THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Practical Normalization by Evaluation for EDSLs

Citation for published version:

Valliappan, N, Russo, A \& Lindley, S 2021, Practical Normalization by Evaluation for EDSLs. in Proceedings of the 14th ACM SIGPLAN International Haskell Symposium (Haskell 2021). ACM, Virtual, Republic of Korea, pp. 56-70, ACM SIGPLAN Haskell Symposium 2021, 26/08/21.
https://doi.org/10.1145/3471874.3472983

Digital Object Identifier (DOI):
10.1145/3471874.3472983

Link:

Link to publication record in Edinburgh Research Explorer

Document Version:

Peer reviewed version

Published In:

Proceedings of the 14th ACM SIGPLAN International Haskell Symposium (Haskell 2021)

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Practical Normalization by Evaluation for EDSLs

Nachiappan Valliappan
Chalmers University of Technology
Gothenberg, Sweden

Alejandro Russo
Chalmers University of Technology
Gothenberg, Sweden

Sam Lindley
The University of Edinburgh
Edinburgh, United Kingdom

Abstract

Embedded domain-specific languages (eDSLs) are typically implemented in a rich host language, such as Haskell, using a combination of deep and shallow embedding techniques. While such a combination enables programmers to exploit the execution mechanism of Haskell to build and specialize eDSL programs, it blurs the distinction between the host language and the eDSL. As a consequence, extension with features such as sums and effects requires a significant amount of ingenuity from the eDSL designer. In this paper, we demonstrate that Normalization by Evaluation (NbE) provides a principled framework for building, extending, and customizing eDSLs. We present a comprehensive treatment of NbE for deeply embedded eDSLs in Haskell that involves a rich set of features such as sums, arrays, exceptions and state, while addressing practical concerns about normalization such as code expansion and the addition of domain-specific features.

CCS Concepts: • Software and its engineering \rightarrow Functional languages.

Keywords: Normalization by Evaluation, Partial Evaluation, eDSL, Haskell

ACM Reference Format:

Nachiappan Valliappan, Alejandro Russo, and Sam Lindley. 2021. Practical Normalization by Evaluation for EDSLs. In Proceedings of the 14th ACM SIGPLAN International Haskell Symposium (Haskell '21), August 26-27, 2021, Virtual, Republic of Korea. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3471874.3472983

1 Introduction

An embedded domain-specific language (eDSL) [24, 26] is a seamless implementation of a domain-specific language (DSL) as a library in a host language. Haskell is particularly well suited as a host for eDSLs as witnessed by the variety of practical Haskell eDSLs covering domains as diverse

[^0]as circuit design [12], database querying [25], digital signal processing [6], graphics acceleration [14], and security [38]. Haskell eDSL developers have at their disposal all of Haskell's features such as higher-order functions, extensible syntax, and a rich type-system. It is common to represent programs in an eDSL using a data type that denotes them explicitly, together with compilers and interpreters that manipulate values of this type. Let us consider such a data type Exp :: * \rightarrow * parameterized by the type of the expression it denotes. Whereas a value of type Int in Haskell denotes an integer value, a value of type Exp Int denotes an integer expression. (We use the words "program" and "expression" interchangeably in the rest of the paper.)

Often, eDSL designers face a choice between either adding complex features to an eDSL or keeping the core eDSL simple and exploiting the host language to construct programs. Should the eDSL support pairs in expressions $(\operatorname{Exp}(a, b))$, or should it use pairs of expressions $((\operatorname{Exp} a, \operatorname{Exp} b))$? Should the eDSL support functions (Exp ($\operatorname{Int} \rightarrow$ Int)) directly or should it instead rely on Haskell functions (Exp Int \rightarrow Exp Int) to build programs? As the complexity increases, it can become difficult to draw a line between the end of the host language and the beginning of the eDSL.

In an eDSL program we may think of a value of type Int as a static integer that is known at compile-time, and a value of type Exp Int as a dynamic integer that is known only at runtime. The stage separation of values as static and dynamic corresponds to a manual form of binding-time analysis in partial evaluation [27], and presents an opportunity to exploit Haskell's execution mechanism to evaluate static computations in an eDSL program. In other words, static values belong to the host language, whereas dynamic values belong to the eDSL. For example, consider the following implementation of the exponentiation function that receives two integer arguments n and x and returns x^{n}
power $_{1}::$ Int \rightarrow Exp Int \rightarrow Exp Int
power $_{1} n x=$ if $(n \leqslant 1)$ then x else $\left(x *\left(\right.\right.$ power $\left._{1}(n-1)\right)$
where (*) :: Exp Int \rightarrow Exp Int \rightarrow Exp Int. The type of power $_{1}$ ensures the first argument is static, and using this function, we can evaluate the expression power ${ }_{1} 3 x$ for some $x::$ Exp Int to generate the specialized expression $x * x * x$. Even though the definition of power ${ }_{1}$ uses a conditional (if ...then ...else), comparison ($n \leqslant 1$) and function recursion (power $_{1}(n-1)$), these have all been evaluated (by Haskell) and removed in the specialized expression.

Though separation of stages enables the programmer to manually specify those parts of an eDSL program that must be evaluated by Haskell, it also burdens them to maintain multiple variants of the same program. In addition to power ${ }_{1}$, we may also demand the following variants of the exponentiation function, each corresponding to a different separation of stages for its arguments and result.

```
power 
power. :: Int }->\mathrm{ Exp Int }->\mathrm{ Exp Int
power }2:: Exp Int -> Int -> Exp Int
power3 :: Int }->\mathrm{ Int }->\mathrm{ Exp Int
\mp@subsup{power }{4}{}:: Exp Int }->\mathrm{ Exp Int }->\mathrm{ Exp Int
power 5 :: Int }->\mathrm{ Exp (Int }->\mathrm{ Int)
power6 :: Exp Int }->\mathrm{ Exp (Int }->\mathrm{ Int)
\mp@subsup{power}{7}{}:: Exp (Int }->\mathrm{ Int }->\mathrm{ Int)
```

The need for multiple variants can be mitigated to some extent by using an overloading mechanism that automatically lifts Int to Exp Int, and converts back and forth between some static and dynamic representations, such as $\operatorname{Exp}(a \rightarrow b)$ and $\operatorname{Exp} a \rightarrow \operatorname{Exp} b$. This is done, for example, in Feldspar [6]. However, conversion between representations does not work for types with multiple introduction forms such as sum types: we cannot convert an expression of type Exp (Either a b) to Either (Exp a) (Exp b) as the precise injection may not be known until runtime.

Normalization by Evaluation (NbE) [9], is a program specialization technique that offers a solution to this problem by making specialization automatic, without the need for manual stage separation. Using the NbE approach, all variants of the exponentiation function can be recovered from the implementation of power ${ }_{7}:: \operatorname{Exp}$ (Int \rightarrow Int \rightarrow Int) depending on the availability of the arguments at the site of invocation, i.e., depending on how power $_{7}$ is used.

Unlike traditional normalization techniques, NbE bypasses rewriting entirely and instead normalizes an expression by evaluating it using a special interpreter. While NbE techniques for well-typed languages, also known as typed $N b E$, have found a number of theoretical applications such as deciding equivalence of lambda-calculus with sums [3], proving completeness [16], and coherence theorems [11], the practical relevance of typed NbE remains relatively less wellunderstood. This paper argues that typed NbE is particularly well-suited for specializing eDSL programs in Haskell given the natural reliance on a host language. Indeed, existing techniques for embedding DSLs in Haskell (e.g. the work of Svenningsson and Axelsson [40] on combining deep and shallow embeddings), which may at first seem somewhat ad hoc, can be viewed as instances of NbE .

The contributions of this paper are as follows.

- The first comprehensive practical treatment of NbE for eDSLs.
- A coherent combination of NbE techniques to deal with a rich set of features such as sums, arrays, exceptions, and state-and in particular-a detailed and extensible account of their interaction.
- Practical extensions of standard NbE techniques to implement a richer set of domain-specific equations, and variations that control unnecessary code expansion.
- Examples showing that NbE provides a principled alternative to ad hoc techniques that combine deep and shallow embedding to implement fusion for functions, loops and arrays in an eDSL.

The complete Haskell source code and examples in this paper can be found in the accompanying material available at https://github.com/nachivpn/nbe-edsl.

2 Normalizing EDSL Programs

This section showcases our implementation with examples of normalizing eDSL programs using NbE. We begin with standard examples of normalizing the exponentiation function and array operations, and then show examples that illustrate normalization of programs that contain side-effects, branching, and an intricate interaction between them.

Normalization is performed by a function norm :: Rf $a \Rightarrow$ $\operatorname{Exp} a \rightarrow \operatorname{Exp} a$, and the result is observed by printing the resulting expression. The type class constraint $R f$ limits the type of an expression to the types recognized by the eDSL, and is defined along with the data type Exp in the next section. The name $R f$ is short for reifiable. For convenience, we do not program with the constructors of Exp directly, and instead use derived combinators and "smart constructors" that provide a programming interface to the eDSL. This means that the observed result of normalizing an eDSL program is that of its internal representation, and may not directly resemble the surface program.

We make use of a form of higher-order abstract syntax (HOAS) [34] in order to repurpose the binding features of Haskell in the eDSL. Thus the constructor that constructs an expression of a function type $\operatorname{Exp}(a \rightarrow b)$ (Lam in Figure 2) takes a Haskell function on expressions Exp $a \rightarrow \operatorname{Exp} b$ as its argument. Our focus here is on practical implementation so we do not concern ourselves with subtleties such as ruling out so called exotic terms or exotic types [5] in the internal representation of expressions. Nevertheless, it is a routine exercise to adapt our approach to use standard techniques to preclude such infelicities, for instance by using an abstract type to hide the concrete type constructors [36] or moving to a tagless representation [5, 13] whereby the smart constructors are first-class.

Normalizing exponentiation. Consider again the exponentiation function from the previous section, and suppose that it is implemented as follows.

```
power :: Exp ( Int \(\rightarrow\) Int \(\rightarrow\) Int \()\)
power \(=\operatorname{lam} \$ \lambda n \rightarrow \operatorname{lam} \$ \lambda x \rightarrow \operatorname{rec} n(f x) 1\)
    where \(f x=\operatorname{lam} \$ \lambda_{-} \rightarrow \operatorname{lam} \$ \lambda a c c \rightarrow(x * a c c)\)
```

This implementation corresponds to the power 7_{7} variant, and is implemented using expression combinators: lam :: $(\operatorname{Exp} a \rightarrow \operatorname{Exp} b) \rightarrow \operatorname{Exp}(a \rightarrow b)$ is a lambda expression combinator and rec :: Exp Int $\rightarrow \operatorname{Exp}($ Int $\rightarrow a \rightarrow a) \rightarrow$ $\operatorname{Exp} a \rightarrow \operatorname{Exp} a$ is a primitive recursion combinator such that rec $n g a$ is equivalent to $g 1\left(g 2\left(\ldots\binom{g}{n}\right)\right)$. Although possible, note that the type of rec is not entirely wrapped under Exp as Exp (Int $\rightarrow($ Int $\rightarrow a \rightarrow a) \rightarrow a \rightarrow a)$. This choice prevents unnecessary clutter caused by explicit function application in the expression language, and trades some specialization power (i.e., the subsumption of some stage separations) for a more convenient interface. We make this choice for all primitive combinators that require multiple arguments.

An expression of a function type can be applied using the combinator $a p p:: \operatorname{Exp}(a \rightarrow b) \rightarrow \operatorname{Exp} a \rightarrow \operatorname{Exp} b$ as app (power 3), where the argument is a numeral expression 3 :: Exp Int. We can normalize this expression in the Haskell interpreter GHCi using the function norm as follows.
*NbE.OpenNbE> norm (app power 3)
$\lambda x .(x *(x * x))$
The result is a pretty-printed representation of the expression syntax of the Exp data type-here a function that returns the cube of its argument. Observe that the result is slightly more optimal than that of a textbook partial evaluator that returns $\lambda x .(x *(x *(x * 1)))$ by unrolling the recursion. This optimization is a simple instance of NbE's ability to aggressively reduce arithmetic expressions even in the presence of unknown values-we return to this in Section 6.

Note here that the specialization of power is automatic and there was no need to manually separate the stages of arguments as static (Int) and dynamic (Exp Int). We consider the entire expression to be dynamic, and leave it to the normalizer to identify the best specialization strategy.

As another example, consider normalizing an invocation of power with flipped arguments using a utility function flip $^{\prime}$.
*NbE.OpenNbE> norm (app (flip' power) 3)
$\lambda n .(\operatorname{Rec} n(\lambda y . \lambda a c c .(3 * a c c)) 1)$
Observe that the (expected) definition of flip' has been removed in the result, producing a more optimal function.

Normalizing array operations. Normalization can be used to achieve fusion of operations over arrays such as map and fold [33]. We consider immutable pull arrays [41] in our eDSL, and an expression of the array type is denoted by the type Exp (Arr a), where a denotes the type of the elements in the array. The map and fold operations are given by derived combinators, whose types and corresponding fusion laws are given as below.

```
mapArr :: \(\operatorname{Exp}(a \rightarrow b) \rightarrow \operatorname{Exp}(\operatorname{Arr} a) \rightarrow \operatorname{Exp}(\operatorname{Arr} b)\)
foldArr \(:: \operatorname{Exp}(b \rightarrow a \rightarrow b) \rightarrow \operatorname{Exp} b \rightarrow \operatorname{Exp}(\operatorname{Arr} a) \rightarrow \operatorname{Exp} b\)
    -- fusion laws:
    -- 1. mapArr \(f(\operatorname{mapArr} \mathrm{~g} \operatorname{arr})=\operatorname{mapArr}(\mathrm{f} . \mathrm{g}) \operatorname{arr}\)
    -- 2. foldrArr \(\mathrm{f} x\) (mapArr \(\mathrm{g} \operatorname{arr})=\) foldArr \((\mathrm{f} . \mathrm{g}) \mathrm{x}\) arr
```

These combinators are derived using simpler expression constructors, that for e.g., create an array (NewArr), or perform recursion ($R e c$), and the fusion laws follow from the equations that specify their behavior.

Using these combinators, we may implement a function (expression) mapMap that maps twice over a given argument array, first with the function $(+1)$, and then with $(+2)$.

```
mapMap :: Exp (Arr Int }->\mathrm{ Arr Int)
mapMap = lam$ \lambdaarr }
    mapArr (lam (+2)) (mapArr (lam (+1)) arr)
```

By the first fusion law, this expression is equivalent to one that maps once with $(+3)$ as: mapArr (lam (+3)) arr. Normalizing mapMap returns a new array which has the same length as the argument array arr, and whose elements are the elements of arr incremented by 3.

```
*NbE.OpenNbE> norm mapMap
\lambdaarr.(NewArr (LenArr arr) (\lambdai.(arr!i)+3))
```

The result is indeed the expression constructed by applying the derived combinator mapArr as mapArr (lam (+3)) arr. Besides map fusion, NbE also eliminates the function composition from the fused function $(+2) \circ(+1)$ and performs constant folding to obtain (+3).

To illustrate the second fusion law, consider the following function, mapFold, that first maps (+2) over a given array and then computes the sum of the result using foldArr.

```
mapFold :: Exp (Arr Int }->\mathrm{ Int)
mapFold = lam$ \lambdaarr }->\mathrm{ foldArr go 0(mapArr (lam (+2)) arr)
    where go = lam $ \lambdaacc }->\mathrm{ lam $ \x }->acc+
```

By the second fusion law, this expression is equivalent to one which simply folds the entire array as: foldArr (lam (λ acc \rightarrow $\operatorname{lam}(\lambda x \rightarrow \operatorname{acc}+x+2))) 0$ arr. Normalizing mapFold yields the following result.

```
*NbE.OpenNbE> norm mapFold
\lambdaarr.(Rec (LenArr arr) (\lambdai.\lambdaacc.acc + (arr!i) + 2) 0)
```

The normalized function receives an argument array, and performs recursion over its length to compute the sum of its elements, each of which has been incremented by 2.

Normalizing branching programs. Branching programs, or programs that perform a case analysis over a value of a sum type, complicate normalization. The difficulty arises from the fact that the outcome of a case analysis over an unknown value cannot be determined at normalization time. NbE offers a modular solution to address this difficulty and achieve normalization for branching programs, as we shall see later in Section 4.

Consider the following branching program, prgBr, that illustrates a scenario where map fusion on arrays is interrupted by a case analysis on an unknown value.

```
prgBr :: Exp (Either Int Int \(\rightarrow\) Arr Int \(\rightarrow\) Arr Int)
\(\mathrm{prgBr}=\operatorname{lam} \$ \lambda s c r \rightarrow \operatorname{lam} \$ \lambda\) arr \(\rightarrow\)
    mapArr (lam (+1)) \$ case \({ }^{\prime}\) scr
        (lam \(\$ \lambda x \rightarrow\) mapArr \((\operatorname{lam}(+x))\) arr \()\)
        \((\operatorname{lam} \$ \lambda y \rightarrow a r r)\)
```

It performs a case analysis using the combinator case ${ }^{\prime}::$ $\operatorname{Exp}($ Either $a b) \rightarrow \operatorname{Exp}(a \rightarrow c) \rightarrow \operatorname{Exp}(b \rightarrow c)$ on the argument scr (an unknown value), and if the left injection is found with an integer x, it returns an array that increments elements of arr by x, else arr is returned as found otherwise. The array returned by case' is further incremented by 1 .

Normalizing prgBr yields the following result.
*NbE.OpenNbE> norm prgBr
(λ scr. (λ arr.NewArr (LenArr arr)
$(\lambda i$.Case scr $(\lambda x .((\operatorname{arr}!i)+x+1))(\lambda y .((\operatorname{arr}!i)+1)))))$
The normalized function returns a new array whose elements are given by performing case analysis on scr. Observe that the effect of mapArr (lam (+1)) in prgBr has been fused with the application of mapArr in the first branch, and left unaltered in the second branch. The normalized program delays case analysis on scr to the point at which it is required, thus avoiding the materialisation of an intermediate array.

Normalizing stateful programs. Programs with sideeffects can be also normalized using NbE , and the following example illustrates such a program that writes to and reads from a global state in a State monad.

```
prgSt :: Exp (Arr Int }->\mathrm{ State (Arr Int) Int)
prgSt = lam$ \lambdaarr }
    put (mapArr (lam (+2)) arr)
    > st put (mapArr (lam (+1)) arr
    >>st get >> st (lam$\lambdaarr'}->\mp@subsup{\mathrm{ return}}{st}{}(\mathrm{ ixArr arr' 0)))
```

The program prgSt receives an integer array arr, and returns an Int by writing to and reading from (using combinators get and $p u t$) a global state that contains an array of type Arr Int. Precisely, it performs the following actions (sequenced using monadic combinators $\gg s t$ and $\gg_{s t}$):

- writes the result of mapping over arr with (+2)
- writes the result of mapping over arr with (+1)
- reads the array from state, and returns its first element

The combinators put, get, $>_{s t},>_{s t}$ and return ${ }_{s t}$ have their expected types lifted to expressions. For example, put::Exp $s \rightarrow$ Exp (State s ()) and get :: Exp (State s s).

Normalizing prgSt yields the following result.

```
*NbE.OpenNbE> norm prgSt
\lambdaarr.(Get>> \s.(Put (NewArr (LenArr arr) (\lambdai.(arr!i) + 1))
    return}((\operatorname{arr!0)+1)))
```

The resulting program puts a new array that contains the elements of the original array incremented by 1 , and returns the head of the original array, also incremented by 1 . The first put operation in prgSt is removed as it is overwritten by the subsequent put. Similarly, the operation get and the intermediate array arr^{\prime} in prgSt are also removed, as the array in the state is known locally from the previous put operation. The Get in the result is redundant as the state s is never used. This Get is introduced by the normalizer as a consequence of η-expansion (see Section 5). We show later, in Section 6, how such redundancy in generated code can be eliminated by disabling η-expansion.

Normalizing branching stateful programs. The presence of side-effects and branching in the same language creates subtle interactions between the primitives that must be considered when implementing normalization. To illustrate that our NbE procedure can also be applied seamlessly to their combination, we consider the following program that combines the last two examples.

```
prgBrSt :: Exp (Either Int Int \(\rightarrow\) Arr Int \(\rightarrow\) State (Arr Int) Int)
\(\operatorname{prgBrSt}=\operatorname{lam} \$ \lambda s c r \rightarrow \operatorname{lam} \$ \lambda a r r \rightarrow\)
    put (mapArr (lam (+1)) arr)
        \(\gg_{s t}\) (case' scr
            (lam \(\$ \lambda x \rightarrow\) put (mapArr \((\operatorname{lam}(+x))\) arr \())\)
            ( \(\operatorname{lam} \$ \lambda y \rightarrow\) return unit) \()\)
    \(\left.>_{s t} \operatorname{get} \gg \equiv_{s t}\left(\operatorname{lam}\left(\lambda a r r^{\prime} \rightarrow \operatorname{return}_{\text {st }}\left(i x A r r \operatorname{arr} r^{\prime} 0\right)\right)\right)\right)\)
```

Unlike in prgSt, the first put here cannot be eliminated as the second branch does not have a subsequent put. Moreover, elimination of get here is less straightforward as we cannot readily determine the value of the array in the state.

Normalizing prgBrSt yields the following result.

```
*NbE.OpenNbE> norm prgBrSt
\lambdascr.(\lambdaarr.(Get>> (\lambdas.(Case scr of
    (\lambdax.(Put (NewArr (LenArr arr) (\lambdai.(arr!i) + x))
        Return ((arr!0) + x)))
    (\lambday.(Put (NewArr (LenArr arr) (\lambdai.(arr!i) + 1))
        >Return ((arr!0)+1)))))))
```

The resulting program pattern matches on scr, performs appropriate put operations and returns the expected result individually on each branch. The first put operation, i,e., put (mapArr (lam (+1)) arr) is discarded in the first branch but preserved in the latter!

3 NbE for an EDSL Core

NbE is the process of evaluating, or interpreting, expressions of a language in a semantic domain and then obtaining normal forms by reifying, or extracting, normal forms from values in the semantic domain. The key idea behind NbE is to leverage an (often non-standard) evaluator implemented in the host language to normalize expressions in the object language-hence the name normalization by evaluation.

```
    -- Expressions, neutrals and normal forms
data Exp a where ...
data Ne a where ...
data \(N f a\) where ...
    -- Embedding functions
embNe :: Ne \(a \rightarrow \operatorname{Exp} a\)
embNf :: Nf \(a \rightarrow \operatorname{Exp} a\)
    -- NbE semantics
class \(R f a\) where
    type Sem \(a\) :: *
    reify :: Sem \(a \rightarrow N f a\)
    reflect :: Ne \(a \rightarrow\) Sem \(a\)
    -- Evaluation function
eval :: Rf \(a \Rightarrow \operatorname{Exp} a \rightarrow \operatorname{Sem} a\)
    -- Normalization function
norm :: Rf \(a \Rightarrow \operatorname{Exp} a \rightarrow \operatorname{Exp} a\)
norm \(=\) embNf \(\circ\) reify \(\circ\) eval
```


Figure 1. Components of NbE

Figure 1 summarizes the components of NbE in our implementation. The object language is defined by the expression data type Exp, and its normal forms are defined by $N f$ and $N e$ (a subcategory of normal forms called neutrals). Unlike a traditional evaluator, an NbE evaluator interprets expressions in a semantic domain that is carefully chosen such that normal forms can be reified from it. The type class $R f$ specifies the requirements of such a semantic domain.

In the class $R f$, the type family Sem maps types in the object language to the Haskell types that interpret them. The definition of $R f$ requires that an interpretation of a type be chosen such that we can also implement the functions reify and reflect. The function reify performs reification, and the function reflect performs a process known as reflection. Reflection inserts neutral expressions into the semantic domain, and is used to evaluate free variables whose values are unknown. Reflection is crucial to reifying functions: to convert a semantic function to a syntactic one, we apply it to a semantic value given by the reflecting the argument variable of the syntactic function. Our syntax for functions calls for a slightly different treatment, as we shall see shortly.

In this section, we discuss the implementation of NbE for an eDSL core language that is defined by the Exp data type. This language is based on a simply-typed lambda calculus (STLC) with product and base types, extended with primitive recursion and simple arithmetic operations. We later extend it further with array and sum types (Section 4), exception and state effects (Section 5), and other uninterpreted primitives (Section 6). These features have been chosen to illustrate the practical applicability, extensibility, and customizability of NbE to a class of functional eDSLs like Feldspar [6], Haski [42], and others [4, 40] found in eDSL literature.

```
data \(\operatorname{Exp} a\) where
    Var :: Rf \(a \Rightarrow\) String \(\rightarrow \operatorname{Exp} a\)
    Lift :: Base \(a \Rightarrow a \rightarrow \operatorname{Exp} a\)
    Lam :: \((R f a, R f b) \Rightarrow(\operatorname{Exp} a \rightarrow \operatorname{Exp} b) \rightarrow \operatorname{Exp}(a \rightarrow b)\)
    App :: \((R f a, R f b) \Rightarrow \operatorname{Exp}(a \rightarrow b) \rightarrow \operatorname{Exp} a \rightarrow \operatorname{Exp} b\)
    Unit :: Exp ()
    Pair \(::(R f a, R f b) \Rightarrow \operatorname{Exp} a \rightarrow \operatorname{Exp} b \rightarrow \operatorname{Exp}(a, b)\)
    Fst :: \((R f a, R f b) \Rightarrow \operatorname{Exp}(a, b) \rightarrow \operatorname{Exp} a\)
    Snd \(::(R f a, R f b) \Rightarrow \operatorname{Exp}(a, b) \rightarrow \operatorname{Exp} b\)
    Mul \(::\) Exp Int \(\rightarrow\) Exp Int \(\rightarrow\) Exp Int
    Add \(::\) Exp Int \(\rightarrow\) Exp Int \(\rightarrow\) Exp Int
    Rec :: Rf \(a \Rightarrow\) Exp Int
        \(\rightarrow \operatorname{Exp}(\) Int \(\rightarrow a \rightarrow a) \rightarrow \operatorname{Exp} a \rightarrow \operatorname{Exp} a\)
```

Figure 2. Basic core expression language

Figure 2 summarizes the pure fragment of the core expression syntax. It consists of expression constructors for unknowns (Var), constants (Lift), functions (Lam, App), products (Pair, Fst, Snd), arithmetic operations (Mul, Add), and primitive recursion (Rec). The constructor Var allows us to insert unbound free variables, and Lift allows us to lift constant values of primitive base types (identified by the type class Base) directly to expressions. For example, instances Base Int and Base String allow us to lift integers and strings to expressions of type Exp Int and Exp String respectively.

Function and product types. To implement NbE for a fragment of the language under consideration, we begin by specifying the equations of interest, and identifying normal forms of these equations. The equations for the fragment of function and product types are specified as follows.

```
\(f:: \operatorname{Exp}(a \rightarrow b) \approx \operatorname{Lam}(A p p f)\)
\(\operatorname{App}(\operatorname{Lam} f) e \approx f e\)
\(p:: \operatorname{Exp}(a, b) \quad \approx \operatorname{Pair}(\) Fst \(p)(\) Snd \(p)\)
Fst (Pair \(\left.e_{1} e_{2}\right) \approx e_{1}\)
Snd \(\left(\right.\) Pair \(\left.e_{1} e_{2}\right) \approx e_{2}\)
```

The type directed equations, or η-laws, specify the structure of the resulting normal forms, and the reduction laws, or β-laws, specify how expressions should be reduced.
To a first approximation, neutrals denote expressions whose reduction is stuck at unknowns, and normal forms denote value expressions. A normal form in NbE only needs to be some canonical element in the equivalence class of expressions identified by the equations, but it is often helpful to think of it as an expression that cannot be reduced further by applying the β laws by orienting them from left to right, and has a canonical shape as dictated by the η law. For this fragment, we define neutral and normal forms as follows, resembling β-short η-long normal forms in STLC.

data Ne a where

NVar :: Rf $a \Rightarrow$ String \rightarrow Ne a
$N A p p::(R f a, R f b) \Rightarrow N e(a \rightarrow b) \rightarrow N f a \rightarrow N e b$
NFst :: Rf $a, R f b) \Rightarrow N e(a, b) \rightarrow N e a$
NSnd :: (Rf $a, R f b) \Rightarrow N e(a, b) \rightarrow N e b$
data $N f$ where
$N U p::$ Base $a \Rightarrow N e a \rightarrow N f a$
NUnit :: Nf ()
NLam :: Rf $a, R f b) \Rightarrow(E x p a \rightarrow N f b) \rightarrow N f(a \rightarrow b)$
NPair :: $R f a, R f b) \Rightarrow N f a \rightarrow N f b \rightarrow N f(a, b)$
Observe that a normal form of type $N f(a \rightarrow b)$ cannot be reduced further by applying the β-law on any of its subexpressions, and it must be constructed by NLam. This property of normal forms can as well be observed for products and all other types under consideration in this paper.

The normal form constructor for functions, NLam, receives an argument of type Exp $a \rightarrow N f b$ instead of the more restrictive type Nf $a \rightarrow N f b$. This is to allow the syntactic embedding-i.e, without invoking functions that involve semantics, such as eval or reify-of normal forms to expressions via embNf by mapping NLam to Lam, which would not be possible with the latter option.

After the identification of suitable normal forms, it remains to define a semantic domain that supports the reification of normal forms and evaluation of terms. The semantic domain for product and function types are readily available in Haskell, so we simply interpret them by their Haskell counterparts by defining instances of $R f$ as follows.

```
instance \(R f()\) where
    type Sem ()\(=()\)
    reify _ = NUnit
    reflect _ = ()
instance \((R f a, R f b) \Rightarrow R f(a, b)\) where
    type \(\operatorname{Sem}(a, b)=(\operatorname{Sem} a, \operatorname{Sem} b)\)
    reify \(\quad p=\operatorname{NPair}(\) reify \((f\) st \(p))(\) reify \((\) snd \(p))\)
    reflect \(n=(\) reflect \((\) NFst \(n)\), reflect \((\) NSnd \(n))\)
```

instance $(R f a, R f b) \Rightarrow R f(a \rightarrow b)$ where
type Sem $(a \rightarrow b)=\operatorname{Sem} a \rightarrow \operatorname{Sem} b$
reify $f=\operatorname{NLam}($ reify $\circ f \circ$ eval $)$
reflect $n=\lambda y \rightarrow r e f l e c t(N A p p n($ reify $y))$

The implementation of functions reify and reflect is achieved by converting from and to Haskell values. To reify a pair $p::($ Sem a, Sem b), we construct a normal form using the constructor NPair, whose arguments are obtained by recursively reifying the projections of p. To reflect a neutral $n:: N e(a, b)$, we construct a pair whose components are obtained by recursively reflecting the projections of n using neutral constructors NFst and NSnd. On the other hand, to reify a function $f::$ Sem $a \rightarrow$ Sem b, we evaluate the expression argument ${ }^{1}$ provided by the constructor NLam and recursively reify its

[^1]application to f, and to reflect a neutral $n:: N e(a \rightarrow b)$, we recursively reflect the application of n using the constructor $N A p p$ with the reification of the semantic argument y.

Evaluation resembles a standard evaluator, with the exception of the Var and Lam cases, as witnessed below.

```
eval (Var x :: Exp a)=reflect@a(NVar x)
eval Unit =()
eval (Lamf) = < < < eval (f(embNf (reify y)))
eval (Appfe) = (eval f)(eval e)
eval (Pair e e') = (eval e, eval e')
eval (Fst e) = fst (eval e)
eval (Snd e) = snd (eval e)
```

For the Var case, we use reflection to insert the neutral NVar x into the semantics, and for the Lam case, we recursively evaluate the application of f to an expression obtained by reifying and embedding the semantic argument y.

Reflection constructs a semantic value based on the type of an unknown, which when reified, has the effect of η expansion [9]. Evaluating an unknown Var "x" :: Exp $(() \rightarrow$ ()) returns its reflection $\lambda y \rightarrow()$, which when reified yields the normal form NLam ($\lambda e \rightarrow$ NUnit), where η-expansion has been applied for both the function and unit types.

```
eval (Var "x" :: Exp (() \(\rightarrow()))\)
    -- by definition
    \(\equiv\) reflect@(() \(\rightarrow())(N V a r " x ")\)
    -- reflecting neutral of type ' \(\mathrm{Ne}(()\)-> ())'
    \(\equiv \lambda y \rightarrow \operatorname{reflect@()}(N A p p(N \operatorname{Var} x)(\) reify \(y))\)
    -- reflecting neutral of type ' Ne ()'
    \(\equiv \lambda y \rightarrow()\)
reify@(() \(\rightarrow())(\lambda y \rightarrow())\)
    -- reifying value of type '() -> ()'
    \(\equiv \operatorname{Nam}(\) reify@() \(\circ f \circ\) eval \()\)
    -- function composition
    \(\equiv \operatorname{Nam}(\lambda e \rightarrow r e i f y @()(f(\) eval \(e)))\)
    -- reifying value of type '()'
    \(\equiv \operatorname{NLam}(\lambda e \rightarrow N U n i t)\)
```

Base types. The expression syntax can be freely extended with base types by defining new instances of the type class Base. Normal forms of base types can either be neutrals or values. While neutrals can be embedded into normal forms using the constructor $N U p$, we extend the definition of normal forms with a constructor NLift to embed values.
data $N f$ where ...
NLift :: Base $a \Rightarrow a \rightarrow N f a$
The semantic domain for base types resemble the definition of normal forms as neutrals or values, which we illustrate for the types Int and String below.

```
instance Rf Int where
    type Sem Int = Either (Ne Int) Int
    reify x = either NUp NLift x
    reflect n = Left n
```

```
data Exp \(a\) where ...
    NewArr :: Rf \(a \Rightarrow \operatorname{Exp}\) Int \(\rightarrow \operatorname{Exp}(\operatorname{Int} \rightarrow a) \rightarrow \operatorname{Exp}(\) Arr a)
    LenArr :: Rf \(a \Rightarrow \operatorname{Exp}(\) Arr \(a) \rightarrow \operatorname{Exp}\) Int
    IxArr \(:: R f a \Rightarrow \operatorname{Exp}(\) Arr \(a) \rightarrow \operatorname{Exp}\) Int \(\rightarrow \operatorname{Exp} a\)
    Inl \(\quad::(R f a, R f b) \Rightarrow \operatorname{Exp} a \rightarrow \operatorname{Exp}(\) Either \(a b)\)
    Inr \(\quad::(R f a, R f b) \Rightarrow \operatorname{Exp} b \rightarrow \operatorname{Exp}(\) Either \(a b)\)
    Case :: (Rf \(a, R f b, R f c) \Rightarrow \operatorname{Exp}(\) Either \(a b)\)
        \(\rightarrow \operatorname{Exp}(a \rightarrow c) \rightarrow \operatorname{Exp}(b \rightarrow c) \rightarrow \operatorname{Exp} c\)
```

Figure 3. Extension with arrays and sums

```
instance Rf String where
    type Sem Int = Either (Ne String) String
        -- similar to above
```

For integers, we use the type Either (Ne Int) Int as the semantic domain for interpretation, and similarly for strings we use Either (Ne String) String. Reification replaces Left by $N U p$ and Right by NLift, while reflection embeds a neutral into the semantic domain using Left.

In the absence of primitives that return a value of base type, such as String, we need not perform any further modifications. For base types with primitives, such as Int, however, we must also extend evaluation and the definition of neutrals to accommodate them.

For a simple treatment of integer expressions, let us suppose that we would like to normalize them using the following equations.

```
Add (Lift x) (Lift y) \approxLift (x+y)
Mul (Lift x) (Lift y) \approxLift (x*y)
```

These equations specify that addition and multiplication must be performed when both the operands are available as lifted integer values. In the absence of either, such as in Add (Lift 2) (Var "x"), the expression cannot be reduced further, and must be considered to be in normal form.

To implement these equations, we extend the definition of neutrals for stuck applications of Add and Mul as follows.

data Ne a where ...

$$
\begin{aligned}
& \text { NAdd1 }:: \text { Ne Int } \rightarrow \text { Int } \rightarrow \text { Ne Int } \\
& \text { NAdd2 }:: \text { Int } \rightarrow \text { Ne Int } \rightarrow \text { Ne Int } \\
& \text { NAdd }:: \text { Ne Int } \rightarrow \text { Ne Int } \rightarrow \text { Ne Int } \\
& \quad-- \text { similarly NMul1, NMul2 and NMul }
\end{aligned}
$$

Following this, evaluation can be implemented using semantic functions $a d d^{\prime}, m u l^{\prime}::$ Sem Int \rightarrow Sem Int \rightarrow Sem Int as below. These functions are implemented by performing the corresponding operation when both the right injections are available, and constructing neutrals otherwise.

```
eval (Add e e ')}=\mathrm{ add'}(\mathrm{ eval e) (eval e')
eval (Mul e e')}=mul'(eval e) (eval e')
```


4 NbE for Arrays and Sums

Figure 3 summarizes the extension of the core language with array and sum types. The type $\operatorname{Exp}(\operatorname{Arr} a)$ denotes an a array expression indexed by integers, and the type Exp (Either a b) denotes a sum expression of type Either $a b$. The array operation NewArr constructs a new array, LenArr computes the length of an array, and IxArr indexes into an array. Sum types are formulated in the usual way with injections (Inl and Inr) and case analysis (Case).

4.1 Arrays

Array primitives satisfy the following equations, where the first is η-expansion for arrays, and the latter two are reductions for LenArr and IxArr respectively.

```
arr :: \(\operatorname{Exp}(\) Arr a) \(\approx \operatorname{NewArr}(\) LenArr arr \()(\) Lam (IxArr arr) \()\)
LenArr (NewArr \(n f) \approx n\)
IxArr (NewArr \(n f\) ) \(k \approx f k\)
```

Neutral and normal forms are defined by placing stuck applications of LenArr and IxArr in neutrals, and an array construction using NewArr in normal forms.
data Ne a where ...
NLenArr :: Rf $a \Rightarrow N e($ Arr $a) \rightarrow N e$ Int
NIxArr :: Rf $a \rightarrow \mathrm{Ne}($ Arr $a) \rightarrow N f$ Int \rightarrow Ne a
data Nf a where ...
NNewArr :: Rf $a \Rightarrow$ Nf Int $\rightarrow($ Exp Int \rightarrow Nf $a) \rightarrow N f($ Arr a)
The semantic domain for arrays, defined by SArr below, is given by a refinement of a shallow embedding of arrays in Haskell (called vectors in Feldspar [6]).

```
data SArr \(a\) where
    SNewArr :: Sem Int \(\rightarrow(\) Exp Int \(\rightarrow a) \rightarrow\) SArr \(a\)
instance \((R f a) \Rightarrow R f(\) Arr a) where
    type Sem \((\) Arr \(a)=\operatorname{SArr}(\operatorname{Sem} a)\)
    reify \((\) SNewArr \(k f)=\) NNewArr \((\) reify \(k)(\) reify \(\circ f)\)
    reflect \(n=\) SNewArr
        (reflect (NLenArr n))
        (reflect \(\circ\) NIxArr \(n \circ\) reify \(\circ\) eval)
```

The constructor SNewArr constructs a semantic array from the length of an array, given by a semantic integer Sem Int, and a function Exp Int $\rightarrow a$ that returns elements of the array for a given index expression. Reification converts a semantic array constructed using SNewArr to a syntactic one in normal form constructed using NNewArr. Reflection, on the other hand, inserts a neutral $n:: \operatorname{Exp}$ (Arr a) into semantics by constructing a semantic array with the same length and same elements as n.

Evaluation is extended to arrays by interpreting NewArr as SNewArr, and the array operations IxArr and LenArr by extracting the appropriate components of SNewArr.

```
eval (NewArr nf) =SNewArr (eval n) f
eval (IxArr arr i) = let (SNewArr_f) = eval arr in fi
eval (LenArr arr) = let (SNewArr n_) = eval arr in n
```


4.2 Sum Types

Equations and normal forms. Expressions of sum types are given the following standard equations.

```
\(e:: \operatorname{Exp}(\) Either \(a b) \approx\) Case e Inl Inr
Case (Inl e) \(f g \quad \approx f e\)
Case (Inr e) \(f g \approx g e\)
\(F(\) Case e \(g h) \quad \approx\) Case e \((F \circ g)(F \circ h)\)
```

The first equation specifies a restricted η-expansion for sums. The second and third equations are the standard β-rules for sums. The last equation is a commuting conversion, where the function F denotes an elimination context, which arises from a more general η-rule [29] and enables more opportunities to apply the β-rules [35]. This equation is further explained in Appendix A.1. Normal forms for sums comprise injections and case analysis.

```
data Nf \(a\) where ...
    NInl :: (Rf \(a, R f b)\)
        \(\Rightarrow N f a \rightarrow N f(\) Either \(a b)\)
    NInr :: (Rf a,Rf b)
        \(\Rightarrow N f b \rightarrow N f(\) Either \(a b)\)
    NCase :: (Rf a, Rf b,Rf c) \(\Rightarrow\) Ne (Either a b)
        \(\rightarrow(\operatorname{Exp} a \rightarrow N f c) \rightarrow(\operatorname{Exp} b \rightarrow N f c) \rightarrow N f c\)
```

Unlike stuck applications of eliminators, such as NFst and $N S n d$, that we class as neutral, we classify a stuck application of NCase as a normal form. This choice has to do with the implementation of the commuting conversions for sums.

Classifying NCase as neutral does not force commuting reductions, and may cause case analysis to prevent reductions by harboring introduction forms. For example, defining NCase under neutrals would deem the following expression to be neutral, and thus normal (via NUp).

NApp (NCase (NVar "x") (NLam id) (NLam id)) (NLift 1)
Placing NCase in normal forms, on the other hand, forces this expression to be reduced further as below since a normal form of function type cannot be applied.

NCase (Var "x") (NLam $\$ \lambda_{-} \rightarrow$ Lift 1) (NLam $\$ \lambda_{-} \rightarrow$ Lift 1)
Semantic domain for sums. It is tempting to interpret sum types by their Haskell counterpart, i.e., Sem (Either a b) $=$ Either $(\operatorname{Sem} a)(\operatorname{Sem} b)$. But this interpretation is insufficient for NbE , and does not support reflection. For example, what should be the reflection of the unknown Var "x" :: Exp (Either () ())? We cannot make a choice over the Left or Right injection! To solve this dilemma, we define a semantic domain that captures branching over neutrals (which subsume unknowns), and use that to interpret sums.

```
data MDec a where
    Leaf :: a M MDec a
    Branch :: (Rf a,Rf b) =>Ne (Either a b)
        (Exp a M MDec c) ->(Exp b M MDec c) ->MDec c
```

instance Monad MDec where ...
instance (Rf a, Rf b) $\Rightarrow R f$ (Either $a b$) where

```
    type Sem \((\) Either \(a b)=\operatorname{MDec}(\) Either \((\operatorname{Sem} a)(\operatorname{Sem} b))\)
    reify \((\) Leaf \((\) Left \(x))=\operatorname{NInl}(\) reify \(x)\)
    reify \((\) Leaf \((\) Right \(x))=\operatorname{NInr}(\) reify \(x)\)
    reify \((\) Branch \(n f g)=\) NCase \(n(\) reify \(\circ f)(\) reify \(\circ g)\)
    reflect \(n=\) Branch \(n\)
        (Leaf \(\circ\) Left \(\circ\) eval)
        (Leaf \(\circ\) Right \(\circ\) eval)
```

Intuitively, the data type MDec defines a decision tree (monad) that prevents us from having to make a choice during reflection. Unlike a value of type Either (Sem a) (Sem b), a value of type MDec (Either (Sem a) (Sem b)) can be constructed using the Branch constructor without making a choice. The Branch constructor requires us to handle both possible injections, and is the semantic equivalent of the normal form NCase-as witnessed by the implementation of reify.

Evaluating case analysis. The introduction of sum types causes a subtle problem for evaluation: consider the following expression of type Exp Int.
Case (Var "x") (Lam $\$ \lambda_{-} \rightarrow$ Lift 1) (Lam $\$ \lambda_{-} \rightarrow$ Lift 2)
While irreducible (and representable as a normal form), the semantic domain for integers, i.e., Either (Ne Int) Int, has no room for its interpretation! How should this Case expression of type Expr Int be evaluated as a value of type Either (Ne Int) Int? We proceed to adapt our interpretation of Int (and similarly with String) as follows.
instance Rf Int where
type Sem Int $=$ MDec (Either (Ne Int) Int) \ldots
instance Rf String where
type Sem Int = MDec (Either (Ne String) String) ...
In short, we place the decision tree monad MDec on top of the original interpretation of Int allowing room for constructing case trees in the semantics. The problematic integer expression from above can now be evaluated to:

```
Branch (NVar "x") (}\mp@subsup{\lambda}{-}{}->\mathrm{ Right 1) ( }\mp@subsup{\lambda}{-}{}->\mathrm{ Right 2)
```

Reification and reflection can be implemented easily by adapting our previous implementation to deal with MDec along the lines of the Rf (Either ab) instance.
Following this change to the interpretation, we proceed with evaluation as below using a semantic function run :: $R f a \Rightarrow \operatorname{MDec}(\operatorname{Sem} a) \rightarrow$ Sem a that can be implemented by induction on the type parameter a-which rephrases the branches of the decision tree as semantic ones.

```
eval (Inl e) = Leaf (Left (eval e))
eval (Inr e) = Leaf (Right (eval e))
eval (Case sfg) = let s' = eval s; f' = eval f; g' = eval g
    in run (fmap (either f' g') s')
```

Not all type constructors require a modification of the semantic domain. In particular, all type constructors with a single introduction form and a corresponding η-rule (such

```
data Exp a where ...
    Throw \(::\) Rf \(a \Rightarrow \operatorname{Exp}\) String \(\rightarrow \operatorname{Exp}(E r r a)\)
    Catch :: Rf \(a \Rightarrow \operatorname{Exp}(E r r a)\)
            \(\rightarrow \operatorname{Exp}(\) String \(\rightarrow\) Err a) \(\rightarrow \operatorname{Exp}(\) Err a)
    Return \(_{\text {err }}::\) Rf \(a \Rightarrow \operatorname{Exp} a \rightarrow \operatorname{Exp}(\) Err \(a)\)
    Bind \(_{\text {err }}::(R f a, R f b) \Rightarrow \operatorname{Exp}(E r r a)\)
            \(\rightarrow \operatorname{Exp}(a \rightarrow \operatorname{Err} b) \rightarrow \operatorname{Exp}(E r r b)\)
                (a) Exceptions
data Exp \(a\) where ...
    Get \(\quad:: R f s \Rightarrow \operatorname{Exp}\) (State s s)
    Put \(\quad:: R f s \Rightarrow \operatorname{Exp} s \rightarrow \operatorname{Exp}(\) State \(s())\)
    Return \(_{s t}::(R f s, R f a) \Rightarrow \operatorname{Exp} a \rightarrow \operatorname{Exp}(\) State s a)
    Bind \(_{s t}::(R f s, R f a, R f b) \Rightarrow \operatorname{Exp}(S t a t e s a)\)
        \(\rightarrow \operatorname{Exp}(a \rightarrow\) State \(s b) \rightarrow \operatorname{Exp}(\) State \(s b)\)
            (b) State
```

Figure 4. Extension with exception and state effects
as functions, products, and arrays) avoid this problem as we may perform η-expansion of the Case expression, followed by commuting conversions, to represent the value in the semantic domain. For example, the following expression of type Exp (Int, Int)

```
Case (Var "x") (Lam$ }\mp@subsup{\lambda}{_}{}->\mathrm{ Var "y")(Lam$ }\mp@subsup{\lambda}{-}{}->\mathrm{ Var "z")
```

can be η-expanded and then two commuting conversions applied to give

```
Pair
    (Case (Var "x")
        (Lam$ \lambda_ -> Fst (Var "y")) (Lam$ }\mp@subsup{\lambda}{-}{}->\mathrm{ Fst (Var "z")),
    Case (Var "x")
        (Lam$ }\mp@subsup{\lambda}{-}{}->\mathrm{ Snd (Var "y")) (Lam$ }\mp@subsup{\lambda}{-}{}->\mathrm{ Snd (Var "z")))
```

which is interpreted as a pair of semantic integers:

```
(Branch (NVar "x")
    \(\left(\lambda_{-} \rightarrow N F s t(N V a r ~ " y ")\right)\left(\lambda_{-} \rightarrow N F s t(N V a r ~ " z ")\right)\),
Branch (NVar "x")
    \(\left.\left(\lambda_{-} \rightarrow \operatorname{NSnd}(N \operatorname{Var} " y ")\right)\left(\lambda_{-} \rightarrow \operatorname{NSnd}\left(N \operatorname{Var} " z^{\prime}\right)\right)\right)\)
```

This means that we need only to refine our interpretation of Int and String, where we lack a combination of a single introduction form accompanied by a corresponding η-rule.

The above treatment of sums is sound and often suffices in practice, but it does not capture all natural equations for sums. In Section 6 we outline how to augment our implementation to eliminate repeated and redundant case splits.

5 NbE for Monadic Effects

Figure 4 summarizes the extension of the expression syntax respectively with exceptions and state formulated as monadic types. Exceptions consist of a throw operation (Throw) to throw string exceptions, a catch operation (Catch)
to handle exceptions, along with the return (Return $_{\text {err }}$), and bind (Bind ${ }_{\text {err }}$) of the monadic type Err. Stateful computations are formulated similar to the State monad in Haskell, and consists of a get operation (Get) to retrieve the state, a put operation (Put) to overwrite the state, along with the return $\left(\right.$ Return $\left._{s t}\right)$, and bind $\left(\right.$ Bind $\left._{s t}\right)$ of the monadic type State s.

Both monadic types (denoted M) are subject to the following equations, typically called the monad laws.

```
\(m:: \operatorname{Exp}\left(\begin{array}{ll}M & a\end{array}\right) \quad \approx\) Bind \(m\) Return
Bind (Return \(x) f \approx \operatorname{App} f x\)
Bind \(\left(\right.\) Bind \(\left.e_{1} f\right) g \approx \operatorname{Bind} e_{1}(\operatorname{Lam}(\lambda x \rightarrow \operatorname{Bind}(\operatorname{App} f x) g))\)
```

The first equation is η-expansion for monads, the second β-reduction, and the third a commuting conversion that arranges Bind operations in a right-associative chain.

5.1 Exceptions

As well as the monad laws, exception computations also obey the following equations. The first equation is η-expansion and the second and third equations are β-reductions for exceptions.

```
\(m:: \operatorname{Exp}(\operatorname{Err} a) \quad \approx\) Catch \(m\) Throw
Catch (Throw s) \(f \approx \operatorname{Appfs}\)
Catch (Return \(x) f \approx\) Return \(x\)
```

Notice here that there is a contention between two η laws: one for the Err monad and one specific to exceptions. What should be the η-expanded form of an expression $e::$ $\operatorname{Exp}(E r r a)$? We must make a choice here, and we choose Catch (Bind err e Return) Throw, where we first apply the η-rule for monads, and then apply the one for exceptions. Our normal forms reflect this choice using a normal form constructor NTryUnless that denotes a fusion of Bind ${ }_{\text {err }}$ and Catch in normal form [8].

```
data Nf \(a\) where ...
    NReturn \(_{\text {err }}:: R f a \Rightarrow N f a \rightarrow N f(\) Err \(a)\)
    NThrow \(\quad:: R f a \Rightarrow N f\) String \(\rightarrow N f(\) Err \(a)\)
    NTryUnless :: (Rf a, Rf b) \(\Rightarrow \mathrm{Ne}\) (Err a)
        \(\rightarrow(\) Exp \(a \rightarrow N f(\) Err \(b))\)
    \(\rightarrow(\) Exp String \(\rightarrow N f(\) Err b) \() \rightarrow N f(\) Err b)
```

The constructors NReturn ${ }_{\text {err }}$ and NThrow are the normal form counterparts of Return ${ }_{\text {err }}$ and Throw.
The semantic domain is defined by a data type MErr that closely parallels the structure of normal forms.
data MErr a where

$$
\begin{aligned}
& \text { SReturn }_{\text {err }}:: R f a \Rightarrow a \rightarrow \text { MErr } a \\
& \text { SThrow }:: R f a \Rightarrow \text { Nf String } \rightarrow \text { MErr } a \\
& \text { STryUnless :: }(\text { Rf } a, \text { Rf } b) \Rightarrow \text { Ne (Err a) } \\
& \quad \rightarrow(\text { Exp } a \rightarrow \text { MErr } b) \\
& \quad \rightarrow(\text { Exp String } \rightarrow \text { MErr b) } \rightarrow \text { MErr } b
\end{aligned}
$$

instance $(R f a) \Rightarrow R f(E r r a)$ where
type Sem (Err a) $\quad=\operatorname{MErr}(\operatorname{Sem} a)$
reify $\left(\right.$ SReturn $\left._{\text {err }} x\right)=$ NReturn $_{\text {err }}($ reify $x)$
reify $($ SThrow $n) \quad=$ NThrow n
reify $($ STryUnless $n f g)=N T r y U n l e s s ~ n($ reify $\circ f)($ reify $\circ g)$ reflect $n=$ STryUnless $n\left(\right.$ SReturn $_{\text {err }} \circ$ eval $)(S T h r o w \circ$ eval $)$

The data type definition of $M E r r$ gives rise to a semantic monad that can be used to evaluate the monadic expression constructors Return err and Binderr. We evaluate Throw using semantic constructor SThrow, and Catch using a semantic function catch ${ }^{\prime}$ that is implemented by pattern matching on its first argument.

```
eval (Return}\mp@subsup{\mathrm{ err }}{e}{e})=\mathrm{ return (eval e)
eval (\mp@subsup{Bind}{err ef}{e})=\mathrm{ eval e> eval f}
eval (Throw e) = SThrow (eval e)
eval (Catch e f) = catch'}(\mathrm{ eval e) (eval f)
instance Monad MErr where ...
catch' :: MErr sa }->\mathrm{ (Sem String }->\mathrm{ MErr sa) }->\mathrm{ MErr sa
```

The rest of the definitions can be found in Appendix A.3.

5.2 Stateful Computations

Similar to exceptions, stateful computations are also given equations specific to the operations Put and Get, in addition to the monad laws.

```
m:: Exp (State s a) \approxGet >> st (Lam (\lambdas->(Put s)>>st m))
(Put x) >>st ((Put y) >>st m) \approx(Put y) >> >st m
(Put x) >>st (\mp@subsup{Bind}{st Get f)}{})\approx(\mathrm{ Put x) >>st (Appfx)}
```

We have an η law as usual, and two reduction laws that reduce sequencing of Put and Get operations. Note that the operator $>\Sigma_{s t}$ is an alias for Bind $_{s t}$, and $>_{s t}$ is a shorthand defined as $m>_{s t} m^{\prime}=\operatorname{Bind}_{s t} m\left(\operatorname{Lam}\left(\lambda_{-} \rightarrow m^{\prime}\right)\right)$.

As with exceptions, there is a contention between two η-laws, and we choose the η-expanded form of an expression m :: Exp (State s a) to be

```
Get>> >>st (Lam$ \lambdas -> (Put s)>>st (m>> >> (Lam$ \lambdax 
    Get>>>st
```

Our normal forms reflect this choice, while also ensuring that the expression they denote cannot be further reduced by the β-laws.

```
data Nf a where ...
    NGetPut :: (Rf s,Rf a)
            #(Exp s ->(Nf s,NfStres s a)) }->\mathrm{ Nf(State s a)
```

data $N f S t_{\text {res }} s a$ where
NReturn $_{s t}::(R f s, R f a) \Rightarrow N f a \rightarrow N f S t_{\text {res }} s$ (State $\left.s a\right)$
NBind $_{s t} \quad::(R f s, R f a, R f b) \Rightarrow N e($ State $s a)$
$\rightarrow($ Exp $a \rightarrow N f($ State $s b)) \rightarrow N f S t_{\text {res }} s($ State s $b)$

The data type $N f S t_{\text {res }}$ defines a separate syntactic category of normal forms to capture the following desired shape.

```
NGetPut \(\$ \lambda s_{1} \rightarrow\left(s_{1}^{\prime}\right.\), NBind \(_{s t} n_{1}\left(\operatorname{Lam} \$ \lambda e_{1} \rightarrow\right.\)
    NGetPut \(\$ \lambda s_{2} \rightarrow\left(s_{2}^{\prime}\right.\), NBind \(_{s t} n_{2}\left(\right.\) Lam \(\$ \lambda e_{2} \rightarrow\)
    \(\left.\left.\operatorname{NReturn}_{s t} x \quad . ..\right)\right)\) )
```

Intuitively, a normal form of a state computation is a function constructed using NGetPut that gets the global state and returns a new state to put along with a chain of neutrals bound using NBind $_{s t}$ ending with NReturn $_{s t}$. The constructor NBind $_{s t}$ denotes a stuck binding, and NReturn ${ }_{s t}$ returns a value in the monad. Since the binding of a neutral may change the state, the definition of normal forms must allow the state to be retrieved and modified after every binding.

The semantic domain is given by data types $M S t$ and $M S t_{\text {res }}$ that once again parallel the structure of normal forms.

```
newtype MSt s \(a=\) SGetPut \(\{\)
    runMSt \(::\) Sem \(s \rightarrow\left(\right.\) Sem, MSt \(\left.\left._{\text {res }} s a\right)\right\}\)
data \(M S t_{r e s} s a\) where
    SReturn \(_{\text {st }}::(R f s, R f a) \Rightarrow a \rightarrow\) MSt \(_{\text {res }} s a\)
    SBind \(_{s t} \quad::(R f s, R f a, R f b) \Rightarrow N e(\) State \(s a)\)
            \(\rightarrow(\operatorname{Exp} a \rightarrow M S t s b) \rightarrow\) MSt \(_{\text {res }} s b\)
instance \((R f s, R f a) \Rightarrow R f\) (State \(s a)\) where
    type Sem (State s a) = MSt s (Sem a)
    reify \(m=\) NGetPut \(\$\left(\lambda(s, r) \rightarrow\left(\right.\right.\) reify \(s\), reify \(\left.\left.{ }_{r e s} r\right)\right)\)
            - runMSt \(m\) ○ eval
        where
            reify \(_{\text {res }}::\) MSt \(_{\text {res }} s(\) Sem \(a) \rightarrow N f S t_{\text {res }} s a\)
            reify \(_{\text {res }}\left(\right.\) SReturn \(\left._{s t} x\right)=\) NReturn \(_{\text {st }}(\) reify \(x)\)
            reify \({ }_{r e s}\left(\right.\) SBind \(\left._{s t} n f\right)=\) NBind \(_{s t} n(\) reify \(\circ f)\)
    reflect \(n=\) SGetPut \(\$ \lambda s \rightarrow\left(s\right.\), SBind \(_{s t} n \$ \lambda e \rightarrow\)
        SGetPut \(\$ \lambda s^{\prime} \rightarrow\left(s^{\prime}\right.\), SReturn \(_{s t}(\) eval \(\left.\left.e)\right)\right)\)
```

The interpretation of State $s a$ as MSt s (Sem a), along with the definition of $M S t$ and $M S t_{\text {res }}$ lends itself naturally to both reification and reflection.

Evaluation makes use of a monad instance for MSt s (defined in Appendix A.3) for Return ${ }_{s t}$ and Bind $_{s t}$, and the Get and Put constructs are evaluated using a combination of the semantic constructors SGetPut and SReturn $_{\text {st }}$.

$$
\begin{aligned}
& \text { eval }\left(\text { Return }_{s t} e\right)=\text { return (eval e) } \\
& \text { eval }\left(\text { Bind }_{s t} \text { e } e^{\prime}\right)=\text { eval } e \gg \text { eval } e^{\prime} \\
& \text { eval (Get e) } \quad=\text { SGetPut } \$ \lambda s \rightarrow\left(s, \text { SReturn }_{s t} s\right) \\
& \text { eval }(\text { Put e }) \quad=\text { SGetPut } \$ \lambda_{-} \rightarrow\left(\text { eval e, SReturn }{ }_{s t}()\right)
\end{aligned}
$$

instance Monad (MSt s) where ...

5.3 Interaction with Sum Types

As in the pure case, the semantic domains with effects also require refinement to account for sums. Unlike in the pure case, it is insufficient to merely place the monad MDec on top of the existing interpretation and requires a careful consideration of the monadic operations. This is because case analysis can also be performed on the result of a monadic bind and in between operations.

For the MErr monad, case distinction can be performed on the result of a monadic bind, and we extend the data type definition with a constructor similar to Branch to allow this.
data MErr a where ...

```
    SCaseErr :: (Rf a,Rf b) \(\Rightarrow N e(\) Either a \(b\) )
        \(\rightarrow(\operatorname{Exp} a \rightarrow\) MErr \(c)\)
        \(\rightarrow(\operatorname{Exp} b \rightarrow M E r r c) \rightarrow\) MErr \(c\)
```

The constructor SCaseErr is reified using the normal form constructor NCase.

For the MSt monad, on the other hand, case distinction can be performed both on the result of a monadic bind and on the result of a retrieving the state using SGetPut. We modify the definition of MSt as follows, by placing the MDec monad on the result of the functional argument to SGetPut.

```
newtype MSt s a = SGetPut {
    runMState :: Sem s -> MDec(Sem s,MSt mes s a)}
```

To retain reification, we modify the definition of normal forms in a similar fashion.

```
data \(N f a\) where ...
    NGetPut :: (Rf s, Rf a)
        \(\Rightarrow\left(\operatorname{Exp} s \rightarrow M \operatorname{Dec}\left(N f s, N f S_{\text {res }} s a\right)\right) \rightarrow N f(\) State \(s a)\)
```

The modifications performed in this section do not preclude the implementation of semantic functions such as return, ($\$$), catch', etc., (see Appendix A.3), or the embedding functions embNe and embNf.

6 Practical NbE Extensions and Variations

The normalization procedures described in previous sections are adaptations of NbE for simply typed lambda calculus, that strive to identify the normal form of an expression as a canonical element of its equivalence class of semantically identical expressions. This traditional approach to NbE suffers from the following problems for practical eDSL applications:

- Our implementation β-reduces expressions as much as possible and η-expands expressions, yielding normal forms that are in β-short η-long form. Such aggressive normalization can lead to unnecessary code explosion, which may be harmful for code-generating eDSLs.
- The treatment of base types in Section 3 is insufficient for many practical applications. For example, the expression Add (Var "x") (Lift 0) is not reduced, while we would typically like it to be reduced to (Var "x").
- We have not yet explained how to incorporate uninterpreted primitives, that is, primitives without equations that dictate their behaviour.
In this section, we show these three problems can be addressed by refining the semantic domain used to implement NbE . Specifically, we present techniques to tame code expansion in NbE , a variation of NbE for integers that performs more advanced arithmetic reductions, and a recipe for adding uninterpreted primitives.

6.1 Taming Code Expansion

Disabling η-expansion using glueing. While η-expansion can be useful for some applications such as deciding program
equivalence, it may be unsuitable for other applications such as code generation. For example, observe how the normalizer η expands the unknown Var " f " $:: \operatorname{Exp}($ Int \rightarrow Arr Int).
*NbE.OpenNbE> norm (Var "f" :: Exp (Int \rightarrow Arr Int))
入arr.(NewArr (LenArr (f arr)) ($\lambda i .(f$ arr $!i)))$
Our implementation of NbE applies η-expansion by default, but we show here how η-expansion can be selectively disabled using the glueing technique [17], yielding (potentially) smaller normal forms.

We begin by modifying our definition of normal forms to allow neutrals to be embedded directly.
data Nf a where ...
$N U p::$ Ne $a \rightarrow N f a$
We remove the type constraint Base a on the constructor $N U p$, which relaxes the definition of normal forms to include, for example, the unknown Var " f " above as $N U p$ (N Var " f ").

Let us suppose that we would like to disable η expansion for function types. We refine the semantic domain of function types to include a syntactic component by "glueing" (i.e. pairing) it with normal forms of the function type as follows.

$$
\begin{aligned}
& \text { instance }(R f a, R f b) \Rightarrow R f(a \rightarrow b) \text { where } \\
& \text { type } \operatorname{Sem}(a \rightarrow b)=(\operatorname{Sem} a \rightarrow \operatorname{Sem} b, N f(a \rightarrow b)) \\
& \text { reify } \quad=\text { snd } \\
& \text { reflect } n=(\ldots, N U p n)
\end{aligned}
$$

Here we write ellipsis (...) for the original implementation of reflection. Reification projects the second component, a normal form, and reflection is modified to include an embedding of the neutral n to normal forms.

We proceed with evaluation as follows.

$$
\begin{aligned}
& \text { eval }(\operatorname{Lam} f)=(\ldots, \text { NLam }(\text { reify ○ eval } \circ f)) \\
& \text { eval }(\text { App } f e)=(f s t(\text { eval } f))(\text { eval } e)
\end{aligned}
$$

For the case of Lam, we retain our previous implementation for the first component, and build a normal form in the second component. The evaluation of application is as before, with a minor modification that projects out the semantic function from the recursive evaluation of the expression f.

We may also disable η-expansion for the other types by modifying the interpretation similarly.

$$
\text { type } \operatorname{Sem}(a, b)=((\operatorname{Sem} a, \operatorname{Sem} b), N f(a, b))
$$

type $\operatorname{Sem}(\operatorname{Arr} a)=(\operatorname{SArr}(\operatorname{Sem} a), N f(\operatorname{Arr} a))$

Glueing provides a compositional solution to disabling η expansion for some (or all) types without changing the implementation for other types. In contrast, another approach described by Lindley [28], where, for instance, the type $a \rightarrow b$ is interpreted by Either (Sem $a \rightarrow \operatorname{Sem} b)(N e(a \rightarrow b)$), requires a more involved reimplementation of the evaluator. Glueing can also be applied for effect types, but the definition of normal forms requires more careful consideration to avoid unnecessary expansion. Unlike in a strict language, the implementation of glueing in Haskell avoids a significant
performance cost as the semantic and syntactic parts are only computed as required, thanks to lazy evaluation.

Controlling duplication with explicit sharing. Much like other program specialization techniques, NbE can cause code duplication. For example, consider a function double that doubles its argument as $\operatorname{Lam}(\lambda x \rightarrow \operatorname{Add} x x)$. Normalizing an application of double to an irreducible expression large causes it to be duplicated as Add large large.

Code duplication can be avoided with a Let construct for explicit sharing, for which NbE can be extended as follows.

```
data Exp a where ...
    Let:: (Rf a,Rf b) = Exp a 暗 (a->b) -> Exp b
data Ne a where ...
    NLet:: (Rf a,Rf b) =>Nf a ->Nf (a->b) -> Ne b
eval (Let ef) = reflect (NLet (reify (eval e)) (reify (eval f)))
```

Normalizing Let expressions respects sharing, and the expression Let large double does not reduce, avoiding duplication.

Disabling normalization on subexpressions. An alternative to explicit sharing is to disable normalization entirely on a subexpression using a construct Save, such that normalizing Save (App double large) returns the original expression unaffected ${ }^{2}$. We achieve this with a Save construct as follows.
data Exp a where ...
Save :: Exp $a \rightarrow \operatorname{Exp} a$
data Ne a where ...
NSave :: Exp $a \rightarrow$ Ne a
$\operatorname{eval}($ Save $e)=\operatorname{reflect}($ NSave e $)$
Optimizing case expressions. The implementation of commuting conversions for sums in Section 4 can produce normal forms with redundant or repeated case analysis.

```
Case scr (Lam$ }\mp@subsup{\lambda}{-}{}->e)(Lam$ \mp@subsup{\lambda}{-}{}->e
Case scr (Lam $ \lambdax }->\mathrm{ Case scr...) (Lam $ }\lambday->\mathrm{ Case scr...)
```

The use of Case in these expressions is wasteful, and can be optimized further to reduce the size of the generated normal forms. Specifically, we are interested in the following two equations (identified by Lindley [29] as constituents of the general η-rule for sums).

```
Case scr \(\left(\operatorname{Lam} \$ \lambda_{-} \rightarrow e\right)\left(\operatorname{Lam} \$ \lambda_{-} \rightarrow e\right) \approx e\)
Case scr (Lam \(\$ \lambda x \rightarrow\) Case scr f1 f2)
    (Lam \$ \(\lambda y \rightarrow\) Case scr g1 g2)
    \(\approx\) Case scr \((\operatorname{Lam} \$ \lambda x \rightarrow f 1)(\operatorname{Lam} \$ \lambda y \rightarrow g 2)\)
```

The first equation removes a redundant case analysis on scr, while the second removes a repeated analysis on scr.

One way to implement these equations is to refine the definition of MDec to preclude problematic decision trees by construction. However, given Haskell's limited support for dependent types and the pervasive nature of NbE for sums,

[^2]this is a somewhat non-trivial modification. An easier (albeit ad hoc) solution is to implement a post-processing function optimize : Rf $a \Rightarrow \operatorname{MDec}\left(\begin{array}{ll}N f & a)\end{array} \rightarrow \operatorname{MDec}(N f a)\right.$ that is invoked when reifying decision trees. This is made possible since these transformations are merely syntactic manipulations of case trees that introduce no further reductions.

6.2 Applying Arithmetic Equations

To implement richer arithmetic equations (specified in Appendix A.1), our selection of normal forms must force the normalizer to perform reductions specified by these equations, for example, by reducing Add (Lift 1) (Lift 2) to Lift 3, Add (Lift 0) (Var "x") to Var " x ", and so on.

We consider normal forms of integers to be in a sum-ofproducts form $\left(a_{k} * n_{k}\right)+\left(a_{k-1} * n_{k-1}\right)+\ldots+a_{0}$, where a_{i} denotes a constant, and n_{i} denotes a neutral expression, for each i. Correspondingly, we extend the definition of neutrals and normal forms as follows.
data Ne a where ...
NMul :: Ne Int \rightarrow Ne Int \rightarrow Ne Int
data Nf a where ...
NInt :: Int \rightarrow Nf Int
NAdd :: (Int, Ne Int) \rightarrow Nf Int \rightarrow Nf Int
The NMul constructor in neutrals denotes a stuck multiplication, and NAdd denotes the addition of an integer $\left(a_{i} * n_{i}\right)$ to the left end of an integer in sum-of-products form.

We define the semantic domain for integers using a data type SOPInt that is identical to the shape of normal forms, and use it in our definition of an instance of $R f$.

data SOPInt where

$$
\begin{aligned}
& \text { SInt }:: \text { Int } \rightarrow \text { SOPInt } \\
& \text { SAdd }::(\text { Int, Ne Int }) \rightarrow \text { SOPInt } \rightarrow \text { SOPInt }
\end{aligned}
$$

instance $R f$ Int where

$$
\begin{array}{ll}
\text { type Sem Int } & =\text { SOPInt } \\
\text { reify }(\text { SInt a0 }) & =\text { NInt a0 } \\
\text { reify }\left(\text { SAdd }\left(a i, n_{i}\right)\right. & k) \\
\text { reflect } n & =\operatorname{NAdd}(\text { ai, } n i)(\text { reify } k) \\
& =\operatorname{SAdd}(1, n)(\text { SInt } 0)
\end{array}
$$

The implementation of reify simply converts from the semantic domain to normal forms, while reflect expands a neutral $n:: \operatorname{Exp}$ Int to the form $(1 * n)+0$.

Evaluation can be implemented by interpreting Add and $M u l$ by their semantic counterparts $a d d^{\prime}$ and $m u l^{\prime}$, which can be defined by induction on values of SOPInt.
add ${ }^{\prime}::$ SOPInt \rightarrow SOPInt \rightarrow SOPInt
mul ${ }^{\prime}::$ SOPInt \rightarrow SOPInt \rightarrow SOPInt
eval $\left(\right.$ Add $\left.e_{1} e_{2}\right)=$ add $\left(\right.$ eval $\left.e_{1}\right)\left(\right.$ eval $\left.e_{2}\right)$
eval $\left(\right.$ Mul $\left.e_{1} e_{2}\right)=m u l '\left(\right.$ eval $\left.e_{1}\right)\left(\right.$ eval $\left.e_{2}\right)$
The function $a d d^{\prime}$ adds two integers $\left(a_{k} * n_{k}\right)+\ldots+a_{0}$ and $\left(b_{j} * m_{j}\right)+\ldots+b_{0}$ in sum-of-products form by joining them as $\left(a_{k} * n_{k}\right)+\ldots+\left(b_{j} * m_{j}\right)+\ldots+\left(a_{0}+b_{0}\right)$, and function $m u l^{\prime}$
multiplies them as $\left(a_{k} * b_{j}\right) *\left(n_{k} * m_{j}\right)+\left(a_{k} * b_{j-1}\right) *\left(n_{k} *\right.$ $\left.m_{j-1}\right)+\ldots+\left(a_{0} * b_{0}\right)$.

6.3 Adding Uninterpreted Primitives

The core eDSL can be freely extended with uninterpreted primitives using the unknown constructor Var. For example, to extend our eDSL with a fixed-point construct without the corresponding equation, we define a combinator fix as:
fix :: Rf $a \Rightarrow \operatorname{Exp}((a \rightarrow a) \rightarrow a)$
fix = Var "Fix"
Normalizing an application $f i x f$ returns the equivalent of the expression of fix (embNf (norm $f)$), normalizing the function f, but leaving fix uninterpreted.

7 Related Work

The NbE technique goes back at least as far as Martin-Löf [31] who used it for proving normalization in his work on intuitionistic type theory. The core NbE algorithm for STLC was pioneered by Berger and Schwichtenberg [10]. The name is due to Berger et al. [9] who used it to speed up the Minlog theorem prover. A closely related technique is type-directed partial evaluation (TDPE) [18, 20, 21]. TDPE amounts to an instance of NbE used for partial evaluation in which the NbE semantics is exactly that of the host language. In contrast, for embedding DSLs we make essential use of non-standard semantics, e.g. using glueing for suppressing η-expansion.

Normalization for pure call-by-name STLC with sums is notoriously subtle [23] because general η-rule for sums includes additional equations such as those described in Section 6. Altenkirch et al. [3] give an NbE algorithm for sums based on a Grothendieck topology which implicitly captures the kind of decision tree that we use, but at every type. Balat et al. [7], in contrast, make use of multiprompt delimited control to allow retrospective exploration of different branches during reification. Both algorithms build in a degree of syntactic manipulation in order to manage redundant and repeated case splits similarly to what we describe in Section 6.

NbE for sums becomes considerably easier in an effectful call-by-value setting, as fewer equations hold. Danvy [18] uses (single prompt) delimited control operators for handling sums in TDPE. Filinski [22] adapts Danvy's approach to computational lambda calculus extended with sums. Lindley [30] adapts Filinksi's work to replace delimited control with an accumulation monad which we here call a decision tree monad and Abel and Sattler [1] characterise as a cover monad. The Danvy/Filinski approach based on delimited control is at the heart of the treatment of sums in existing eDSLs [40].

Ahman and Staton [2] give an NbE algorithm for general algebraic effects. We speculate that our bespoke treatment of specific monadic effects can be related to their generic approach, but we do not know to what extent their approach maps conveniently onto the Haskell eDSL setting.

Yallop et al. [43] cast partially-static data as free extensions of algebras, which they use as the basis for a generic partial evaluation library, frex. The frex approach has similarities with NbE , providing in particular a principled foundation for optimising in the presence of first-order algebraic theories.

Implementations of NbE in Haskell are not new. For instance, Danvy et al. [19] give an implementation not dissimilar to ours for plain STLC. Prior work on combining deep and shallow embeddings [40] implicitly uses a restricted form of NbE. Their Syntactic type class plays a similar role to our $R f$ type class. However, they do not make a connection with NbE and they do not use an instance for functions.

We have presented NbE as a unifying framework for eDSLs based on solid theoretical foundations. A related framework is offered by quoted domain-specific languages (QDSLs) [33]. QDSLs exploit a similar normalization procedure as part of the embedding process. A key difference is that QDSLs are based on staging and a separate normalization algorithm.

The idea of viewing eDSLs through the lens of NbE was explored in an earlier draft paper [32] using Agda rather than Haskell.

8 Final Remarks

We have presented, to the best of our knowledge, the first comprehensive practical implementation of NbE for Haskell eDSLs. NbE provides a systematic and modular approach to specialize eDSL programs in Haskell, and provides a principled account of ad hoc techniques previously developed using a combination of deep and shallow embedding. We have shown how problems that arise from a traditional approach to NbE can be addressed to suit practical concerns such as code expansion, normalization with domain-specific equations, and extension with uninterpreted primitives.

We have not proved the correctness of our NbE implementation, which is typically achieved by showing that an expression is equivalent to its normal form in the chosen equational theory. Moreover, the account of interactions between effects and sums is quite intricate, and appears to be somewhat ad hoc in this level of presentation. A formal investigation of the semantic monads and their interaction is required to identify a more modular solution to add effects to an eDSL that enjoys the benefits of NbE. We leave both these formal aspects as avenues for future work.

We believe that NbE has a broader applicability beyond the examples of fusion shown here. For example, NbE could be used in the security domain, to automatically remove superfluous security checks performed at runtime by programs written in a security eDSL (e.g., [39]). Similarly, in databases (e.g., [37]), NbE could be used normalize queries written in a higher-order eDSL to achieve elimination of higher-order functions and other intermediate data-structures [15, 25].

Acknowledgments

This work was funded by the Swedish Foundation for Strategic Research (SSF) under the project Octopi (Ref. RIT17-0023), the Swedish research agency Vetenskapsrådet, and UKRI Future Leaders Fellowship MR/T043830/1 (EHOP).

A Appendix

A. 1 Equational Theory

Commmuting conversions.

$F($ Case e g h) \approx Case e (F○g) $(F \circ h)$

This equation specifies commuting conversions that enable us to push eliminators under a case expression, for example, as:

Appf $($ Case e $g h) \approx$ Case e $(A p p f \circ g)(A p p f \circ h)$
The symbol F in the equation is a unary function on expressions that denotes an elimination context such as $\operatorname{App} f::$ $\operatorname{Exp} a \rightarrow \operatorname{Exp} b($ for some $f:: \operatorname{Exp}(a \rightarrow b)$), Fst $:: \operatorname{Exp}(a, b) \rightarrow$ $\operatorname{Exp} a$, or Add $e:: \operatorname{Exp}$ Int $\rightarrow \operatorname{Exp}$ Int, etc.

Arithmetic equations.

```
(Lift \(x)+(\) Lift \(y) \approx\) Lift \((x+y)\)
(Lift 0) \(+e \approx e\)
(Lift \(x)+\left(e_{1}+e_{2}\right) \approx e_{1}+\left(\right.\) Lift \(\left.x+e_{2}\right)\)
\(\left(e_{1}+e_{2}\right)+e_{3} \quad \approx e_{1}+\left(e_{2}+e_{3}\right)\)
(Lift \(x) *(\) Lift \(y) \approx \operatorname{Lift}(x * y)\)
(Lift 0) \(* e \quad \approx\) Lift 0
(Lift 1) \(* e \quad \approx e\)
(Lift x) \(*\left(e_{1}+e_{2}\right) \approx\left(\right.\) Lift \(\left.x * e_{1}\right)+\left(\right.\) Lift \(\left.x * e_{2}\right)\)
\(\left(e_{1}+e_{2}\right) * e_{3} \quad \approx\left(e_{1} * e_{3}\right)+\left(e_{2} * e_{3}\right)\)
```


A. 2 Normalizing Primitive Recursion

The recursion construct Rec can be used to perform primitive recursion. As mentioned earlier for its combinator counterpart rec, an expression Rec $n f x$ is the equivalent of applying f repetitively as $f 1(f 2(\ldots(f n x)))$. This behaviour can be specified by the following equations.

$$
\begin{aligned}
& \operatorname{Rec} \text { if } x \quad \approx x \quad-\quad(\mathrm{i}<=0) \\
& \operatorname{Rec}\left(e_{1}+e_{2}\right) f x \approx \operatorname{Rec} e_{1} f\left(\operatorname{Rec} e_{2} f x\right)
\end{aligned}
$$

To extend our NbE implementation with recursion, we extend the definition of neutrals with a new constructor for stuck recursion as follows.

```
data Ne \(a\) where ...
    NRec :: Rf \(a \Rightarrow\) (Int, Ne Int)
        \(\rightarrow(\) Exp Int \(\rightarrow \operatorname{Exp} a \rightarrow N f a) \rightarrow N f a \rightarrow N e a\)
```

We then evaluate recursion using a semantic function $r e c^{\prime}$.

```
rec' \(::\) Rf \(a \Rightarrow\) SOPInt
    \(\rightarrow(\) Sem Int \(\rightarrow\) Sem \(a \rightarrow\) Sem \(a) \rightarrow\) Sem \(a \rightarrow\) Sem \(a\)
rec' \((\) SInt i) \(f x\)
    \(\mid i \leqslant 0 \quad=x\)
    \(\mid\) otherwise \(=\operatorname{rec}^{\prime}(\operatorname{SInt}(i-1)) f(f(\operatorname{SInt} i) x)\)
```

```
rec' (SAdd aini k) \(f x\)
    \(=\operatorname{reflect}\left(\right.\) NRec aini \(f^{\prime}\left(\right.\) reify \(\left(\right.\) rec \(\left.\left.\left.^{\prime} k f x\right)\right)\right)\)
        where
        \(f^{\prime} i b=\operatorname{reify}(f(\) eval \(i)(\) eval \(b))\)
eval \((\operatorname{Rec} n f x)=\) rec \(^{\prime}(\) eval \(n)(\) eval \(f)(\) eval \(x)\)
```

When the value of an integer is available, rec' performs the expected recursion, and otherwise simply applies the second equation of recursion.

A. 3 Semantic Monads

instance Monad MDec where

$$
\begin{aligned}
& \text { return } x=\text { Leaf } x \\
& \text { (Leaf } x \text {) } \gg f=f x \\
& \text { instance Monad MErr where } \\
& \text { return } x=\text { SReturn }_{\text {err }} x \\
& \left(\text { SReturn }_{\text {err }} x\right) \quad \gg f=f x \\
& \text { (SThrow } x \text {) } \gg f=\text { SThrow } x \\
& \text { (STryUnless } n g h) \geqslant f=\text { STryUnless } n \\
& ((\ll) f \circ g)((<) f \circ h) \\
& \text { (SCaseErr } n g h \text {) } \gg f=\text { SCaseErr } n \\
& ((\nless) f \circ g)((\nless) f \circ h)
\end{aligned}
$$

catch ${ }^{\prime}::$ MErr sa \rightarrow (Sem String \rightarrow MErr sa) \rightarrow MErr sa
catch' $^{\prime}$ SReturn $\left._{\text {err }} x\right) \quad f=$ SReturn $_{\text {err }} x$
catch' (SThrow x) $\quad f=f x$
catch' (STryUnless $n \mathrm{~g}$ h) $f=$ STryUnless n
(flip catch' $f \circ g$) (flip catch' $f \circ h$)
catch' (SCaseErr ng h) $f=$ SCaseErr n
$\left(f\right.$ lip catch $\left.^{\prime} f \circ g\right)(f l i p ~ c a t c h ' f \circ h)$
-- mutually recursive Functor instances
instance Functor ($M S t_{\text {res }} s$) where
fmap $f\left(\right.$ SReturn $\left._{\text {st }} x\right)=$ SReturn $_{\text {st }}(f x)$
$f_{\text {map }} f\left(\right.$ SBind $\left._{s t} n g\right)=\operatorname{SBind}_{s t} n\left(f_{\text {map }} f \circ g\right)$
instance Functor (MSt s) where
fmap f m SGetPut $\$$ fmap $($ fmap $($ fmap $f)) \circ$ runMState m
joinMSt :: MSt s (MSt s a) \rightarrow MSt s a
joinMSt $m=$ SGetPut $\$(<)$ magic \circ runMState m
where

magic $\left(s\right.$, SReturn $\left._{s t} m\right)=$ runMState $m s$
magic $\left(s\right.$, SBind $\left._{s t} n g\right)=\operatorname{Leaf}\left(s\right.$, SBind $\left._{s t} n(j o i n M S t \circ g)\right)$
instance Monad (MSt s) where
return $x=$ SGetPut $\$ \lambda s \rightarrow$ Leaf $\left(s\right.$, SReturn $\left._{s t} x\right)$
$m \gg f=j o i n M S t(f m a p f m)$

References

[1] Andreas Abel and Christian Sattler. 2019. Normalization by Evaluation for Call-By-Push-Value and Polarized Lambda Calculus. In Proceedings of the 21st International Symposium on Principles and Practice of Declarative Programming. 1-12.
[2] Danel Ahman and Sam Staton. 2013. Normalization by Evaluation and Algebraic Effects. In MFPS (Electronic Notes in Theoretical Computer Science, Vol. 298). Elsevier, 51-69.
[3] Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Philip J. Scott. 2001. Normalization by Evaluation for Typed Lambda Calculus with Coproducts. In LICS. IEEE Computer Society, 303-310.
[4] Markus Aronsson, Emil Axelsson, and Mary Sheeran. 2014. Stream processing for embedded domain specific languages. In Proceedings of the 26nd 2014 International Symposium on Implementation and Application of Functional Languages. 1-12.
[5] Robert Atkey, Sam Lindley, and Jeremy Yallop. 2009. Unembedding domain-specific languages. In Haskell. ACM, 37-48.
[6] Emil Axelsson, Koen Claessen, Mary Sheeran, Josef Svenningsson, David Engdal, and Anders Persson. 2010. The Design and Implementation of Feldspar - An Embedded Language for Digital Signal Processing. In IFL (Lecture Notes in Computer Science, Vol. 6647). Springer, 121-136.
[7] Vincent Balat, Roberto Di Cosmo, and Marcelo P. Fiore. 2004. Extensional normalisation and type-directed partial evaluation for typed lambda calculus with sums. In POPL. ACM, 64-76.
[8] Nick Benton and Andrew Kennedy. 2001. Exceptional syntax. Journal of Functional Programming 11, 4 (2001), 395-410.
[9] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. 1998. Normalisation by Evaluation. In Prospects for Hardware Foundations (Lecture Notes in Computer Science, Vol. 1546). Springer, 117-137.
[10] Ulrich Berger and Helmut Schwichtenberg. 1991. An Inverse of the Evaluation Functional for Typed lambda-calculus. In LICS. IEEE Computer Society, 203-211.
[11] Ilya Beylin and Peter Dybjer. 1995. Extracting a Proof of Coherence for Monoidal Categories from a Proof of Normalization for Monoids. In TYPES (Lecture Notes in Computer Science, Vol. 1158). Springer, 47-61.
[12] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. 1998. Lava: Hardware Design in Haskell. In ICFP. ACM, 174-184.
[13] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally tagless, partially evaluated: Tagless staged interpreters for simpler typed languages. 7. Funct. Program. 19, 5 (2009), 509-543.
[14] Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover. 2011. Accelerating Haskell array codes with multicore GPUs. In DAMP. ACM, 3-14.
[15] James Cheney, Sam Lindley, and Philip Wadler. 2013. A practical theory of language-integrated query. In ICFP. ACM, 403-416.
[16] Catarina Coquand. 1993. From Semantics to Rules: A Machine Assisted Analysis. In Computer Science Logic, 7th Workshop, CSL '93, Swansea, United Kingdom, September 13-17, 1993, Selected Papers (Lecture Notes in Computer Science, Vol. 832), Egon Börger, Yuri Gurevich, and Karl Meinke (Eds.). Springer, 91-105. https://doi.org/10.1007/BFb0049326
[17] Thierry Coquand and Peter Dybjer. 1997. Intuitionistic Model Constructions and Normalization Proofs. Math. Struct. Comput. Sci. 7, 1 (1997), 75-94.
[18] Olivier Danvy. 1998. Type-Directed Partial Evaluation. In Partial Evaluation (Lecture Notes in Computer Science, Vol. 1706). Springer, 367-411.
[19] Olivier Danvy, Morten Rhiger, and Kristoffer Høgsbro Rose. 2001. Normalization by evaluation with typed abstract syntax. 7. Funct. Program. 11, 6 (2001), 673-680.
[20] Peter Dybjer and Andrzej Filinski. 2000. Normalization and Partial Evaluation. In APPSEM (Lecture Notes in Computer Science, Vol. 2395).

Springer, 137-192.
[21] Andrzej Filinski. 1999. A Semantic Account of Type-Directed Partial Evaluation. In PPDP (Lecture Notes in Computer Science, Vol. 1702). Springer, 378-395.
[22] Andrzej Filinski. 2001. Normalization by Evaluation for the Computational Lambda-Calculus. In TLCA (Lecture Notes in Computer Science, Vol. 2044). Springer, 151-165.
[23] Neil Ghani. 1995. $\beta \eta$-Equality for Coproducts. In TLCA (Lecture Notes in Computer Science, Vol. 902). Springer, 171-185.
[24] Andy Gill. 2014. Domain-specific languages and code synthesis using Haskell. Commun. ACM 57, 6 (2014), 42-49.
[25] George Giorgidze, Torsten Grust, Tom Schreiber, and Jeroen Weijers. 2010. Haskell Boards the Ferry - Database-Supported Program Execution for Haskell. In IFL (Lecture Notes in Computer Science, Vol. 6647). Springer, 1-18.
[26] Paul Hudak. 1996. Building Domain-Specific Embedded Languages. ACM Comput. Surv. 28, 4es (1996), 196.
[27] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial Evaluation and Automatic Program Generation. Prentice-Hall, Inc., USA.
[28] Sam Lindley. 2005. Normalisation by Evaluation in the Compilation of Typed Functional Programming Languages. Ph.D. Dissertation. University of Edinburgh.
[29] Sam Lindley. 2007. Extensional Rewriting with Sums. In TLCA (Lecture Notes in Computer Science, Vol. 4583). Springer, 255-271.
[30] Sam Lindley. 2009. Accumulating bindings. In NBE 2009. 49-56.
[31] Per Martin-Löf. 1975. An Intuitionistic Theory of Types: Predicative Part. In Logic Colloquium '73. Vol. 80. Elsevier, 73-118.
[32] Shayan Najd, Sam Lindley, Josef Svenningsson, and Philip Wadler. 2016. Embedding by Normalisation. CoRR abs/1603.05197 (2016).
[33] Shayan Najd, Sam Lindley, Josef Svenningsson, and Philip Wadler. 2016. Everything old is new again: quoted domain-specific languages. In PEPM. ACM, 25-36.
[34] Frank Pfenning and Conal Elliott. 1988. Higher-Order Abstract Syntax. In PLDI. ACM, 199-208.
[35] Dag Prawitz. 1971. Ideas and results in proof theory. In Proceedings of the 2nd Scandinavian Logic Symposium (Studies in Logics and the Foundations of Mathmatics, 63). North Holland, 235-307.
[36] Morten Rhiger. 2003. A foundation for embedded languages. ACM Trans. Program. Lang. Syst. 25, 3 (2003), 291-315.
[37] Tiark Rompf and Nada Amin. 2015. Functional pearl: a SQL to C compiler in 500 lines of code. In Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming. 2-9.
[38] Alejandro Russo, Koen Claessen, and John Hughes. 2008. A library for light-weight information-flow security in Haskell. In Proceedings of the 1st ACM SIGPLAN Symposium on Haskell, Haskell 2008. 13-24.
[39] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. 2011. Flexible dynamic information flow control in Haskell. In Proceedings of the 4th ACM SIGPLAN Symposium on Haskell,. 95-106.
[40] Josef Svenningsson and Emil Axelsson. 2015. Combining deep and shallow embedding of domain-specific languages. Comput. Lang. Syst. Struct. 44 (2015), 143-165.
[41] Bo Joel Svensson, Mary Sheeran, and Ryan R. Newton. 2014. Design exploration through code-generating DSLs. Commun. ACM 57, 6 (2014), 56-63.
[42] Nachiappan Valliappan, Robert Krook, Alejandro Russo, and Koen Claessen. 2020. Towards secure IoT programming in Haskell. In Haskell@ICFP. ACM, 136-150.
[43] Jeremy Yallop, Tamara von Glehn, and Ohad Kammar. 2018. Partiallystatic data as free extension of algebras. Proc. ACM Program. Lang. 2, ICFP (2018), 100:1-100:30.

[^0]: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org. Haskell '21, August 26-27, 2021, Virtual, Republic of Korea
 © 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
 ACM ISBN 978-1-4503-8615-9/21/08... \$15.00
 https://doi.org/10.1145/3471874.3472983

[^1]: ${ }^{1}$ Traditionally, reflection is sufficient since the argument in Lam is a variable, but our formulation demands evaluation since it can be any expression.

[^2]: ${ }^{2}$ in an implementation that disables η expansion entirely

