeed, non-standard implementa-
tions. The Controller has been implemented in Python, whereas the
Element (that takes on nBS/nUE role) is implemented in C. Overall,
Nervion implementation is more than 13K LOC.

3.3.1 Controller and Nervion Control Protocol. Once the Nervion
Controller is instantiated, it instantiates two services: a web-service
(linked to the Kubernetes external service), which is the access
point to Nervion for the user, and the controller-service (linked
to the internal Kubernetes service) accessed by the RAN elements.
Internally, the Controller implements a multi-threaded architecture
with a common memory area in which all the details of the experi-
ment are stored (RAN elements, core information, interconnections,
status information, etc.). This memory region is accessed by the
web-service to populate it with the information provided by the
user (configuration files and core parameters) and by the controller-
service to pull the necessary information for each role and to update
the status of each element. The Controller accesses the Kubernetes
API to create the elements (pods in the K8s jargon) using, by de-
fault, the Nervion Docker base-image available at Docker Hub

[40]. However, for the situations in which the application used in
the data-plane traffic command of any of the nUEs is not part of
the Nervion base-image, a custom Docker image that is built on
top of the Nervion base-image and accessible through Docker Hub
can be used.

The Nervion Control Protocol (NCP) implementation spans the
Controller, the nUE and the nBS. This NCP runs over TCP between
the elements (nUEs/nBSs), and over UDP between the elements and
the Controller. The reason for these underlying protocols is that the
connection between the nUE and the nBS has to be synchronous
(because the UE has to wait until the eNB performs the requested
control-plane action), whereas that is not the case with the connec-
tion with the Controller (the nUE and nBS work independently of
the Controller and eventually use the NCP to request information
and update their status).

3.3.2 nBS and nUE. Nervionmaterializes the nBS and nUE within
the Nervion Element. The Nervion Element is executed by each
pod just after being created. The elements start by connecting with
the Controller and receiving a role, which can be nUE or nBS. The
role assignation also comes with information necessary to perform
that role (e.g., the nUE role comes with the IMSI, the UE key, the
Operator Key, the nBS IP, etc.). The nUE role fully implements what,
from the core network perspective, is the data-plane, while the nBS
implements the control-plane. The control-plane actions that a nBS
performs on behalf of its nUEs are triggered by those nUEs, where
the UE information (UE keys, control-plane actions) is stored.

3.3.3 Control Plane. In Nervion, the nBS implements the control-
plane following a service based approach. This means that the nBS
receives a request from the nUE to perform different actions and
returns the results generated for that action. The actions imple-
mented by the control-plane correspond to the most frequent con-
trol events (e.g., attach, detach). The control-plane is implemented
in three modules: nBS, SCTP, and RAN-Core interface.

Nervion: A Cloud Native RAN Emulator for Scalable and Flexible Mobile Core Evaluation ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA

• The nBS module provides an interface for the nUE to access the
control-plane events implemented in the RAN-Core module. This
module starts when the element receives the nBS role (and related
information) from the Controller. The nBS module creates the
necessary interfaces that facilitate connections with nUEs and
with other nBSs. The first interface created is a TCP connection on
which the nBS is waiting on the port 2233 for nUEs that request
control-plane actions. The nBS module is also responsible for the
X2 interface used in the X2 Handover procedure. Nervion nBS
replaces the X2 interface by a TCP connection on the port 2234.
Finally, the nBS module creates a multi-threaded server structure
to concurrently attend to nUE and nBS requests on these two
interfaces.

• The SCTP module is responsible for establishing the SCTP con-
nection between the nBS and the MME/AMF to realize the S1-C
interface and runs on top of the SCTP Linux Kernel module. This
module connects the nBS with the port 36421 at the MME for a
4G emulation or the port 38412 at the AMF for a 5G emulation.
These ports have been defined by the IANA and the 3GPP for the
S1 and NG control-plane respectively [41].

• The current Nervion comes with two RAN-Core modules: S1AP
module (4G) and NGAP (5G). The S1AP module and the NGAP
run on top of the SCTP module using the SCTP Protocol Identifier
Fields 18 and 60, respectively [42, 43] and integrate the NAS pro-
tocol. The details of all the events supported are omitted due to
space constraints, but Fig. 6 depicts the functioning of a generic
Event X.
We have augmented theNervion implementation to support the

control-plane only mode, as described earlier. This mode effectively
disables the data plane and allows realization of control-plane of
nUEs as threads in a container, as per the user specified configura-
tion of number of threads per container. As with the full mode, each
threaded nUE contains all the UE related information and requests
control plane actions from the corresponding nBS.

3.3.4 Data Plane. The Nervion data-plane is fully implemented
within the nUE and uses the GPRS Tunneling Protocol (GTP), which
runs on top of UDP, between the RAN and the S-GW/UPF. To
support this design, Nervion takes advantage of the S1AP/NGAP
Attach procedure specification. During the Attach procedure, specif-
ically during the Default Bearer Establishment, the nBS sends an
Initial Context Setup Response message to the MME/AMF. This
message contains the BS IP address from which the data-plane
packets are going to be received in the S-GW/UPF. Instead of send-
ing the BS IP, Nervion sends the nUE IP, and consequently, the
S-GW/UPF creates an entry to enable traffic from/to that IP with the
UE TEID. The data-plane starts in the nUE once the nUE receives
the necessary information (TEID, the UE IP, and the S-GW/UPF IP)
from the nBS. The data-plane has been built over a virtual-network
kernel interface using a TUN device, which simulates a network
layer device that operates in layer 3 carrying IP packets. In each
nUE, a TUN device is created with the corresponding UE IP address
assigned by the core. Then the application or traffic generator soft-
ware is attached to this interface, tunnelling all the packets to the
S-GW/UPF.

The nUE data-plane currently implemented in Nervion is de-
picted in Fig. 7. 3GPP specifies that the UDP connection used under

Figure 8: The effect of UE attach control-plane action

with Nervion on MobileStream core network, relative to

OpenEPC based RAN emulation.

the GTP Tunnel has to make use of specific UDP port, i.e., port
2152 at the S-GW/UPF and port 2152 at the eNB (or the nUE in
the Nervion case). Because nUE is containerized and runs inside
Kubernetes, the uplink packets reach the S-GW/UPF through the
Network Address Translator (NAT) of Kubernetes. In the other
direction, when a downlink packet is dispatched by the SGW/UPF
function in the core network towards the RAN, UDP port 2152 is
used as a destination port, as per the 3GPP standard. These down-
link packets are dropped when they arrive at the Kubernetes NAT
due to a missing entry for port 2152 in the NAT table (which instead
contains contains a random port registered for the uplink packet).

In Nervion, we address this problem by introducing a ‘Multi-
plexer’ that acts as a reverse-NAT. Specifically, it receives uplink
GTP packets, stores the source IP and source port in a hash-map, us-
ing the UE TEID as the key, and forwards it to the S-GW/UPF. Once
a corresponding downlink packet is received at the multiplexer,
it retrieves the stored IP and port from the hash-map using the
UE TEID and forwards the packet to the Kubernetes NAT, which
now is able to properly forward the packet to the correct container
hosting the nUE. Note that in order to include the Multiplexer in the
data-plane path, the control-plane has to register the multiplexer
IP during the Attach procedure, instead of BS IP as per 3GPP stan-
dard. This multiplexer has been implemented as a multi-threaded
application in C. We initially had a Python based multiplexer imple-
mentation. We also note that further improvement in the efficiency
of data plane implementation over our current TUN device based
solution can be achieved via kernel bypass, which we intend to
address in the future.

4 EVALUATION

In this section, we first validate the correctness of Nervion relative
to previously validated and alternative RAN emulation approaches.
We then evaluate its efficiency and scalability relative to represen-
tative set of existing RAN emulators. Finally we present multiple
use cases that demonstrate the value of Nervion for diverse range
of mobile core system evaluation studies. All these evaluations are
conducted over the Powder platform [38].

4.1 Correctness

It is important to validate the correctness of a RAN emulator before
it can be relied on for mobile core system evaluations. As such,
we address this issue for Nervion in this section. The correctness
property we examine is keeping in mind the purpose of the RAN
emulator, which is to enable mobile core system evaluations. So we

ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA Jon Larrea, Mahesh K. Marina, and Jacobus Van der Merwe

Figure 9: The effect of UE attach control-plane action with

Nervion on OAI core network, relative to RAN setup with

Nexus 5 phone and OAI RAN.

study the effect of the RAN workload generated by the emulator
on the mobile core system under test. We do this relative to other
previously validated and alternative approaches to RAN emulation.
Our correctness evaluation spans both control and data planes.

4.1.1 Control Plane. To study Nervion correctness for control
plane, we consider the UE attach procedure, a key control plane
event. It also involves multiple message exchanges between the
RAN and core, which makes it a good case for examining control
plane correctness. Given the elaborate nature of the attach proce-
dure, to clearly see the effect of control plane emulation in the RAN
on the core network behavior, we break that down into its three
main constituent phases: Authentication, Security Mode and PDU
Session Establishment.

We first consider OAI as the target core network and compare
the effect of the chosen emulated control plane action, the Attach
event, when realized with Nervion relative to two alternatives: (i)
a commercial Nexus 5 phone connected through a OAI eNB with
USRP; (ii) OAI implementation of UE connected through a OAI eNB.
These alternatives provide a good basis to assess Nervion correct-
ness as they represent a real RAN or a setup that has previously
been validated.

Fig. 9 shows the result of this experiment, as measured at the
protocol interfaces between components of the OAI core network,
which is a standard compliant 4G core network implementation.
There are three main protocols: (i) Diameter protocol used between
MME and HSS; (ii) HSS uses MySQL to access the DB; (iii) GTP-C
is used by the MME to configure the data plane. These results show
a clear alignment between the effect of attach control-plane action
emulated by Nervion and that with the other two alternatives on
the internal behavior in the core network for all three phases of the
attach event.

We next perform a similar experiment with MobileStream [14]
as the target core network and compare the effect of attach event
emulated with Nervion relative to OpenEPC [28], a commercial
solution for RAN emulation. Fig. 8 shows the result of this exper-
iment. Here the y-axis shows the 5 function blocks that make up
the core control-plane within MobileStream: s1ap, nas, auc, sctp
and security. We see a similar effect on the interaction between
these blocks due to the emulated attach action with Nervion as
with OpenEPC based RAN emulation.

We now consider UE attach event in the 5G case with Open5GS
[26] as the target core network and compare Nervion emulation
relative to UERANSIM [33] 5G RAN emulator we have available.
To our knowledge, the correctness of UERANSIM itself has not

Figure 10: The effect of UE attach control-plane action with

Nervion onOpen5GS 5G core network implementation, rel-

ative to UERANSIM based 5G RAN emulation.

been validated. Yet this comparison is useful in assessing if the
core network behavior achieved with Nervion matches with that
of competing alternative in the 5G case. Results from this experi-
ment shown in Fig. 10 indicate good alignment between the two
alternatives compared. Due to the number of messages exchanged
between the core network functions in Open5GS, the y-axis shows
the number of packets seen by each core network function across
the three phases of the attach procedure.

4.1.2 Data Plane. We now switch our attention to correctness of
emulating the RAN data plane. For this, we consider a simple but
illustrative ‘ping’ traffic pattern generated with Nervion emulated
UE, relative to that by a real (Nexus 5) phone and OAI UE – the two
alternatives as in the first correctness related experiment above. We
measure throughput at the SPGW interface of the OAI core network
used for all these three compared alternatives. Results shown in
Fig. 11 show that Nervion emulation of the UE traffic pattern and
the data plane is almost identical to that of the alternatives, as seen
in the core network.

4.2 Nervion versus other RAN emulators

The above results clearly demonstrate that Nervion faithfully cap-
tures the RAN behavior as relevant from a core network perspective,
across both control and data planes. While we have considered the
full mode of Nervion for those experiments, the conclusions also
apply to the control-plane only mode of Nervion when the focus
is solely on the control plane – the realization of emulated UEs as
threads in a container with this mode improves scalability but that
does not come at the expense of correctness.

In terms of experiments that can be supported by Nervion, it
can allow emulation of arbitrary RAN workload patterns in con-
trol and data planes for mobile core system testing and evaluation.
Representative set of experiments supported by Nervion are fea-
tured later in §4.3. To better appreciate the capabilities offered by
Nervion, we provide a qualitative comparison against other com-
peting alternatives in Table 1. Nervion is the only solution that
supports 4G and 5G RAN emulation, across both control and data
planes. Another distinguishing capability of Nervion is its support
for creating programmatic and automated control/data plane RAN
workload patterns, a feature lacking in all other alternatives but cru-
cial for flexible and repeatable experimentation. Overall, Nervion
offers a comprehensive RAN emulation capabilities, subsuming
those possible with alternative solutions.

Nervion: A Cloud Native RAN Emulator for Scalable and Flexible Mobile Core Evaluation ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA

Figure 11: Emulated data plane traffic withNervion as seen

inside the OAI core network, relative to RAN setup with

Nexus 5 phone and OAI RAN.

In the following, we go beyond the qualitative and flexibility
benefits offered byNervion to quantify its efficiency and scalability
gains relative to representative existing solutions listed in Table 1.

4.2.1 Comparison with full stack RAN emulators.

S1AP Events latency comparison. An efficient RAN emulation
system requires less time to execute each action, results in lower
CPU usage and therefore, allows more actions to be completed
within the same fraction of time. We performed an experiment
to compare the control-plane performance of Nervion relative to
full stack RAN emulators that realize the RAN in detail (OAI RAN
and srsRAN). This experiment has been conducted with identical
resources for the RANs, the resources dedicated to the EPC and the
EPC implementation used (srsEPC).

Fig. 12a compares the time taken by each emulator to reach spe-
cific states in the S1AP attach process. The “Start” point represents
when the eNB emulator is executed. “Connected eNB” is reached
when the eNB receives the S1 Setup Response message. The UE is
in the “Authenticated UE” state when it sends the Authentication
Response message to the EPC. Similarly, Security Mode Complete
message sets the “Security Mode Complete” state in the graph. Fi-
nally, a UE is considered to be in the “Attached” state when it sends
the Attach complete message to the EPC.

The time difference between OAI/srsLTE and Nervion at Con-
nected eNB stage is largely a software complexity issue: Nervion
has been implemented with minimalism in mind, so only essential
structures are initialized. On the other hand, the full stack emula-
tors include implementations of all protocol layers between the UE
and the eNB (including the physical layer with fine-grained radio
condition description). The initialization of a detailed physical layer
with the addition of the upper layers has a negative impact on
the overall performance. The significant delay in OAI and srsLTE
reaching the Authenticated UE state is also due to the initialization
of a complete mobile radio stack, this time on the UE side. The
Nervion design approach for realizing the RAN is also a crucial
factor contributing to its high performance. In particular, with OAI
and srsLTE, the NAS protocol is implemented in the UE and S1AP
protocol in the eNB, whereas, with Nervion, both are implemented
in the eNB. This design decision avoids the need for the eNB to
forward NAS messages to/from the UE.

Virtual memory consumption. Another crucial factor from
a scalability perspective is memory consumption. In a resource-
limited environment where the available memory has to be shared
among different processes, the resource consumption of a single

Control Plane (CP) Data Plane (DP)

Nervion

• 4G and 5G
• Multiple UEs
• Multiple BSs
• Configurable & Auto-
matic CP actions per
UE

• Support any applica-
tion

• DP Traffic from mul-
tiple UEs

• Configurable & Auto-
matic traffic per UE

OAI [27]

• 4G only
• Detailed RAN emula-
tion

• Support any applica-
tion

srsLTE [23]

• 4G only
• Detailed RAN emula-
tion

• Support any applica-
tion

OpenEPC[28]

(closed-source)

• 4G only
• Multiple UEs
• Multiple BSs

• DP Traffic from mul-
tiple UEs

UERANSIM [33]

• 5G only
• Multiple UEs
• Multiple BSs

• Support any applica-
tion

• DP Traffic from mul-
tiple UEs

Table 1:Nervion capabilities relative to competingRANem-

ulators.

emulated UE/eNB determines the number of emulated devices that
can be run simultaneously. Like in the previous experiment, we
have compared Nervion with the OAI RAN and srsRAN emulators.
We again used srsEPC for the core network implementation for all
the measurements.

Fig. 12b reports the memory consumption of different emulated
elements (UE and eNB) and at different execution states of the RAN
emulation systems. In particular, the figure shows virtual memory
consumption. Virtual memory size (VSZ) is defined as the memory
that has been allocated to a process. This includes not only the stack
and heap memory but also swap memory and the memory occupied
by shared libraries that are loaded (e.g., cryptographic libraries used
for encryption/integrity in the NAS layer). The memory consumed
by Docker and Kubernetes is also included for a fair comparison. In
all three cases considered, the amount of memory consumed by the
OAI (around 1.2 GB) implementation is around 4.4 times larger on
average than the Nervion implementation, while srsLTE (around
2.5 GB) is around 2.2 times larger than the OAI emulator, even after
including memory consumption due to Docker and Kubernetes.
Again, the reason for this is that the OAI/srsRAN emulators involve
a full stack RAN implementation. This includes the physical layer
between the UE and the eNB, whereas Nervion only implements
the essential part of the S1AP protocol to perform basic actions on
the control-plane with a standard-compliant EPC.

4.2.2 Comparison with commercial and ad-hoc RAN emulators.
There are alternative emulators that have taken the physical layer
abstraction approach, like Nervion, for lightweight realization
of RAN elements while allowing multi UE support. In particular,
two such most used tools are: OpenEPC (a commercial EPC imple-
mentation that comes with a RAN emulator) and UERANSIM (an
open-source 5G RAN emulator). Due to limitations such as com-
pletely different emulation models or restricted access to the source
code of OpenEPC and their binaries, it is difficult to evaluate the
scalability properties by defining a common environment (same

ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA Jon Larrea, Mahesh K. Marina, and Jacobus Van der Merwe

Figure 12.a) Nervion control-plane perfor-

mance vs OAI and srsRAN.

Figure 12.b) Virtual memory consumption of

Nervion vs OAI and srsRAN.

Figure 12.c) RAN latency of Nervion vs

OpenEPC and UERANSIM.

hardware resources) to run the tools. We have instead measured
the latency in the emulated RAN which, in an indirect manner,
captures the efficiency of an emulator.

In Fig. 12c, different parts of the attach event are compared as
well as the entire attach event for OpenEPC (4G) and UERANSIM
(5G) with Nervion (4G and 5G). For the 4G measurements (red
columns), the core network used is MobileStream [14], and for
the 5G counterpart (blue columns), we have used Open5GS [26].
In general, Nervion outperforms both alternatives with latencies
around 4.5 times smaller. Significant difference especially appears
during the PDU session establishment for both UERANSIM and
OpenEPC, when the data-plane is instantiated in the UE (when
the UE receives its TEID, IP and the SPGW/UPF IP). Both 4G and
5G versions of Nervion instantiate the data-plane after the com-
pletion of the attach procedure. The other key factor is the way
UERANSIM and OpenEPC have been implemented. UERANSIM
has the control-plane implemented on the UE and uses the gNB
as a forwarder to connect with the core network. OpenEPC, on
the other hand, restricts access to its binaries, so we cannot affirm
anything about the internal structure of the emulator, but all the
packets go to the EPC through its ‘client’ application that acts as
a relay. Nervion removes such additional latency by realizing the
control plane functionality within the nBS.

4.3 Nervion use cases

Here we highlight the utility of Nervion through multiple different
case studies of mobile core system evaluations.

4.3.1 Maximum number of simultaneously attached UEs. One of
the more common metrics used in core network evaluations in the
literature aimed at quantifying scalability improvements is the max-
imum number of simultaneously attached UEs a mobile core system
can sustain. We used Nervion to evaluate this metric for six differ-
ent core network implementations. In particular, we have evaluated
four 4G core network implementations – OAI core network [22],
srsEPC [23], NextEPC [24], and MobileStream [14] – and two 5G
core network implementations: Free5GC [25] and Open5GS [26].
It is important to highlight that the goal of this experiment is to
show the ability of Nervion to perform this type of evaluation
requiring emulation of large-scale RAN scenarios and, indirectly,
to show which core network is able to handle more attached UEs.
The number of UEs/eNBs/gNBs supported by each implementa-
tion can potentially be increased through further optimization or
reconfiguration but that is outside the scope of this experiment.

The Powder profile we created for this experiment allows de-
ploying any of these six core network implementations over the
d430 Powder node (Intel Xeon E5-2630 v3 at 2.40GHz with 64GB
RAM). RAN emulation with Nervion used VMs (with 12-core CPU
and 8 GB RAM) on the Powder platform for the Kubernetes cluster.
The size of the cluster needed varied depending on the target core
network implementation that was evaluated. As shown in Fig. 13a,
the number of attached UEs with the MobileStream implementation
is the highest, outperforming the second best, Open5GS with 1024,
by about 10 times. They are followed by srsEPC and NextEPC with
253 and 140 UEs, respectively. Finally, OAI core network supports
16 UEs while Free5GC only reached 10 (which may be related to a
bug in the current Free5GC version).

Considering MobileStream, the most scalable core network im-
plementation from the previous experiment, as the target mobile
core system, we now examine scale of the RAN (in terms of number
of UEs) that Nervion can emulate for a given Kubernetes cluster
size. Here we first consider the full mode of Nervion. The blue
bars in Fig. 13b show the result of this experiment where the num-
ber of attached UEs for different numbers of worker nodes in the
Kubernetes cluster are given. We observe a relation of 110 UEs
per worker node. We have experimented with different Powder
VM resource configurations (8-core/8GB, 12-core/12GB, etc.) and
obtained the same results. Further investigation revealed that this
is due to standard Kubernetes settings, which limit the maximum
number of pods per worker node to 110 [44]. Note that in the cur-
rent Nervion implementation for its full mode, each emulated UE
is realized in a separate container and each pod in the Kubernetes
cluster hosts one container. This explains the obtained result of 110
UEs per worker node given the maximum possible number of 110
pods per worker node.

We now repeat the same experiment with newly added control-
plane only mode in Nervion to examine the potential scalability
improvement it offers. Recall that with this mode, the data plane is
ignored and the control plane of each emulated UE is represented
by a thread in a container (pod). This adds a new dimension to
increase RAN emulation scalability in terms of number of threads
that can be realized per container. With the current implementation
of the Nervion control-plane only mode, we were able to realize
nearly 10K emulated UEs per container (pod) with the worker node
resource configuration as above. With 110 pods per worker node,
this result already demonstrates the potential to emulate million
plus UEs on a reasonable sized Kubernetes cluster. We believe fur-
ther improvements are possible by refining the implementation,

Nervion: A Cloud Native RAN Emulator for Scalable and Flexible Mobile Core Evaluation ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA

Figure 13.a) Maximum number of UEs simul-

taneously attached.

Figure 13.b)Nervion scalability based on the

Kubernetes cluster size.

Figure 13.c) Comparison of control-plane la-

tency with different cores.

allowing multiple containers per pod and relaxing the 110 pods per
worker node limitation with standard Kubernetes setup. It is also
important to highlight that multiple factors play a role in the scale
of the emulated RAN that can be be achieved, such as the desired
number of UEs, the worker resource specifications, and the control
plane workload pattern of each UE. In the above experiments, we
focused on the case where each emulated UE simply attached to
the core.

4.3.2 Latency of control-plane events. Another key core network
performance metric of interest is its control plane latency. Here
we present an experiment using Nervion to measure the average
control plane latency latency of four 4G core network implementa-
tions: OAI, srsLTE, NextEPC, and MobileStream. We have measured
the latency of different messages that are part of the attach and
detach events. The latencies shown in Fig. 13c are the Attach Re-
quest (time elapsed between the Attach request message and the
Authentication request message), Authentication (time between
the Authentication response message and Security mode command
message), Attach Accept (time between the Security mode complete
message and the Attach accept message), and Detach (time between
the Detach request message and the Detach accept).

As expected, the srsEPC core implementation provides better
results due to its centralized design in which MME, HSS and SGPW
have been merged into one single entity. This centralized design
has an even more pronounced impact on the latency of control
plane events that involve responses from the HSS or the SPGW. On
the other hand, MobileStream (which does not support the detach
event), through its decomposed function architecture penalizes
latency in favor of scalability. Finally, OAI and NextEPC obtain
similar results due to their similar architectures, although the dif-
ferences in their authentication latencies may be due to different
cryptographic implementations.

4.3.3 Different data-plane traffic patterns. Here we focus on the
data plane and show how different traffic patterns can be created
in a flexible and automated manner via the Nervion configuration
file. The setup for the two experiments reported below consists of
the RAN part with 10 UEs and 1 eNB realized using Nervion and
using OAI core network as the EPC. We consider two diverse types
of data plane traffic scenarios: IoT traffic and mobile broadband
traffic.

IoT devices typically tend to remain disconnected most of the
time to save energy and intermittently attach to the network to
exchange low-bandwidth data [45]. So in the IoT traffic scenario,
the IoT devices were configured to remain disconnected for 100

seconds and then send/receive data traffic for 20 seconds using the
ping tool. Fig. 14a shows the control-plane and data-plane traffic
footprints for this IoT experiment. From the figure, the expected
correlation between the control and data planes is apparent. The
Attach event is reflected in the graph as peaks of 10 Kbps when the
UEs attach to the EPC and peaks of 3 Kbps when the detach event
occurs. The correlation between control and data planes is also
reflected by the fact that data-plane traffic only appears to reach
peaks of 20/25 Kbps after an Attach event and before a Detach
event.

For the mobile broadband traffic scenario, devices remain at-
tached most of the time with a moderate level of bandwidth con-
sumption, mainly in the downstream direction [46]. We modelled
such behavior with 10 UEs in total: five UEs remained attached
throughout the experiment, while the other five detached from
the EPC for 20 seconds every 100 seconds. We use the iPerf tool
to generate 500Kbps of traffic per UE. Similar to the IoT test, the
control-plane events in the mobile broadband traffic experiment
can also be inferred from the values shown in Fig. 14b. At 50 sec-
onds in the time series, all the UEs perform an attach procedure
and start to generate traffic in the data-plane. At 100 seconds, 5 of
the UEs perform the Detach event, which is reflected by the drop in
control-plane traffic and the data-plane traffic also reduces from 5
Mbps to 2.5 Mbps. After 20 seconds, the five disconnected UEs again
attach to the core-network and, like in the IoT experiment, these
actions are performed in a loop until the end of the experiment.

4.3.4 Multiplexer evaluation. As described in §3.3.4, the current
3GPP 4G and 5G specifications require the use of specific UDP
ports, which necessitate the use of a Multiplexer-like artefact in
the data-plane for scenarios in which either the RAN, the core
network, or both are behind a NAT. The Nervion emulator is
instantiated within a Kubernetes cluster and as such data plane
traffic has to traverse the Kubernetes NAT that in turnmakes the use
of multiplexer mandatory to realize a working, standard-compliant
RAN emulation. Consequently, we consider that it is essential to
provide an evaluation of the penalty introduced by this multiplexer
on the data-plane performance.

In Fig. 14c, we compare the received throughput versus offered
data plane traffic load with two setups: Nervion implementation
(that includes the multiplexer), and an ad-hoc Nervion version that
avoids the need for a multiplexer via realizing the emulated UE
as a stand-alone process (not within a container and Kubernetes
cluster). We considered the 10-110 Mbps range for the UE offered
load based on evaluations done in previous works [15, 47] that show

ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA Jon Larrea, Mahesh K. Marina, and Jacobus Van der Merwe

Figure 14.a) IoT control and data traffic foot-

prints.

Figure 14.b) Mobile broadband control and

data traffic footprints.

Figure 14.c) Data-plane throughput compari-

son with and without multiplexer.

the working range of different core network alternatives are less
than 50 Mbps. For this range, we see from the results in Fig. 14c that
the multiplexer does not pose any performance penalty on the data-
plane. These results are based on a multiplexer implemented in C.
In the inset figure, we compare this implementation with a Python
based multiplexer implementation and find that, as expected, the
C based implementation is faster in processing and forwarding
GTP packets across the multiplexer by about 30%. These results are
obtained with the multiplexer realized on a 2-core and 8GB VM.

5 RELATEDWORK

Full stack emulators. The OpenAirInterface (OAI) [27] provides
a high-fidelity implementation of the RAN part with a UE and eNB
emulators that are capable of replicating the full LTE protocol stack.
srsLTE [23] provides similar capability. This full stack approach
has the obvious and severe scalability limitation.

Commercial RAN emulators. There exist several commercial
RAN emulators [28, 48–52]. Some rely on dedicated hardware (e.g.,
[48]) whereas others target software solutions (e.g., [28, 49, 50]).
However the main issue with these commercial emulators is their
limited accessibility to the research community, due to their high
cost. The only exception is OpenEPC [28] that is accessible through
the PhantomNET [30] (now Powder) testbed infrastructure. So it
has been used in some works [9, 13, 14].

Trace based emulation. Because of the inaccessibility issue
with the above mentioned commercial tools, several works have
used trace based emulation [7, 8, 11, 12, 17, 21].Within this category,
there are multiple approaches that slightly differ from one another,
such as trace replay or trace-driven simulation. The straightforward
way of generating traffic from traces is by simply replaying the
packets contained in the captured traces. Trace-driven simulation
does not, however, directly use the packets contained in the trace.
Instead, this method extracts the pattern presented in the trace to
model it with a distribution and then generates packets according
to that distribution [7, 11]. Some works [7, 8, 21] rely on traces
generated using ng4T [51], a commercial RAN emulator, to drive
their core system evaluations. On the other hand, Moradi et al. [17]
synthesized traces for UEs based on the real ones that were then fed
to their core system prototype through a simulator. Other proposals
(e.g., [12]) rely on real traffic extracted from commercial eNBs. Trace
based emulation methods have one major disadvantage, which
is that only the traffic patterns present within the traces can be
emulated later and generalization beyond that is not possible.

Ad-hoc RAN emulators. There exist several tools that fall in
this category [6, 15, 18–20, 31–33]. Jain et al. [6] present a tool
that is then used to compare the performance of SDN based and
NFV based mobile core paradigms. Using the same tool, Amogh
et al. [10] evaluate a cloud-native and scalable MME solution. Sim-
ilarly, in [18], a new MME architecture is presented and tested
with UE SIM, a tool that generates attach requests on the control-
plane. A control and data plane load generator is provided in [19] to
evaluate their specific proposal. Focusing on the data plane, Open
Mobile Evolved Core project [34] uses a data-plane packet gener-
ator which only generates uplink traffic [31]. S1APTester [32] is a
module used in the Magma project [35] to validate S1-C and S1-U
interfaces to an LTE EPC. The common limitation of the aforemen-
tioned tools [6, 18, 19, 31, 32] is that they are tied significantly to
the specific project for which they have been designed and so are
not readily usable for core network evaluation generally; adapting
them to other studies is a non-trivial endeavour. The most scal-
able of these ad-hoc solutions [6, 18] are able to emulate multiple
UEs performing different control plane events simultaneously via
a threading model but still limited to a single machine (process).
UERANSIM [33] is a recent open-source 5G RAN emulator that
can generate both control (NGAP) and data (GTP) plane traffic. But
it also has the same limitation as above outlined singe machine
multi-threaded 4G RAN emulators.

6 CONCLUSIONS

We have proposed Nervion, a scalable and flexible RAN emulator
for realistic mobile core system evaluations. Nervion significantly
extends the state-of-the-art on RAN emulation by allowing emu-
lation of any sized RAN in terms of number of elements (UEs and
BSs), limited only by the cluster compute resources available. It also
features a control-plane only mode to further increase the scale
of the RAN scenario that can be realized with a given compute
resource for core system evaluations focusing on the control plane.
Also, unlike most existing RAN emulators, Nervion supports gen-
erating workloads on both control and data planes in a flexible and
programmatic manner, and can support evaluation of any mobile
core system. This has been possible thanks to a novel cloud native
RAN emulation system design that facilitates the above with a light-
weight realization of RAN elements at the right level of abstraction
from the core network perspective and the use of Docker and Kuber-
netes to containerize and orchestrate the emulated RAN elements
over a computer cluster to realize large-scale RAN scenarios.

Nervion: A Cloud Native RAN Emulator for Scalable and Flexible Mobile Core Evaluation ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful comments
and suggestions that greatly improved this paper.

REFERENCES

[1] J. Kim, D. Kim, and S. Choi. 3GPP SA2 architecture and functions for 5G mobile
communication system. ICT Express, 3(1):1 – 8, 2017.

[2] Service-Based Architecture for 5G Core Networks. https://www.3g4g.co.
uk/5G/5Gtech_6004_2017_11_Service-Based-Architecture-for-5G-Core-
Networks_HR_Huawei.pdf.

[3] A. Sutton. 5G network architecture. J. Inst. Telecommun. Professionals, 12(1):9–15,
2018.

[4] 3GPP 5G System Architecture. https://www.etsi.org/deliver/etsi_ts/123500_
123599/123501/15.03.00_60/ts_123501v150300p.pdf.

[5] V. Nguyen, A. Brunstrom, K. Grinnemo, and J. Taheri. SDN/NFV-Based Mobile
Packet Core Network Architectures: A Survey. IEEE Communications Surveys
Tutorials, 19(3):1567–1602, 2017.

[6] A. Jain, Sadagopan N S, S. K. Lohani, and M. Vutukuru. A comparison of SDN and
NFV for re-designing the LTE Packet Core. In 2016 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN), pages 74–80,
2016.

[7] Z. Qazi, P. Penumarthi, V. Sekar, V. Gopalakrishnan, K. Joshi, and S. Das. KLEIN:
A Minimally Disruptive Design for an Elastic Cellular Core. In Proceedings of the
ACM Symposium on SDN Research (SOSR), 2016.

[8] Z. A. Qazi, M. Walls, A. Panda, V. Sekar, S. Ratnasamy, and S. Shenker. A High
Performance Packet Core for Next Generation Cellular Networks. In Proceedings
of the Conference of the ACM Special Interest Group on Data Communication, SIG-
COMM ’17, page 348–361, New York, NY, USA, 2017. Association for Computing
Machinery.

[9] M. T. Raza, D. Kim, K. Kim, S. Lu, andM. Gerla. Rethinking LTE network functions
virtualization. In 2017 IEEE 25th International Conference on Network Protocols
(ICNP), pages 1–10, 2017.

[10] P. C. Amogh, G. Veeramachaneni, A. K. Rangisetti, B. R. Tamma, and A. A.
Franklin. A cloud native solution for dynamic auto scaling of MME in LTE. In
2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile
Radio Communications (PIMRC), pages 1–7, 2017.

[11] F. Ojala, A. Rao, H. Flinck, and S. Tarkoma. NoSQL stores for coreless mobile net-
works. In 2017 IEEE Conference on Standards for Communications and Networking
(CSCN), pages 200–206, 2017.

[12] M. Pozza, A. Rao, A. Bujari, H. Flinck, C. E. Palazzi, and S. Tarkoma. A refactoring
approach for optimizing mobile networks. In 2017 IEEE International Conference
on Communications (ICC), pages 1–6, 2017.

[13] B. Nguyen, T. Zhang, B. Radunovic, R. Stutsman, T. Karagiannis, J. Kocur, and
J. Van der Merwe. ECHO: A reliable distributed cellular core network for hyper-
scale public clouds. In Mobicom 2018. ACM, October 2018.

[14] J. Cho, R. Stutsman, and J. Van der Merwe. MobileStream: A Scalable, Pro-
grammable and Evolvable Mobile Core Control Plane Platform. In Proceedings
of the 14th International Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’18, page 293–306, New York, NY, USA, 2018. Association
for Computing Machinery.

[15] M. Moradi, K. Sundaresan, E. Chai, S. Rangarajan, and Z. M. Mao. SkyCore:
Moving Core to the Edge for Untethered and Reliable UAV-Based LTE Networks.
In Proceedings of the 24th Annual International Conference on Mobile Computing
and Networking, MobiCom ’18, page 35–49, New York, NY, USA, 2018. Association
for Computing Machinery.

[16] S. Sevilla, M. Johnson, P. Kosakanchit, J. Liang, and K. Heimerl. Experiences:
Design, Implementation, and Deployment of CoLTE, a Community LTE Solution.
In The 25th Annual International Conference on Mobile Computing and Networking,
MobiCom ’19, New York, NY, USA, 2019. Association for Computing Machinery.

[17] M. Moradi, Y. Lin, Z. M. Mao, S. Sen, and O. Spatscheck. SoftBox: A Customizable,
Low-Latency, and Scalable 5G Core Network Architecture. IEEE Journal on
Selected Areas in Communications, 36(3):438–456, 2018.

[18] V. Nagendra, A. Bhattacharya, A. Gandhi, and S. R. Das. MMLite: A Scalable and
Resource Efficient Control Plane for Next Generation Cellular Packet Core. In
Proceedings of the 2019 ACM Symposium on SDN Research, SOSR ’19, page 69–83,
New York, NY, USA, 2019. Association for Computing Machinery.

[19] R. Shah, V. Kumar, M. Vutukuru, and P. Kulkarni. TurboEPC: Leveraging Dat-
aplane Programmability to Accelerate the Mobile Packet Core. In Proceedings
of the Symposium on SDN Research, SOSR ’20, page 83–95, New York, NY, USA,
2020. Association for Computing Machinery.

[20] A. Mohammadkhan, K. K. Ramakrishnan, and V. A. Jain. CleanG – Improving the
Architecture and Protocols for Future Cellular Networks With NFV. IEEE/ACM
Transactions on Networking, pages 1–14, 2020.

[21] M. Ahmad, S. U. Jafri, A. Ikram, W. N. A. Qasmi, M. A. Nawazish, Z. A. Uzmi, and
Z. A. Qazi. A Low Latency and Consistent Cellular Control Plane. SIGCOMM ’20,

page 648–661, New York, NY, USA, 2020. Association for Computing Machinery.
[22] OpenAirInterface. https://www.openairinterface.org/.
[23] srsLTE. https://github.com/srsLTE/srsLTE.
[24] NextEPC. https://nextepc.org/.
[25] Free5GC. https://www.free5gc.org/.
[26] Open5GS. https://open5gs.org/.
[27] OpenAirInterface RAN (openairinterface5G). https://gitlab.eurecom.fr/oai/

openairinterface5g/-/wikis/home.
[28] OpenEPC. https://sites.google.com/a/corenetdynamics.com/openepc/home.
[29] J. Breen, A. Buffmire, J. Duerig, K. Dutt, E. Eide, M. Hibler, D. Johnson, S. K.

Kasera, E. Lewis, D. Maas, A. Orange, N. Patwari, D. Reading, R. Ricci, D. Schurig,
L. B. Stoller, J. Van der Merwe, K. Webb, and G. Wong. POWDER: Platform for
Open Wireless Data-driven Experimental Research. In Proceedings of the 14th
International Workshop on Wireless Network Testbeds, Experimental Evaluation
and Characterization (WiNTECH), September 2020.

[30] PhantomNET. https://www.phantomnet.org/.
[31] il_trafficgen. https://github.com/omec-project/il_trafficgen.
[32] S1APTester. https://github.com/facebookexperimental/S1APTester.
[33] UERANSIM. https://github.com/aligungr/UERANSIM.
[34] Open Mobile Evolved Core. https://www.opennetworking.org/omec/.
[35] Magma. https://connectivity.fb.com/magma/.
[36] TUN device. https://www.kernel.org/doc/Documentation/networking/tuntap.txt.
[37] Kubernetes. https://kubernetes.io/.
[38] Powder. https://powderwireless.net/.
[39] Docker. https://www.docker.com/.
[40] Docker Hub. https://hub.docker.com/.
[41] IANA Service Name and Transport Protocol Port Number Registry.

https://www.iana.org/assignments/service-names-port-numbers/service-
names-port-numbers.txt.

[42] 3GPP Specification Numbering. https://www.3gpp.org/specifications/79-
specification-numbering.

[43] SCTP Payload Protocol Identifiers. https://www.iana.org/assignments/sctp-
parameters/sctp-parameters.xhtml#sctp-parameters-25.

[44] Kubernetes Pod limitations. https://kubernetes.io/docs/setup/best-practices/
cluster-large/.

[45] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, and J. Wang. Large-Scale Measurement and
Characterization of Cellular Machine-to-Machine Traffic. IEEE/ACM Transactions
on Networking, 21(6):1960–1973, 2013.

[46] G. Tsoukaneri, X. Foukas, and M. K. Marina. ASPIS: A Holistic and Practical
Mechanism for Efficient MTC Support over Mobile Networks. In 2017 IEEE 14th
International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pages
284–292, 2017.

[47] G. Garcia-Aviles, M. Gramaglia, P. Serrano, and A. Banchs. POSENS: A Practical
Open Source Solution for End-to-End Network Slicing. IEEE Wireless Communi-
cations, 25(5):30–37, 2018.

[48] Ixia Keysight. https://about.keysight.com/en/newsroom/pr/2019/21feb-nr19025.
shtml.

[49] Viavi TeraVM. https://www.viavisolutions.com/en-uk/products/teravm.
[50] Spirent Landslide. https://www.spirent.com/products/core-network-test-5g-lte-

ims-wifi-diameter-landslide.
[51] ng4T. https://www.ng4t.com/.
[52] dsTest. https://www.developingsolutions.com/products/about-dstest/.

https://www.3g4g.co.uk/5G/5Gtech_6004_2017_11_Service-Based-Architecture-for-5G-Core-Networks_HR_Huawei.pdf
https://www.3g4g.co.uk/5G/5Gtech_6004_2017_11_Service-Based-Architecture-for-5G-Core-Networks_HR_Huawei.pdf
https://www.3g4g.co.uk/5G/5Gtech_6004_2017_11_Service-Based-Architecture-for-5G-Core-Networks_HR_Huawei.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/15.03.00_60/ts_123501v150300p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/15.03.00_60/ts_123501v150300p.pdf
https://www.openairinterface.org/
https://github.com/srsLTE/srsLTE
https://nextepc.org/
https://www.free5gc.org/
https://open5gs.org/
https://gitlab.eurecom.fr/oai/openairinterface5g/-/wikis/home
https://gitlab.eurecom.fr/oai/openairinterface5g/-/wikis/home
https://sites.google.com/a/corenetdynamics.com/openepc/home
https://www.phantomnet.org/
https://github.com/omec-project/il_trafficgen
https://github.com/facebookexperimental/S1APTester
https://github.com/aligungr/UERANSIM
https://www.opennetworking.org/omec/
https://connectivity.fb.com/magma/
https://www.kernel.org/doc/Documentation/networking/tuntap.txt
https://kubernetes.io/
https://powderwireless.net/
https://www.docker.com/
https://hub.docker.com/
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
https://www.3gpp.org/specifications/79-specification-numbering
https://www.3gpp.org/specifications/79-specification-numbering
https://www.iana.org/assignments/sctp-parameters/sctp-parameters.xhtml#sctp-parameters-25
https://www.iana.org/assignments/sctp-parameters/sctp-parameters.xhtml#sctp-parameters-25
https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://about.keysight.com/en/newsroom/pr/2019/21feb-nr19025.shtml
https://about.keysight.com/en/newsroom/pr/2019/21feb-nr19025.shtml
https://www.viavisolutions.com/en-uk/products/teravm
https://www.spirent.com/products/core-network-test-5g-lte-ims-wifi-diameter-landslide
https://www.spirent.com/products/core-network-test-5g-lte-ims-wifi-diameter-landslide
https://www.ng4t.com/
https://www.developingsolutions.com/products/about-dstest/

	Abstract
	1 Introduction
	2 Background
	3 Nervion
	3.1 Design Goals and Challenges
	3.2 Nervion Design
	3.3 Implementation

	4 Evaluation
	4.1 Correctness
	4.2 Nervion versus other RAN emulators
	4.3 Nervion use cases

	5 Related Work
	6 Conclusions
	References

