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ABSTRACT
For physical modelling sound synthesis, many techniques are avail-
able; time-stepping methods (e.g., finite-difference time-domain
(FDTD) methods) have an advantage of flexibility and generality
in terms of the type of systems they can model. These methods do,
however, lack the capability of easily handling smooth parameter
changes while retaining optimal simulation quality and stability,
something other techniques are better suited for. In this paper,
we propose an efficient method to smoothly add and remove grid
points from a FDTD simulation under sub-audio rate parameter
variations. This allows for dynamic parameter changes in phys-
ical models of musical instruments. An instrument such as the
trombone can now be modelled using FDTD methods, as well as
physically impossible instruments where parameters such as e.g.
material density or its geometry can be made time-varying. Re-
sults show that the method does not produce (visible) artifacts and
stability analysis is ongoing.

1. INTRODUCTION

The operation of most musical instruments can be subdivided into
excitation and resonator components [1]. Examples of excitation-
resonator combinations are the bow and violin and the lips and
trumpet. In most instruments, the parameters describing the ex-
citation are continuously varied by the performer to play the in-
strument. As an example, the bow velocity, bow position and bow
force for stringed instruments, and lip pressure and frequency for
brass instruments. Naturally, the resonator is also altered by fin-
gering the strings of the violin or pressing valves on the trumpet to
change the instrument pitch. But, even under such variable play-
ing conditions, physical properties of the resonators do not change:
the string length and tension stay the same and the total tube length
remains unchanged; it is only the portions that resonate that are
shortened or lengthened.

There are several examples where the parameters of the res-
onator are also modified. A prime example of this is the trombone,
where the tube length is dynamically changed in order to generate
different pitches. The slide whistle is another example in this cate-
gory. Guitar strings are another category where the tension can be
smoothly modulated during performance using the fretting finger
or a whammy bar to create smooth pitch glides. The same kind of
tension modulation is used for the membranes of timpani or “hour-
glass drums" to change the pitch. It is these direct parameter mod-
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ifications of the resonators that we are interested in simulating. In
addition to simulating existing instruments, one could potentially
simulate instruments that can be manipulated in physically impos-
sible ways. Examples of this could be to dynamically change ma-
terial properties such as density or stiffness, or even the geometry
and size of the instrument where this is physically impossible.

Finite-difference time-domain (FDTD) methods are flexible
and generalisable techniques which have seen increased use in
physical modelling sound synthesis applications [2]. The normal
approach, for a given system such as a musical instrument, is to de-
scribe its motion by a set of partial differential equations (PDEs).
The instrument is then represented over a spatial grid, and a time-
stepping method is developed, yielding a fully discrete approxima-
tion to the target PDE system.

In many cases, the system itself is static, so that the defin-
ing parameters do not change over time. In others, such as the
trombone and others mentioned above, this is not the case, and
various technical challenges arise when trying to design a simu-
lation using FDTD methods; all relate to the choice of the spatial
grid. For example, the grid density is usually closely tied to the
parameters themselves through a stability condition. Also, adding
and removing points from the grid is nontrivial and can cause au-
dible artifacts and new stability concerns. The default approach of
defining a grid globally, according to a very conservative stabil-
ity condition, as done in [3], is possible, but introduces numerical
dispersion and bandlimiting effects. Full-grid interpolation [2, Ch.
5] could be used to change between grid configurations, but ex-
tremely high sample rates are necessary to avoid audible artifacts
and low-passing effects, rendering any implementation offline.

In this paper, a new method is proposed, allowing the efficient
and smooth insertion and deletion of grid points from 1D finite-
difference grids to allow for dynamic parameter changes. We are
interested in varying parameters ‘slowly’ (i.e., at sub-audio rate
corresponding to human gestural control). In a companion paper
we present a physical model of the trombone using the method pro-
posed in this paper [4]. Notice that other techniques do allow for
dynamic parameter changes but come with their own drawbacks
[2]. Examples of dynamic parameters using modal synthesis [5]
are shown in [6, 7] and digital waveguides [8] are shown in [9].

This paper is structured as follows: Section 2 presents the 1D
wave equation, to be used as an illustrative example for the pro-
posed method. Section 3 gives an introduction to numerical meth-
ods, stability and simulation quality. The proposed method for
dynamic grids is then presented in Section 4 and applied to the
1D wave equation. Section 5 shows the results of an analysis per-
formed on the method, which are discussed in Section 6. Finally,
concluding remarks and future perspectives are given in 7.
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2. CONTINUOUS SYSTEMS

The wave equation is a useful starting point for investigations of
time-varying behaviour in musical instruments. In 1D, the wave
equation may be written as

∂2q

∂t2
= c2

∂2q

∂x2
, (1)

and is defined over spatial domain x ∈ [0, L], for length L (in m)
and time t ≥ 0 (in s). c (in m/s) is the wave speed. The dependent
variable q = q(x, t) in Eq. (1) may be interpreted as the transverse
displacement of an ideal string, or the acoustic pressure in the case
of a cylindrical tube. Two possible choices of boundary conditions
are

q(0, t) = q(L, t) = 0 (Dirichlet), (2a)
∂

∂x
q(0, t) =

∂

∂x
q(L, t) = 0 (Neumann), (2b)

and describe ‘fixed’ or ‘free’ boundary respectively in the case of
an ideal string, and ‘open’ or ‘closed’ conditions respectively in
the case of a cylindrical acoustic tube.

2.1. Dynamic parameters

In the case of the 1D wave equation, only the wave speed c and
length L can be altered (in the case of an acoustic tube, only L
is variable, and for a string, c could exhibit variations through
changes in tension). If the same boundary condition is used at both
ends of the domain, and under static conditions, the fundamental
frequency f0 of vibration can be calculated according to

f0 =
c

2L
. (3)

In the dynamic case, and under slow (sub-audio rate) variations of
c or L, Eq. (3) still holds approximately. From Eq. (3), one can
easily conclude that in terms of fundamental frequency, halving
the length in Eq. (1) is identical to doubling the wave speed and
vice versa. Looking at Eq. (1) in isolation, f0 is the only behaviour
that can be changed. One can thus leave L fixed and allow time
variation in c, so that c = c(t), which will prove easier to work
with in the following sections. This fact can more easily be seen
if Eq. (1) is scaled or non-dimensionalised as in [2], where scaled
domain x′ = x/L ⇒ x′ ∈ [0, 1] and γ = c/L such that f0 =
γ/2. For clarity, however, we will employ a fully dimensional
representation here.

3. NUMERICAL METHODS

This section will provide a brief introduction to physical modelling
using FDTD methods, including details on stability and quality
of the simulations based on these methods. In this section, c is
assumed constant.

3.1. Discretisation

In FDTD methods, the first step is the definition of a grid. The
spatial variable can be discretised using xl = lh with integer l ∈
{0, . . . , N}. The grid spacing h (in m) is the distance between
adjacent grid points, and the total number of points covering the
domain, including endpoints, is N + 1. Here, integer N describes

the total number of intervals between the grid points, and thus the
total domain length is L = Nh. The temporal variable can be
discretised using tn = nk with positive integer n, time step k =
1/fs (in s) for sample rate fs (in Hz). The state variable q can then
be approximated using qnl ≊ q(x = lh, t = nk).

The following operators can then be applied to qnl to get the
following approximations to the derivatives in Eq. (1)

δttq
n
l =

1

k2

(
qn+1
l − 2qnl + qn−1

l

)
≈ ∂2q

∂t2
, (4a)

δxxq
n
l =

1

h2
(qnl+1 − 2qnl + qnl−1) ≈ ∂2q

∂x2
. (4b)

Substituting these definitions into Eq. (1) yields the following
finite-difference (FD) scheme

δttq
n
l = c2δxxq

n
l . (5)

Expanding the operators as in (4) and solving for qn+1
l yields the

following update equation

qn+1
l = 2qnl − qn−1

l + λ2 (qnl+1 − 2qnl + qnl−1) , (6)

which is suitable for direct software implementation. Here,

λ =
ck

h
(7)

is referred to as the Courant number, constrained by numerical sta-
bility conditions, and also has an impact on the quality and be-
haviour of the simulation. This will be described in detail in Sec-
tions 3.2 and 3.3.

In the FD scheme described in Eq. (5), the boundary locations
are at l = 0 and l = N . Substituting these locations into Eq. (6)
seemingly introduces the need of grid points outside of the defined
domain, namely qn−1 and qnN+1. These can be referred to as virtual
grid points and can be accounted for using the boundary conditions
in Eq. (2). Discretising these yields

qn0 = qnN = 0, (Dirichlet) (8a)
δx·q

n
0 = δx·q

n
N = 0, (Neumann) (8b)

where
δx·q

n
l =

1

2h
(qnl+1 − qnl−1) ≈ ∂q

∂x
(9)

is a second-order accurate approximation of the first-order spa-
tial derivative. The Dirichlet condition in (8a) says that the dis-
placements of q at the boundary locations are always 0. In prac-
tice, this means that these grid points do not need to be updated
and the spatial range of calculation for Eq. (6) then becomes
l ∈ {1, . . . , N −1}. If the Neumann condition is used, the bound-
ary points do need to be updated as these are not necessarily 0;
rather, their ‘slope’ is 0. Eq. (8b) can then be expanded to yield
defnitions for these virtual grid points

qn−1 = qn1 and qnN+1 = qnN−1 . (10)

Now that the full system is described, audio output at sample
rate fs can be drawn from the state qnl in Eq. (6) at 0 < l < N
(when using Dirichlet boundary conditions).
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3.2. Stability

Explicit FDTD methods for hyperbolic systems such as the 1D
wave equation must necessarily satisfy a stability condition. In the
case of the update in Eq. (6) it can be shown – using von Neumann
analysis [10] – that the system is stable if

λ ≤ 1, (11)

which is referred to as the Courant-Friedrichs-Lewy (CFL) condi-
tion. The more closely λ approaches this condition with equality,
the higher the quality of the simulation (see Section 3.3) and if
λ = 1, Eq. (6) yields an exact solution to Eq. (1). If λ > 1
the system will become unstable. Recalling (7), Eq. (11) can be
rewritten in terms of grid spacing h to get

h ≥ ck. (12)

This shows that the CFL condition in (11) puts a lower bound on
the grid spacing, determined by the sample rate and wave speed.
Usually, the following steps are taken to calculate λ:

h := ck, N :=

⌊
L

h

⌋
, h :=

L

N
, λ :=

ck

h
, (13)

where ⌊·⌋ denotes the flooring operation. In other words, condition
(12) is first satisfied with equality and used to calculate number
of intervals N . Thereafter, h is recalculated based on integer N
and used to calculate λ. The calculation of λ in Eq. (13) can be
compactly rewritten as

λ =
ck

L
·
⌊
L

ck

⌋
. (14)

The flooring operation causes the CFL condition in (11) to not al-
ways be satisfied with equality and results in a reduced simulation
quality described in the following section.

3.3. Simulation Quality

Choosing λ < 1 in Eq. (6) will decrease the simulation quality in
two ways. Firstly, it will decrease the maximum frequency that the
simulation is able to produce, i.e., it will decrease the bandwidth
of the output sound of the system.

By analysing the scheme in Eq. (6), it can be shown that the
maximum frequency produced by the system can be calculated us-
ing fmax = fs sin

−1(λ)/π [2, Chap. 6]. Note that only a small
deviation of λ from condition (11) leads to a large reduction in
output bandwidth. Secondly, choosing λ < 1 causes numerical
dispersion. Harmonic partials become unnaturally closely spaced
at higher frequencies (i.e. spurious inharmonicity increases) as λ
decreases, which is generally undesirable.

4. THE DYNAMIC GRID

The time variation of the wave speed c leads to various complica-
tions in the simulation framework presented above. First of all, a
change in c causes a change in λ according to Eq. (14), affecting
the simulation quality and bandwidth. Secondly, and more impor-
tantly, a change in c could result in a change in N through Eq. (13).
As N directly relates to the number of grid points, this raises ques-
tions as to where and especially how one would add and remove
points to the grid according to the now-dynamic wave speed.

We propose a method that allows for a non-integer number
of intervals to smoothly change between grid configurations, i.e,
the number of grid points used. This removes the necessity of the
flooring operation in Eqs. (13) and (14), and consequently satisfies
the CFL condition in (11) with equality at all times. Introducing
fractional number of intervals N , where N = ⌊N⌋, Eq. (3) can be
rewritten in terms of N by substituting the calculation of N from
(13) into Eq. (3) (using h = ck) yielding

f0 =
1

2Nk
with N = L/h. (15)

This shows that if λ = 1, N solely determines the fundamental
frequency of the simulation.

Ideally, a method that dynamically changes the grid size of a
FD scheme should

r1. generate an output with a fundamental frequency f0 which
is proportional to the wave speed c (f0 ∝ c),

r2. allow for a fractional number of intervals N to smoothly
(without audible artifacts) transition between different grid
configurations,

r3. generate an output containing N − 1 modes which are in-
teger multiples of the fundamental (fp = f0p with integer
p),

r4. work in real time to have a playable simulation.

These requirements will be used in Section 6 to evaluate the pro-
posed method.

4.1. Proposed Method

In the following, the location of a grid point (in m from the left
boundary) ql at time index n is denoted by xn

ql . Furthermore, some
variables are now time dependent as indicated by superscript n.
These are cn, hn, Nn, Nn and fn

0 .

4.1.1. System Setup

Consider two grid functions, un
lu and wn

lw defined over discrete
domains lu ∈ {0, . . . ,Mn} and lw ∈ {0, . . . ,Mn

w} respectively
with integers Mn = ⌈0.5Nn⌉ with ⌈·⌉ denoting the ceiling oper-
ation and Mn

w = ⌊0.5Nn⌋, i.e., half the number of points allowed
by the stability condition, plus one for overlap. The two grid func-
tions are assumed to lie adjacent to each other on the same domain
x. For now, the grid locations lu = Mn and lw = 0 are assumed
to overlap so that xn

uMn = xn
w0

= Mnhn, and are referred to as
the inner boundaries. The grid locations lu = 0 and lw = Mn

w

are placed at xn
u0

= 0 and xn
wMn

w
= L and will be referred to

as the outer boundaries. See Figure 1a. The following boundary
conditions are then imposed:

un
0 = wn

Mn
w
= 0, (Dirichlet) (16a)

δx·u
n
Mn = δx·w

n
0 = 0. (Neumann) (16b)

In other words, grid points at the outer boundaries are fixed, ac-
cording to the usual Dirichlet condition, and those at the inner
boundaries are free. It is important to note that the Neumann con-
dition is just used as a starting point for the method here, but will
be modified in Section 4.1.2. The systems can then be connected
at the inner boundaries using a rigid connection

un
Mn = wn

0 , if xn
uMn = xn

w0
. (17)

DAFx.3

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

146



Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

Notice that this condition only needs to be satisfied when the inner
boundaries perfectly overlap, which is not always the case when
cn is varied (see Section 4.1.2).

To sum up, a grid function with N intervals as per Eq. (13) is
divided into two separate subsystems connected at their respective
inner boundaries.

With the above boundary conditions imposed, the following
state vectors can be defined:

un = [un
1 , . . . , u

n
Mn ]T, and wn = [wn

0 , . . . , w
n
Mn

w−1]
T , (18)

with T denoting the transpose operation, and have Mn and Mn
w

points respectively. Note that the grid points at the outer bound-
aries are excluded as they are 0 at all times due to the Dirichlet
boundary condition in (8a). A vector concatenating (18) is then
defined as

Un =

[
un

wn

]
. (19)

Even though the new system has an extra (overlapping) grid
point, the behaviour of the new system should be identical to that
of the original system in Eq. (5) with (static) Nn = Nn. That this
holds will be shown below.

Using un
lu and wn

lw in the context of the 1D wave equation, a
system of FD schemes can be defined as{

δttu
n
lu = (cn)2δxxu

n
lu + Ju(x

n
uMn )F

n,

δttw
n
lw = (cn)2δxxw

n
lw − Jw(x

n
w0

)Fn,
(20)

with spreading operators

Ju(x
n
i ) =

{
1
hn , lu = ⌊xn

i /h
n⌋

0, otherwise
and

Jw(x
n
i ) =

{
1
hn , lw = ⌊xn

i /h
n⌋ −Mn

0, otherwise

(21)

applying the effect of the connection Fn (in m2/s2) to grid points
un
Mn and wn

0 respectively. Expanding the spatial operators in sys-
tem (20) at the inner boundaries, recalling the Neumann condition
in (16b) and the definition for the virtual grid points needed for
this condition in Eq. (10) yields{

δttu
n
Mn = λ2

k2 (2u
n
Mn−1 − 2un

Mn) + 1
hnF

n,

δttw
n
0 = λ2

k2 (2w
n
1 − 2wn

0 )− 1
hnF

n.
(22)

It is important to note that the time index n in Mn will not be
affected by the δtt operator and all obtained terms after expan-
sion (Eq. (4a)) will use the same value for Mn. Because of the
rigid connection in (17), it is also true that δttun

Mn = δttw
n
0 (if

xn
uMn = xn

w0
), and Fn can be calculated by setting the right side

of the equations in (22) equal to each other:

λ2

k2
(2un

Mn−1 − 2un
Mn) +

1

hn
Fn =

λ2

k2
(2wn

1 − 2wn
0 )−

1

hn
Fn,

Fn = hn λ
2

k2
(wn

1 − un
Mn−1).

Substituting this into system (22) after expansion of the second-

(a)

(b)

(c)
Figure 1: Illustration of the proposed method. In all figures, the
x-axis shows the location of the respective grid points, but ‘xn’ is
omitted for brevity. (a) Locations of the states of two (1D wave)
systems connected at the inner boundaries (Nn = 30, xn

uMn =
xn
w0

). (b) When cn – and consequently hn – are decreased and the
positions of the grid points change (Nn = 30.5, xn

uMn ̸= xn
w0

).
(c) Figure 1b zoomed-in around the inner boundaries. The virtual
grid points un

Mn+1 and wn
−1 are shown together with the distance

between them expressed using α in Eq. (24).

time derivative yields the update of the inner boundaries{
un+1
Mn = 2un

Mn − un−1
Mn + λ2(un

Mn−1 − 2un
Mn + wn

1 ), (23a)

wn+1
0 = 2wn

0 − wn−1
0 + λ2(un

Mn−1 − 2wn
0 + wn

1 ), (23b)

which, (again, recalling Eq. (17)) are indeed equivalent expres-
sions for the connected point which is necessary to satisfy the
rigid connection. System (20) can be shown to exhibit behaviour
identical to that of the original scheme in Eq. (5) using (static)
Nn = Nn. In (23), wn

1 in Eq. (23a) acts as virtual grid point
un
Mn+1, and un

Mn−1 in (23b) as virtual grid point wn
−1. This im-

portant fact is what the proposed method relies on and will be ex-
tensively used in the following.

4.1.2. Changing the Grid

The previous section describes the case in which Nn is an integer.
We now continue by varying cn such that this is not the case.

The locations of the outer boundaries xn
u0

and xn
wMw

are fixed:

xn
u0

= x0
u0

= 0 and xn
wMn

w
= x0

wMn
w

= L ∀n.

If the wave speed cn is then decreased, and consequently the grid
spacing hn according to Eq. (12) (with equality), all other points
move towards their respective outer boundary (see Figure 1b). Cal-
culating hn this way allows this method to always satisfy the CFL
condition in Eq. (11) with equality, solving issues regarding simu-
lation quality and numerical dispersion described in Section 3.3.
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As mentioned in Section 4.1.1, the state of the virtual grid
points at the inner boundaries are defined as un

Mn+1 = wn
1 and

wn
−1 = un

Mn−1 when the inner boundaries perfectly overlap (i.e.,
xn
uMn = xn

w0
). If this is not the case (xn

uMn ̸= xn
w0

) a Lagrangian
interpolator I(xn

i ) at location xn
i (in m from the left boundary) can

be used to calculate the value of these virtual grid points (also see
Figure 1c for reference). The interpolator I is a row-vector with
the same length as Un (from Eq. (19)) and its values depend on
the interpolation order. In the following, the fractional part of Nn

is defined as
α = αn = Nn −Nn, (24)

and for clarity, I and Un are indexed by m. Now, consider the
following quadratic interpolator

I2(x
n
i ) =


−(α− 1)/(α+ 1), m = mn

i − 1

1, m = mn
i

(α− 1)/(α+ 1), m = mn
i + 1

0, otherwise

(25a)

and its flipped version

I←2 (xn
i ) =


(α− 1)/(α+ 1), m = (m←i )n − 1

1, m = (m←i )n

−(α− 1)/(α+ 1), m = (m←i )n + 1

0, otherwise

(25b)

with mn
i = ⌊xn

i /h
n⌋ and (m←i )n = ⌊xn

i /h
n + (1− α)⌋, where

the shift in the latter is necessary to transform the location xn
i to

the correct indices of Un. When applied to Eq. (19) this yields the
definitions for the virtual grid points

un
Mn+1 = I←2 (xn

uMn+1
)Un =

α− 1

α+ 1
un
Mn + wn

0 − α− 1

α+ 1
wn

1 ,

(26a)

wn
−1 = I2(x

n
w−1

)Un = −α− 1

α+ 1
un
Mn−1 + un

Mn +
α− 1

α+ 1
wn

0 .

(26b)

These definitions for the virtual grid points at the inner boundaries
will replace the Neumann condition in Eq. (16b). One can show
that when Nn is an integer, and thus α = 0, Eqs. (26a) and
(26b) can be substituted as wn

1 and un
Mn−1 into Eqs. (23a) and

(23b) respectively (as these acted as virtual grid points un
Mn+1

and wn
−1). Then recalling Eq. (17) it can be seen that the system

reduces to (23) and exhibits the same exact behaviour as the usual
case in Eq. (5).

Now that the virtual grid points at the inner boundaries are
not determined by the Neumann boundary condition in (16b), but
rather by the definitions in Eqs. (26), system (20) can simply be
re-written to {

δttu
n
lu = (cn)2δxxu

n
lu ,

δttw
n
lw = (cn)2δxxw

n
lw ,

(27)

where the Dirichlet condition in (16a) is (still) used for the outer
boundaries and the Neumann condition at the inner boundaries in
(16b) is replaced by the definitions in (26):

un
Mn+1 = I←2 (xn

uMn+1
)Un and wn

−1 = I2(x
n
w−1

)Un. (28)

Figure 2: The moment when a point is added to u at location
xn
uMn+1

in Eq. (29). This figure shows an extreme case where
this location is far from xn

w0
, i.e., α ̸≈ 0 in Eq. (30).

4.1.3. Adding and Removing Grid Points

When cn, and consequently hn, are decreased and the inner bound-
ary points surpass the virtual points (i.e. xn

uMn ≤ xn
w−1

and
xn
w0

≥ xn
uMn+1

), this means that Nn > Nn−1. A point is then
added to the right boundary of u and the left boundary of w (for
both time indices n and n− 1) in an alternating fashion:{

un = [(un)T , I3v
n]T if Nn is odd,

wn = [I←3 vn, (wn)T ]T if Nn is even.
(29)

Here,

vn = [un
Mn−1, u

n
Mn , wn

0 , w
n
1 ]

T ,

and cubic Lagrangian interpolator

I3 =
[
− α(α+1)

(α+2)(α+3)
2α
α+2

2
α+2

− 2α
(α+3)(α+2)

]
, (30)

with I←3 being a flipped, not shifted (as I←2 in Eq. (25b)) version
of (30). See Figure 2. Notice that Nn is only going to be slightly
bigger than an integer at the moment that a point is added and Eq.
(24) will return α ≳ 0. This means that that I3 ≈ [0, 0, 1, 0] and
the displacement of the newly added point is nearly fully based on
the grid point at the inner boundary of the other system.

Removing grid points happens when cn, and consequently hn,
are increased and xn

uMn > xn
w0

(or Nn < Nn−1). Grid points
are simply removed from u and w (again for both n and n− 1) in
an alternating fashion according to{

un = [un
0 , u

n
1 ..., u

n
Mn−1]

T if Nn is even,
wn = [wn

1 , w
n
2 ..., w

n
Mn

w
]T if Nn is odd.

(31)

In Eqs. (29) and (31), the even and odd conditions can be inverted.
To keep the difference between u and w a maximum of one grid
point, the ceiling and flooring operations when calculating Mn

and Mn
w will need to be inverted as well.

Until now, only adding and removing points in the center of
the original system has been considered. This location could be
moved anywhere along the grid, the limit being one point from
the boundary. In other words, both un

lu and wn
lw need to have at

least one point (excluding the grid points at the outer boundaries).
Furthermore, one does not have to add and remove points from u
and w in an alternating fashion as in (29), but can just add to and
remove from, for example, u leaving w the same size throughout
the simulation. In the extreme case where Mn = Nn − 1 and
Mn

w = 1 (leaving wn
lw with only one moving grid point, wn

0 ) the
method still works.
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4.1.4. Displacement correction

A problem that arises when increasing cn, is that it is possible that
the displacements un

Mn ̸≈ wn
0 at the time when a grid point needs

to be removed. As the grid locations xn
uMn ≈ xn

w0
at the time

of removal, this violates the rigid connection in (17) and causes
audible artifacts. A method is proposed that decreases the relative
displacement of the inner boundaries the closer their grid-locations
are together, i.e., the closer α in (24) is to 0. We thus extend system
(27) with an artificial spring force as{

δttu
n
lu = (cn)2δxxu

n
lu + Ju(x

n
uMn )F

n
c ,

δttw
n
lw = (cn)2δxxw

n
lw − Jw(x

n
w0

)Fn
c .

(32)

Using centred temporal averaging and difference operators

µt·q
n
l =

1

2

(
qn+1
l + qn−1

l

)
, (33a)

δt·q
n
l =

1

2k

(
qn+1
l − qn−1

l

)
, (33b)

the correction effect is defined as

Fn
c = β (µt·η

n + σ0δt·η
n) , (34)

with the difference in displacement between the inner boundaries

ηn ≜ wn
0 − un

Mn , (35)

and damping coefficient σ0. Furthermore, β scales the effect of
the displacement correction and is defined as

β = β(α) =
1− α

α+ ε
, (36)

where ε ≪ 1 prevents a division by 0. Despite the operators in
(33) introducing states at n+1, it is possible to calculate the force
explicitly (such as in [2] or [11]). Furthermore, it can be shown
that even when ε = 0 this calculation is always defined. In that
case, as α → 0, β → ∞ which acts as a rigid connection such
as Eq. (17). Essentially, the displacement correction attempts to
have ηn → 0 in Eq. (35) as α → 0 to satisfy the rigid connection
in Eq. (17). Although the correction presented here is not based
on some physical process, it can be justified by the fact that large
differences in displacement between two spatially adjacent points
is not physical.

Notice that when cn is decreased, the rigid connection will not
be violated as un

Mn ≈ wn
0 when a point is added. This is due to

the fact that I3 ≈ [0, 0, 1, 0] and either un
Mn or wn

0 is the newly
added point which almost solely based on the other.

4.2. Summary

Here, Section 4.1 is summarised and describes the final version of
the proposed method.

The proposed method subdivides a grid function qnl with N
intervals into two grid functions un

lu and wn
lw with Mn and Mn

w

intervals respectively for a total of Nn + 2 grid points. Knowing
that λ = 1 ∀n, Eq. (6), written for both grid functions, becomes

un+1
lu

= un
lu+1 + un

lu−1 − un−1
lu

, (37a)

wn+1
lw

= wn
lw+1 + wn

lw−1 − wn−1
lw

. (37b)

Due to the Dirichlet boundary condition in (16a) imposed at the

outer boundaries of the system, un
0 and wn

Mw
are 0 at all times and

do not have to be included in the calculation. The ranges of cal-
culation for Eq. (37a) and (37b) then become lu ∈ {1, . . . ,Mn}
and lw ∈ {0, . . . ,Mn

w − 1} respectively.
The grid points at the inner boundaries are calculated by ex-

panding (27) (ignoring the displacement correction for now)

un+1
Mn = un

Mn+1 + un
Mn−1 − un−1

Mn , (38a)

wn+1
0 = wn

−1 + wn
1 − wn−1

0 , (38b)

where virtual grid points un
Mn+1 and wn

−1 can be calculated using
Eq. (26).

Then, when Nn > Nn−1, a point is added to un and un−1 (or
wn and wn−1) using Eq. (29), and when Nn < Nn−1, a point is
removed from the same vectors using Eq. (31). In order to prevent
audible artifacts when increasing cn (and thus decreasing Nn) due
to a violation of the rigid connection in (17), a method is proposed
in Eq. (32) to ensure that the grid points at the inner boundaries
have a similar displacement when one of them is removed.

4.3. Implementation

A MATLAB implementation of the proposed method and audio
examples can be found online1 and Algorithm 1 shows the order
of calculation of this implementation. Especially important to take
into account, is to only retrieve a change in cn at time index n once
before all other calculations. This is to ensure that un

lu and wn
lw are

calculated with the same α and β for all lu and lw.

while application is running do
Retrieve new cn

Calc. hn (Eq. (12) with equality)
Calc. Nn and Nn (Eqs. (15) and (13))
Calc. α (Eq. (24))
if Nn ̸= Nn−1 then

Add or remove point (Eq. (29) or (31))
Update Mn and Mn

w

end
Calc. virtual grid points (Eqs. (26))
Calc. un+1

lu
and wn+1

lw
(Eqs. (37) and (38))

Calc. and apply displacement corr. (Eq. (34))
Retrieve output
Update states (Un−1 = Un, Un = Un+1)
Update Nn−1 (Nn−1 = Nn)
Increment n

end

Algorithm 1: Pseudocode showing the order of calculations.

5. ANALYSIS AND RESULTS

5.1. Modes

Writing system (32) in matrix form, one can perform a modal anal-
ysis while changing cn to obtain the frequencies and damping co-
efficients for each mode over time. As a test case, the wave speed

1https://github.com/SilvinWillemsen/DAFx21DynamicGridFiles/
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of a system running at fs = 44100 Hz is linearly varied from
c0 = 2940 (N 0 = 15) to cnend = 2205 (Nnend = 20) where
nend = tdurfs is the simulation length in samples and tdur = 10
s. Grid points are added and removed as close to the right bound-
ary as possible, i.e., Mn = Nn − 1 and Mn

w = 1 (similar be-
haviour can be observed if Mn = 1 and Mn

w = Nn − 1). The
result of the analysis is shown in Figure 3a where higher damping
(induced by the displacement correction) is indicated using thin-
ner and bluer lines. Figure 3b shows the resulting spectrogram,
with the displacement correction deactivated, of the system excited
with u0

1 = 1 and the output retrieved at un
1 , and Figure 3c shows

a system with the same excitation but the change in cn inverted
(Nn = 20 → 15) and displacement correction activated.

In the following, the lowest mode generated by the analysis
is referred to as fn

1 and should ideally be equal to fn
0 calculated

using Eq. (3). The first thing one can observe from Figure 3a
is that the frequencies of the modes decrease as cn decreases (as
desired). The lower the mode, the more linear this decrease hap-
pens. Between Nn = 15 and Nn = 16, fn

1 maximally devi-
ates by −0.15 cents. In this same interval fn

15 maximally deviates
by −67 cents. This deviation gets less as Nn increases. Experi-
ments with higher even-ordered Lagrange interpolators show that
these frequency deviations become smaller, but not by a substantial
amount. The quadratic interpolator has thus been chosen for being
simpler and more flexible while not being substantially worse than
higher order interpolators.

Another observation from Figure 3a is that there are always
Nn modes present, corresponding to the number of moving points
of the system. As can be seen in Figure 3b the highest mode is
not excited. If the system is excited when Nn is not an integer,
the highest mode will also be excited. Comparing the implemen-
tation of the system using this method with integer Nn (without
changing cn) to a normal implementation of the 1D wave equation
(shown in Section 3) with (static) Nn = Nn, identical outputs are
observed, even though the latter has Nn − 1 moving points.

5.2. Displacement Correction

In the experiments, σ0 = 1 in Eq. (34). The displacement cor-
rection has a low-pass-comb-filtering effect on the system, where
the position and amount of damped regions directly relates to the
position of where grid points are added and removed. The best be-
haviour, i.e., least affecting lower frequencies, is when grid points
are added and removed as close to the boundary as possible, i.e.,
Mn = Nn − 1, and only has one damped region as shown in
Figures 3a and 3c.

5.3. Limit on Rate of Change of c

The current implementation of the proposed method can only add
or remove a maximum one point per sample using Eqs. (29) and
(31). The rate of change of fn

0 according to (15) is thus limited
by |Nn − Nn−1| ≤ 1. Though this is the maximum limitation
on speed, a much lower limitation needs to be placed to keep the
system well-behaved. The usual stability and energy analyses per-
formed on FD schemes are not valid anymore in the time-varying
case. Frozen coefficient analysis as in [10] could be applied here
and hold for slowly varying coefficients, but is left for future work.
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(c)
Figure 3: Experiments showing (linearly) varying wave speed be-
tween c0 = 2940 (N 0 = 15) and cnend = 2205 (Nnend = 20) with
Mn = Nn − 1 and Mn

w = 1 running at fs = 44100 Hz for 10
s (nend = 10fs). (a) Modal analysis of system (32). Thinner and
bluer lines indicate a higher amount of damping. (b) Output of the
system while decreasing cn (Nn = 15 → 20) without displace-
ment correction, excited using u0

1 = 1 and retrieved at un
1 . The

sound output follows the same pattern as predicted by the analy-
sis shown in Figure 3a. (c) Output of the system while increasing
cn (Nn = 20 → 15) with displacement correction activated (es-
sentially flipping the analysis in Figure 3a along the x-axis and
applying this to a 10 s simulation).

6. DISCUSSION

To decide whether the proposed method is satisfactory, the results
presented in the previous section are compared to the method re-
quirements listed in Section 4.

It can be argued that the frequency deviations of fn
1 from fn

0

are sufficiently small to say that r1 is satisfied. As for r2, a frac-
tional number of intervals Nn has been introduced and smooth
transitions are indeed observed from Figure 3b, in the case when
cn is decreased and Nn is increased. When cn is increased in-
stead, the displacement correction prevents (visible) artifacts when
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grid points are removed as seen in Figure 3c. Despite this, the fil-
tering effect that the displacement correction has on the system
(mentioned in Section 5.2) is not ideal as it creates damped re-
gions in the spectrum of the output sound. The least intrusive fil-
tering happens when points are added and removed as close to the
boundary as possible, i.e., when Mn = 1 or Mn

w = 1 where
the damping only occurs in the higher end of the spectrum. Al-
though artifacts do not show in Figure 3c, to confirm the absence
of audible artifacts, formal listening tests have to be carried out.
Furthermore, higher speeds of parameter variation might cause ar-
tifacts anyway. The value of σ0 could therefore also be made dy-
namic and depending on the rate of change of cn to have a higher
effect when cn is increased faster and vice versa. Either way, as
this is still not ideal, another method for reducing artifacts that less
affects the frequency content of the system should be devised, if
possible. Furthermore, higher modes will be lost after decreasing
N and will not return after increasing N again. They can, how-
ever, be activated again by re-exciting the system.

The modal analysis in Figure 3a shows that the method gen-
erates Nn rather than Nn − 1 modes as set by r3. However, the
output does contain the correct number of modes as shown in Fig-
ure 3b due to the highest mode not being excited. This is a result
of the rigid connection imposed on the inner boundaries, forcing
them to have the same displacement and act as one point. The lat-
ter part of r3, however, is not satisfied. The modes deviate from
integer multiples of fn

0 , moreso for higher modes. Other interpo-
lation techniques could be investigated to improve the behaviour
and decrease this deviation.

Finally, the method only adds a few extra calculations for the
inner boundaries so r4 is also easily satisfied.

Although the results bring forward some drawbacks of the
proposed method, such as modal frequency deviations, and filter-
ing effects, most of these affect the higher frequencies of the out-
put. First of all, human frequency sensitivity becomes very limited
above 3000 Hz [12] making high-frequency deviations much less
important perceptually. Secondly, the physical systems one usu-
ally tries to model contain high-frequency losses, causing higher
modes to usually not have very high amplitudes to begin with. Fi-
nally, Nn is usually much bigger in the systems one models, where
frequency deviations happen to a much smaller degree.

As of now, some aspects of the proposed method still lack
physical justification (such as the displacement correction), but are
shown to yield the desired behaviour and fulfil the requirements to
a satisfactory degree. Despite this, further work needs to be done
to physically justify the choices made in this paper.

7. CONCLUSIONS AND PERSPECTIVES

This paper presents a method to change grid configurations of
finite-difference schemes to allow for dynamic parameter changes.
The method allows the stability condition that these schemes rely
on can be satisfied with equality at all times, minimising numeri-
cal dispersion and bandlimiting issues. Grid points are shown to
be added and removed smoothly and do not cause artifacts when
switching between grid configurations. Listening tests will need to
be performed to carried out to confirm the lack of audible artifacts.

The proposed method might not provide an exact solution to
the problem of time-varying systems, and not all choices are phys-
ically justified, but it does circumvent the need for upsampling and

higher orders of computations necessary to approximate this solu-
tion with, for example, full-grid interpolation.

Although this method has only been applied to the 1D wave
equation it could be applied to many other 1D systems. Other pa-
rameters, such as material density or stiffness could also be made
dynamic, going beyond what is physically possible. An applica-
tion of the method that could be investigated is that of non-linear
systems, such as the Kirchhoff-Carrier string model [13] where the
tension is modulated based on the state of the system.

Other future work includes creating an adaptive version of the
displacement correction that changes its effect depending on the
speed at which the grid is changed. Finally, stability and energy
analyses will have to be performed to show the limits on changes
in parameters and grid configurations.
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