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Device-Hopping: Transparent Mid-Kernel Runtime Switching
for Heterogeneous Systems
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MURRAY COLE, University of Edinburgh, United Kingdom

Existing OS techniques for homogeneous many-core systems make it simple for single and multithreaded
applications to migrate between cores. Heterogeneous systems do not benefit so fully from this flexibility, and
applications that cannot migrate in mid-execution may lose potential performance. The situation is particularly
challenging when a switch of language runtime would be desirable in conjunction with a migration. We
present a case study in making heterogeneous CPU + GPU systems more flexible in this respect. Our technique
for fine-grained application migration, allows switches between OpenMP, OpenCL, and CUDA execution, in
conjunction with migrations from GPU to CPU, and CPU to GPU. To achieve this, we subdivide iteration spaces
into slices, and consider migration on a slice-by-slice basis. We show that slice sizes can be learned offline by
machine learning models. To further improve performance memory transfers are made migration-aware. The
complexity of the migration capability is hidden from programmers behind a high-level programming model
based on parallel_for. We present a detailed evaluation of our mid-kernel migration mechanism with the
First-Come, First-Served scheduling policy. We compare our technique in a focused evaluation scenario against
idealized kernel-by-kernel scheduling, which is typical for current systems, and makes perfect kernel to device
scheduling decisions, but cannot migrate kernels mid-execution. Models show that up to 1.33x speedup can
be achieved over these systems by adding fine-grained migration. Our experimental results on CPU + GPU
systems with all nine applicable SHOC and Rodinia benchmarks achieve speedups of up to 1.30x (1.08x on
average) over an implementation of a perfect but kernel-migration incapable scheduler when migrated to
a faster device. Our mechanism and predicted slice sizes introduce an average slowdown of only 2.44% if
kernels never migrate. Lastly, our parallel_for reduces the code size by at least 88% if compared to manual
implementations of migratable kernels.

CCS Concepts: • Software and its engineering → Runtime environments; Scheduling; • Computer
systems organization→ Heterogeneous (hybrid) systems; • Computing methodologies→ Parallel
programming languages.
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The resources available to an application can vary unpredictably over its execution. For example,
multiprogramming is used across the computing spectrum to improve utilization: high-end data
center machines are multiprogrammed with demand-driven services and other jobs that reuse the
machines’ resources at times of low activity [32, 38, 50], while mixed criticality embedded systems
mix timing critical workloads with less critical ones, again to improve utilization and energy
consumption [4, 19, 51]. Energy and thermal constraints exacerbate the problem. An evolving
workload mix can cause changes to the best allocation of the available power budget to silicon, or
the appropriate exploitation of hardware characteristics, as in Big-Little systems [12]. In response,
on CPU only systems, the OS is able to migrate multithreaded applications between cores. For
example, dynamic scheduling strategies redeploy cores as they become available [16, 44, 47], and
dynamically review the application to device mapping [15]. Power capped systems control the
active core count and so their power consumption with thread migration [13].

It would be natural and desirable for a similarly flexible migration capability to be available on
CPU + GPU platforms. However, migrating running applications between devices in such systems
is challenging. Current runtime systems for GPUs make kernel-to-device scheduling decisions
only at coarse-grained kernel launches and cannot perform mid-kernel migration [42, 45]. Because
of this, perfect scheduling decisions on whether to launch on an earlier available slow device or
wait for a fast device require unattainable knowledge of the future. If the best performance after
migration also requires a change of language runtime (e.g. switching from OpenMP on the CPU to
CUDA on the GPU, or vice-versa) the challenge is even greater.

In this paper we investigate a mechanismwhich enables these flexibilities for CPU + GPU systems,
including the ability to switch the underlying language runtime. Specifically, we investigate a
mechanism which allows schedulers to migrate applications in mid-kernel execution from CPU to
GPU, and in the other direction, from GPU to CPU. In principle, to exploit mid-kernel migration,
each application could be written with multiple embedded variants, data transfer code to switch
between these, and heuristics to decide under which dynamic circumstances to do so. However,
this would be very challenging to application developers, and in fact, could reduce maintainability
by solidifying these decisions amongst true application level code. In this paper, we address this
problem by drawing upon the concept of programming with parallel patterns [14, 20, 43]. Parallel
patterns present APIs which abstract away implementation details, while simultaneously providing
the system implementer with the contextual information to make good optimization and tuning
decisions. Specifically, we show that mid-kernel migration can be hidden behind the parallel_for
pattern, and that decisions on scheduling granularities, migration strategies, and device utilization
can be handled efficiently and transparently, without burdening the application programmer. In
more detail, our migration mechanism subdivides iteration spaces into slices as prior work has
done [10, 11, 41, 53], and considers migration on a slice-by-slice basis. Slices provide stable states
at which points the context of an application can switch devices and runtimes. To choose slice
sizes we use off-line trained predictive models. Data transfers in systems with distinct per-device
memory can have a significant cost, and so we also transfer data in a slicing aware way, to avoid
unnecessary transfers if a kernel migrates. Our mechanism provides the key technological basis for
transparent migration and runtime adaption of applications in CPU + GPU systems.
We evaluate mid-kernel migration with the First Come, First Served (FCFS) scheduling policy,

using a simple scenario to allow us to focus on the cost and contribution of the migrationmechanism.
We show analytically that mid-kernel migration removes the need for unattainable knowledge of the
future for scheduling decisions. In more detail, we show that FCFS with mid-kernel migration can
achieve a theoretical maximum speedup of 1.33x over a perfect knowledge FCFS schedule without
mid-kernel migration, and never performs worse than it. We confirm these results experimentally
with nine benchmarks on a CPU + GPU system and show that mid-kernel migration with our
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simple policy achieves speedups of up to 1.30x over kernel-by-kernel scheduled systems even
if they benefit from a perfect schedule. We also demonstrate that if a kernel never migrates the
overheads of slicing are negligible, and lastly, that our parallel_for reduces the code complexity
significantly if compared to a manual implementation of the migration capability. In summary, this
paper makes the following contributions:

(1) We describe a mechanism that enables mid-kernel execution migration between CPU and
GPU in both directions, including the possibility of switching language runtimes dynamically.
In contrast, current systems cannot migrate kernels between CPUs and GPUs once they have
been launched [42, 45].

(2) We show that the complexity of the mechanism and its efficient implementation can be
hidden from programmers behind a high-level programming model based on the widely
known parallel_for construct.

(3) We show that slice size choices that introduce acceptable overheads can be learned by
predictive models.

(4) We present an analytically derived maximum for the speedups with migration over current
kernel-by-kernel scheduled systems in a simple deployment scenario.

(5) We provide a detailed evaluation that demonstrates, among other things, the general per-
formance benefits of mid-kernel migration and exposes the performance behaviour of the
mechanism in edge cases.

The remainder of this paper is structured as follows: Section 2 provides a motivating example.
Section 3 introduces the migration mechanism and techniques for an efficient implementation.
Section 4 discusses the predictive slice size models. Section 5 discusses a high-level programming
model based on parallel_for that hides the complexity of the migration mechanism and the slice
size predictors. Section 6 discusses the comparator for our analytical models and experimental
evaluation, and the maximum theoretical speedup over it that can be achieved with mid-kernel
migration for our deployment scenario. Section 7 presents experimental results. Section 8 discusses
related work. Section 9 concludes and discusses future work.

2 MOTIVATING EXAMPLE
This section illustrates the performance benefits of mid-kernel migration, and how a scheduler can
take advantage of it in a simple scenario. We make mid-kernel migration and its implementation
programmer transparent with our parallel_for, which is introduced in Section 5.

2.1 Better Performance with Mid-Kernel Migration
In current systems, kernels are only scheduled at launch time as discussed in Section 1 and
illustrated with an example in Figure 1 [42, 45] (see Section 6.1 for a more detailed discussion of
current systems). Opportunities for performance improvements are therefore missed if devices
are temporary unavailable. On the one hand, kernels cannot make progress while they wait for
their fast device1. On the other hand, if launched on an alternative slow device, kernels cannot
migrate when faster devices become available. We fix this with mid-kernel migration. As shown in
Figure 1c, kernels make progress on earlier available devices instead of waiting, and schedulers can
migrate them to faster ones when they become available.

1In this paper we distinguish between the fast and slow device from the perspective of a kernel. In the absence of interference
and contention kernels have a lower execution time on their fast device than on their slow device. Whether the CPU or the
GPU is the slow device depends on the kernel and the target system.
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GPU

CPU

t Timet+0.4 t+0.9

(a) Execution without mid-kernel migration. The new
kernel waits for the faster GPU and does not use the
slower but immediately available CPU.

Unavailable New kernel

GPU

CPU

Timet+1t+0.4t

(b) Alternative execution strategy without mid-
kernel migration. The new kernel starts immediately
on the slower CPU but cannot use the faster GPU
when it becomes available.

t+0.7t Timet+0.4

CPU

GPU

(c) Execution with mid-kernel migration. The new kernel starts on the CPU and finishes execution on the
faster GPU.

Fig. 1. Illustration of the typical performance improvement opportunities missed without mid-kernel migra-
tion. (1a) and (1b) illustrate two possible execution strategies of a new kernel without migration, and (1c) its
execution with migration. When the new kernel arrives at time 𝑡 the GPU, on which it would execute twice
as fast as on the CPU, is unavailable for 0.4 time units. Without mid-kernel migration the new kernel either
waits for the GPU (1a) or starts immediately on the slower CPU (1b). In the former case, the new kernel
finishes after 0.9 time units, after it waited for 0.4 time units for the GPU and then executed for 0.5 time
units on it. In the latter case, the kernel launches immediately on the CPU and executes for one time unit.
With migration the kernel executes for 0.4 time units on the CPU and migrates to the GPU when it becomes
available to finish the remaining work in 0.3 time units (1c). With migration the new kernel finishes after 0.7
time units, and, therefore, is 1.29x faster than the schedule that results in the shortest combined waiting and
execution time without migration, which is illustrated in (1a).

2.2 Simplified Scheduling Decisions
Without mid-kernel migration, perfect decisions on whether to launch kernels on their fast or
slow device require generally unattainable knowledge of the future. To determine which kernel
launch decision leads to the shortest combination of waiting and execution time, schedulers of
such systems need to know when the fast device of a kernel will become available, and how long
a new kernel would take to complete on each device. We simplify this decision with mid-kernel
migration so that schedulers do not require such knowledge about the future. With mid-kernel
migration schedulers can launch kernels on the earliest available device and migrate them if a faster
device becomes available. This enables kernels which would not otherwise have been migrated
to make progress on another device in the meantime. Similarly, kernels can utilize faster devices
when they become available, which is advantageous when the best decision for current systems
and schedulers is to execute on their slow device.

Section 6 builds idealized models to show that this policy never performs worse than the current
kernel-by-kernel scheduled systems. However, in practice, management code, interference during
the migration, and on-the-fly device setup cause slowdowns in some cases. We develop techniques,
and strategies which address these problems in order to leave an overall performance win.

3 MID-KERNEL MIGRATION
This section presents a migration mechanism for systems with a CPU and a dedicated GPU, and
techniques required for its efficient implementation. We implement the mechanism on top of
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Fig. 2. Slicing and slicing aware data transfers with matrix-vector multiplication. The output vector is
computed slice-by-slice. Only the matrix rows needed for a slice are transferred. The input vector is shared
by all slices and so not affected by slicing. In this example the iteration space is one-dimensional, and its size
is equal to the length of the output vector. Additionally, each output element could be computed in multiple
slices with a 2D iteration space.

1 ...

2 // Execute the kernel in slices
3 while not all slices have been executed:

4 offset_into_iteration_space ← get iteration space offset

5 slice_size ← get slice size

6 target_device ← get device

7 // Launch slice kernel
8 launch_slice_kernel(target_device, offset_into_iteration_space, slice_size)

9 ...

(a) A pseudo code based illustration of slicing.

1 ...

2 launch_application_kernel(target_device, iteration_space_size)

3 ...

(b) The equivalent unsliced pseudo code.

Fig. 3. High-level illustration of how slicing is implemented internally with pseudo code. We do not require
programmers to hand implement sliced kernels but automate this with our parallel_for instead (see Section 5).
Implementation details are omitted for clarity. For example, we have omitted code for chunked data transfers,
code for the abortion of slices (see Sections 3.2 and 3.3), and code for edge cases such as iteration space sizes
that are not a multiple of the slice size. Additionally, our actual CUDA implementation executes data transfers
and manipulates pointers into the in- and output buffers inside the loop before and after the kernel launch.

OpenCL, CUDA, and OpenMP. Specifically, in our implementation, kernels switch between CUDA
on GPUs and OpenCL or OpenMP on CPUs. The mechanism is enabled through our parallel_for
based programming model by which the programmer guarantees that iteration space points can be
processed independent of each other (see Section 5). Moreover, the programming model makes the
mechanism and its optimizations programmer transparent by virtue of its high-level nature.

3.1 Iteration Space Slicing, Runtime Switching, and Slicing Aware Data Transfers
To enable migration, kernel iteration spaces are processed in slices as illustrated in Figure 2

and migration is considered on a slice-by-slice basis. For clarity, in the remainder of the paper we
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distinguish between application level kernels and slice kernels. The former are the simple intuitive
CUDA and OpenCL kernels or OpenMP loop nests which would have been written in a conven-
tional coding of the application and which are now generated implicitly by our system. With our
mechanism, these are each sliced into a sequence of finer grained kernels, as illustrated in Figure 3,
and for which we now reserve the term slice kernel. We slice in all dimensions of the iteration
space with the same slice size. More complex policies can be developed. For example, slices in 2D
iteration spaces are squares except for the slices at the end of rows or columns, which might be
rectangular. Optionally, kernels can execute without slicing on their fast device if preemption on
this device never occurs. In some cases, offsets need to be added to the thread and block IDs in the
kernel code (not shown).

It might be necessary or desirable to change the underlying language runtimewhen an application
kernel migrates. For example, CUDA kernels cannot execute on CPUs and so the runtime system
must be switched when an application kernel migrates from a GPU where it used CUDA to a CPU.
Between slices the state of a kernel, including which iteration space portion has already been
processed, is stable and known. This way, after migration the application kernel execution can be
resumed on the target device with a different implementation and runtime. This does not require
any changes to the underlying CUDA, OpenCL, and OpenMP runtimes because slicing can be
implemented as a layer on top of them. After migration, execution is simply resumed by calling the
kernel launch functions and possibly data transfer calls of the new target device to execute the
next slice kernel2.
Data is transferred to dedicated GPUs in a slicing aware way to avoid unnecessary transfers

which might negate the benefits of migration. Without this, the entire input data set needs to be
transferred before the computation of the first slice kernel. If an application kernel migrates later
on, some of the input data would have been transferred unnecessarily. Therefore, only the input
data required for the current slice kernel must be transferred. In Figure 2 slices and the parts of the
input matrix they require are color-coded. In some cases, such as sparse matrix multiplication, this
is non-trivial because some of the data required by a slice kernel is dependent on other input data,
but this is addressed in our implementation.

3.2 Migration Strategies
The migration strategy depends on the device in use, whether the kernel is idempotent3, and the
current execution step of the slice in execution. In addition, partial results computed on different
devices must be merged. In some situations, slice kernels on the GPU are aborted. To abort a slice
kernel, the execution jumps out of the current sequence of data transfers and kernel launches and
restarts the slice kernel on the CPU.

Migration from GPU to CPU. In this migration scenario, the current slice kernel is in most cases
aborted on the GPU and restarted on the CPU. GPU slice kernels are composed of multiple data
transfers and a CUDA kernel launch, and can be aborted between these substeps, even though the
individual steps cannot be aborted once launched. Therefore, if the application kernel migrates
from a GPU to a CPU the current slice kernel is restarted on the CPU and aborted at the end of
the current substep on the GPU. Non-idempotent slice kernels are not aborted on the GPU if any
results of the slice kernel have been already transferred back from the GPU to the host. Unlike

2In the case of OpenMP a loop nest that implements the slice kernels is executed.
3Our parallel_for allows programmers to set whether the user code, that is passed to it, is idempotent [18]. The user code is
idempotent if it can be re-executed multiple times for an iteration point and produces the same correct outputs with each
re-execution. The results of the parallel_for are still correct if this optional tuning parameter is not set despite the user code
being idempotent, but potential performance might be lost.
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our implementation, migration could be implemented without aborts but would be less efficient
because data transfers of the non-aborted slice kernel on the GPU would interfere with execution
on the CPU.

Migration from CPU to GPU. In this scenario, either the current slice kernel on the CPU is restarted
on the GPU or the next slice kernel is started on the GPU and the current one finishes on the
CPU. On CPUs slice kernels correspond to either a single OpenCL kernel without data transfers,
which cannot be safely aborted, or to an OpenMP loop nest, which will not be aborted in our
implementation. We choose not to abort OpenMP loops in order to avoid the performance penalty
that the corresponding code would introduce even if the abortion is not activated. Therefore, if the
application kernel migrates from a CPU to a GPU and the kernel is idempotent the current slice
on the CPU is started again on the GPU. In this case we do not wait for the old instance of the
slice on the CPU to finish if the application kernel finishes earlier on the GPU. If the kernel is not
idempotent the next slice kernel is started immediately on the GPU and executes in parallel with
the current already launched slice, which runs on the CPU.

Merging results. Intermediate results successively computed on more than one device must be
merged. We use two strategies depending on the access patterns in the output buffers. Both, access
pattern and whether a buffer is an in- or output buffer are specified through our programming
model (see Section 5 for a discussion of the access pattern attributes).
Merging Strategy 1: If the slice kernels write to distinct subsections of an output buffer then

results computed on the GPU for such a buffer are transferred into their subsection in host main
memory after each slice kernel.
Merging Strategy 2: If a buffer is not accessed in this way then incremental buffer updates in

host main memory, as described above, are not possible. Instead, intermediate results computed on
the CPU are transferred to the GPU before the first GPU slice kernel executes. With this strategy,
GPU results are only transferred to host main memory when the application kernel migrates to the
CPU or once the application kernel has completed on the GPU.

3.3 Interference Reduction and Earlier Aborts
Migration from GPU to CPU involves the abortion of the current slice kernel on the GPU (see
Section 3.2). To be able to abort GPU slices earlier, data transfers are broken down into chunks as
shown in Figure 4. Each data transfer chunk corresponds to a new internal API call and so transfers
can be aborted between them. Application kernels cannot be aborted at arbitrary points because,
as above, OpenCL and CUDA do not allow already issued data transfers and kernels to be aborted.
Because of this, execution on the CPU and GPU are overlapped until the application kernel can
be aborted, as indicated in Figure 4 by the red dashed lines. This overlap must be minimized for
two reasons. Firstly, data transfers interfere with the execution on the CPU and therefore degrade
performance. Secondly, reaching the next point at which the slice on the GPU can be aborted can
take longer than the remaining application kernel execution time on the CPU.
We use a one-off brute force search to determine chunk sizes that introduce no more than an

implementation-set maximum slowdown over execution without chunking. In a full deployment,
this search would take place only once, transparently to programmers, “at the factory” or when
the run-time system is installed. The search is not repeated for each application kernel instance
because the chunking overheads are application kernel independent. This is the case because per
buffer data transfer code is the same across kernels. In our implementation, instead of a single call
to cudaMemcpy, cudaMemcpy is called once for each chunk in a loop, and the overheads are caused
by the loop, additional function calls, and pointer arithmetic.
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Time

CPU

GPU
- Iteration space slice i - - Migrated slice i + 1 -

Transfer 
from device

Transfer to
device

Avoided actions

Data transfer for the new kernelNew application kernel Interference

Data transfer chunk boundary

Unavailable

Fastest for the
new kernel

(a) Migration without data transfer chunking. The slice kernel on the GPU cannot be aborted until the data
transfer is finished. The execution on the CPU is slowed down by interference caused by the data transfer.

CPU

GPU
- Iteration space slice i - - Migrated slice i + 1 -

Fastest for the
new kernel

(b) Migration with data transfer chunking. The slice kernel on the GPU is aborted between data transfer
chunks. This reduces the interference with the execution on the CPU.

Fig. 4. Migration without (4a) and with (4b) chunked data transfers.

CPU

GPU

UnavailableNew application kernel CPU setup for the new kernel GPU setup for the new kernel

i i+1 i+2 i+3 i+4 Time

Fastest for the
new kernel

0

(a) Execution of the new application kernel with migration but without the daemon.

CPU

GPU

i i+1 i+2 i+4i+30 Time

Fastest for the
new kernel

(b) Execution of the new application kernel with migration and with the daemon.

Fig. 5. Execution without and with a daemon that sets up OpenCL and/or CUDA in advance. With the
daemon the new application kernel does not spend time in setup code when it migrates. The daemon performs
the setup once when it starts as indicated by the striped bar at time zero in (5b). Data transfers are not shown
for simplicity.

3.4 Device Setup Cost Reduction
OpenCL and CUDAmust setup devices before their use. Applications that execute without migration
can hide this cost when an application kernel is waiting for a device other than the CPU. With
migration this is not possible if waiting for the GPU, because the CPU, where the setup must take
place, is already occupied by the new application kernel, as shown in Figure 5a. To fix this we
introduce a daemon that performs the setup once when it starts, on behalf of any applications that
run afterwards, as illustrated in Figure 5b. In this way, applications do not have to spend time in
setup code during migrations. To implement this, applications are executed by the daemon to give
them access to the preinitialized OpenCL and CUDA handles.
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Table 1. Features used to predict slice sizes. "Device" indicates whether the features are used to predict slice
sizes for the CPU or GPU. All static features are extracted at compile time and are adjusted at runtime.
Dynamic features are extracted at runtime.

Feature Device Extraction Type

Bytes transferred to the GPU per CUDA thread GPU Dynamic
Comparison operations CPU Static (adjusted with loop bounds)
Floating point and integer compute operations CPU & GPU Static (adjusted with loop bounds)
Memory accesses CPU Static (adjusted with loop bounds)

4 CHOOSING SLICE SIZES
This section discusses our machine learning models that predict kernel instance-specific slice
sizes. Since slicing is hidden entirely behind our parallel_for, slice size choices are also handled
transparently to the programmer. As discussed in Section 3.1 if the slow device of an application
kernel is available earlier than its fast device, then the kernel executes on its slow device in slices to
allow for mid-kernel migration once the fast device becomes available. The models presented in this
paper are a function 𝑓 (𝑣) = 𝑠 , that based on a vector of application kernel features 𝑣 predicts a slice
size 𝑠 . We build separate models for the CPU and GPU because of their strong microarchitectural
differences. We also exploit prior work on slicing in the context of caching (see Section 4.5) [10, 35].

4.1 Target Slice Sizes
The target slice sizes are a compromise between slicing overheads and resource wastage. On the one
hand, the larger the slice sizes the smaller the overheads because fewer slices are executed, which
in turn means code that implements slicing and introduces overheads is executed less often (see
Section 3.1). These overheads cannot be amortized if a kernel never migrates, and lead to slowdowns
in these situations. On the other hand, the smaller the slice sizes, the quicker an application kernel
migrates once a faster device becomes available because migration is considered more frequently.
Additionally, less interference is caused on the fast device by the residual execution on the slow
device after migration (see Section 3.2 and Section 3.3). This is so because the remaining slice on
the slow device finishes earlier with smaller slice sizes, or because a point at which the slice can be
aborted is reached earlier, because the data transfers between two such points are smaller. Similarly,
the smaller the slice sizes, the less work is thrown away when a slice is aborted. Therefore, the
target slice sizes are the smallest slice sizes that introduce an acceptable slowdown if an application
kernel never migrates.

4.2 Application Kernel Features for the Slice Size Predictors
Table 1 lists the features used by the slice size predictors. To extract static source code features,
we build a feature extractor with Clang that traverses the abstract syntax tree of the kernel code.
Static features are adjusted at run-time once loop bounds are known by multiplying counts for
operations inside the loops with the iteration counts of the corresponding loops. Loop bounds are
determined based on the parameter values that are passed to the kernel if the parameter values
can be directly inserted into the bounds, or the kernel source code if the bounds are hard-coded.
As heuristics, terms in the loop condition that cannot be evaluated before the kernel execution
are ignored and loops whose bounds cannot be determined are set to an iteration count of one.
Operations in if-branches without a corresponding else branch in loops are not counted as they
are typically not taken, like for example a branch that is only taken when a sought value has been
found. To generate training data, we determine loop bounds manually if they cannot be determined
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automatically. The only dynamic feature is “Bytes transferred to the GPU per thread”. This feature
is computed based on the amount of data to be transferred to the GPU and the number of CUDA
threads with which an application kernel implemented in CUDA would be launched.
The chosen features are indicative of the work required for each iteration space point. This

enables the models to predict slice sizes that introduce acceptably low overheads if an application
kernel never migrates. This is so because the target slice size for a set overhead and the average
execution time per iteration space point correlate. The less work is required per iteration space
point, the larger the slice sizes that introduce only a set overhead. The reason is that the per slice
execution time of the slicing code that causes the overheads is independent of the slice size (see
Section 3.1). For example, for an average execution time per iteration space point of 1ms and 1ms
per slice for the slicing code, the smallest slice size that introduces a slowdown of no more than
1.01x is 100.

4.3 Training the Slice Size Predictors
We use linear regression for the CPU model, and a random forest regressor with 50 decision trees
with a depth of two for the GPU model [6]. All hyperparameters except the tree depth and the tree
count are the defaults of the popular Scikit-Learn4 machine learning library. We reduce the tree
count to reduce the runtime costs of predictions with the random forest. For slice sizes on the CPU
we use linear regression because of its low runtime overheads and the strong linear correlations
between CPU target slice sizes and input features. For GPU slice sizes we use random forests
because they performed best of all models explored.
To train the models we extract features from the kernels in the training set, as described in

Section 4.2, and determine target slice sizes through brute force search. The training and the
required brute force search need to be done only once "at the factory" before the system is deployed,
as in previous work [26, 52]. If the workload type in a real deployment changes the models can be
retrained with applications representative of the new workload and updated. For practical reasons
we do not test each point in the slice size parameter space of each kernel, but step through the
parameter space with a step size that we set by hand for each kernel instance. During the brute
force search, we increase the slice size until the overheads are between 2% and 4% (see Section 4.1).
We use a maximum allowed overhead of 2% for slicing on the GPU except for a small number of
benchmark instances for which slice sizes with only 2% overhead cannot be found. We increase the
maximum allowed overhead to up to 2.75% in these cases. For the same reason we always use a
maximum of 4% for slicing on the CPU. We take the logs of the features for both models and the log
of the training slice sizes for the CPU model to strengthen the linear correlations between features
and target slice sizes. Otherwise, the correlations are weakened by heavy tails. Finally, for the CPU
model we standardize the features and slice sizes to place their means at zero and normalize them
to their standard deviation.

4.4 Deploying the Slice Size Predictors
Figure 6 illustrates when features are extracted, and predictions are made. Static features are
extracted at compile time (1). At run-time (2) the size of the buffers allocated on the GPU, the
iteration space size, and application kernel parameters that determine loop bounds are recorded.
Next, the loop bounds are used to adjust the static features (3) as described in Section 4.2. Finally,
the predictive models predict a slice size (4). Because we use the log of the slice sizes and standardize
the slice sizes afterwards to train the CPU model (see Section 4.3), we apply the inverse of both to
the raw predictions to compute the final CPU slice sizes.

4https://scikit-learn.org (version 0.23.2),
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Fig. 6. Overview over the steps required to predict slice sizes (see Section 4.4 for a detailed discussion). The
working steps are performed in order of the numbering.

1 ...

2 // Create parallel_for instance. Code similar to this is required by existing parallel_for implementations.
3 parallel_for pf(0, output_vector_size, [=]DEVICE_HOPPER_FUNCTION_PARAMETER() {

4 int iteration = get_iteration();

5 int result = 0;

6 for (unsigned int col = 0; col < input_vector_size; ++col)

7 result += in_vector[col] * in_matrix[iteration * input_vector_size + col];

8 out_vector[iteration] = result;

9 });

10 // Specify memory accesses. Our programming model requires these in addition to the function parameter.
11 int results_per_batch = pf.batch_size;

12 int matrix_inputs_per_batch = pf.batch_size * MATRIX_ROW_SIZE;

13 pf.add_buffer_access_patterns(

14 buf(in_vector, direction::in, pattern::all_or_any),

15 buf(in_matrix, direction::in, pattern::successive_subsections(matrix_inputs_per_batch)),

16 buf(out_vector, direction::out, pattern::successive_subsections(results_per_batch)));

17 // Set optional tuning parameters and run.
18 pf.opt_set_simple_indices(true).opt_set_is_idempotent(true).run();

19 ...

Fig. 7. Illustration of the parallel_for based programmingmodel with a simple implementation of matrix vector
multiplication (see Section 5 for a detailed explanation). Existing parallel_for implementations require code
similar to lines three to nine. The only additional code that our model requires are access pattern attributes
for each in- and output buffer in lines 11 to 16. The method calls in 18 are optional tuning parameters except
for run(), which executes the parallel_for.

4.5 Choosing Slice Sizes for Sparse Matrix Vector Multiplication
The slice sizes for Sparse Matrix Vector Multiplication (SPMV) are handled differently, because
SPMV is usually implemented as a specialized library, and so we assume that the run-time system
knows when SPMV is executed. We use this knowledge to repurpose previous work that uses slicing
without migration [10, 35]. This work exploits caching effects in SPMV of which our predictors
are not aware with smaller and so for our purposes better slice sizes (see Section 4.1). Chen et al.
report that SPMV benefits from these caching effects [10]. With this knowledge we use a static
analysis based slice size heuristic that is heavily inspired by the heuristic presented by Kim et al.
[35]. In contrast to Kim et al., we consider the L2 cache instead of the L1 because on our GPU
regular memory accesses do not go through the L1 cache. Besides that, we do not change the block
size but use the original block size of the benchmark.

5 OUR HIGH-LEVEL PROGRAMMING MODEL
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The complexity of mid-kernel migration and the slice size prediction is hidden behind a high-
level programming model based on parallel_for in the style of OpenMP, Kokkos, Raja, and SYCL
[3, 5, 23, 27]. In comparison to existing parallel_for implementations, we only require programmers
to provide additional memory access pattern attributes for each buffer. In return we hide the
complexity of an efficient implementation of slicing and the slice size prediction. In more detail,
these attributes are required to generate code for slicing aware data transfers (see Section 3.1) and
to merge partial results (see Section 3.2). Our parallel_for executes in parallel multiple instances of a
function parameter that each correspond to an iteration space point. Programmers must ensure that
the function parameter does not assume any order in which the iteration space points are executed.
Our API is implemented with a library and C++ source-to-source translator that generates CUDA,
OpenCL, and OpenMP kernels, as well as code that implements slicing and chunked data transfers
(see Section 3).

Figure 7 uses an example user implementation of matrix vector multiplication to demonstrate
the parallel_for. The first two arguments of the parallel_for constructor are the start and end
of the iteration space, and the third is the function parameter (lines 3 to 9). Iteration points are
grouped into successive batches. The current iteration and the batch size can be retrieved (line 4,
and lines 11 and 12) with respective functions. All buffers that are used by the function parameter
are registered with attributes that describe the access direction and access pattern (lines 14 to
16). The access pattern attribute is all_or_any if each batch accesses either all elements of a
buffer or the access pattern does not fit the attributes discussed below (line 14). The attribute
is successive_subsections (lines 15 and 16) if successive batches access only successive con-
tiguous subsections of a buffer. With this attribute programmers can simply specify how many
buffer elements each batch accesses. Optional tuning parameters indicate how indices are used
(first function call in line 18), or if the function parameter is idempotent, which informs the migra-
tion strategy (see Section 3.2). The opt_set_simple_indices(true) function call indicates that
the get_iteration() and get_batch_iteration() indices are only used for memory accesses.
get_batch_iteration() returns the current batch ID. As an optimisation buffers allocated on the
GPU are only large enough to contain data for a single slice if this tuning parameter is set, and if the
buffers have the access pattern attributes successive_subsections or continuous_subsections
(see below for an explanation of the latter).

We offer further API calls for more complex applications. For example, for applications with
indirect memory access patterns or applications in which batches access overlapping buffer sub-
sections a continuous_subsections attribute can be parametrized with two function parameters
that compute the start and end indices of the subsections based on the batch IDs. These function
parameters can access other buffers for indirect memory accesses. To optimize execution on the
GPU, address space qualifiers can be added to variables and buffers. Finally, the parallel_for can be
specialized to a reduction with a method call.

One typical use-mode for our API is to code kernels from scratch. However, pre-existing OpenCL
and CUDA kernels can be ported to it in a simple process. Original kernel code can be used as
the function parameter for the parallel_for with minor modifications, like replacing CUDA barrier
operations with our barrier function. Code for manual management of device buffers and data
transfers is replaced with the memory access attributes for each buffer.

6 AN IDEALIZED PERFORMANCE MODEL
This section shows analytically that mid-kernel migration outperforms kernel-by-kernel scheduling,
which is typical for current systems. For this, we create idealized models of both and derive a
maximum of 1.33x for the speedups that can be achieved by adding migration in our deployment
scenario (see below), irrespective of the kernels and devices involved. Finally, insights into how
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these speedups change with system characteristics and migration time points are provided. In
Section 7.3, application specific speedups based on this model serve as essentially unattainable
idealized upper bounds, allowing us to evaluate the quality of our practical slicing implementation
and its overheads. Our modelled scenario is composed of a new application kernel, and its fast and
slow devices (see Section 2.1 for an explanation of the terms fast and slow device). The new kernel
arrives while its fast device is temporary unavailable. This simplified scenario allows us to focus on
the evaluation of the migration mechanism. The execution times on the fast and slow devices, and
the waiting time for the fast device are normalized to the execution time on the fast device.

6.1 Our Baseline Comparator System
In this section and our experimental evaluation in Section 7 mid-kernel migration is compared
against the best possible implementation of the non-migrating kernel-by-kernel scheduling, which
is typical of current systems [42, 45]. These systems require unattainable knowledge for perfect
scheduling decisions (see Section 2 for an example). When a kernel arrives, and its fast device is
occupied by another kernel or is otherwise not available, current systems have two options: (1)
wait for an unpredictable amount of time for its fast device or (2) launch earlier on an alternative
but slower device without being able to migrate when a better one becomes available. The wrong
decision can lead to serious slowdowns. A perfect scheduler for such systems would need to know
how long the new kernel will run on its slow and fast devices, and when in the future its fast device
will become available, information which is not always known.

As a comparator, we define a theoretical perfect scheduler which has this practically unattainable
knowledge and, therefore, call it the Perfect Non-Migrating Scheduler (PNS). However, the PNS is
incapable of mid-kernel migration and, therefore, limited to kernel-by-kernel scheduling decision.
Because the PNS has knowledge about the future, actual systems presented in previous work can
only be approximations of it [1, 42, 45]. Therefore, it is a harder reference point than any of these
systems.
In comparison to the PNS our scheduler does not rely on unattainable knowledge. Kernels are

simply started on their slow device if the fast device is not available and are migrated to the fast
device as soon as it becomes available (see Section 2.2).

6.2 The Scheduler
We schedule kernels with the First Come, First Served (FCFS) policy, as in previous work [42, 45].
In more detail, in this section and the evaluation we compare FCFS with mid-kernel migration
with FCFS without mid-kernel migration but with perfect knowledge about the future, the latter is
implemented by the PNS.

6.3 Components of the Model
We will model idealized implementations of the PNS and a system with migration in order to
derive the maximum speedup of the latter over the former. The models are idealized because they
assume the absence of these practical issues: interference during migration, device setup costs,
slicing overheads, and the fact that kernels cannot be migrated instantaneously (see Section 3 and
Section 4.1 for a discussion of all of these). The models use the following components:

• 𝑘 denotes the ratio of how much faster the new application kernel executes on its fast device
than on its slow device.
• The normalized execution time on a kernel’s slow device is also 𝑘 (now as a number of
time units) because it is, as above, the execution time on the slow device normalized to the
execution time on the fast device. Because of this equality we use 𝑘 for both in the rest of the
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Fig. 8. Execution with migration at time 𝑘 − 1 + 𝛿 . In contrast, the execution with the PNS is as shown in
Figure 1a for negative 𝛿 and as in Figure 1b for positive delta.

paper. In fact, the formula to compute the theoretical maximum speedup of a kernel through
migration exploits this equality.
• Time 𝑘 − 1marks a crucial transition point for the PNS. Recall that (because of normalization)
the new application will execute in one time unit on its fast device. Therefore, when the new
kernel arrives, if PNS knows that the fast device will become available before time 𝑘 − 1, it is
preferable to wait and execute it there. This will cause the new kernel to finish earlier than
executing it immediately on the slow device. In contrast, if PNS knows that the fast device
will only become available after time 𝑘 − 1, then it is preferable to execute it immediately on
the slow device. At 𝑘 − 1 either decision results in the same execution time.
• 𝛿 is the difference between 𝑘 − 1 and the point in time at which the fast device becomes
available.

Additionally, the components 𝐶𝑓 𝑎𝑠𝑡 , 𝐶𝑠𝑙𝑜𝑤 , 𝐶𝑃𝑁𝑆 , and 𝐶𝑚𝑖𝑔 denote the execution time of the new
kernel on its fast device, its slow device, with the PNS, and with our migration mechanism respec-
tively, and are used to derive the models.𝑊𝑓 𝑎𝑠𝑡 (waiting time) is the time starting from the arrival
of the new kernel after which its fast device becomes available and is also referred to as waiting
time for the fast device.

6.4 Speedup with Migration over the Perfect Non-Migrating Scheduler
The maximum speedups for the two choices available to the PNS are modelled separately. Our first
model is a specialization of Amdahl’s Law [30] and our second model is related to it. Figures 1a
and 1b depict the choices of the PNS and Figure 8 execution with migration.

PNS Choice 1) Immediately launch the new application kernel on its slow device. We distinguish two
cases for the value of 𝛿 .
a) 𝛿 < 0: This case is not possible. The choice made by the Perfect Scheduler implies that the

execution time of the new application kernel on its slow device 𝐶𝑠𝑙𝑜𝑤 is lower than the combined
waiting and execution time with its fast device:

𝐶𝑠𝑙𝑜𝑤 <𝑊𝑓 𝑎𝑠𝑡 +𝐶𝑓 𝑎𝑠𝑡 (1)

However, if 𝛿 is negative then scheduling the application kernel on its fast device would result in a
shorter combined execution and waiting time which stands in contradiction to the decision made
by the PNS:

𝐶𝑠𝑙𝑜𝑤 >𝑊𝑓 𝑎𝑠𝑡 +𝐶𝑓 𝑎𝑠𝑡 (2)
⇔ 𝑘 > 𝑘 − 1 + 𝛿 + 1 , 𝑘 > 1 and 𝛿 < 0 (3)
⇔ 𝑘 > 𝑘 + 𝛿 (4)
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b) 𝛿 ≥ 0: In this case the execution time 𝐶𝑃𝑁𝑆 with the PNS and 𝐶𝑚𝑖𝑔 with migration are

𝐶𝑃𝑁𝑆 = 𝑘 , 𝑘 > 1 (5)

𝐶𝑚𝑖𝑔 = 𝑘 − 1 + 𝛿 + 1 − 𝛿
𝑘

, 𝑘 > 1 and 𝛿 ≥ 0. (6)

The speedup 𝑆1 (𝑘, 𝛿) of migration over the PNS derived from this is

𝑆1 (𝑘, 𝛿) =
𝐶𝑃𝑁𝑆

𝐶𝑚𝑖𝑔

(7)

⇔ 𝑆1 (𝑘, 𝛿) =
𝑘

𝑘 − 1 + 𝛿 + 1−𝛿
𝑘

. (8)

PNS Choice 2) Wait for the fast device. Again, we distinguish two cases for the value of 𝛿 .
a) 𝛿 > 0: This case is not possible. The choice made by the PNS implies

𝑊𝑓 𝑎𝑠𝑡 +𝐶𝑓 𝑎𝑠𝑡 < 𝐶𝑠𝑙𝑜𝑤 . (9)

However, if 𝛿 is positive then scheduling the new application kernel on its slow device would have
resulted in a shorter execution time which stands in contradiction to the decision made by the PNS:

𝐶𝑠𝑙𝑜𝑤 <𝑊𝑓 𝑎𝑠𝑡 +𝐶𝑓 𝑎𝑠𝑡 (10)
⇔ 𝑘 < 𝑘 − 1 + 𝛿 + 1 , 𝑘 > 1 and 𝛿 > 0 (11)
⇔ 𝑘 < 𝑘 + 𝛿 (12)

b) 𝛿 ≤ 0: The execution times with the PNS and migration are

𝐶𝑃𝑁𝑆 = 𝑘 + 𝛿 , 𝑘 > 1 and 𝛿 ≤ 0 (13)

𝐶𝑚𝑖𝑔 = 𝑘 − 1 + 𝛿 + 1 − 𝛿
𝑘

, 𝑘 > 1 and 𝛿 ≤ 0. (14)

The speedup 𝑆2 (𝑘, 𝛿) derived from this is

𝑆2 (𝑘, 𝛿) =
𝑘 + 𝛿

𝑘 − 1 + 𝛿 + 1−𝛿
𝑘

. (15)

6.5 Application Kernel and Device Independent Maximum Speedup
The maximum speedup over the PNS is 1.33x. Both speedups derived in the previous subsection
are maximal at 𝑘 = 2 and 𝛿 = 0.

𝑆1 (2, 0) = 𝑆2 (2, 0) = 11/3 (16)

6.6 Speedups with Different 𝑘
The maximum speedup for a particular application kernel depends on the performance difference
between both devices, which is 𝑘 . Figure 9a shows the maximum speedup over the PNS for different
𝑘 . The speedup decreases for 𝑘 > 2 because the larger the performance difference between the
devices, the less progress can be made on an alternative slow device before the migration. For 𝑘 < 2
the speedup decreases because the closer the performance of both devices, the less advantage can
be gained through migration compared to full execution on the slow device.
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(b) Speedups for different migration time points, i.e.
for different 𝛿 . See Section 6.3 for an explanation of 𝑘 .

Fig. 9. Speedups over the PNS with different relative device speeds (a) and migration time points (b).

Table 2. Details of the evaluation machine. The GPU uses the Kepler microarchitecture. DVFS and Turbo-
Boost are deactivated.

CPU Model Cores Sockets Hyperthreading GPU Model

Intel Core i7-4770 4 1 Off nVidia GTX Titan

6.7 Speedups with Different 𝛿
The amount of work done on the slow device before the migration determines the speedup over
the PNS. For example, if an application kernel migrates right after it launched or with virtually no
work left no significant benefit can be gained with migration over just waiting for its fast device or
finishing the execution on its slow device. Figure 9b shows speedups over the PNS for different
migration time points expressed as the fraction of the total execution time on the slow device. For
𝑘 not equal to 2 the maximum is lower. The maximum moves to the right for 𝑘 > 2 and to the left
for 𝑘 < 2.

7 EVALUATION
7.1 Experimental Setup
Table 2 lists details of the evaluation platform. We use the Intel C++ Compiler (ICC) 19.0.5.281 with
-O3, NVCC 10.2, version 455.23.05 of the nVidia GPU driver, Linux Kernel 5.3.18, and version 18.1
of the Intel CPU OpenCL runtime and compiler. Thirty samples are taken for each data point and
the mean speedups are reported if not stated otherwise. Error bars show the standard error of the
mean and are in some cases barely visible.

7.2 Experimental Method
The goal of the experiments is to measure speedups obtained through mid-kernel migration over
an ideal implementation of current kernel-by-kernel scheduled systems (see Section 6.1). The
kernel-by-kernel approach assumes perfect scheduling decisions but cannot migrate application
kernels once they are launched, in other words it is an implementation of the Perfect Non-Migrating
Scheduler (PNS) introduced in Section 6.1. For the evaluation we use the scenario described in
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Table 3. Application kernel instances. The fast devices of the kernels, and the relative speeds of the fast and
slow devices, which are indicated by 𝑘 are determined experimentally (see Section 6.3, and Section 7.2 for an
explanation of 𝑘). Slice counts are computed based on the predicted slice sizes.

Suite Bechmark Input size Fast dev. CPU impl. Slices 𝑘

Small GPU OpenCL 507 2.74
Medium GPU OpenCL 1014 3.05B+Tree

Find K Large GPU OpenCL 2264 2.95
Small GPU OpenCL 949 2.45
Medium GPU OpenCL 1756 2.84

B+Tree
Find
Range Large GPU OpenCL 3161 2.54

Small CPU OpenCL 53 2.35
Medium CPU OpenCL 103 2.34

Rodinia

Nearest
Neighbor

Large CPU OpenCL 230 2.37
Small GPU OpenCL 53 12.31
Medium GPU OpenCL 115 12.94MD5Hash
Large GPU OpenCL 245 13.02
Small CPU OpenCL 36 1.32
Medium CPU OpenCL 72 1.32FFT
Large CPU OpenCL 108 1.31
Small GPU OpenCL 64 7.19
Medium GPU OpenCL 121 5.54GEMM
Large GPU OpenCL 144 8.44
Small CPU OpenCL 36 1.32
Medium CPU OpenCL 72 1.31Inverse

FFT Large CPU OpenCL 108 1.31
Small CPU OpenMP 3 3.19
Medium CPU OpenMP 6 3.20Reduction
Large CPU OpenMP 12 3.21
Small CPU OpenCL 15 3.47
Medium CPU OpenCL 22 3.36

SHOC

SPMV
Large CPU OpenCL 30 3.23

Section 6, in which the new kernel’s fast device5 is initially unavailable. Speedups for different
migration time points are measured because speedups change in response to how long the fast
device is unavailable, as discussed in Section 6.7. Additionally, the geometric mean of the per
migration point speedups are reported to determine if migration benefits overall performance. For a
fair comparison, all sample points are equally spread out. The runtime costs of the slice size models
are included in the measurements.

Results are reported with nine benchmarks from the SHOC and Rodinia benchmark suites (see
Table 3) [7, 17]. We use all benchmarks of SHOC and Rodinia that consist of a single kernel that
is not invoked repeatedly and are therefore relevant to mid-kernel migration. Current runtime
systems are not applicable to applications that consist of such single kernels because they make
migration decisions only on a kernel-by-kernel basis as discussed in Section 6.1. For measurements

5We determine device affinities experimentally. In a real deployment this would be replaced with the predictive models of
prior work [26, 49] or the programmer would set the fast device as is the case with OpenCL and implicitly with CUDA.
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with migration capable implementations all benchmarks are implemented with our parallel_for (see
Section 5). To demonstrate the applicability of our API to kernels with indirect memory accesses we
also implement SPMV with parallel_for in our experiments. However, as explained in Section 4.5
we assume that our runtime system knows when it executes SPMV and can use this knowledge to
choose better slice sizes as this is what would happen in a realistic library deployment. We measure
execution time spent in a region of interest that includes all code sections of the benchmark (kernel
execution, data transfers, migration management, etc.) except the generation or reading in of input
data. As shown in Table 3 both CPU and GPU are about equally often represented as the fast device,
and the benchmarks cover a wide range of values for the performance difference 𝑘 between the
devices, which is introduced in Section 6.3.
We use CUDA on the GPU, and OpenCL for all CPU implementations except reduction for

which we use OpenMP. We experimentally determined that CUDA performs better or equally well
than OpenCL on the GPU, and that OpenCL outperforms OpenMP on the CPU in the majority of
cases. OpenMP improves performance only marginally otherwise, except for reduction for which
OpenMP performs significantly better. Reductions are a distinct computational pattern and so the
best implementation can be identified before the system is deployed with one-off costs. Additionally,
our runtime system knows when reductions are executed through our programming model (see
Section 5). Because SHOC uses only CUDA and OpenCL, we ported the "reduction" benchmark to
OpenMP with the reduction clause.

We do not use iteration space slicing on the fast device as discussed in Section 3.1 because in our
evaluation scenario kernels never migrate from their fast to their slow device. We determine an
application independent data transfer chunk size that introduces a maximum slowdown of 0.5% for
parallel_for and 1.5% for reductions as discussed in Section 3.3. For practical reasons, we double the
tested chunk size with each search step starting with a chunk size of 1MB. The chunk size is 64MB
for standard parallel_for and 16MB if a parallel_for is specialised to a reduction (see Section 5).
We replace the outdated standard problem sizes of the benchmarks with three larger ones that

roughly require these execution times on the slow device: 200-250ms (small), 400-500ms (medium),
and 800-1000ms (large). The execution times on the fast devices range from 17ms to 784ms.

To train the slice size predictors we use leave-one-out cross-validation, which means we train the
predictors separately for each benchmark, using only the other benchmark kernels as the training
set. This way the predictors choose a slice size for a kernel they have not seen before.

Measurements with the PNS implementation, with which we compare migration, do not include
CUDA and OpenCL setup times. The migration-capable implementations benefit from setup taking
place ahead of time in the daemon. To focus on migration, we factor this out by giving the PNS the
same benefit.

It is known that deliberate slicing can improve performance even if an application kernel never
migrates, for orthogonal reasons such as better use of the caches [10, 34]. To avoid unfairly
disadvantaging the PNS implementation through these effects we allow it to use slicing, but without
migration, if this improves its performance. We determine experimentally for each benchmark
instance if this is the case.

7.3 Speedups Over the Perfect Non-Migrating Scheduler
Figure 10 shows speedups with migration over the implementation of the PNS (see Section 6.1 and
Section 7.2). As discussed in Section 6.1, the PNS includes a perfect scheduler and is, therefore, at
least as good as any possible implementation of current mid-kernel migration incapable systems.
Mid-kernel migration outperforms the PNS in all cases, as shown by the geometric means of the
speedups. The maximum and average speedups are 1.30x and 1.08x. Figure 10 supports contribution
(5) of Section 1 in two ways. Firstly, it shows that mid-kernel migration outperforms current systems,
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Fig. 10. Speedups with mid-kernel migration (blue dots) and their geometric means (green lines). We present
speedups over current systems, which are represented by the PNS. As discussed in Section 6.1, the PNS is
better than any possible real implementation. Mid-kernel migration outperforms current systems in all cases
as indicated by the geo. means. Insights into the performance behaviour at different migration time points are
also provided. Each value on the x-axes corresponds to a distinct potential migration time point. The green
lines are the geo. means of the per migration point speedups, which are the blue dots. The red lines indicate
the break-even speedup of 1x. The theoretical maximum (black dotted lines) is benchmark instance specific
because it depends on 𝑘 , which is the speedup of a benchmark on its fast over execution on its slow device as
discussed in Section 6. At the arrival of a new benchmark its fast device remains unavailable for the time on
the x-axis, so the benchmark executes for this time on its slow device before migrating. Migration causes
slowdowns when a kernel migrates soon after its start, as shown on the left-hand sides of the subgraphs
but speeds up the cases in the middle sections. Migration benefits performance of all kernels because the
speedups outweigh the slowdowns as indicated by the geo. means of the speedups above 1x.

which are represented by the PNS, for all benchmark instances as indicated by the geometric mean
speedups. Secondly, the figure provides detailed insights into the performance behaviour of mid-
kernel migration at different migration time points during the execution of the kernels.
The remainder of this subsection first explains Figure 10 by describing the structure of one of

its subgraphs, and then the experimental results in general. The subgraph in the top left corner
shows speedups with mid-kernel migration over the PNS with the B+Tree Find K benchmark and
its small problem size. The blue dots show speedups at distinct potential migration time points. For
example, at the third blue dot the fast device of the kernel is unavailable for 60ms starting from

ACM Trans. Arch. Code Optim., Vol. 18, No. 4, Article 57. Publication date: September 2021.



57:20 Paul Metzger, Volker Seeker, Christian Fensch, and Murray Cole

the arrival of the benchmark. In this case, the PNS decides to wait for the fast device. In contrast,
with mid-kernel migration the benchmark makes progress on its slow device for the first 60ms
instead of waiting, and then migrates to its fast device. In this case, mid-kernel migration is 1.14x
faster than the PNS. The speedup closest to the theoretical maximum (indicated by the black line),
occurs with a migration at time 150ms. This maximum is instance specific because it depends on 𝑘 ,
which is the kernel specific speedup on its fast over its slow device. For this benchmark 𝑘 is 2.74
as detailed in Table 3. The green line shows the geometric mean of the speedups at the potential
migration time points (blue dots). Migration benefits overall performance because the geometric
mean is above 1x, indicated by the red line. The points on the x-axis are potential migration points
because migration does not happen at all of them as discussed below.

At the left-hand end of each subgraph, slowdowns are visible for small waiting times for the fast
device. In these corner cases the new application kernel has spent little or no time on its slow device
before it migrates and so the PNS chooses to wait for the fast device. Thus, little or no advantage
can be gained from the ability to use the slow device before the fast one is available. In the worst
case, interference during the migration caused by the slice kernel, which has started on the slow
device, negates all benefits of mid-kernel migration and causes a slowdown. MD5Hash, and GEMM
experience the worst slowdown in this area. However, they also have the shortest execution times
of all benchmarks on their fast devices.
As expected, migration outperforms the PNS in the middle section of the subgraphs because

application kernels can use the slow device first and then the fast device as discussed in Section 3.
On the left-hand side of the middle section of each subgraph the PNS decides to wait for the fast
device. If the time until the fast device becomes available, which is the value on the x-axis, is high
enough the PNS decides not to use the fast device and launches the kernel immediately on the slow
device (see Section 6.4).
The maximum speedups in these areas are up to 96% (and 74% on average) of the theoretical

maximum speedups (see Section 6) that assume that kernels can migrate at any point in time,
execution on the slow device does not cause interference, and no work is thrown away due to slice
aborts (see Section 3). Reduction with the small input has the largest gap between the measured
maximum speedus and the theoretical maximum. This is because the predicted slice size divides
the iteration space into very few slices (see Table 3), this in turn means that significant amounts of
work are thrown away when the kernel migrates because the slice that is at that time on its slow
device is aborted (see Section 3.3).
Towards the right-hand end of each subgraph the new application kernel does not migrate

because its fast device is unavailable for longer than the execution time of the new application
kernel on its slow device. The PNS chooses to execute the new kernel on its slow device in these
cases, but has no slicing overheads. Most of these tail points are just under 1x and the geometric
mean of the slowdowns on the tails is 2.34%. This is as expected because the training slice sizes for
the predictors have overheads of up to 2% to 4% (see Section 4.3)

The geometric means in Figure 10 exclude the final three points from the tail towards the right-
hand end of each figure. This is because the means are intended to capture the trade-off between
those areas of the subgraph in which our technique generates a speedup, and those areas in which
it generates a slowdown. Since the right-hand end tail is arbitrarily extendable (i.e. the fast device
could be unavailable for an arbitrary amount of time), and since it inevitably converges to be close to
one, its impact would eventually swamp the mean and also converge it to one. This would leave us
with no useful information about the areas of practical interest. The maximum per kernel instance
geometric mean speedup is 1.15x with the Nearest Neighbor kernel and the large problem size.
The same has been applied to the overall average stated above for the same reason. The rightmost
tail points are above or below their preceding points in some cases. We confirmed experimentally
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Fig. 11. This figure shows that the overheads of slicing if a kernel never migrates are small. Blue bars are
execution times only on the slow devices but with our migration mechanism and slice size prediction, and
green bars are execution times without slicing normalized to the latter (lower is better). All green bars have
a height of one. The letters in brackets indicate the input sizes small,medium, and large (see Section 7.2).
BTree Find K, BTree Find Range, Inverse FFT, MD5Hash and Nearest Neighbor are abbreviated to BTFK,
BTFR, iFFT, MD5, and NN respectively. We collected 100 samples for each data point.

that this is not the general trend of the subsequent migration time points. Subsequent points are
closer to the other two tail points shown. In summary, mid-kernel migration outperforms the PNS
in accordance with the model of Section 6 by up to 1.30x and 1.08x on average.

7.4 Overheads in the Absence of Migration
This section shows that our implementation of the migration mechanism introduces only small
slowdowns of 2.44% on average if an application kernel never migrates from the slow device to
the fast device. Time spent in additional code required for migration, like slicing code, which
is continuously executed on the slow device introduces overheads that cannot be amortized in
these situations (see Sections 3 and 4.1). Figure 11 shows execution times on only the slow devices
with the migration capable implementations normalized to execution times without the migration
mechanism. The slice size choices by the predictors also govern the slowdowns because they
determine how often the slicing code is executed. Therefore, the results show that slicing can be
implemented with low overheads and that predictors can learn slice size choices that introduce
acceptable overheads in cases where a kernel never migrates.

7.5 Code Size Reduction with Parallel_For
Our parallel_for based programming model hides the complexity of mid-kernel migration. Table 4
demonstrates that the significant complexity that a manual implementation of mid-kernel migration
would introduce can be hidden with our parallel_for. The parallel_for based code is at least an
order of magnitude smaller for three reasons. Firstly, it implements code required for an efficient
implementation of migration, which is discussed in Section 3, like slicing aware data transfers and
chunked transfers. Secondly, programmers do not have to provide multiple versions of the same
code for the target devices in CUDA, OpenCL, and OpenMP. Compared to a manual implementation
our parallel_for reduces the code size by at least 88%.

8 RELATEDWORK
Kernel slicing has been used in various contexts [2, 10, 11, 33, 39, 41, 53]. Lösch et al. present prelim-
inary work on kernel migration [39]. However, the authors expose significantly more complexity to

ACM Trans. Arch. Code Optim., Vol. 18, No. 4, Article 57. Publication date: September 2021.



57:22 Paul Metzger, Volker Seeker, Christian Fensch, and Murray Cole

Table 4. This table shows that mid-kernel migration would introduce significant complexity if implemented
by hand, and that our parallel_for removes this complexity from application code. Lines of code (LOC) for code
that is only concerned with migration are provided in brackets. The total LOC for the hand-implementation
(not in brackets) includes this code. The LOC do not include comments, includes, defines, and blank lines.
The final column presents the code size reduction.

Benchmark
LOC of the hand im-
plementation

LOC with our
parallel_for Reduction

BTree Find K 731 (371) 55 92%
BTree Find Range 824 (382) 74 91%
Nearest Neighbor 634 (402) 29 95%
FFT 559 (392) 30 95%
Inverse FFT 559 (387) 30 95%
GEMM 633 (371) 67 89%
MD5Hash 598 (459) 74 88%
Reduction 589 (382) 6 99%
SPMV 820 (481) 45 95%

programmers because they require that different kernel implementations, one for each device, have
to be provided and manually adjusted so that they are still correct in the presence of migration. In
contrast, we hide the complexity of mid-kernel migration behind our parallel_for. Similarly, the
granularity at which migration decisions are made is set manually in their system. In contrast, we
make this, again, programmer transparent with our slice size predictors and programming interface.
The authors also do not attempt to avoid unnecessary data transfers of inputs that have already
been processed as we do with slicing aware data transfers. Besides that, slicing and data transfer
chunking have been used without migration in real-time systems as mechanism to preempt GPU
kernels and their data transfers [2, 33, 53]. Slicing has been also used by works that split kernel
executions over multiple devices in heterogeneous systems. Cho et al. execute kernels in slices to
parallelize the execution of a slice with the preprocessing of the next slice for split computation on
the CPU and GPU [11]. Pandit et al. slice on the CPU to track which parts of the iteration space
have been processed by the CPU [41] so that the GPU does not execute the same iteration points.
Chen et al. control with slicing the number of concurrently active work groups on GPUs to reduce
cache contention [10].
The following runtime systems make scheduling decisions on a kernel-by-kernel basis and,

therefore, approximate the PNS (see Section 6.1). HTrOP uses a basic scheduling technique that
does not estimate when an occupied device will become available, but only considers whether a
device is available or not [45]. Rinnegan estimates waiting times for devices and per device kernel
performance with an error of 8%-16% for the former and an initial training phase [42]. The error of
the latter is not reported. CheCL checkpoints OpenCL applications between OpenCL kernels and
canmigrate and restart applications at checkpoints [48]. Harmony and StarPU dynamically schedule
task graphs to heterogeneous devices without the ability to migrate launched tasks to another
device [1, 22]. ConSerner automatically generates data transfer code for devices with separate
memory from C code [24]. The authors pair ConSerner in their evaluation with a scheduler that is
capable of kernel-by-kernel migration. Application kernels could manually be made migratable
with kernel-by-kernel scheduling by decomposing them into multiple sub-kernels. However, this
would expose to the programmer the complexity of the decomposition, slicing aware data transfers,
data transfer chunking, and migration and kernel abort strategies (see Section 3). Without our slice

ACM Trans. Arch. Code Optim., Vol. 18, No. 4, Article 57. Publication date: September 2021.



Device-Hopping: Transparent Mid-Kernel Runtime Switching for Heterogeneous Systems 57:23

size predictors the decomposition granularity needs to be chosen manually, potentially with a time
consuming brute force search.
Several works distribute the execution of a kernel over multiple heterogeneous devices at the

same time [11, 25, 31, 40, 46]. However, these works are not concerned with migration. They also
do not investigate the overheads that kernel partitioning mechanisms such as slicing introduce if a
kernel executes on only one device at a time. In contrast, we show that slicing introduces negligible
overheads even if a kernel never migrates.
Systems like Effisha [8] and GPUart [29] enable kernel preemption by inserting preemption

points into CUDA kernels. This approach is not concerned with migration but with pausing kernels
and saving their execution states. Guo et al. dynamically schedule kernels between multiple GPUs
while allowing migration of unlaunched kernels to optimize load balancing [28].

We use idempotent function parameters for our parallel_for for efficient migration strategies (see
Section 3.2). Previous work introduced idempotent memory references and exploited such references
in speculatively executed code [36]. In contrast, we are concerned with idempotent computational
kernels. We consider a kernel idempotent if it can be safely re-executed for any iteration point (see
Section 3.2).

OpenMP’s guided scheduler decreases chunk sizes over the execution of a parallel loop [5]. This
strategy cannot replace our slice size predictors because none of OpenMP’s chunk size choices
are informed by the user code. Too large slice size choices can have a large negative performance
impact. The larger the slice size the longer executes an already launched slice on the old device
after migration and interferes with the execution on the new device. This would be the worst if a
kernel migrates soon after it launched because the first slice sizes that guided would choose are
the largest. Additionally, without user intervention guided would choose slice sizes of size one at
the end of the execution of a kernel, which would vastly underutilize GPUs and also otherwise
introduce high overheads.

9 CONCLUSION AND FUTUREWORK
Operating Systems do not yet have the same fine-grained migration capabilities for heterogeneous
systems that they have for CPUs. We provide more flexibility in this respect, including the ability
to switch between the underlying CUDA, OpenCL, and OpenMP runtimes. Our parallel_for based
programming model hides the complexity of the migration mechanism, its efficient implementation,
and slice size choices from application developers. Mid-kernel migration has two benefits: firstly,
kernels can utilize better devices when they become available mid-kernel, and secondly, in our
evaluation scenario, perfect scheduling decisions that require unattainable knowledge can be
replaced with a better scheduling policy that does not require such knowledge. We show analytically
that mid-kernel migration outperforms kernel-by-kernel scheduling, which is typical for current
systems by up to 1.33x, and that an idealized implementation of the new scheduling policy never
performs worse than kernel-by-kernel scheduled systems even if they make perfect scheduling
decisions. Our experimental results show that mid-kernel migration performs better than these
systems by up to 1.30x and 1.08x on average.

The proposed mechanism gives high-level scheduling policies more freedom. We briefly discuss
examples of potential future work on policies that make use of this new flexibility. Firstly, systems
with priority scheduling will benefit. Lower priority kernels could be migrated instead of just
being preempted when kernels with higher priorities require their current device. Secondly, static
scheduling heuristics for task graphs with known task-lengths could be extended [37]. With kernel-
migration, extensions to these heuristics could reduce makespans by migrating tasks on the critical
path to faster devices. Lastly, schedulers that co-schedule computations in interference-aware
ways could benefit from mid-kernel migration [9, 21]. In this context, the best task-to-resource
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assignments might change as applications come and go. For example, if a new kernel has a strong
preference for a device, it might be beneficial for overall system performance to migrate other
kernels, which would cause interference, from that device to other devices.
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