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Significance Statement 13 

Studies such as the vertebrate genomes project (VGP) aim to produce high quality 14 

genome assemblies for tens of thousands of species. However, these new genomes 15 

most often come with limited annotations, reducing their utility. One solution is to “lift 16 

over” annotations from better annotated genomes. This process is though complex, 17 

requiring multiple steps which differ depending on the distance between the species. 18 

In this paper we present nf-LO, a streamlined, containerised Nextflow workflow that 19 

can enable rapid genome lift over between any pair of species and which can be 20 

easily implemented on any system. We believe that its ease of implementation, 21 

scalability and flexibility will allow for widespread use and rapid adoption by the 22 

scientific community. 23 
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Abstract 25 

The increasing availability of new genome assemblies often comes with a paucity of 26 

associated genomic annotations, limiting the range of studies that can be performed. 27 

A common workaround is to lift over annotations from better annotated genomes. 28 

However, generating the files required to perform a liftover is computationally and 29 

labour intensive and only a limited number are currently publicly available.  30 

Here we present nf-LO (nextflow-LiftOver), a containerised and scalable Nextflow 31 

pipeline that enables liftovers within and between any species for which assemblies 32 

are available. nf-LO will consequently facilitates data interpretation across a broad 33 

range of genomic studies. 34 

 35 

Main body 36 

The advent of third generation sequencing and ultra-fast assemblers (Ruan & Li 2020; 37 

Joseph et al. 2018) allows for the generation of  high quality de novo assemblies in a 38 

fraction of the previous time. As a result increasingly large numbers of new genomes 39 

for several species are being generated (Zoonomia consortium 2020). 40 

Despite this increased availability, novel assemblies most often lack the extensive 41 

annotation data required to perform downstream analyses. Not only simple 42 

annotations such as gene models, but also supplementary resources for researcher 43 

to understand the biological significance of their studies. Unfortunately, such 44 

resources are generally only available for a small number of model organisms (OMIA; 45 

Amberger et al. 2015; Carithers & Moore 2015; Hu et al. 2019). 46 

A solution to the problem is to lift over positions and annotations (i.e. cross-mapping 47 

of the loci) to the new genome from well-annotated assemblies, using tools such as 48 

LiftOver (Navarro Gonzalez et al. 2021) and NCBI Remap (Luu et al. 2020). However, 49 

the alignment files required to perform these analyses are not simple to generate, and 50 

are therefore limited to a few popular reference genomes. For all other pairs of 51 

genomes researchers have to generate their own liftover files. Only a few algorithms 52 

address the problem in an easy to implement and distributable way, e.g. flo for same 53 

species liftovers (Pracana et al. 2017) and LiftOff for ultra-fast liftovers (Shumate & 54 

Salzberg 2020). In this study we present nf-LO, a scalable workflow to generate liftover 55 

files for any pair of genomes based on the UCSC liftover pipeline. nf-LO can directly 56 

pull genomes from public repositories, supports parallelised alignment using a range 57 
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of alignment tools and can be finely tuned to achieve the desired sensitivity, speed of 58 

process and repeatability of analyses. 59 

nf-LO is a workflow to facilitate the generation of genome alignment chain files 60 

compatible with the LiftOver utility. It is written in Nextflow, a domain specific language 61 

(DSL) and workflow manager, that allows easy implementation, redistribution and 62 

scalability of complex workflows across every Unix-based operating system; ranging 63 

from a desktop machine to cloud computing and HPC clusters. The dependencies are 64 

shipped alongside the workflow as docker containers or as an anaconda environment, 65 

facilitating the diffusion and adoption of the workflow across different systems. 66 

The software accepts any two input genomes in fasta format, or alternatively can 67 

download a resource by providing a web address, an iGenome identifier or an NCBI 68 

GenBank or RefSeq accession. The workflow is shown in Figure 1, and in brief 69 

consists of three core steps, and one optional one: 1) chunking the two genomes, 2) 70 

pairwise alignment of the blocks, 3) generating the chain-net file that can be used to 71 

perform the liftover and, if a bed/gff/gtf/vcf/bam/maf file is provided, 4) performing the 72 

liftover from source to target. The chunking approach dramatically reduces the runtime 73 

of the analysis by parallelizing the alignments.  74 

 75 

  76 
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Figure 1 77 

 78 

Figure 1 - Scheme of the workflow of nf-LO with the chunking (step 1, in green), alignment (step 2, in blue), generation of the 79 
liftover files (step 3, in red) and optionally lifting of the variants to the target genome (step 4, in purple). 80 

 81 

The alignment phase can be performed in different ways, depending on the type and 82 

sensitivity required by the user. For same-species alignments, we provide native 83 

support for both blat (Kent 2002), the aligner of choice for same species liftover files 84 

from the UCSC genome browser, and GSAlign (Lin & Hsu 2020), a new, high speed 85 

same-species alignment software. For performing different-species liftovers, nf-LO 86 

also incorporates lastz (Harris 2007), used by the UCSC genome browser to generate 87 

between species liftover files, and minimap2 (Li 2018), one of the fastest genome-to-88 

genome aligners. All these aligners are integrated within the workflow, keeping 89 

unchanged the UCSC backbone for downstream stages (UCSC 2018). We provide 90 

canned configurations for each aligner based on how distant the two genomes are 91 

(e.g. near or far), with the possibility to provide sets of custom parameters to achieve 92 

the desired balance between speed and sensitivity (Supplementary table 1). nf-LO 93 

achieves similar liftover coverage as liftover files from UCSC with appropriate tuning 94 

of the parameters (Supplementary table 2).  95 

The third stage processes the alignments analogously to the UCSC processing 96 

pipeline, obtaining the chain-net files to perform the actual liftover. Finally, the fourth 97 
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step supports both the standard bed format with the LiftOver software, or several 98 

additional formats using CrossMap (Zhao et al. 2014), including popular formats such 99 

as VCF, BAM and GFF. Optionally, the workflow can collect metrics on the lifted 100 

annotation when provided, as well as take advantage of mafTools (Earl et al. 2014) to 101 

report metrics for the chain file generated by the workflow. These metrics are then 102 

provided in HTML format to facilitate the interpretation and collection across multiple 103 

runs. 104 

In conclusion, we provide a transposition of the UCSC liftover pipeline within the 105 

Nextflow language, together with the necessary containers to run the analyses, 106 

allowing an easy, streamlined implementation in any Unix-based system. We believe 107 

that this workflow will be of use across genomics studies, facilitating research work 108 

and enabling data interpretation. 109 

 110 

Code availability 111 

The code described in the paper is publicly available on GitHub at the repository 112 

https://github.com/evotools/nf-LO. The documentation for the software can be 113 

accessed in the wiki page of the website (https://nf-lo.readthedocs.io). 114 
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 123 

Captions 124 

Figure 1 - Scheme of the workflow of nf-LO with the chunking (step 1, in green), 125 

alignment (step 2, in blue), generation of the liftover files (step 3, in red) and optionally 126 

lifting of the variants to the target genome (step 4, in purple). 127 

Supplementary Table 1 – Comparison of the run times of different aligners and 128 

configurations using the human genome GRCh38 as the source and four other large 129 

genomes (>1Gbp) as targets on a Scientific Linux 6.9 system with AMD Opteron 6376 130 

2.3GHz 64-cores and 500 GB of RAM. The genomic distances are represented as 131 
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MASH v2.2(Ondov et al. 2016) distances (-k32 -s5000) and TimeTree divergence 132 

times (http://www.timetree.org/; (Kumar et al. 2017)). 133 

Supplementary Table 2 – Coverage for the liftover chain files both generated by us 134 

and those available from the UCSC genome database, calculated by converting the 135 

chain files to maf (chainToAxt > axtToMaf) and then using mafCoverage (Earl et al. 136 

2014). 137 

 138 
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