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Abstract: Individuals with severe mental illness have an increased risk of cardiometabolic diseases
compared to the general population. Shared risk factors and medication effects explain part of this
excess risk; however, there is growing evidence to suggest that shared biology (including genetic
variation) is likely to contribute to comorbidity between mental and physical illness. Contactins are a
family of genes involved in development of the nervous system and implicated, though genome-wide
association studies, in a wide range of psychological, psychiatric and cardiometabolic conditions.
Contactins are plausible candidates for shared pathology between mental and physical health.
We used data from UK Biobank to systematically assess how genetic variation in contactin genes was
associated with a wide range of psychological, psychiatric and cardiometabolic conditions. We also
investigated whether associations for cardiometabolic and psychological traits represented the same
or distinct signals and how the genetic variation might influence the measured traits. We identified:
A novel genetic association between variation in CNTN1 and current smoking; two independent
signals in CNTN4 for BMI; and demonstrated that associations between CNTN5 and neuroticism
were distinct from those between CNTN5 and blood pressure/HbA1c. There was no evidence that the
contactin genes contributed to shared aetiology between physical and mental illness

Keywords: contactins; psychiatric disorders; cardiometabolic diseases; hypertension; Type 2 diabetes;
genetic variation; single nucleotide polymorphisms; UK Biobank; gene expression

1. Introduction

Individuals with severe mental illness (SMI, such as schizophrenia, bipolar disorder and
major depressive disorder) have an increased risk of cardiovascular and metabolic diseases (CMD),
compared to the general population [1–3]. Indeed CMD (including obesity, type 2 diabetes,
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coronary artery disease and stroke) is a key factor in the reduced life expectancy observed for
those with severe mental illness (typically 15–20 years for schizophrenia and 10–15 years for bipolar
disorder [4]). Some risk factors for CMD are more common in severe mental illness, (such as physical
inactivity, poor diet, high alcohol consumption and cigarette smoking), or worsen with duration of
SMI (such as low socioeconomic status) and the side effects of psychotropic drugs (particularly atypical
antipsychotics) further increase CMD risk. There is also growing evidence to support the existence
of shared biological mechanisms [1,4–7], with observational studies proposing mechanisms such as
disrupted circadian rhythms, hypothalamic–pituitary axis dysfunction and abnormal inflammation [8].
If specific components of shared mechanisms for CMD and SMI can be identified, there is potential for
better prevention and treatment.

The family of contactin genes (CNTNs) represents a possible common mechanism between mental
and physical illness because genome-wide association studies (GWAS) have implicated contactins
in a wide variety of cardiometabolic and mental health conditions, summarized in Table 1. It has
yet to be determined whether the same or distinct genetic signals influence the cardiometabolic and
psychiatric/behavioural traits. Apart from these recent GWAS findings, the study of contactins has so
far been predominantly from a neurobiology perspective. Expression of contactins has been observed
in neurons, oligodendrocytes and oligodendrocyte precursors [9], and demonstrates involvement
in cell contact formation, axonal growth control and pathfinding, axonal domain organisation,
myelination, neuronal development and synaptogenesis [9]. Further, loss of contactin genes leads to
malformed axons and impaired nerve conduction [9]. Contactin expression is not restricted to the brain,
although understanding of functional effects of contactins outside of the brain is currently lacking.

Table 1. Summary of reported associations with contactin loci.

Locus DISEASE/TRAIT PMID

CNTN1

Antidepressant treatment resistance (>2 drugs prescribed) 30700811
Bipolar disorder 22925353

Blood protein levels 30072576
Cerebral amyloid deposition in APOEe4 non-carriers (PET imaging) 26252872

Cognitive ability in schizophrenia 31206164
Dementia and core Alzheimer’s disease neuropathologic changes 25188341

IgG glycosylation 23382691
Metabolite levels (X-11787) 23934736

Parkinson’s disease 24842889
Reaction time 29844566

CNTN2

Adventurousness 30643258
Blood protein levels 29875488, 28240269

Cerebrospinal fluid biomarker levels 28031287
Highest math class taken 30038396, 30038396

Red blood cell count 27863252
Schizophrenia 30285260, 26198764, 28991256

High density lipoprotein cholesterol levels 32203549
Type 2 Diabetes 32541925
Waist–hip ratio 30239722

CNTN3

Age at first sexual intercourse 27089180
Economic and political preferences 22566634

Educational attainment (years of education) 30038396
Frontal fibrosing alopecia 30850646

Heart rate response to recovery post exercise 29769521, 29497042
Paediatric bone mineral content (hip) 28181694

Peripheral arterial disease (traffic-related air pollution interaction) 27082954
Smoking initiation and quantity 30643251, 24665060

Systolic blood pressure 30224653
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Table 1. Cont.

Locus DISEASE/TRAIT PMID

CNTN4

Adolescent idiopathic scoliosis 30019117
Amyotrophic lateral sclerosis 19451621

Atypical femoral fracture in phosphonate treatment 31006051
White blood cell phenotypes 27863252, 29403010

Bisphosphonate-associated atypical femoral fracture 31006051
Blood pressure 17903302, 25189868

Blood protein levels 30072576, 29875488
Body Mass Index (change over time) in chronic obstructive

pulmonary disease 28044437

Brain connectivity 23471985

Chronotype and sleep variables 30696823, 27126917, 30804565,
30595370

Cognitive ability, years of educational attainment or
schizophrenia (pleiotropy) 31374203

Multiple psychiatric disorders
31835028, 28540026, 26198764,
30285260, 28991256, 30285260,
31268507, 31740837, 25056061

DNA methylation variation (age effect) 30348214
Gallbladder cancer 22318345

Gut microbiota 32572223
Immune biomaker levels 32066700, 27989323

Intelligence 22449649
Metabolite levels 23823483, 31005972, 24379826

Middle childhood and early adolescence aggressive behaviour 26087016
Monoclonal gammopathy of undetermined significance 30134812

Pit-and-fissure caries 24556642
Post bronchodilator FEV1/FVC ratio 26634245

Response to aripiprazole in schizophrenia 29503163
Self-reported math ability 30038396, 30038396

Sensorimotor dexterity 31596458
Smoking initiation (ever regular vs. never regular) 30643251

Stimulated adipocyte lipolysis 2180562
Tuberculosis 28928442

CNTN5

Blood cell phenotypes 32888493, 27863252, 30595370,
28957414

Protein levels in obesity 29234017

Bipolar and/or Depressive disorders 31926635, 31969693, 27089181,
29942085, 30643256, 29292387

Carotid intima media thickness interaction with smoking 32117412
Adolescent idiopathic scoliosis 30019117

Alcohol dependence 26365420
Atrial fibrillation 17903304

Blood protein levels 29875488, 30072576, 28240269
Bone mineral density (femoral neck) 26911590
Chronotype and sleep phenotypes 30696823, 30804565, 30595370

Core binding factor acute myeloid leukaemia 27903959
Educational attainment (MTAG) 30038396

Factor VII activity 30642921
Feeling miserable 29500382

Glycated haemoglobin levels 28898252
Gout vs. Hyperuricemia 31289104

Immune response to smallpox (secreted IL-2) 22610502
Interleukin-2 receptor antagonist levels 27989323

Life satisfaction 30643256
Loneliness (multivariate analysis) 27629369

Lung function (FEV1/FVC) 30595370
Menarche (age at onset) 23667675

Metastasis in stage I-III microsatellite instability low/stable colorectal
cancer (time to event) 30738427

Myopia (pathological) 23049088
Neurological blood protein biomarker levels 31320639

Neuroticism 30595370, 29942085, 29292387,
30643256, 27089181, 29292387

Objective response to lithium treatment in bipolar disorder 26503763
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Table 1. Cont.

Locus DISEASE/TRAIT PMID

Plasma kynurenine levels in major depressive disorder 29317604
Positive affect 30643256

Post bronchodilator FEV1/FVC ratio in COPD 26634245
Reaction time 29844566

Smoking initiation (ever regular vs. never regular) (MTAG) 30643251
Spatial memory 31596458

Suicidality 30745170
Systolic blood pressure 30595370
Trans fatty acid levels 25646338

Waist–hip ratio 25673412
Well-being spectrum (multivariate analysis) 30643256

Volumetric brain MRI 17903297

CNTN6

Caudate activity during reward 28927378
Depressive symptoms (stressful life events interaction) 27529621

Diastolic blood pressure 28270201
DNA methylation variation (age effect) 30348214

Gut microbiota 31519223, 27723756, 32572223
Iris colour (L* coordinate) 30895295

Loneliness 27629369
Metabolite levels 23823483, 22675492

Neurocognitive impairment in HIV-1 infection (continuous) 28447399
PR interval in Tripanosoma cruzi seropositivity 24324551

Prostate cancer (SNP x SNP interaction) 22219177
Subjective response to placebo treatment in childhood asthma (change

in cough/wheeze) 31557306

Systemic lupus erythematosus 24871463
Visceral adipose tissue/subcutaneous adipose tissue ratio 22589738

In this study we used data from ~400,000 individuals from UK Biobank study to determine whether
contactin genes contribute to a shared biology between CMD and SMI. Specifically, we (a) defined
the impact of genetic variation in the contactin loci on psychiatric, psychological and cardiometabolic
traits; (b) assessed in whether the genetic effects for CMD were distinct from, or shared with, those for
SMI; and (c) we investigated how the genetic variants impacted on the measured phenotypes.

2. Materials and Methods

2.1. Genes

Genes encoding members of the contactin family were identified using NCBI Gene and
chromosomal locations were defined by the UCSC genome browser (build 37). Regions of 400 kb up
and downstream of each gene were analysed (Table 2).

2.2. Cohort

The UK Biobank has been previously described in detail [10]. In short, 502,000 individuals were
recruited between 2006 and 2010 from 22 centres across the UK. All participants donated a blood sample
for DNA analysis as well as completing a physical assessment and extensive online questionnaires
detailing medical history (personal and family), lifestyle, education, and economic status. An online
“Thoughts and feelings” questionnaire was sent to a subset of individuals (those who had consented to
email contact) between 2016–2017. Only white British ancestry individuals were included in this study.
This project was completed under UK Biobank applications 6533 (PI. DJS) and 1755 (PI. JPP).

2.3. Genotyping

UK Biobank participants were genotyped using either the Affymetrix UK Biobank Axiom or the
Affymetrix BiLEVE Axiom array. Complete information regarding the genotyping, quality control,
and imputation, which were conducted centrally by UK Biobank, has been published [10,11]. This study
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used the fully imputed genetic data, which was released in March 2018. SNPs were excluded for minor
allele frequency (MAF) < 1%, imputation quality score < 0.4, deviation from the Hardy–Weinberg
equilibrium (p < 5× 10−6) or low call rate (<95%). Individuals were excluded for sex mismatch (reported
vs. genetic), relatedness (one each pair of individuals with a KING-estimate kinship coefficient > 0.0442
was randomly removed), low call rate (<95%), non-white British ancestry (self-reported and based on
principal component analysis) and quality control failure.

Table 2. Genes encoding the contactin family and the regions studied.

Gene Chr Start End −400 kb +400 kb

CNTN1 12 40,692,442 41,072,412 40,292,442 41,472,412
CNTN2 1 205,042,937 205,078,272 204,642,937 205,478,272
CNTN3 3 74,262,568 74,521,140 73,862,568 74,921,140
CNTN4 3 2,098,803 3,057,961 1,698,803 3,457,961
CNTN5 11 99,021,190 100,358,885 98,621,190 100,758,885
CNTN6 3 1,092,661 1,403,594 692,661 1,803,594

Where: Positions refer to build 37.

2.4. Phenotypes

The baseline mental health questionnaire in UK Biobank included questions to assess mood
instability (“Does your mood often go up and down?” variable #1920) and risk-taking behaviour
(“Would you describe yourself as someone who takes risks” variable #2040). Single item questions are
an imperfect measure of complex psychological traits; however, their validity has been demonstrated
relative to the expected associations with psychiatric disorders [12,13]. Additionally, the validity of the
risk-taking question has been demonstrated relative to more detailed phenotyping [14]. Neuroticism
was assessed using the Eysenck Personality Questionnaire (Revised Short Form) involving 12 yes/no
questions (one of which was variable #1920 regarding mood instability). A yes response was coded 1,
and these were added to give a score of between one and 12 for each individual. Of note, the mood
instability question is a component of the neuroticism score.

Psychiatric disorder phenotyping was based on the online mental health (“Thoughts and
Feelings”) questionnaire, completed between 2016 and 2017 (so between 6–9 years after baseline
assessment) [15]. This questionnaire gathered information on history of major depressive disorder
(MDD), bipolar disorder (BD), generalised anxiety disorder (GAD) and addiction. This enabled
classification of likely lifetime experience of these disorders [15].

Cardiometabolic phenotypes (body mass index (BMI), waist and hip circumferences, systolic and
diastolic blood pressure (SBP and DBP respectively)) were assessed in a standard manner. Waist-to-hip
circumference adjusted for BMI (WHRadjBMI) was calculated as per Shungin et al. [16]. Average SBP
and DBP were adjusted to reflect treatment-naïve levels, with addition of 15 mmHg and 10 mmHg
respectively, for those on anti-hypertensive medication prior to analysis [17]. Type 2 diabetes (T2D) was
defined as per Eastwood et al. [18]. Current smoking was assessed by questionnaire (variable #20116)
and analysed as a binary trait (Current smokers vs. never and former smokers). Cardiovascular disease
(CVD) was defined as of heart attack/myocardial infarction or angina (variable # 6150, assessed with
the question “has your doctor told you that you have/have had a heart attack/myocardial infarction
or angina”).

2.5. Genetic Analyses

All continuous phenotypes (except WHRadjBMI) were normally distributed and none required
transformation prior to analysis. The calculation of WHRadjBMI is normalised, sex-specific,
and includes adjustment for population stratification and age.

Genetic variants (specifically single nucleotide polymorphisms, SNPs) in the contactin loci were
selected after genetic quality control. In the six contactin loci, 23,225 SNPs were available for analysis.
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Pairwise analysis and pruning (PLINK 1.07 [19], -indep-pairwise command with default settings
(50 bp, 5 bp shift, LD r2 0.5)) resulted in 8008 independent SNPs. Genotype–phenotype analyses
were conducted in Plink v1.90 [20] using linear or logistic regression as appropriate (for continuous
and binary traits respectively), assuming additive allelic effects. With the exception of WHRadjBMI,
all analyses were adjusted for age, sex, population structure (8 principal components), and genotyping
chip. BMI and T2D were also adjusted for CVD case-control status. WHRadjBMI was only adjusted
for CVD case-control status. We defined Bonferroni-corrected significant associations as those with
p < 6.24 × 10−6 (8008 independent SNPs) and suggestive evidence of association as p < 1 × 10−5.
Conditional analyses, where the lead SNP was included as a covariate, was conducted to determine
whether there were any additional independent signals in the locus.

2.6. Data Mining

Linkage disequilibrium (LD) calculations were conducted using a randomly selected sample of
5000 unrelated white British ancestry individuals from UK Biobank, using Haploview [21]. Due to
substantial computing requirements, 5000 individuals was considered sufficient. The Genotype Tissue
Expression project (GTEx portal) was used to explore tissue expression patterns and genotype-specific
effects on tissue expression of contactin genes [22]. The GWAS catalogue was used to identify previously
reported associations with members of the CNTN family (20201008). All SNPs within the CNTN family
with suggestive (p < 1 × 10−5) or genome-wide evidence (p < 5 × 10−8) of association with at least
one phenotype were assessed for predicted functional effect using Variant Effect Predictor software
(VEP) [23].

3. Results

The cohort characteristics are presented in Table 3.

Table 3. UK Biobank cohort description.

Men Women All

N (% men) 185,228 217,635 402,863 (46.0)
Age (years) 57.1 (8.1) 56.7 (7.9) 56.9 (8.0)

WHR 0.94 (0.06) 0.82 (0.07) 0.87 (0.09)
BMI (kg/m2) 27.8 (4.2) 27.0 (5.1) 27.4 (4.8)
SBP (mmHg) 141 (17) 136 (19) 138 (19)
DBP (mmHg) 84 (10) 81 (10) 82 (10)
SBP * (mmHg) 145 (19) 138 (21) 141 (21)
DBP * (mmHg) 87 (11) 82 (11) 84 (11)

HbA1C
(mmol/mol) 36.3 (7.3) 35.7 (5.7) 36.0 (6.5)

Neuroticism score 3.6 (3.2) 4.6 (3.2) 4.1 (3.3)
CVD 5886 (3.2) 2294 (1.1) 8180 (2.03)
T2D 11,189 (6.0) 6232 (2.9) 17421 (4.3)
BD 875 (1.5) 999 (1.4) 1874 (1.5)

GAD 3069 (7.2) 6029 (12.8) 9098 (10.1)
MDD 9684 (19.8) 21,199 (35.0) 30,883 (28.2)

Addiction 3895 (6.9) 3580 (4.9) 7475 (5.8)
Mood instability 77,173 (41.7) 100,841 (46.3) 178,014 (44.2)

Risk-taking 18,519 (33.2) 13,702 (19.4) 32,221 (25.5)
Current Smoking 21,821 (11.8) 18,803 (8.7) 40,624 (10.1)

Where *, adjusted to reflect treatment-naïve levels; CVD, cardiovascular disease; BD, bipolar disorder;
GAD, generalised anxiety disorder; MDD, major depressive disorder. Continuous variables are presented as
means (standard deviation), binary variables are presented as N (%).

The significant associations between SNPs in the contactin loci and CMD- or SMI-related
phenotypes are summarised in Table 4.
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Table 4. Lead SNP by gene and phenotype.

Gene Trait Lead SNP A1 A1F N β/OR SE P

CNTN1 Smoking rs11174809 T 0.35 398,675 1.025 0.005 9.52 × 10−7

CNTN2 Risks rs35068223 T 0.19 377,622 1.036 0.007 1.77 × 10−7

CNTN2 WHRadjBMI rs6593925 G 0.09 401,149 −0.001 0.000 2.38 × 10−11

CNTN2 WHRadjBMI
* rs11240349 A 0.46 400,770 −0.001 0.000 3.98 × 10−8

CNTN4 BMI rs3856837 C 0.48 394,050 −0.054 0.011 4.28 × 10−7

CNTN4 BMI * rs4685542 C 0.14 391,199 −0.075 0.016 1.66 × 10−6

CNTN4 Risks rs62232818 T 0.10 383,065 1.042 0.009 3.09 × 10−6

CNTN5 Neuroticism rs10790767 T 0.40 324,775 0.042 0.008 2.43 × 10−7

CNTN5 HbA1C rs11606890 C 0.10 384,094 −0.007 0.001 1.14 × 10−37

CNTN5 DBP rs633185 G 0.29 370,841 −0.459 0.028 1.94 × 10−59

CNTN5 SBP rs633185 G 0.29 370,770 −0.787 0.049 2.85 × 10−58

WhereA1, effect allele; A1F, effect allele frequency; risks, risk-taking behaviour, 1:204945338 = rs35068223;
*, conditional analysis.

3.1. Variation in CNTN Genes

At the CNTN1 locus, 9 SNPs demonstrated significant associations with current smoking (lead SNP
rs11174809, p = 9.52 × 10−7, Figure 1A, and Table S1). Analysis of linkage disequilibrium between these
SNPs demonstrate that they represent the same signal (Figure S1A).
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(K)  
 Figure 1. Regional plots demonstrating genetic associations between CNTN1 and (A) current smoking,

CNTN2 and (B) risk-taking behaviour, (C) WHRadjBMI and (D) WHRadjBMI conditioned on rs6593925,
CNTN4 and (E) BMI, (F) BMI conditioned on rs3856837, (G) risk-taking behaviour and CNTN5 and
(H) neuroticism score, (I) DBP, (J) SBP and (K) HbA1c.

At the CNTN2 locus, significant evidence of association was demonstrated for seven SNPs with
risk-taking behaviour (lead rs35068223, p = 1.77 × 10−7, Figure 1B and Table S2) and 133 SNPs with
WHRadjBMI (rs6593925, p = 2.38 × 10−11, Figure 1C). Further analysis of WHRadjBMI, conditioning on
rs6593925, demonstrated a second signal with 70 significant associations (rs11240349, p = 3.98 × 10−8,
Figure 1D). This SNP was only nominally significant (p = 0.0014) in the initial analysis; however, there are
five SNPs which were significant in both the unconditional and conditional analyses (rs12048743,
p = 2.86 × 10−10 and 2.90 × 10−6, respectively). Analysis of LD demonstrates that the risk-taking and
WHRadjBMI signals are independent, and that the region has many small blocks of LD (Figure S1B).

For variants in the CNTN4 locus, 58 significant associations were evident for BMI (lead rs3856837,
p = 4.28 × 10−7, Figure 1E and Table S3). Further analysis of BMI, specifically conditioning on rs3856837,
demonstrated a second significant signal ~360Kb downstream (rs4685542, p = 1.66 × 10−6, Figure 1F).
One SNP was significantly associated with risk-taking behaviour (lead rs62232818, p = 3.09 × 10−6,
Figure 1G). Analysis of LD structure of this region indicates that the two BMI signals and the risk-taking
signal are distinct from each other (Figure S1C).

The CNTN5 locus (Table S4) demonstrated significant associations for 64 variants with the
neuroticism score (rs10790767, p = 2.43 × 10−7, Figure 1H), 409 variants with SBP (rs633185,
p = 2.25 × 10−58, Figure 1I), 395 variants with DBP (rs633185, p = 1.94 × 10−59, Figure 1J) and 301
with HbA1C (rs11606890, p = 1.14 × 10−37, Figure 1K). As shown in Figure 1, the SNPs associated
with neuroticism score did not overlap with those for SBP/DBP or HbA1c. Indeed, these signals
are ~1Mbp apart and analysis of LD across this locus suggests that they are independent signals
(Figure S1D). In contrast, there was a great deal of overlap between the SNPs associated with SBP
and DBP. Whilst the signals associated with HbA1C overlap with those for SBP and DBP, the SNPs
are significantly associated either with blood pressure, or with HbA1c, but not with both (Table S4).
Analysis of LD in this region suggests that the signals for HbA1C and blood pressure are independent
(LD R2 = 0.16). No significant associations were observed for SNPs in the CNTN3 or CNTN6 loci.

3.2. Comparison with Previous Findings

Previous findings are summarised in Table S5. Where it is possible to compare with previous reports,
the effect directions observed in this study are, for the most part, consistent. Where inconsistency
is observed, it is highly likely that differences in phenotyping and/or sample size are the reason.
We identified consistent effect direction for SNPs in CNTN5 and neuroticism [24], smoking [25],
WHRadjBMI [16], and HbA1C [26], CNTN4 and smoking [25], and CNTN2 and T2D [27]. In the CNTN2
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locus, rs3903399-T allele has previously been associated with increased WHRadjBMI [28], whereas the
WHRadjBMI-increasing allele in this study was rs3903399-C (Table S5). The rs3903399-T has also been
associated with increased high density lipoprotein (HDL) cholesterol levels [29], which would be
consistent with our findings for WHRadjBMI.

3.3. Effect Prediction in VEP

In order to identify any SNPs with predicted functional effects (that is those expected to change the
protein sequence or quantity), all SNPs within the CNTN loci with significant evidence of association
with at least one phenotype, were assessed for predicted functional effect using the Variant Effect
Predictor [23] (Table S6). Only one missense variant was identified (rs3851294), but this is predicted to
be benign/tolerated. The remaining variants had no clear functional effect.

3.4. Gene Expression Patterns

Tissue expression patterns of the CNTN genes are presented in Figure 2. Expression of CNTN1
(Figure 2A) is highest in the brain, therefore the association of SNPs in this gene with a behavioural trait
such as smoking is plausible. CNTN2 is predominantly expressed in the brain (Figure 2B), which is
consistent with effects on behavioural traits such as risk-taking. The effect on WHRadjBMI is less
clear but could be indirectly through influencing eating preferences and behaviours. Whilst there is
evidence to suggest that genetic variants associated with WHRadjBMI act through expression of genes
in adipose tissue, [16], there is significant [16,30] genetic overlap of this trait with BMI, whereby genetic
variants are through to act via gene expression in the brain [30]. In contrast, CNTN4 is widely expressed
(Figure 2D), with brain (consistent with risk-taking behaviour) and adipose (consistent with BMI)
expression being observed. The expression of CNTN5 is predominantly observed (Figure 2E) in the
brain (consistent with neuroticism). Whilst CNTN5 expression was also observed in arterial tissue
(consistent with SBP and DBP) and the pituitary gland (consistent with HbA1c).
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and oesophageal muscle. Additional eQTL SNPs for CNTN2 which overlap with those significantly 
associated with risk-taking behaviour or WHRadjBMI demonstrated effects in a variety of tissues, 
which is curious given that CNTN2 expression is predominantly in the brain (Table S7). How 
expression of CNTN2 levels in the oesophagus, nerve, skin or thyroid influence risk-taking behaviour 
or WHRadjBMI is unclear. Irrespective of the tissue analysed, the WHRadjBMI-lowering allele was 
associated with reduced levels of CNTN2 expression. Of the SNPs in CNTN5, those associated with 
blood pressure and HbA1c are downstream of CNTN5 and closer to ARHGAP42 and TMEM133 than 
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Figure 2. Tissue expression profiles of members of the CNTN family in the GTex dataset(A) CNTN1,
(B) CNTN2, (C) CNTN3, (D) CNTN4, (E) CNTN5 and (F) CNTN6.

3.5. Genotype-Specific Expression Patterns for Associated SNPs (eQTLs)

Using the GTEx data, genetic variants with genotype-specific effects on CNTN gene expression were
identified (Table S7). Of the eQTLs identified for the contactin family, only those for CNTN2 expression
levels overlapped with significant associations in these analyses. The missense SNP rs3851294 (CNTN2,
associated with WHRadjBMI) shows effects on CNTN2 expression in the thyroid and oesophageal
muscle. Additional eQTL SNPs for CNTN2 which overlap with those significantly associated with
risk-taking behaviour or WHRadjBMI demonstrated effects in a variety of tissues, which is curious
given that CNTN2 expression is predominantly in the brain (Table S7). How expression of CNTN2
levels in the oesophagus, nerve, skin or thyroid influence risk-taking behaviour or WHRadjBMI is
unclear. Irrespective of the tissue analysed, the WHRadjBMI-lowering allele was associated with
reduced levels of CNTN2 expression. Of the SNPs in CNTN5, those associated with blood pressure and
HbA1c are downstream of CNTN5 and closer to ARHGAP42 and TMEM133 than to CNTN5. The lead
SNPs for these signals have genotype-specific effects on expression of ARHGAP42 and TMEM133 in
arterial and heart tissues (Table S8), suggesting that the effect of these signals are via ARHGAP42 or
TMEM133 rather than CNTN5.
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4. Discussion

This study, of multiple phenotypes in a single-protocol, very large population-based cohort,
identified genomic loci for current smoking at CNTN1, risk-taking and WHRadjBMI at CNTN2,
risk-taking and BMI at CNTN4 and neuroticism, DBP/SBP and HbA1c at CNTN5. Loci for psychological
traits were independent from those for cardio-metabolic traits, therefore these results do not support
contactins as a putative biological link between mental and physical illness.

The association between CNTN1 and current smoking is novel. This locus has previously been
associated with neuro-psychiatric (Parkinson’s disease [31], Alzheimer’s disease [32], bipolar disorder [33]
and antidepressant response [34]), but not behavioural traits. Whilst CNTN1 gene expression is not limited
to the brain, this study provides no evidence for a role of CNTN1 in cardio-metabolic disease.

We provide replication of the association between CNTN2 and risk-taking behaviour/
adventurousness [35], however the association with a metabolic phenotype, specifically WHRadjBMI,
is novel. CNTN2 has previously been associated with WHR and schizophrenia [36–38]. Whilst it has
been established that patients with schizophrenia have a tendency towards abdominal obesity [3,4],
our results suggest that the signals for psychiatric and metabolic phenotypes are independent
signals, with the schizophrenia-associated SNPs showing only nominal associations with BMI (lowest
p = 0.0053).

Whilst an association between the CNTN4 locus and longitudinal BMI has previously been
reported [39], our demonstration of two independent signals for BMI is novel. In addition,
the association of this region with risk-taking is novel. Although it has previously been demonstrated
that genetic regulation of risk-taking overlaps with that for schizophrenia, and CNTN4 has previously
been associated with schizophrenia [12,40], the null association between schizophrenia-associated
SNPs and risk-taking in this study suggests that the signals for these traits are independent.

The associations observed between CNTN5 and neuroticism, blood pressure and HbA1c are not
novel, however the demonstration that these signals are independent of each other is an advancement
in understanding the impact of this locus on biology. It is worth noting there is a cntn5-knockout
mouse model, which reported no behavioural phenotype but effects on obesity and blood pressure
variables [41]. According to the NCBI genome data viewer (mus musculus), arhgap42 overlaps the cntn5
gene, therefore it is conceivable that the cntn5-knockout model also results in arhgap42 loss of function
and thus a phenotype consistent with that in humans.

This study did not find evidence for the effects of the contactin family on MDD; this is unlikely
to be due to the number of cases present. One possibility is due to imprecise phenotyping: We used
a measure of probable lifetime MDD; a confirmed diagnosis of MDD as per DSM or ICD criteria
may have yielded different results. Investigating the locus in the Psychiatric Genetics Consortium
(PGC) data was considered; however, the conclusions drawn would be less clear: The PGC data also
using highly heterogeneous phenotype definitions, depending upon where the samples were collected,
and covariates differ between cohorts and analyses. In addition, assessing the independence of signals
(multiple signals for one trait or between multiple traits) is more difficult from summary statistics,
and could be biased by the population structure/ancestry and/or how the population structure was
accounted for in the analysis. Hence restricting the analysis to only UK Biobank meant that the
assessment of genetic architecture of the contactin genes was robust, even if the lack of clinical diagnosis
for psychiatric illness is a weakness. Additionally, due to the nature of individuals recruited to UK
Biobank, there are unlikely to be many cases of severe MDD. Having a preponderance of mild/single
episode depression cases could dilute the phenotype, therefore differences between MDD cases and
controls (which potentially include subclinical or undiagnosed MDD) are relatively small.

MDD is a heterogenous phenotype [42–44]. Attempts to subdivide MDD [45] have included
by clinical presentation (e.g., atypical, melancholic, psychotic), by timing of onset (age of onset,
seasonality, postpartum), course (single episode, recurrent, chronic) and severity. Subtypes of MDD
may have different genetic risk factors, for example, childhood-onset MDD is genetically more similar
to schizophrenia and bipolar disorder than to adult-onset MDD [46]. However, large-scale studies



Genes 2020, 11, 1326 14 of 17

assessing whether different clinical presentations of MDD have different genetic risk factors are in
the early stages [47], despite increasing evidence for different biological pathways being implicated
(HPA-axis dysregulation for melancholic depression and inflammation in atypical depression) [8,46,48].
It remains to be seen whether the CNTN family influences subtypes of depression specifically.

We did not find evidence of association between the contactin family and addiction, mood instability,
bipolar disorder, ischaemic heart disease and type 2 diabetes. CNTN5 has been considered a candidate
gene for bipolar disorder [9], however we did not find evidence of an association, potentially because
of the relatively small number of BD cases in this cohort.

5. Conclusions

In summary, our systematic analysis of genetic variation in the CNTN family of genes identified
roles for CNTN1, CNTN2, CNTN4 and CNTN5 in a variety of psychological and cardiometabolic
traits. The evidence presented here suggests that the effects of these genes on psychological and
cardiometabolic traits are likely distinct, with no evidence of shared mechanisms.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/11/1326/s1,
Figure S1: Linkage disequilibrium within the contactin genes: (A) CNTN1, (B) CNTN2, (C) CNTN4, (D) CNTN5.
Red dots indicate lead SNPs. Table S1: Genetic variants in CNTN1 significantly associated with current smoking.
Table S2: Genetic variants in CNTN2 significantly associated with WHRadjBMI or risk-taking. Table S3: Genetic
variants in CNTN4 with significant associations with BMI or risk-taking. Table S4: Genetic variants in CNTN5
significantly associated with neuroticism, systolic and diastolic blood pressure, HbA1c. Table S5: Previously
reported associations with the CNTN family of genes. Table S6: Predicted effects of SNPs significantly associated
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