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The yielding of defect-entangled dispersions in a nematic solvent.

N.Katyan,1 A. B. Schofield,1 and T.A.Wood1

School of Physics and Astronomy, University of Edinburgh, EH9 3FD, Edinburgh,

U.K.

(Dated: 9 August 2021)

Oscillatory rheology, at both small (SAOS) and large (LAOS) amplitude, was performed

to measure the dynamic response of a soft-solid, formed on dispersing colloids into

a thermotropic nematic liquid crystal at volume fractions φ > 18%. Due to weak

homeotropic anchoring of nematogens at colloid surfaces, a Saturn-ring defect-line, known

as a ‘disclination’, encircles each particle and entangles with neighbouring Saturn-ring

disclinations[1]. We present the first experimental investigation of the yielding behaviour

of the resulting gel to reveal the underpinning physics. Results reveal the frequency re-

sponse of the composite is independent of the volume fraction φ ; an indication that the dis-

persed phase simply increases the density of disclinations spanning the composite without

further effect. Beyond the linear viscoelastic regime (LVR), LAOS experiments indicate

the composite is an elastoplastic fluid exhibiting both strain-hardening and shear-thinning

behaviour, with Chebyshev coefficients e3 > 0 and ν3 < 0 respectively. We deduce that the

disclination density n is constant until the strain amplitude is sufficient to break disclina-

tions leading to shear-thinning behaviour beyond the LVR. A simple theory is introduced

revealing that the Ericksen number Er determines the onset of flow, when Er > 1, gener-

ating a strain-hardening response since the Frank elasticity resists reorientation of molec-

ular alignment within confined nematic domains. Above a critical frequency ωc the loss

modulus G′′ increases slowly due to enhanced viscosity within confined nematic domains,

G′′ ∝ ω1/2 [2]. Observation of this behaviour in a small-molecule nematic solvent provides

insights into the physics of flow behaviour in other, more complex, defect-mediated liquid

crystalline structures exhibiting similar properties [3–5].
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I. INTRODUCTION

Physical stability, preventing sedimentation or creaming, is key to the shelf-life of formulations

and composites. Stability can be assured if the storage modulus G′ describing the elasticity, is

higher than the loss modulus G′′ describing the viscous properties, of a fluid to timescales longer

than a year, equivalent to applied frequencies ω < 10−7 rad/s. Non-equilibrium structures such

as gels and glasses are characterised by a yield stress that allows dispersed colloids to remain dis-

tributed homogeneously over a long timescale, ideally years. The microstructure can rearrange

if the interaction energy between neighbouring particles is close to the thermal energy, U ∼ kBT .

This is common for colloid-polymer mixtures, typically used in agrochemical and ink formula-

tions, and renders them sensitive to phase separation [6]. Over twenty years ago, Poulin et al.,

dispersed colloids within a thermotropic nematic liquid crystal and found that the interaction en-

ergy U > 100kBT overcomes Brownian motion [7] leading to the formation of colloid chains and

aggregates. A decade ago, a novel defect-stabilised gel was discovered with G′ > 103Pa, when

colloids are mixed directly into a nematic phase at volume fractions φ > 18% [1]. For the first

time we explore, systematically, the yielding behavior of these composites using small-amplitude

(SAOS), and large-amplitude (LAOS), oscillatory strain measurements using a strain-controlled

rheometer and we present a simple theoretical model to explain the behaviour.

Frequency sweep measurements provide vital insights into the underlying physics determin-

ing gel formation, for example, the cross-link density in polymeric gels [8] and rubbers [9] and

the strength of the interaction between the interface and matrix in dispersions [10]. For strain-

controlled deformation, the imposed strain takes the form γ(t) = γ0sinωt which, consequently,

imposes the strain rate γ̇ = γ0ω cosωt and the resulting oscillatory shear stress σ = G∗γ can be

recorded by a rheometer. The complex shear modulus G∗ = G′+ iG′′ with the storage G′ and loss

G′′ moduli as its real and imaginary parts. In the linear viscoelastic regime (LVR), G′ and G′′

describe the strength of the elastic (solid-like) and viscous (liquid-like) responses of the sample,

respectively [11]. When a dispersed phase provides mechanical reinforcement to the surrounding

matrix, it is considered an ‘active filler’ resulting in an increase in G′ with volume fraction φ [12].

The converse occurs in the case of an inactive or ‘passive’ filler which has little affinity for the en-

vironment it is in. Within a nematic phase, rheology measurements have shown G′ ∼ φ 2.5 which

suggests that colloids may act as ‘active’ fillers[1]. For polymeric systems, it is known that the

number density of gel-strengthening agents (e.g. the cross-link density [8]) increases the critical
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frequency ωc at which the gel yields, where G′ = G′′. Motivated to explore whether the volume

fraction of colloids shifts ωc we measured the frequency dependence across the range 20% ≤ φ%

≤ 45% of colloids dispersed in a nematic liquid crystal.

More in-depth insights into yielding behaviour can be revealed through large amplitude oscil-

latory strain (LAOS) measurements, having been applied to a wide variety of soft matter systems

including polymer solutions [13], drilling fluids [14], dense suspensions [15] and worm-like mi-

celles [16]. When the oscillatory strain amplitude is large enough to disrupt the structure of the

samples, the resulting stress is no longer purely sinusoidal but includes higher harmonic frequen-

cies. We present the first LAOS measurements and analysis on colloidal dispersions in nematic

liquid crystals.

Before considering the physics of the composite, we must first consider the flow behaviour

of a pure nematic liquid crystal, itself a complex fluid. A thermotropic nematic liquid crystal is

composed of rod-like molecules, nematogens, preferring to orient along a direction known as the

‘director’, n(r) [17]. A pure nematic phase has no intrinsic positional order, only orientational

order, and appears liquid-like with G′′� G′ at all frequencies. At a surface, nematogens are held

with an anchoring energy W and are unable to align with the bulk director [17]. The resistance of

the local director to deformation is dependent on the type of distortion, e.g. splay, twist and bend,

and is described by the Frank elastic constants, k1, k2 and k3, respectively. The orientation of

the director with respect to the direction of flow affects the measured viscous response (described

by the Miesowicz viscosities, η1, η2 and η3) [18] and generates an elastic response such that

the storage modulus G′ is slightly elevated (although G′ < G′′) close to the resonance frequency

ωr ∼ 18.65 k1
η1h2 , where h is the smallest dimension of the geometry [19–21]. The resonance

frequency ωr ∼ 0.005rad/s is towards the lower limit available for practical rheology experiments,

calculated using typical values for a thermotropic nematic material (5CB), having k1 = 5.5pN

and η1 = 88mPa.s, measured between a typical rheometer geometry gap of h = 0.5mm. The full

behaviour is explained by the universal theoretical description provided by Rey et al. which is

valid for a broad range of nematic materials including those that are flow-aligning and tumbling,

polymeric and lyotropic [21] and confirms that the viscous properties dominate, such that G′′>G′,

while G′′ ∼ ω for all frequencies. The director of a nematic liquid crystal rotates in phase with

the shear rate for low frequencies (ω < ωr) generating tan δ = G′′/G′ ∼ ω−1, classic behaviour

for a viscous fluid in the terminal regime. At frequencies above the resonance frequency (ω > ωr)

the director rotates in phase with the shear strain so that tanδ ∼ ω1/2 [22, 23]. Although the flow
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behaviour in the presence of colloids has not been modelled to date, Burghardt warned in 1990

that “in the presence of monodomains, the estimated time scale for director relaxation becomes

short enough that distortional elastic effects may contribute significantly to the macroscopically

observed viscoelastic response” [19].

When a spherical colloid is dispersed in a nematic liquid crystal, nematogens can lie parallel or

perpendicular (homeotropic) to the colloid surface [7, 17, 24]. In general terms, the type of defect

induced by colloids in nematic liquid crystal depends upon the strength of the generalized elastic-

ity K, of the nematic phase, the particle radius r, and strength of anchoring W , of mesogens at the

surface of the colloids [7, 17]. Weak homeotropic anchoring with Wr
K � 1 induces a quadrupolar

director field, represented in two dimensions in Fig.1a, which generates a ‘Saturn-ring’ defect-line,

or ‘disclination’ that encircles the colloid, as shown in Fig.1b, at an orientation normal to the local

director orientation. This type of disclination has a topological charge of s =−1
2 and, typically, a

core radius rc ∼ 5nm for a thermotropic nematic liquid crystal [25]. Within the quadrupolar direc-

tor field, colloids experience highly anisotropic interactions, |U | ∼ 103kBT [26], with both attrac-

tive and repulsive components depending on the relative orientation of neighboring colloids and

the far-field director [7, 27–29]. Anisotropic interactions result in the formation of clusters [26]

and the deep potential suppresses Brownian motion. In close proximity, ‘Saturn-ring’ disclinations

can entangle with a range of possible topological configurations of which the most common, the

‘figure of eight’ disclination (shown in Fig.1c), provides a centre to centre particle separation of

d0 = 1.1D where D is the particle diameter [30]. Each disclination carries a line tension T [25]

where

T = πKs2ln
L
rc

+πσcr2
c . (1)

The energy density, σc of the disclination is often approximated as σc ≈ K/r2
c where rc is core ra-

dius [25]. The linear dimension, L, desribes the region of director deformation around the disclina-

tion and typically L∼ 10µm while rc = 5nm. For a typical thermotropic liquid crystal T ∼ 100pN

for an s = −1
2 disclination [25]. Above a critical volume fraction φc, Saturn-ring disclinations

connect and percolate throughout a composite thus providing rigidity, as revealed through com-

puter simulation (φc = 15%) and measured through rheology measurements (φc = 18%) [1]. The

storage modulus G′ ∼ nT/A where n is the number of disclinations spanning a slab of the compos-

ite of area A. Equivalently, G′ ∼ T/d2
net where dnet is the average distance between disclinations

spanning the composite [31]. Spaces within the colloidal network are filled with pure nematic

solvent of a typical lengthscale a, as illustrated in Fig.1e and by Kumar et al. [32]. We present
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FIG. 1. a) The director field, as seen in two dimensions, around a particle generating weak homeotropic

anchoring (reprinted from [33]), labelled to indicate the colloid diameter D and disclination radius rc. b)

In three dimensions, a ‘Saturn-ring’ disclination encircles the waist of each colloid (reprinted from [30])

and c) neighbouring Saturn-ring disclinations can entangle to form a quasi-stable configuration, here shown

in the ‘figure of eight’ configuration (reprinted from [30]), with colloid centres separated by a distance d0.

d) For high volume fractions φ > 18% disclinations wrap around particles forming a network to generate

continuous disclination routes across the sample (reprinted from [1]) to leave e) pure nematic regions of

lengthscale a within the network.

experimental data from microscopy and SAOS and LAOS rheology measurements to probe the

structure and dynamic response of dispersions in a nematic solvent at φ > 20%. A new theoretical

description combines existing physical principles, including the total line tension from disclina-

tions and the enhanced viscosity of nematic phases in confinement, to describe the flow behaviour

of this unusual class of composite.
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II. MATERIALS AND METHODS

A. Materials

Poly(methyl methacrylate) particles (PMMA) sterically stabilized by chemically grafted poly(12-

hydroxy-stearic acid) (PHSA) molecules were prepared and dispersed in dodecane [34]. Particles

were labeled using a fluorescent monomer (7-nitrobenzo-2-oxa-1,3-diazol-methyl-methacrylate)

which was chemically attached to the PMMA [35]. The particle diameter, D = 1.17± 0.12µm,

was determined on dilution using dynamic light scattering. The solvent was replaced through ten

cycles of centrifuging, discarding the solvent and re-dispersing in hexane. Finally, the sediment

was dried thoroughly at 50◦C for >3 days under vacuum to create a dry powder of particles of

density ρp = 1.18 g/cm3, literature value.

The thermotropic nematic liquid crystal, 4-cyano-4’pentylbiphenyl (5CB), was purchased from

Kingston Chemicals (UK) and used as received. It is reported to change from a crystalline to

nematic state at 22.8◦C and to an isotropic state at 35.4◦C [36]. At 25◦C, the splay, twist and bend

elastic constants are 5.5 pN, 4.5 pN and 9.9 pN, respectively [37]. The Miesowicz viscosities

for 5CB are reported as η1 = 88 mPa.s, η2 = 94 mPa.s and η3 = 15 mPa.s at 31◦C [38] and the

rotational viscosity γr = 81 mPa.s at 24◦C [39].

To prepare dispersions, the dry PMMA-PHSA powder was added to 5CB (density ρlc ∼ 1

g/cm3) at the appropriate weight fraction and sonicated for 30 minutes at ∼ 37◦C before being

stirred vigorously by hand using a spatula at room temperature for 5 minutes before use. A range

of volume fractions, 20% ≤ φ ≤ 45% were prepared. It is known that micron-scale PMMA-

PHSA colloids generate weak homeotropic anchoring of nematogens at the surface leading to a

quadrupolar director field, necessary for Saturn-ring disclinations to form [1].

Experiments were not performed above φ = 45% since samples with a higher volume fraction

had a crumbly texture and were difficult to handle. The entangled ‘figure of eight’ structure sur-

rounding two colloids has been predicted to hold colloids at an interparticle separation of d0 =

1.1D [30]. Presuming that particles could be arranged into a random close packing structure with

φmax = 64%, we might expect that the limiting volume fraction to be φlimit ∼ 0.64/1.13 = 48%.

The theoretical limit of φlimit = 48% is very close to the limit discovered for practical experiment.
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B. Methods

Microscopy: In order to image the director field surround a single colloid dispersed in 5CB,

two glass cover-slides were spin-coated with 1%wt poly(vinyl alcohol) solution dissolved in

ethanol, allowed to dry overnight at 45◦C and rubbed with velvet in one direction, to achieve

uniform and planar alignment of the director on the glass. Spacers were created using 10µm

diameter glass spheres dispersed in ultra-violet curing glue, to secure two opposing glass slides.

A dilute dispersion (φ = 0.1%) of PMMA-PHSA particles in 5CB was drawn into the home-made

cell through capillary action. To perform microscopy on concentrated dispersions (φ > 20%),

a sample was loaded onto an untreated glass slide and enclosed by a second untreated cover-

slide. An inverted microscope (Axio Observer, Carl Zeiss Microimaging, Inc.), equipped with

an oil-immersion ×63 magnification objective lens was used to image the sample. In confocal

mode, a Zeiss LSM 700 laser scanning microscope was used with the 488 nm laser line selected

to excite the fluorescent signal from the particles, collected in reflection. In polarized optical

microscopy (POM) mode, a polariser orthogonal to the laser light polarisation was used to image

the transmission of light through a birefringent sample.

Rheology: Dispersions were stirred by hand prior to measurement in the rheometer. For ease of

use, the majority of rheology measurements were performed between sand-blasted steel surfaces of

a 40 mm parallel-plate geometry at a gap of h=500±1 µm on a strain-controlled rheometer, ARES

G-2 (TA Instruments). Molecular dynamics simulations indicate that 5CB prefers random planar

alignment on atomically-smooth iron surfaces [40]. Random alignment will generate discontinu-

ities between regions of uniform alignment, some of which will nucleate s = −1
2 disclinations.

Confocal imaging (not shown) reveals a sandblasted steel surface has asperities of the order of

10µm which is sufficient for the gel to fill the valleys to prevent surface-slip and allow s = −1
2

disclinations generated by particles to connect with those generated by the sand-blasted steel sur-

face. The geometry was preheated and maintained at 25◦C for all measurements. A pre-shear of

0.1/s was applied for up to 30 seconds before a measurement protocol proceeded. For comparison,

some measurements were performed using a 60mm 2◦ colloid-coated cone-plate geometry, with a

truncation gap of 52µm, on a stress-controlled rheometer, AR2000 (TA Instruments). In this case,

the smooth steel surfaces of the geometry were pre-treated by spin-coating a φ = 30% PMMA-

PHSA dispersion in hexane onto the geometry surfaces, sintering, and then cooling to create a

rough surface promoting homeotropic alignment from each colloid sintered onto the geometry.
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The following rheological protocols were applied:

Small amplitude oscillatory shear (SAOS): Strain sweep tests were performed for all volume

fractions 20% < φ < 45% for strain amplitudes ranging from 0.01% < γ0 < 10% at a fixed fre-

quency of ω = 2πrad/s. Measurements were performed on the ARES G-2 strain-controlled and

the AR2000 stress-controlled rheometer. At least 6 cycles were measured for each data point.

Frequency sweep tests were performed in the frequency range of 2× 10−3 < ω < 300rad/s on

the ARES G-2 rheometer for each volume fraction and for 0.1% < γ0 < 4%. A single φ = 30%

sample was tested to very low frequencies within the range of 4×10−4 to 4×10−3 rad/s.

Large amplitude oscillatory shear (LAOS): Only the strain-controlled ARES G-2 rheometer

was used for LAOS measurements. Using the correlation data acquisition mode in the TRIOSv5

software (TA Instruments) the raw strain and stress was collected during 6 full cycles at 2π rad/s.

The stress response can be represented by Fourier series in elastic and viscous forms [13]:

σ(t,ω,γ0) = γ0 ∑
n=odd

[G′n(ω,γ0)sin(nωt)+G′′n(ω,γ0)cos(nωt)] (2)

σ(t,ω,γ0) = γ̇0 ∑
n=odd

[η ′n(ω,γ0)sin(nωt)+η
′′
n (ω,γ0)cos(nωt)]. (3)

Cho et al. generalised linear viscoelastic theory for LAOS proposing that the general stress

could be decomposed into an elastic stress response, σ ′(t) and a viscous stress response σ ′′(t) such

that σ(t) = σ ′(t)+σ ′′(t) [41]. Using these definitions, Ewoldt et al. proposed a new framework

with Eqs.2 and 3 rewritten as:

σ
′ = γ0 ∑

n=odd
G′n(ω,γ0)sin(nωt) (4)

σ
′′ = γ̇0 ∑

n=odd
G′′n(ω,γ0)cos(nωt) (5)

where the nth order Chebyshev polynomials of the first kind, T n
(

γ

γ0

)
and T n

(
γ̇

γ̇0

)
, can be fitted

to plots of the elastic and viscous stresses as a function of the strain (γ) and strain rate (γ̇):

σ
′ = γ0 ∑

n=odd
en(ω,γ0)T n

(
γ

γ0

)
(6)

σ
′′ = γ̇0 ∑

n=odd
νn(ω, γ̇0)T n

(
γ̇

γ̇0

)
. (7)

For odd values of n, the elastic Chebyshev coefficient is given by en = G′n(−1)(n−1)/2 and the vis-

cous Chebyshev coefficient is given by νn =
G′′n
ω

. Six categories of material viscoelastic behaviour

8



Title

have been classified: strain-softening (e3 < 0), linear elastic (e3 = 0) and strain-stiffening (e3 > 0)

while the viscous behaviour is described as shear-thinning (ν3 < 0), linear viscous (ν3 = 0) and

shear thickening (ν3 > 0). The FT-rheology package within TRIOS enabled direct extraction of the

Chebyshev polynomial coefficients (en, νn), for the selected harmonic number n. To create elastic

and viscous Lissajous-Bowditch curves, data was acquired in the transient mode for fixed angular

frequencies of ω = 0.1,1 and 10 rad/s and the amplitude of strain γ0 = 0.1%,1%,10%,100% and

1000% for a sample of φ = 30%. These Pipkin maps provide a useful way to organise and classify

the behaviour of viscoelastic and thixotropic materials. Prior to measurements on colloid-nematic

dispersions, a 0.48%wt solution of xanthan gum in water was studied to verify the methodology

reproducing the behaviour observed by Carmona et al. [13] and Ewoldt et al. [14].

III. RESULTS AND DISCUSSION

A. Optical microscopy

A confocal microscopy image of a dense (φ ∼ 50%) dispersion in dodecane shows that par-

ticles do not aggregate in an isotropic solvent, as shown in Fig.2a. In Fig.2b, a single particle

imaged using polarized optical microsopy reveals quadruplar distortion of the director field, indi-

cating weak homeotropic anchoring of the director at the surface of the PMMA-PHSA particles

[42]. A dispersion of φ = 33% in 5CB, imaged through confocal microscopy reveals colloid ag-

gregation and nematic (dark) domains of irregular shape and size a ∼ 10µm, as shown in Fig.2c.

A composite of φ = 30%, flattened between two untreated glass cover-slips with a gap ∼ 5µm,

imaged between crossed polarisers, is shown in Fig.2d. The nematic liquid crystal medium is

birefringent appearing in various shades of grey, brightest (white) when the director is at 45◦, and

darkest (black) at 0◦, to the polarisers. Isotropic particles appear as black circles and disclinations

(having an isotropic core) appear as black lines connecting neighbouring particles. This provides

the first direct experimental evidence of the network of disclinations that bind colloids, previously

predicted through computer simulation, Fig.1b [1], formed when a concentrated colloid is mixed

within the nematic phase [43].

Typical oscillatory strain sweep measurements, shown in Fig.3a, indicate that a φ = 28% com-

posite is highly elastic with G′ > G′′ in the linear viscoelastic region (LVR). The magnitude of

the moduli are both ∼ 103 Pa, remarkably, five orders higher than that for the pure liquid crys-
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FIG. 2. a) A confocal microscopy image of the monodisperse PMMA-PHSA in dodecane. b) A polarized

optical microscopy (POM) photograph of a single colloid dispersed in 5CB with the far-field director aligned

with the analyser indicating quadrupolar distortion of the director at the particle surface. c) A confocal

microscopy image of a φ = 33% dispersion in 5CB. d) A POM image of a dispersion of φ = 30% particles

dispersed in 5CB, compressed to a sample thickness of∼ 5µm. Black lines connecting black circles provide

direct evidence of disclinations linking neighbouring particles (both are isotropic within the birefringent

background). All scale bars equal 6µm in length. For POM images, orientation of the orthogonal polariser

(P) and analyser (A) are shown.

tal, G′′ ∼ 10−2Pa and a concentrated (φ = 39%) dispersion in the isotropic solvent dodecane

G′′ ∼ 10−2Pa, also shown in Fig.3a.

Both cone-plate and plate-plate geometries generate the same values of γd and γc, as shown in

Fig.3a. The magnitude of the moduli appear different, G′ ∼ 400Pa for 2r = 60mm cone-plate and

G’ ∼ 2000Pa for 2r = 40mm. Recalling that G′ = T/d2
net , we find that dnet is around twice as

large for the cone-plate geometry as for the plate-plate geometry. The similarity of the disclination

density indicates that the disclinations bind well to both the sand-blasted steel parallel plates and

the colloid-coated cone-plate geometries. Subsequent measurements for frequency sweep and

LAOS measurements were performed with sand-blasted plates since they are more convenient to
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FIG. 3. a) The storage, G’, and loss, G”, moduli for oscillatory strain sweep measurements, at ω = 2πrad/s,

for φ = 25% in nematic 5CB using 40mm diameter parallel plate geometry (grey triangles) and φ = 28%

in 5CB using a 2◦, 60mm diameter cone-plate geometry (black circles), compared with the loss moduli for

pure nematic 5CB and a φ = 39% dispersion in the isotropic solvent dodecane. γd marks the end of the

LVR for dispersions in nematic solvent, γc where G′ = G′′. b) ‘Up’ and ‘down’ sweeps for φ = 25% on a

cone-plate geometry indicate that the strain, γc ∼ 0.5% for both sweeps although G′ and G′′ in LVR do not

recover completely within the timescale of this experiment for the ’down’ sweep. The inset shows that the

normalised value of G′/G′0 increases up to γd indicating strain hardening for both φ = 25% and φ = 30%.

c) γd is presented alongside γc for up and down sweeps for various samples across the range of φ and d)

G′LV R and G′′LV R measured for φ > 20%.

prepare and clean.

The LVR extends until a critical strain γd ∼ 0.1% which is likely to be associated with the longer

lengths of disclination within the composite, having a lengthscale rc/γd ∼ 5µm. Shorter ‘figure

of eight’ disclinations of length d0, are likely to yield at slightly larger strain amplitudes γ0 ∼

rc/d0 ∼ 0.4%. Within the LVR, there is evidence of strain-hardening since the storage modulus,

normalised by its maximum value, G′/G′0 increases before reaching the maximum at γd , as shown
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in the inset of Fig.3b for φ = 25% and φ = 30%. This suggests a resistance to deformation within

the disclination bound structure. Since G′LV R ∼ nT/A we deduce that the number of disclinations

n spanning the composite decreases as the strain is increased beyond the LVR.

The direction of the amplitude sweep, as shown in Fig. 3b collected for φ = 25% composites

on a cone-plate geometry for ‘up’ and ‘down’ sweeps, does not appear to affect the value of γc

which has a wide range of values between 0.2% < γc < 5% and does not appear dependent on

the volume fraction, as indicated in Fig. 3c. Visual observations under confocal microscopy, as

shown in Fig. 2c, reveal that the microstructure is highly heterogeneous. Measurements of γc are

highly scattered since the structure yields first in the weakest regions of the network then flows as

clusters until the clusters break-up at high shear rates. The magnitude of the moduli takes around

1 minute to recover [1] which is beyond the timescale of this experiment (∼ 10s per measurement)

and therefore the measured G′LV R(up)> G′LV R(down).

As observed by Wood et al. [1] there is a rapid increase in the value of G′ for φ ≥ 18%,

consistent with the functional form of G′(LV R)(φ) ∼ φ n, with n ∼ 2, see Fig.3d. Here, G′LV R and

G′′LV R values were calculated by averaging the value of the modulus for γ0 < γd . Our measurements

reveal that the loss modulus shows similar dependence, G′′ ∼ φ 2, indicating that G′′ and G′ are

intimately linked. If the number density of disclinations was determined solely by the particle

diameter, we would expect G′∼ T/d2
net ∼ 100pN/1µm2∼ 100Pa but our experimental data shows

G′ → 4000Pa which suggests the disclination density dnet ∼ is close to one sixth of the particle

diameter. It is known that complex knots and braids can be formed by disclinations weaving

through a colloid in a nematic solvent in three dimensions [44]. Furthermore, a single Saturn-

ring disclination could participate in multiple disclination pathways between the substrates in thus

increasing the effective value for n. How these complex disclination structures contribute to the

measured storage modulus is not known.

B. Frequency dependence

Within the plateau of the LVR, where the applied amplitude of strain γ0 < 0.1%, the oscilla-

tory frequency sweep measurements indicate that G′ > G′′ with tanδ = G′′/G′ = 0.86 across all

measurable frequencies down to 0.0004rad/s, as shown in Fig.4a. Samples stored in the laboratory

for over a decade have remained stable, without phase separation, suggesting that G′ > G′′ for

ω → 10−8rad/s. From the rheology measurements it appears G′ > G′′ for over 7 orders of magni-
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(a) (b)

FIG. 4. Oscillatory frequency sweep measurement of a) φ = 30% dispersion within the LVR at a strain of

γ = 0.1%. The frequency dependence is non-linear with G′ and G′′ ∼ ω1/2 dependence at low frequencies

and∼ω0.1 at high frequencies but always G′ > G′′. b) A φ = 30% dispersion in 5CB at a strain of γ = 0.6%

shows G′ ∼ ω0.1 below a critical frequency ωc, above which G′′ ∼ ω1/2 while for 5CB G′′→ ω (shown in

grey).

tude in the angular frequency. Within the LVR, the amplitude of the applied strain is insufficient

to break disclinations and G′ ∼ G′′ ∼ ω1/2 is observed at very low frequencies (ω < 1 rad/s) sat-

isfying the Kramers-Kronig relations [45]. The associated timescale of ∼ 6.28s is commensurate

with the time taken for a disclination to relax to its equilibrium position [25]. The gradient flat-

tens at higher frequencies (∼ ω0.1) where the time for relaxation is insufficient. There is a gap in

measured frequencies, as seen in Fig.4a, because each data point took over a day to collect at the

lowest frequencies and it was impractical to measure the entire range.

To explore the yielding behaviour of this composite, we performed frequency sweep mea-

surements just beyond the LVR where γd < γ0 < γc, and discovered that G′ and G′′, are almost

independent of the frequency G∼ ω0.1 until a critical frequency ωc (ωc ∼ 10 rad/s for γ0 = 0.6%)

beyond which G′′ ∼ω1/2, as shown in Fig.4b. Violation of the Kramers-Kronig relations has been

observed in other driven and glassy systems [45]. This is unlike the frequency dependence of the

pure liquid crystal (shown in grey), for which G′′ ∼ ω [21].

To compare multiple samples, it is more convenient to present the frequency response through

tanδ (ω) = G′′(ω)/G′(ω). Unexpectedly, the frequency response is independent of the colloid
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(a) (b)

FIG. 5. a) An oscillatory frequency sweep of tanδ = G′′/G′ at a strain of γ = 0.6% for the range in volume

fraction of 20% < φ < 45%. b) The tanδ value measured in the LVR across the range of volume fractions.

volume fraction, as shown in Fig.5a, showing no shift in the frequency at which tanδ reaches a

minimum (equivalent to dtanδ

dω
= 0) on increasing the filler concentration. This is very different to

‘active’ and ‘passive’ colloid-polymer systems [12] for which the frequency behaviour depends on

volume fraction. In Fig.5b, we have plotted the LVR value of tanδLV R = G′′LV R/G′LV R as a function

of volume fraction, φ . For all concentrations 0.6 < tanδLV R < 0.8 and the standard deviation

between repeat measurements is relatively large∼±0.07. However, aside from the lowest volume

fraction measurement at φ = 20%, the data suggests that tanδLV R may increase gradually with the

volume fraction from a minimum at φ = 25%.

To explore the strain-dependent yielding behavior further, we repeated oscillatory frequency

sweeps at ω = 2π rad/s at strain amplitudes beyond the LVR using a sample of φ = 30%. It was

evident that the critical frequency ωc at which G′′ transitioned to ∼ ω1/2 dependence reduced

to lower frequencies when the strain amplitude was increased. Meanwhile G′ remained almost

independent of the frequency (similar to the result in Fig.4b) and therefore tanδ → ω1/2 for ω >

ωc, as shown in Fig.6a. The critical frequency ωc, at which tanδ is at a minimum, i.e. where
dtanδ

dω
= 0, is plotted in Fig.6b to reveal that ωc ∼ 1/γ0.

C. Large-amplitude oscillatory shear

To improve our understanding of how the structure yields beyond the LVR, LAOS data was

acquired and the results are presented in Fig.7. In plots Fig.7b-e, the imposed strain and measured

stress are plotted as a function of time during oscillation at ω = 2πrad/s. For γ0 ∼ γd (γ0 = 0.1%)
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FIG. 6. a) tanδ as a function of angular frequency for 0.1% < γ0 < 4% revealing that the frequency at which

dtanδ

dω
= 0 is dependent on the strain amplitude γ0. b) The critical frequency, ωc beyond which G′′ ∼ ω1/2 is

dependent on the strain amplitude following ωc ∼ 1/γ0

the measured stress, σ , is sinusoidal and close to being in phase with the strain indicating elastic

behaviour. For γd < γ0 < γc (as represented by γ0 = 1%) the stress, σ is close to sinusoidal on

increasing the strain but returns to zero, from the maximum strain amplitude γ0, with a gradient

that is steep and linear indicating the emergence of viscous behaviour. At γ0 = 10% (close to γc)

the phase difference between the stress and strain signal becomes large on the return journey from

maximum strain γ0 indicating viscous behaviour after yielding. At γ0 = 100% (> γc) the phase

difference between stress and strain is large at all times during the oscillation indicating that the

flow behaviour is almost entirely viscous and has insufficient time to recover elasticity.

In Fig.7f it is evident that the higher order harmonics appear soon after γ0 = γd with the 3rd

order elastic Chebyshev coefficient e3 increasing, indicating strain-stiffening, until it reaches a

maximum around γc beyond which it decreases to negative values consistent with strain-softening.

The 3rd order viscous Chebyshev coefficient becomes negative beyond γ0 = γd indicating shear-

thinning behaviour and reaches a minimum value at γc after which it returns towards zero, as

shown in Fig.7g.

Elastic and viscous Lissajous-Bowditch curves, as presented in Fig.8, provide another way to

present LAOS results and compare the ‘rheological fingerprint’ with systems studied previously.

Within the LVR, a viscoelastic material is expected to have an elliptical shape as observed for

γ0 = 0.1% at all frequencies in both the elastic (Fig.8a) and viscous (Fig.8b) curves. Ewoldt et

al. decomposed the elastic modulus into the minimum strain modulus G′M, the tangent modulus
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(a)

(b) (c)

(d) (e)

(f) (g)

FIG. 7. a) The large amplitude oscillatory sweep for φ = 30% showing the measured 1st order G′ and G′′ as

a function of applied strain, critical strains γd (green) and γc (red) and fixed strain amplitudes (dotted blue

lines) at which for b)-e), the imposed strain (black) and measured stress (blue) are plotted as a function of

time at ω = 2πrad/s. The maximum amplitudes γ0 are 0.1% (∼ γd), 1% (γd < γ0 < γc), 10% (∼ γc) and

100% (> γc) respectively. In f) the elastic en and in g) the viscous νn Chebyshev coefficients of the third,

fifth and seventh order are plotted as a function of strain.
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measured at γ = 0, and the large strain modulus, G′L, the secant modulus measured at maximum

strain that includes the signal from all odd Chebyshev harmonics [46]. Analogously, η ′L and η ′M

indicate the instantaneous viscosity at the smallest and largest strain-rates, respectively.

A strain-hardening ratio, S =
G′L−G′M

G′L
and a shear thickening ratio T =

η ′L−η ′M
η ′L

were defined by

Ewoldt et al. [46]. Within the LVR, G′M = G′L so that S = 0 and η ′M = η ′L so that T = 0. At the

maximum applied strain of γ0 = 1000% G′L > G′M, such that S > 0, confirming intracycle strain-

stiffening and η ′L < η ′M such that T < 0 confirming intracycle shear thinning. The elastic and

viscous Lissajous-Bowditch curves presented in Fig.8 are similar to a drilling fluid, reported by

Ewoldt et al. in which a predominately elastic regime was observed at sufficiently small strain

amplitude and an increasingly plastic regime at high strain magnitudes. Similarly, we deduce

that a concentrated dispersion in a nematic solvent can be classed as an elastoplastic fluid. Small

deformations allow the composite to maintain elasticity, larger deformations over long timescales

(low frequencies) allow elasticity to be recovered, while large deformations and high shear rates

(high frequencies) disrupt the structure irreversibly causing plastic deformation. More unusually,

our measurements indicate a loss of symmetry about the stress axis at an intermediate strain of

γ0 = 1%, occuring between the critical strains of γd and γc and higher angular frequencies ω > 0.1

rad/s which can be attributed to hysteresis in the recovery of the gel strength due to the time taken

for ‘disclinations’ to heal.

In summary, the rheology experiments on the yielding behaviour of colloidal dispersions in a

nematic phase have revealed important and unusual phenomena:

• Dispersing a colloid within a nematic liquid crystal enhances the storage and loss moduli by

over five orders of magnitude. This is remarkable in the context of other soft materials, for

example an active filler in a polymer network increases the modulus by less than two orders

of magnitude [12].

• For strain amplitudes within the LVR, G′>G′′ for all measurable angular frequencies which

is unusual since soft solids, in general, have experimentally accessible relaxation modes.

• For strain amplitudes beyond the LVR, the critical frequency ωc for the onset of viscous

behaviour is not affected by an increase in the colloid volume fraction φ . This is unusual

since ωc shifts for the majority of other soft composites, including dispersions in polymers

[8] and emulsion systems [12] when the colloid concentration is increased.
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FIG. 8. a) Elastic Lissajous-Bowditch curves created from stress (y-axis) versus strain (x-axis) plots and

b) viscous Lissajous-Bowditch curves created from stress (y-axis) versus strain-rate (x-axis) plots for fixed

angular frequencies of ω = 0.1,1 and 10 rad/s and strain amplitudes γ0 = 0.1%,1%,10%,100% and 1000%

for φ = 30%.

• The end of the LVR occurs at unusually low strain amplitudes, γd ∼ 0.1%, much lower

than the typical yield strain for a colloidal gel γy ∼ 10% [11]. We attribute this yielding to

reorientation of nematogens in the core of the disclination, of radius rc with γd ∼ rc/d where

d is the distance between neighbouring colloid centres bound by entangled disclinations,

limited by d→ d0.

• For sufficient strain beyond the LVR and at frequencies above a critical frequency ω > ωc,

G′ ∼ ω0 and G′′→ ω1/2. This is novel behaviour for a nematic liquid crystal, very different

from the G′′→ ω dependence observed for a pure nematic phase.

• A colloid dispersion in a nematic solvent can be classed as an elastoplastic that exhibits both

strain-hardening and shear-thinning behaviour beyond the LVR.
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D. Theoretical description of the yielding behaviour of defect-dominated gels in a nematic

phase

To understand the experimental results we now consider the underpinning physics. As dis-

cussed in the introduction, the presence of a colloid with weak homeotropic anchoring gives rise

to a Saturn-ring defect line, of topological charge s =−1
2 that, at sufficient colloid concentration,

entangles with neighbouring Saturn ring disclinations, each providing a line tension T∼ 100pN, to

create numerous paths of continuous disclinations that extend throughout the sample, as illustrated

in Fig.9a, to generate elasticity on a macroscopic scale.

The colloidal network is filled with pure nematic solvent, self-organizing to have an average

domain size a, as illustrated in Fig.9b and observed experimentally in Fig.2c. Since each colloid

surface and each disclination provide homeotropic anchoring, we expect each nematic domain to

have radial alignment, although distorted due to the irregular shape of each domain. If the domain

were circular, it would have a single central defect with topological charge, S = 1, as described by

Terentjev et al.[27]. As the size of the domain reduces, it reaches a limiting size a∼ K/W beyond

which it is energetically unfavourable for the domain to reduce in size any further. This limit

will drive structural rearrangements elsewhere in the system before a reduces further (e.g. at high

colloid concentrations). We presume W = 1.5X10−7 J/m2, consistent with earlier estimations [27].

Using K = 5.5pN, we expect the magnitude of a∼ 10µm which is consistent with our experimental

observations Fig.2c.

Existing equations describing the flow of liquid crystals have been derived for small amplitude

oscillatory shear and we build upon this work. The storage modulus describes the elasticity of the

material and, we presume, it is the sum of two contributions G′ = G′f +G′d for colloids dispersed

in a nematic solvent. G′f was described by Rey [21] and is the storage modulus arising from a

nematic liquid crystal flowing between parallel plates. At frequencies greater than the resonance

frequency ωr it is given by

G′f =

(
2ωηbendK

(
α2

γr

)2
)1/2

(8)

where ηbend = γr−
α2

2
η2

and α2 = −0.085 Pa.s for 5CB [48]. We calculate G′f ∼ 10−5Pa which is

negligible compared with the storage modulus measured through experiment, therefore we assume

G′ = G′d .

The storage modulus of a liquid crystal, caused by the presence of disclinations, at an average
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FIG. 9. Illustrations of a) disclinations (blue), encircling colloids (red) and connecting to create continuous

disclinations extending across the sample, dominating the rheology for γ < γd ; b) confined nematic regions

(grey), with internal alignment (black lines) determined by the anchoring of nematogens normal to the

colloid surfaces, dominate the rheology for γd < γ < γc and c) at high shear γ > γc nematogens will align

with the direction of flow for the liquid crystal 5CB [47]

separation of dnet , was described by Weitz et al. [31] and Colby [3] as

G′d =
T

d2
net

(9)

In the colloid-rich regions, we presume disclinations are separated by d0 = 1.1D where D is

the diameter of the particles entanged by ‘figure of eight’ type disclinations. We assert that discli-

nations yield at a critical strain of γd = rc
d0

where rc is the radius of the disclination core. Above

this strain, disclinations yield such that the number density of disclinations decreases and the sep-

aration between disclinations increases as dnet =
d0

p(φ)

(
γd+γ

γd

)
following the empirical expression

used by Colby et al. to describe the yielding behaviour of defect-mediated rheology for smectic

liquid crystals [49]. This expression ensures dnet → d0 for very small strain amplitudes. A factor

p(φ) has been introduced to match the model with experimental observations, likely to account for

multiple entanglements within a three-dimensional network that increase with the volume fraction

of colloids. We adopt the form p(φ) = pmax

(
(φ−φc)

(φlimit−φc)

)
. The resulting expression for G′ is con-

sistent with our observation that G′LV R ∼ φ 2 and the correct magnitude of of G′LV R(φ) is obtained

when pmax = 12, φlimit = 48% and φc = 15%.

We presume the viscous behaviour of the composite is determined by two contributions G′′ =
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G′′f +G′′a . We assume the term, G′′f = η2ω describes the nematic flow behaviour at high shear

where η2 is the Miesovicz viscosity associated with the director aligning with the shear direction.

G′′a describes the loss modulus enhanced within confined regions of nematic of size a.

The Ericksen number describes the competition between flow-induced and boundary-induced

orientation within a nematic monodomain Er =
L2γr γ̇

K where γr is the rotational viscosity, γ̇ is the

shear rate and L is the relevant length scale. Reorientation of the director can occur when Er > 1.

For polydomains in liquid crystal polymers it has been argued that disclinations can act as an in-

ternal wall, similar to the colloid surfaces and together these structures provide boundaries with

fixed homeotropic orientation [50]. Larson described the enhanced viscosity close to boundaries

as ηa ∼ γrEr−1/2 [2]. Although there will be large nematic domains (without colloids) within the

composite, as illustrated in Fig.9b, more confined nematic regions will contribute more signifi-

cantly to G′′ at low strain. In our model we assume a = K/p(φ)W to account for the enhanced

confinement of the nematic liquid crystal due to the disclination density in the colloid-rich regions.

This ensures G′′LV R ∼ φ 2, as observed through experiment and maintains the ratio between G′LV R

and G′′LV R, observed through experiment.

In oscillatory flow, the maximum shear rate γ̇ = γ0ω so that we can define the maximum Erick-

sen number during oscillatory flow as

Er =
a2γrγ0ω

2πK
(10)

where a is the average size of nematic monodomains within the composite and is the appropriate

lengthscale for confined regions of nematic fluid within the composite. The loss modulus can be

described as G′′a = ηaω .

This expands to,

G′′a =

(
2πKγrω

a2γ0

)1/2

(11)

This reveals that G′′ ∼ ω1/2 as observed experimentally at high frequencies. However, we have

observed a critical frequency ωc that must be overcome to allow flow to occur and therefore we

replace ω → ωc +ω so that

G′′a =

(
2πKγr(ωc +ω)

a2γ0

)1/2

(12)

where ωc =
2πK

a2γrγ0
is the critical frequency at which flow occurs, as defined by the Ericksen number.

This results in two components within the expression for G′′a which we simplify to G′′a = G′′d +G′′c .

G′′d = 2πK
a2γ0

describes the plateau loss modulus at low frequencies ω < ωc while G′′c = (G′′dγrω)1/2
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(a) (b)

(c) (d)

FIG. 10. a) Theoretical prediction of G′(γ) and G′(γ) for ω = 2π rad/s and b) G′(ω) and G′(ω) for

γ = 0.6%. c) Components G′′f , G′′d and G′′c contributing to the total loss modulus G′′ shown in b). d) Plot of

the theoretical tanδ (ω) for 0.1% to 10%. The parameters, K = 5.5pN, W = 1.5×10−7 J/m2, D = 2µm and

γr = 81 mPa.s, rc = 5nm and a = K/p(φ)W , with φ = 0.3, pmax = 12, φlimit = 48% and φc = 15%, were

used in this model.

becomes dominant at high frequencies ω > ωc. To prevent the G′′ from becoming unphysically

large at very low strain we modelled the strain amplitude as γ0→ (γ0 + γd)
2/γd .

The parameters, K = 5.5pN, W = 1.5× 10−7 J/m2, D = 2µm, γr = 81 mPa.s, rc = 5nm and

a = K/p(φ)W with pmax = 12, φlimit = 48% and φc = 15%, were used in the model. In Fig.10a

the calculated G′ and G′′ as a function of the strain amplitude and Fig.10b in terms of the angular

frequency, ω are presented. G′ and G′′ show strong similarities to the experimental results (Fig.3a)

for increasing strain amplitude and frequency dependence (Fig.4b) with G′ > G′′ at low frequen-

cies and G′′ ∼ ω1/2 above a critical frequency. The magnitude of the individual components of

G′′d , G′′c and G′′f are compared in Fig.10c. It is clear that for confined regions G′′d � G′′f so that
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G′′ ∼ ω1/2 although there is an underlying G′′f ∼ ω dependence that would dominate if a were

sufficiently large [31].

Fig.10d the theoretical contribution of tanδ = G′′/G′ is shown for a range of applied strain

amplitudes (0.1%< γ0 < 10%) as a function of the angular frequency and reveals similar behaviour

to experimental measurements presented in Fig.6b. At low frequencies (ω < ωc), tanδ = G′′/G′

takes the equation form,

tanδ (ω < ωc) =
2πK

T
1
γ0

d2
net
a2 . (13)

This indicates that tanδ (ω < ωc) is dependent on the square of the ratio of the size of the disclina-

tion spacing to the nematic domain size dnet/a. If we substitute a∼K/p(φ)W and dnet = d0/p(φ),

within the LVR the expression can be simplified further to tanδ ∼ 2π

γ0

W 2d2
0

T K . This reveals that the

anchoring strength W of nematogens at the surface of the colloid, having homeotropic alignment,

has a significant influence on the flow properties of the composite. This expression for tanδ is

independent of the volume fraction φ although there may more complexity since tanδ increased

slightly with volume fraction, as revealed in Fig.5b, potentially due to crowding.

Despite the progress made through matching the experimental measurements with a simple the-

oretical model there are opportunities to refine the model, perhaps best tackled through computer

simulation.

• Following the work of Muševic [44] it may be possible for theoreticians to determine the

average separation between disclinations dnet binding a dense suspension of colloids within

a nematic solvent in three dimensions to improve our understanding of p(φ).

• Experiments indiciate that at high shear G′′→ 102 Pa, not G′′→ η2ω ∼ 10−1Pa as assumed

in the simple theory presented here. Inter-particle interactions must persist within the ne-

matic phase under flow to enhance the viscosity of the filled nematic at high shear and this

is a complex problem to solve.

• 4-Cyano-4’pentylbiphenyl (5CB) is a flow-aligning nematic liquid crystal but others, e.g. 4-

Cyano-4’heptylbiphenyl (7CB) tumble at high shear [47]. The effect of potential tumbling

behaviour on the rheology of colloid-nematic composites is unknown.

• This model describes the yielding behaviour of the composite at intermediate strain am-

plitudes for which rheology measurements indicate that G′(ω) ∼ ω0 and G′(ω) ∼ ω1/2,

as revealed in Fig.4b. It does not explain the G′(ω) ∼ G′′(ω) ∼ ω1/2 behaviour observed
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at very low strain amplitudes, well within the LVR, as shown in Fig.4b which requires an

expression for G′ that captures the dynamics of disclination relaxation.

Interestingly, through performing oscillatory rheology on colloidal dispersions in small-molecule

nematic liquid crystalline materials we have observed two regimes that are analogous to defect-

dominated flow behaviour observed in nematic liquid crystal polymer (LCP) systems for which

various regimes have been reported [3, 51]. Regime 0 is associated with viscosity dependence

η ∼ γ̇−1 and is attributed to the solid like response at very low shear rates. Regime 1 is associated

with viscosity behaviour η ∝ γ̇−1/2 and is attributed to the movement of disclinations within the

LCP [3]. Similar to our colloidal network interpenetrated by multiple nematic domains of size a,

these LCPs have a poly-domain texture [5, 52, 53]. A complex viscosity, η∗ can be determined

from oscillatory measurements using η∗ = (G′2+G′′2)1/2

ω
. For our confined nematic solvent, made of

small-molecule nematogens, experimental measurements show that G′ ∼ ω0 for all frequencies.

At very low shear rates, G′′ ∼ ω0 such that η∗ ∼ ω−1. Above the critical frequency, associated

with higher shear rates, G′′ ∼ ω1/2 and thereafter G′′ > G′ so that η∗→ ω−1/2. The similarity to

our experimental results is intriguing because it suggests that the low shear behaviour of a LCP

could be attributed to the behaviour of nematogens in confinement.

Furthermore, the G′′∼ω1/2 behaviour explained through our experiments has been observed in

a myriad of defect-dominated liquid crystalline systems aside from LCPs including a thermotropic

smectic [49], a lamellar lyotropic liquid crystal [54], and dispersions of colloids in a thermotropic

smectic [4], in a nematic [32] and in a cholesteric [55] for which the principles explained in

this paper are applicable. However, it is important to bear in mind that this behaviour will only

occur in systems that support a sufficiently high density of disclinations and therefore G′′ ∼ ω1/2

dependence has not been observed in pure cholesteric phases [31], liquid crystal polymers that

retain good nematic alignment [5] or for dispersions in the nematic phase that do not give rise

to weak quadrupolar anchoring at the colloid surface [56] since this is an essential condition for

generating networks bound by entangled disclinations.

IV. CONCLUSION

In conclusion, we bring SAOS and LAOS experiments together with a simple theory to explore

the dynamic behaviour of an extraordinarily stable soft-solid formed upon dispersing colloids, of

volume fractions 18% < φ < 45%, in a nematic phase where nematogens are weakly oriented per-
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pendicular to the colloid surface. LAOS reveals that the shear-thinning behaviour associated with

the breakage of disclinations is accompanied by strain-hardening due to the resistance of nematic

domains to deformation. Although the magnitude of the storage, G′, and loss G′′ moduli,∼ φ 2, the

volume fraction has no effect on the critical frequency ωc associated with yielding, where G′′=G′.

Instead, the critical frequency ωc is sensitive to the disclination density dnet , the size of entrapped

nematic domains a, the generalized Frank elastic constant K and, most importantly, the anchoring

strength W through which nematogens are associated with the surface of the colloid. Reorienta-

tion of the director is only permitted if the Er > 1 and, in a defect-mediated structure Er ∼ γra2γ̇0
K

where γr is the rotational viscosity of the nematic phase and γ̇0 is the maximum shear rate, equiv-

alent to γ0ω/2π . Beyond ωc the viscous behavior G′′ ∼ ω1/2 due to the enhanced viscosity of a

nematic liquid crystal in regions confined by the colloidal network, behaviour that has also been

observed for other defect mediated liquid crystalline structures [3, 51, 52]. Experimental observa-

tion of this behaviour within a small-molecule nematic liquid crystalline phase has allowed us to

develop a simple theory for both elastic and viscous contributions and extends our understanding

of the flow behaviour of defect-mediated liquid crystalline materials. This fascinating class of

glassy soft-solid [57] has received scant attention to date and our work could provide guidelines

for developing new composites with superior physical stability.
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