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Abstract 

Background: Phenome wide association study (PheWAS) has been increasingly used to 

identify novel genetic associations across a wide spectrum of phenotypes. This systematic 

review aims to summarize the PheWAS methodology, discuss the advantages and challenges of 

PheWAS and provide potential implications for future PheWAS studies. 

Methods: MEDLINE and EMBASE databases were searched to identify all published 

PheWAS studies up until April 24, 2021. A summary of PheWAS methodology incorporating 

how to perform PheWAS analysis and which software/tool could be used, were summarized 

based on the extracted information.  

Results: A total of 1,035 studies were identified and 195 eligible articles were finally included. 

Among them, 137 (77.0%) contained 10,000 or more study participants, 164 (92.1%) defined 

the phenome based on electronic medical records (EMR) data, 140 (78.7%) used genetic 

variants as predictors, and 73 (41.0%) conducted replication analysis to validate PheWAS 

findings and almost all of them (94.5%) received consistent results. The methodology applied 

in these PheWAS studies was dissected into several critical steps, including quality control of 

the phenome, selecting predictors, phenotyping, statistical analysis, interpretation and 

visualization of PheWAS results, and the workflow for performing a PheWAS was established 

with detailed instructions on each step.  

Conclusions: This study provides a comprehensive overview of PheWAS methodology to help 

practitioners achieve a better understanding of the PheWAS design, to detect understudied or 

overstudied outcomes and to direct their research by applying the most appropriate software 

and online tools for their study data structure. 

Keywords: phenome-wide association study, electronic medical record, pleiotropy, genome-

wide association study 
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Introduction 

Genome wide association study (GWAS) has been a standard method for exploring the genetic 

etiology of common complex diseases.[1] As of April 24, 2021, GWASs have identified 

257,351 genetic associations from 5,037 publications based on the GWAS catalog database.[2] 

Further post-GWAS analyses, when integrating biological repositories and clinical information, 

provide important insights in discovering novel biological mechanisms and clinical 

applications.[3] Generally, although GWAS makes great contributions to explore the genetic 

profiles for complex traits, it restricts the research to one or a small set of diseases. 

To complement GWAS, the concept of phenome wide association study (PheWAS), a reversal 

of GWAS paradigm, has been proposed. PheWAS aims to identify the associations between an 

exposure (genetic variants, genetic risk score, biomarkers or risk factors) with a broad range of 

human phenotypes.[4] Due to the wide availability of dense electronic medical records (EMR), 

PheWAS analysis has started to be widely adopted by using EMR as an efficient data source 

for phenotype extraction.[5] Furthermore, a number of large biobanks such as the UK 

Biobank,[6] China Kadoorie Biobank,[7] the Electronic Medical Records and Genomics 

Network (the eMERGE Network)[8] and the Veteran Administration’s Million Veteran 

Program (MVP),[9] have linked large volume of genotypic data to EMR data, making it 

possible to perform powerful PheWAS. 

In 2010, Denny JC et al. illustrated the first application of PheWAS methodology with EMR 

data and successfully identified significant genotype-phenotype associations.[4] Subsequent 

PheWAS studies emerged to explore phenotypic associations in larger population with different 

data structure, leading to a rapid development of this approach. Bush WS et al. conducted a 

systematic review in 2016 to comprehensively introduce the rationale, methodology, findings 

and challenges of PheWAS.[10] Since then, multiple novel strategies as well as diverse software 

have been developed to improve the PheWAS methodology, therefore a detailed pipeline is 

needed to offer suggestions for the best practices of PheWAS analysis using appropriate 

methods. Here, we conducted a systematic review to identify all published PheWAS studies, 

with the aim of exploring common PheWAS design, suggesting the workflow for conducting 

and reporting PheWAS, and discussing the future development and application of this approach 

in clinical research. 

 

Methods 

Search strategy and eligible criteria 
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A systematic literature search was performed in MEDLINE and EMBASE database (Ovid) 

from inception to 24th April 2021, using a comprehensive search strategy. The search terms 

comprised medical subject headings (MeSH) and keywords relating to PheWAS (i.e., “phenome 

wide association stud*” OR “PheWAS” OR “phenome wide mendelian randomi*”). All 

identified publications went through a parallel review of the title, abstract and full text 

(performed by L.W. and F.K. independently) based on predefined inclusion and exclusion 

criteria. In particular, we included studies that employed PheWAS analysis to explore the 

relationship between exposures (genetic variants, environmental exposures and laboratory 

variables) and a wide range of phenotypes; and studies that introduced a new software/tool for 

PheWAS analysis. Conversely, we excluded (i) studies not applying PheWAS analysis; (ii) 

studies not aiming at exploring associations of exposures with phenotypic outcomes; and (iii) 

reviews, correspondence, conference abstracts, comments, survey, and research experiments 

conducted in animals or animal/human cell lines. When inconsistency in decision occurred, the 

two authors (L.W. and F.K.) discussed with the assistance of a third author (A.G.) to arrive at a 

consensus. 

Data extraction 

From each study, we extracted the following information: cohort name, sample size, ethnicity, 

type of data (i.e. EMR cohorts, epidemiological cohorts or clinical trials), type of predictors 

(genetic instruments or non-genetic risk factors), phenotyping method (i.e. ICD curated/holistic, 

number of PheWAS groups, case definition), multiple testing correction method, adjustment 

for covariates, key findings, and any other methodological improvement emphasized in their 

main text. Data extraction was performed by two investigators (L.W. and L.Y.) and double 

checked by another two investigators (F.K. and A.G.). 

Data synthesis 

Based on the extracted information, we presented the basic characteristics of published studies 

and made a comprehensive summary of the main steps of PheWAS analysis accordingly. We 

then conducted a narrative synthesis of the main packages and statistical software used by each 

step. Characteristics of these software were described and a comparison was carried out to 

determine the most appropriate option for PheWAS analysis with different data types. 

 

Results 

Included studies and characteristics 
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A total of 1,035 articles were retrieved from the systematic search in two databases. Eventually, 

195 papers were eligible for inclusion (Figure 1). Of them, 178 articles reported original 

PheWAS studies and 17 articles introduced online resources and tools applicable for PheWAS 

analysis. Detailed information and the main findings for each study are presented in the 

Supplementary Table 1 and Supplementary Table 2, respectively. 

The main characteristics regarding the PheWAS methodology of these included papers are 

summarized in Table 1. Among them, 137 (77.0%) had very large sample size with >10,000 

participants; and most of the studies (92.1%) defined the phenome based on the widely available 

EMR data in health care systems while the rest (7.9%) applied phenome definitions from 

epidemiological studies. 21 (11.8%) studies used a single nucleotide polymorphism (SNP) as 

predictor, and 119 (66.9%) studies selected multiple genetic variants as instruments, among 

which 31 (17.4%) studies constructed polygenic risk scores (PRS) with multiple SNPs and 88 

(49.4%) studies used multiple variants as independent predictors. About half of the studies 

(41.0%) conducted replication analysis using an independent dataset or applying additional 

analysis such as mendelian randomization (MR) to further validate the PheWAS findings and 

94.5% of them obtained consistent conclusions. 

Critical steps of conducting a PheWAS 

The main steps of PheWAS are summarized based on the methods applied in these eligible 

studies, and are shown in Figure 2. 

Step 1: Quality control of the phenome 

The first critical step of conducting a PheWAS is to do quality control (QC) of the phenome. 

Several issues in terms of QC have been proposed in the published studies, such as 

incompatibility with rare variant analysis or outcomes due to relatively small sample size, great 

multiple test burden resulting from a large number of phenotypes and low-quality phenotyping 

caused by data missingness, leading to low statistical power. Thus, a cut-off threshold used to 

select appropriate phenotypes or power calculations before PheWAS should be considered to 

maintain the statistical power. Based on the extracted information, a large proportion of 

PheWAS studies only included phenotypes with at least 20 cases. A simulation study 

investigated the effects of various parameters on the estimation of statistical power in PheWAS, 

and concluded that a number of 200 cases or more maintains the statistical power to identify 

associations for common traits.[11] Beyond this commonly used cut off threshold, there are 

examples of PheWAS that used specific software to maintain the statistical power. Namjou B 

et al. used QUANTO software to calculate the power for the included phenotypes before 

PheWAS analysis.[12] Lucas AM et al. applied the “CLeaning to Analysis: Reproducibility-

based Interface for Traits and Exposures (CLARITE)” software to do quality control of the 
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phenome by excluding low-quality phenotypes, thus preserving the power of PheWAS.[13] In 

particular, this software is user-customized and can be used for variable-specific QC. It has 

multiple functions such as separating qualitative and quantitative variables for QC, concurrently 

screening sample size minimums, identifying unique values, recoding missing values, and 

identifying documentation errors. Using CLARITE, Passero K et al. successfully selected 

phenotypes with a minimum sample size of 200, restricted QC to binary phenotypes, retained 

only samples which contained no missing covariate information and had at least a 99% sample 

call rate.[14] Detailed description and strengths and/or weaknesses of the software are 

summarized in Supplementary Table 3. 

Step 2: Selecting predictors 

Both genetic variants and non-genetic factors (e.g., serum biomarkers) can be used as predictors 

in PheWAS analysis. Utilizing SNPs derived from previous GWAS, PheWAS can detect novel 

associations or replicate known associations of a single or multiple variants with a variety of 

phenotypes. Denny JC et al. replicated 66% SNP-trait associations detected by GWAS and 

revealed 63 potentially pleiotropic associations with this strategy.[15] Functional genetic 

variants modifying the expression and/or activity of proteins are also used as genetic predictors 

to represent potential drug targets. For example, Jerome RN et al. conducted a PheWAS using 

genetic variants within PCSK9 gene to explore any novel phenotype on which this protein and 

its inhibitors may have impact and thus to predict potential safety issues as well as side effects 

of drugs targeting on PCSK9.[16] Beyond using SNPs as genetic instruments individually, 

recent PheWASs have focused on using PRS as proxy of the exposure levels to explore their 

associations with a wide spectrum of phenotypes.[17-20] For instance, Li X et al. constructed 

a weighted PRS as a proxy of serum uric acid (SUA) levels in PheWAS analysis, and 

successfully identified significant associations with gout, hypertension and heart diseases.[19] 

Similarly, Meng X et al. created a PRS and implemented the PheWAS strategy to explore the 

role of vitamin D in health outcomes.[20] In addition, non-genetic predictors, such as 

autoantibodies status,[21] enzyme activity,[22] biomarker levels[23] and socio-economic 

factors[24] have also been explored in recent PheWASs to explore phenotypic associations. 

Step 3: Phenotyping 

Phenotyping refers to the process of defining an individual’s phenome. The phenome 

framework largely uses EMR-based binary disease phenotypes. For EMR-based PheWAS, the 

most straightforward way for phenotyping is to use the International Classification of Diseases 

(ICD) coding system. Two phenotyping methods are widely used to classify the ICD codes into 

appropriate case-control groups: the curated phenotyping and the holistic phenotyping. Curated 

phenotyping groups ICD codes that represent a common etiology into the same phenotype 
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leading to a smaller number of phenotypes with more cases, thereby increasing statistical power 

and reducing the probability for false positive findings. Wu P et al. adopted the curated 

phenotyping strategy and aggregates ICD 10th Revision (ICD-10) codes into the PheCODE 

schema, which includes about 1,800 distinct phecodes.[25] By employing this schema, they 

successfully replicated several known genotype-phenotype associations with increased 

statistical power. In contrast, the holistic method tests all ICD codes and results in more 

phenotypes with relatively small number of cases. This method does not make any assumptions 

on the genetic or etiological commonalities of any disease, but the study power is largely 

reduced and results might be biased due to the correlations between phenotypes.[26] Cortes A 

et al. improved the holistic method by developing a tree-structured phenotypic model based on 

the hierarchical structure of ICD-10 codes and analyzed phenotypes by using a Bayesian 

analysis framework to increase the statistical power.[27] So far, the tree-structured phenotyping 

model has not been widely adopted. We only identified one study that used both the PheCODE 

schema and tree-structured phenotypic model, where the tree-structured phenotypic model 

showed advantages in detecting association with more sub-phenotypes.[19] 

Phenomes can also be defined using data collected from epidemiological studies. With the 

increasing availability of large-scale-omics data, the possibility of exploring endo-phenotypes 

beyond binary clinical endpoints in PheWAS analyses has increased dramatically over the last 

few years. These could include laboratory biomarkers (proteomics, metabolomics or 

inflammatory biomarkers), anthropometric traits and many other phenotypes (e.g. socio-

economic factors, imaging features). In addition, these intermediate phenotypes comprise 

largely quantitative traits, which could help detect earlier manifestations of diseases and 

enhance statistical power of PheWAS. Therefore, expanding the scope of the phenome offers 

an opportunity to detect associations with subclinical phenotypes. The first epidemiology-based 

PheWAS was conducted using the genomics and epidemiology (PAGE) network, in which 

related phenotypes were binned into the same class, and 111 significant phenotypic associations 

were finally identified.[28] Till present, there are a number of datasets with available clinical 

endpoints and sub-phenotypes that can be used to run a PheWAS analysis (Table 2). In 

epidemiology-based PheWAS, pooling epidemiological studies together is necessary in order 

to obtain a greater sample size and gain statistical power. However, this method may be 

hindered due to the difficulty to harmonize phenotypes between different studies, since the 

phenotype definition and the coverage of phenotypes may differ among studies.[29] 

 

Step 4: Statistical analysis 

For statistical analysis, linear regression for continuous variables and logistic regression for 

categorical variables are widely used to detect associations between predictors and disease 

outcomes with adjustment for a number of covariates. Generally, principal components (PCs) 

of ancestry are commonly included to reduce confounding by population 
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structure. Demographic factors such as age and sex can influence the strength of genetic effects 

and therefore should also be adjusted for. But the selection of covariates should be cautious. 

The adjusted effect estimates may be less powerful with increasing stringency of Type 1 error 

control when the genetic variant is correlated with the covariates. Then, false discovery rate 

(FDR), permutation testing, and Bonferroni correction are appropriate ways to account for 

multiple testing. Till present, multiple strategies have been developed to perform PheWAS 

analysis. Traditional PheWAS using a single genetic variant lacks sufficient power in detecting 

phenotypic associations since a single genetic variant contributes small effects to several 

phenotypes or disorders. Thus, a novel PRS-PheWAS strategy has been proposed, in which a 

PRS is firstly calculated for each individual as the sum of risk increasing alleles weighted by 

the effect sizes taken from previous GWASs, then phenotypic associations between genetically 

determined exposure levels and health outcomes are examined by using the weighted PRS as a 

proxy. Leppert B et al. conducted a PheWAS analysis to examine associations of PRSs for five 

psychiatric disorders (major depression, bipolar disorder, schizophrenia, attention-

deficit/hyperactivity disorder and autism spectrum disorder) with 23,004 outcomes in UK 

Biobank. The results showed 294 significant phenotypic associations, and most of them were 

related to mental health factors.[18] Another novel strategy, termed “MR-PheWAS”, is to 

perform summary level data MR analyses across multiple phenotypes by using GWAS data to 

uncover the traits with potential causal associations. For example, Saunders et al. applied MR-

PheWAS design to examine the causal associations between 316 intermediate phenotypes 

(which have GWAS summary data available from MR-Base platform) and glioma risk.[30] This 

approach opens up a new way to perform PheWAS when access to individual level data is not 

available, but it also has a number of methodological limitations. First, this approach is more 

like a candidate strategy rather than a phenome-wide test. Second, a distinct feature of PheWAS 

using individual level data is to examine the cross-phenotype associations in a single population, 

while in MR-PheWAS using GWAS data of multiple phenotypes, the ability to examine cross-

phenotype associations will be dramatically diminished due to the substantial heterogeneity 

across different GWAS study populations. Additionally, an alternative Bayesian analysis has 

been developed for the tree-structured phenotypic model (referred as TreeWAS).[27, 31] In 

principle, it models the genetic coefficients across all phenotypes and a Markov process is 

applied to allow the genetic coefficients to evolve down the tree structure; Bayes factor statistic 

is calculated to evaluate the phenotypic associations. An example study using both PheWAS 

and TreeWAS analysis was performed by Li X et al. in which they identified several novel 

phenotypic associations in TreeWAS.[19] 

Step 5: Interpretation of PheWAS results 

Similar to GWAS, PheWAS could be regarded as a hypothesis generating analysis. When 

significant genotype-phenotype associations are identified, replication is needed to ensure that 

the positive results represent credible associations and are not chance findings or artifacts due 



 

 9 

to uncontrolled biases. Appropriate replication should be conducted in independent populations 

to validate the PheWAS findings. Furthermore, adjustment for specific covariates should be 

performed in sensitivity analyses to provide more accurate effect estimate. Finally, possible 

interpretations such as causality, pleiotropy, true comorbidity or confounded phenotype 

relationships should be taken into account to understand the PheWAS associations. Currently, 

a novel strategy that firstly performs a PheWAS analysis and then applies MR to validate 

significant PheWAS findings has become an efficient way to explore the causal effects of an 

exposure (e.g., specific biomarker) on a large number of phenotypes. For example, Li X et al. 

performed a PheWAS to identify disease outcomes associated with genetic risk loci of SUA 

level and then implemented MR analysis to investigate the causal relevance between SUA level 

and identified disease outcomes.[32] MendelianRandomization[33] and TwoSampleMR[34] 

are commonly used packages. Additionally, generalized summary statistic based Mendelian 

randomization (GSMR) was developed to perform bi-directional MR analysis and distinguish 

genetic pleiotropy from genetic linkage using the heterogeneity in dependent instrument 

(HEIDI) test.[35] For example, Li X et al. investigated the phenotypic associations of multiple 

SUA genetic loci and applied the HEIDI approach to identify independent causal variants that 

affect multiple health conditions.[32] 

 

Step 6: Visualization of PheWAS results 

We identified a number of useful tools that could be used to graphically represent PheWAS 

results, such as PheWAS-View[36] and PhenoGram.[37] Manhattan plot and heatmap are 

commonly used to visualize PheWAS results, and they could be generated by the PheWAS-

View tool. Manhattan plot can be used to visualize all association results across phenotypes and 

heatmap plot can distinguish between correlated phenotypes and possible pleiotropy by taking 

all pairwise correlation between coefficients into account (Supplementary Figure 1A-1B). 

PhenoGram is another web-based tool that can be used to visualize the genomic or single 

chromosomal coverage of SNPs, and the plot can display the shared genomic information 

among different phenotypes (Supplementary Figure 1C). Both PheWAS-View and 

PhenoGram have been widely employed to visually integrate PheWAS results in the published 

studies.[28, 38-45] 

Online resources and tools for PheWAS analysis 

Multiple alternative approaches used for PheWAS analysis have been developed. PheWAS 

package is a commonly used software to perform PheWAS analysis by integrating ICD-9 and 

ICD-10 codes. Additionally, SPAtest[46] and SAIGE[47] are options which are more 

computationally efficient and scalable to PheWAS analysis in large cohorts and biobanks by 

using the saddlepoint approximation (SPA) method, a powerful tool for obtaining accurate 

expressions for densities and distribution functions.[48, 49] In term of its application to 

PheWAS, SPA has the ability to correct the inflated type I error caused by the unbalanced case-
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control ratio through adjusting single-variant score statistics and is faster than other existing 

rare-variant tests. Based on the availability of multi-omic data such as genotype markers 

(genome), gene expression measurements (transcriptome) and clinical traits measurements 

(phenome), BioBin[50] and GenAMap[51] were developed to enable the identification of the 

biological mechanisms underlying significant PheWAS associations. In particular, BioBin can 

be applied for PheWAS analysis of rare genetic variant to enhance study power. Similarly, 

PLATO[52] is suitable for analyzing rare variant PheWAS and also applicable to analyze non-

genetic data such as environmental data. Moreover, PHESANT is another tool made available 

to test the association of a specified trait with all variables in UK Biobank.[53] All these afore 

mentioned software have their own strengths and weaknesses. The most appropriate tool could 

be applied based on the motivation for performing PheWAS as well as the data structure. For 

example, researchers can apply BioBin, SPAtest and SAIGE to increase the power of PheWAS 

for binary phenotypes by dealing with extremely unbalanced case-control ratios or rare 

outcomes in large biobank data. 

By taking advantage of the wide range of publicly available datasets, a number of large 

integrated databases and resources are made available to implement PheWAS analysis (Table 

3). PheWAS catalog is a publicly available resource of a large-scale PheWAS testing for the 

associations of SNPs derived from the NHGRI-EBI GWAS catalog with a spectrum of 

phenotypes.[15] Similarly, PhenoScanner is a curated database of publicly available results 

from genetic association studies, aiming to facilitate phenome scans and provide insights for 

the understanding of disease pathways and biology.[54] Other platforms such as MR-Base[34] 

and GeneATLAS[55] contain millions of associations between genetic variants and traits 

identified from previous GWASs and also allow the potential phenotypic relationships to be 

efficiently evaluated in PheWAS analysis. 

 

Discussion 

We conducted a systematic review of all published PheWAS studies and summarized the main 

steps for performing a PheWAS as well as the characteristics of commonly used software for 

each step. The strengths, challenges, and potential implications for future PheWAS are further 

discussed here. 

Advantages of PheWAS 

PheWAS is suggested to be an efficient way to test for novel genotype-phenotype associations. 

A unique advantage of PheWAS is that it has the ability to explore associations of genetic 
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predictors with a wide spectrum of phenotypes simultaneously. Besides, among the identified 

phenotypic associations, multiple genetic variants are found to be significantly associated with 

two or more phenotypes, indicating the capacity of PheWAS in detecting pleiotropic 

variants.[15] The identification of genetic pleiotropy provides significant insight into the shared 

genetic etiologies of multiple diseases. For example, Zheutlin AB et al. identified that the PRS 

of schizophrenia was also associated with other psychiatric disorders such as anxiety, 

neurological and personality disorders, suicidal behavior and memory loss, indicating shared 

genetic risk among these phenotypes.[56] PheWAS also serves as a useful tool to identify 

potential causal relationships across phenotypes. Focusing on variants that have known 

biological function and/or clinical significance, PheWAS has the capacity to simplify the 

interpretation of novel PheWAS results by directly applying the background information of 

genetic variants and thus uncover potential causality.[26] For example, Salem JE et al. created 

a PRS using genetic variants related to thyrotropin levels and found a causal relationship 

between thyrotropin levels and atrial fibrillation.[57] 

Challenges and future directions for PheWAS 

There are several challenges in the current scope of PheWAS. Most PheWASs focus on SNPs 

identified by GWAS. However, GWAS findings only account for a small proportion of the 

genetic variance of a specific biomarker and the majority of the GWAS findings do not represent 

functional variants, resulting in a big amount of information that could be potentially 

informative underutilized. An alternate PheWAS approach could be to focus on candidate SNPs 

or variants derived from next generation sequencing (NGS), which captures a great deal of 

genetic data across human genome including indels, complex rearrangements, copy number 

variants and many rare variants.[58] This strategy allows a PheWAS for every SNP or variant 

across the genome, which can be regarded as a complement to the current PheWAS-by-GWAS 

approach. Furthermore, non-genetic variables can also serve as the focus of PheWAS. Liao KP 

et al. studied the association between rheumatoid arthritis (RA) related autoantibodies levels 

and multiple clinical phenotypes.[59] Cai W et al. applied PheWAS to explore the association 

of health care costs with inflammatory bowel diseases.[24] 

Selection of appropriate covariates for adjustment is an important issue in PheWAS in order to 

derive unbiased estimates. The PheWAS design uses genetic variants as instruments (IVs) to 

assess the influence of modifiable exposures on a wide range of health outcomes. As germline 

genetic variants are generally independent of confounding factors and are determined at 

conception, adjustment for a wide range of traditional confounders is usually not suggested. 

However, in some cases, adjustment for covariates is necessary to ensure validity of the IVs, as 

the IV assumptions affect only a subgroup of interest. An example is the case of population 
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stratification, in which the sample population consists of subpopulations (e.g., ethnic subgroups) 

that have different distributions of the IVs and outcome. Association between the IVs and 

outcome may solely correspond to differences in ethnicity and not to any biological effects of 

the exposure. This can be addressed at least partially by adjusting for genetic PCs. Additionally, 

if there are measured covariates, which explain variation in the exposure or a continuous 

outcome, and which are not on the causal pathway between exposure and outcome, then they 

could be adjusted as covariates to increase the statistical power. However, it should be done 

with cautions as this may lead to collider bias when a covariate is on the causal pathway 

between exposure and outcome or causally downstream of a collider.[60] As PheWAS examines 

the associations with a wide range of phenotypes, it is impractical to assess the risk of collider 

bias for all disease outcomes. Therefore, adjustment for additional covariates is generally 

discouraged in the primary analysis. Instead, a sensitivity analysis after PheWAS to adjust for 

covariates specific to the identified genotype-phenotype association of interest should be 

performed to complement the interpretation of the PheWAS results. 

As we are moving towards genome-wide PheWAS, the number of genetic variants involved in 

the PheWAS analysis will undoubtedly grow. In addition, as the collection of patient health data 

increases, more phenotypes will become available. Therefore, PheWAS could be challenged by 

a growing multiple comparison burden. Common methods such as Bonferroni correction can 

be used for correcting for multiple testing. However, due to the large number of phenotypes 

involved in the PheWAS analysis as well as the inter-correlations between phenotypes, 

Bonferroni method is overly strict. Although FDR, inter-data replication and permutation 

perform better in calculating the pairwise correlation between the phenotypes, still more 

advanced methods need to be developed in the future to correct more efficiently for multiple 

tests. Notably, both type 1 error rate (false positives) and type 2 error rate (false negatives) 

should be controlled in the future development of robust strategies for dealing with multiple 

testing.[61] 

Current EMR-based PheWAS applies an automatic phenotyping algorithm based on ICD codes. 

Although using ICD codes to define the phenome is efficient and cost-effective, it also has some 

disadvantages. It has already been noted that phenotyping based on ICD coding can lead to an 

increased number of false positive in which billing codes do not represent medical conditions.[4] 

To address this, specificity can be increased by adopting rigid threshold approaches such as the 

‘rule-of-two’, which means that cases are defined when there are at least two instances of that 

code in their records.[62] However, the sensitivity (detection rate) may also fall thus reducing 

the number of cases, which could affect the power of the study. Besides, phenotyping using 

thresholding methods does not take total health care utilization (i.e. total number of the billing 

codes for a specific phenotype) into consideration, resulting in different probabilities to be a 



 

 13 

case despite the numbers of diagnosis codes are the same. Thus, more advanced phenotyping 

methods are warranted to be established for future PheWAS studies. An improvement has been 

made by PheProb approach which clusters patients into two groups (likely cases and likely non-

cases) based on the probability of being a case calculated using the number of billing codes and 

total health care utilization.[63] EMR-based PheWAS is limited to binary disease phenotypes, 

future efforts should be made to expand the phenotypic domains by including other quantitative 

traits such as laboratory values, body measurements or imaging data. For example, Córdova-

Palomera A et al. created a PRS for aortic valve area using genotyping data and aortic valve 

area measurements from magnetic resonance imaging (MRI) sequence data in UK Biobank and 

then performed a PheWAS analysis to identify genetic comorbidities.[64] This study illustrated 

the use of automated phenotyping of cardiac imaging data to investigate the genetic etiology of 

aortic valve diseases, uncover the correlations between genetic factors and cardiac anatomy, 

and guide clinical diagnosis and prediction. Thus, expanding the scope of PheWAS analysis to 

include quantitative traits offers an opportunity to detect associations with subclinical 

phenotypes. 

Although identification of cross-phenotype effects is a strength of PheWAS, the biggest 

challenge is the interpretation of the observed associations. It is challenging to identify the 

biological mechanisms and clinical significance behind PheWAS associations when utilizing 

GWAS SNPs, which are predominantly tag SNPs and reside primarily in intergenic regions 

with unknown function. In addition, novel bioinformatics methods are warranted to be 

developed to conduct a series of post-PheWAS analyses to functionally characterize the variants. 

Firstly, fine mapping is helpful to reveal the causal variants that are in linkage disequilibrium 

(LD) with the markers.[65] Then, functional annotation of the causal variants (gene location, 

missense or nonsense) based on public available databases such as PolyPhen[66] and SIFT[67] 

can provide important insights for biological function. Furthermore, quantitative trait loci (QTL) 

analyses on multi-omic data including gene expression, protein activity and metabolite level 

can help identify the regulatory changes caused by mutations.[68, 69]. The identified cross-

phenotype effects can also occur when the associated gene is involved in different biological 

processes or only one pathway that has diverse effects on multiple phenotypes. In this case, 

pathway enrichment analysis can be carried out using public resources of pathways such as 

Gene Oncology (GO)[70] and Kyoto Encyclopedia of Genes and Genomes (KEGG)[71] to 

search for the biological connections among phenotypes. 

Clinical applications of PheWAS 

PheWAS has been recognized as a promising approach to establish novel treatment strategies 

through drug repositioning, which refers to the application of an existing therapeutic drug for 
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new indications that share common pathophysiology.[72, 73] Millwood IY et al. performed a 

PheWAS to identify genetic associations of a functional variant that inactivates lipoprotein-

associated phospholipase A2 (Lp-PLA2) activity with a wide range of disease outcomes. They 

found that lifelong lower Lp-PLA2 activity was not associated with major risks of vascular or 

non-vascular diseases.[74] This finding challenges the protective role of Lp-PLA2 inhibitor like 

darapladib in preventing major vascular diseases and provides important insights for further 

drug development. Moreover, Jerome RN et al. examined PheWAS data for 16 genes and 

detected therapeutic indications for 13 of 16 gene-targeted drugs.[75] Beyond repositioning, 

PheWAS approach could be used to predict potential side effects associated with drug use, 

which prompts drug development in the early stages of clinical trials.[76] So far, the PheWAS 

design has successfully elucidate the possible efficacy and adverse effects of antihypertensive 

drug,[77] lipid-lowering drug [78] and antidepressant drug.[38]  

 

Conclusions 

In summary, PheWAS provides an efficient way to identify phenotypic associations in a high-

throughput manner. PheWAS methods and associated software have evolved rapidly, although 

several challenges still remain to be overcome. In the future, even larger populations and more 

diverse data types will be involved in PheWAS analysis, which leads to a need for more 

optimized methods to be created. Applying biological knowledge in a standardized framework 

to aid the interpretation of PheWAS results is an essential part of future studies. Application of 

PheWAS approach in drug repurposing remains a research focus to prompt drug development. 

 

Abbreviations 

eMERGE Network: Electronic medical records and genomics network 

EMR: Electronic medical records 

FDR: False discovery rate 

GO: Gene oncology 

PRS: Polygenic risk scores 

GSMR: Generalized summary statistic based mendelian randomization 

GWAS: Genome wide association study 

HEIDI: Heterogeneity in dependent instrument 

ICD: International classification of diseases 

KEGG: Kyoto encyclopedia of genes and genomes 



 

 15 

LD: Linkage disequilibrium 

MR: Mendelian randomization 

MVP: Million veteran program 

NGS: Next generation sequencing 

PheWAS: Phenome-wide association study 

QC: Quality control 

QTL: Quantitative trait loci 

SNP: Single nucleotide polymorphism 

TreeWAS: Tree-structured phenotypic model 

 

Acknowledgements 

We thank all study participants for their contributions to this study. 

 

Competing interests 

The authors declare no competing interests. 

 

Funding 

This work was supported by funding for the infrastructure and staffing of the Edinburgh CRUK 

Cancer Research Centre. E.T. is supported by a CRUK Career Development Fellowship 

(C31250/A22804). 

 

Authors’ contributions 

Lijuan Wang: Conceptualization, Literature review, Data extraction, Writing-original draft. 

Xiaomeng Zhang: Conceptualization, Writing-review & editing. 

Xiangrui Meng: Conceptualization, Writing-review & editing. 

Fotios Koskeridis: Literature review, Data extraction, Writing-review & editing. 

Andrea Georgiou: Literature review, Data extraction, Writing-review & editing. 

Lili Yu: Data extraction. 

Harry Campbell: Conceptualization, Writing-review & editing.  

https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Campbell+H&cauthor_id=31626644


 

 16 

Evropi Theodoratou: Conceptualization, Supervision, Writing-review & editing. 

Xue Li: Conceptualization, Supervision, Writing-review & editing. 

All authors read and approved the final manuscript. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Theodoratou%20E%5bAuthor%5d&cauthor=true&cauthor_uid=32400092


 

 17 

Table 1. Characteristics of eligible studies. 

Characteristics Number of studies (%) 

Sample size (n = 178)  

Small (< 1,000 subjects) 5 (2.8) 

Large (1,000-9,999 subjects) 36 (20.2) 

Very Large (≥ 10,000 subjects) 137 (77.0) 

Definition of phenome (n = 178)  

EMR-based phenome 164 (92.1) 

Epidemiology-based phenome  14 (7.9) 

Predictor (n = 178)  

Single SNP  21 (11.8) 

Multiple SNPs were used to construct 

Polygenic risk score (PRS) 31 (17.4) 

Multiple SNPs  88 (49.4) 

Biomarker 10 (5.6) 

Other 28 (15.7) 

Conducted replication analysis (n = 178)  

Yes 73 (41.0) 

Validated PheWAS conclusion 69 (94.5) 

Did not validate PheWAS conclusion 4 (5.5) 

No 105 (59.0) 

Note: 17 papers introducing novel software were not included in this summary. 
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Table 2. Datasets used for PheWAS analysis. 

Datasets Genotype data 
Clinical 

endpoints 

Laboratory 

biomarkers 

Physical 

measurements 

Socio-economic 

factors 

AIDS Clinical Trials Group (ACTG) Network √ √ √   

Atherosclerosis Risk in Communities (ARIC) √ √ √ √ √ 

Avon Longitudinal Study of Parents and Children 

(ALSPAC) 
√ √ √ √ √ 

BioBank Japan Project (BBJ) √ √ √ √ √ 

BioMe Biobank √ √ √ √ √ 

China Kadoorie Biobank (CKB) √ √ √ √ √ 

Electronic Medical Records and Genomics 

(eMERGE) Network 
√ √ √ √ √ 

Estonian Biobank √ √ √ √ √ 

Genomics Evidence Neoplasia Information 

Exchange (GENIE) 
√ √    

Global Lipids Genetics Consortium (GLGC) √ √ √   

Integrative Psychiatric Research (iPSYCH) √ √ √ √ √ 

Lifelines cohort √ √ √ √ √ 

Long Life Family Study (LLFS) √ √ √ √ √ 

Mass General Brigham Biobank (MGBB) √ √ √ √ √ 

Michigan Genomics Initiative (MGI) √ √ √ √  

Million Veteran Program (MVP) √ √ √ √ √ 

Northern Nevada Cohort √ √    

Population Architecture using Genomics and 

Epidemiology (PAGE) Network 
√ √ √ √ √ 

Penn Medicine Biobank (PMBB) √ √ √   
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Twins Early Development Study (TEDS) √ √ √ √ √ 

UK Biobank (UKB) √ √ √ √ √ 

Women’s Health Initiative (WHI) √ √ √ √ √ 
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Table 3. Software integrating databases and resources for PheWAS analysis. 

Software Description Reference 

PheWAS catalogue A publicly available resource of PheWASs and their results. Denny JC et al., 2013 [15] 

PheKB An online collaborative environment supporting the workflow of 

building, sharing, and validating electronic phenotype algorithms.  

Kirby JC et al., 2016 [79] 

PhenoScanner A curated database of publicly available results from human 

genotype-phenotype association studies. 

Staley JR et al., 2016 [54] 

MR-Base A platform for Mendelian randomization and PheWAS by integrates 

a curated database of GWAS summary data, enabling millions of 

potential causal relationships to be systematically and efficiently 

evaluated in PheWAS. 

Hemani G et al., 2018 [34] 

GeneATLAS A large database of associations between hundreds of traits and 

millions of variants using the UK Biobank cohort. 

Canela-Xandri O et al., 

2018 [55] 
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Figure legends 

Figure 1. Flow chart of the study selection process of the systematic literature review of PheWAS studies. 

 

Figure 2. Flow chart of main steps to conduct PheWAS analysis. SNP: single nucleotide polymorphisms; PRS: 

polygenic risk score; EMR: electronic medical record; ICD: international classification of diseases; MR: 

mendelian randomization; IVW: inverse-variance weighted; FDR: false discovery rate. 
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