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Abstract. Network intrusion detection (NID) models increasingly rely
on learning traffic microstructures that consist of pattern sequences in
features such as interarrival time, size, or packet flags. We argue that
precise and reproducible control over traffic microstructures is crucial
to understand and improve NID-model behaviour. We demonstrate that
probing a traffic classifier with appropriately generated microstructures
reveals links between misclassifications and traffic characteristics, and
correspondingly lets us improve the false positive rate by more than
500%. We examine how specific factors such as network congestion, load,
conducted activity, or protocol implementation impact traffic microstruc-
tures, and how well their influence can be isolated in a controlled and
near-deterministic traffic generation process. We then introduce DetGen,
a traffic generation tool that provides precise microstructure control, and
demonstrate how to generate traffic suitable to probe pre-trained NID-
models.

1 Introduction

Scientific machine learning model development requires both model evalua-
tion, in which the overall predictive quality of a model is assessed to identify
the best model, as well as model validation, in which the behaviour and limita-
tions of a model is assessed through targeted model probing, as depicted in
Fig. 1. Model validation is essential to understand how particular data structures
are processed, and enables researchers to develop their models accordingly. Data
generation tools for rapid model probing such as the What-If tool [32] underline
the importance of model validation, but are not suitable for providing probing
data that resembles the complex structures found in network packet streams.

Machine-learning breakthroughs in many fields have been reliant on a pre-
cise understanding of data structure and corresponding descriptive labelling to
develop more suitable models. In automatic speech recognition (ASR), tone and
emotions can alter the meaning of a sentence significantly. The huge automati-
cally gathered speech datasets however only contain speech snippets and if pos-
sible their plain transcripts. While modern speech models are in principle able to
learn implicit structures such as emotions without explicit labels, it is impossible
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Fig. 1: Model evaluation and model probing with controlled data characteristics.

to determine the cause for systematic error when they are not. Datasets that
contain labelled specialised speech characteristics such as the Ryerson Database
of Emotional Speech and Song (RAVDESS) [15] not only allow researchers to
identify if their model is susceptible to structural misclassification through tar-
geted probing, but also inspire new methods to capture and understand these
implicit structures [7], which in turn leads to design improvements of general
speech recognition models [11].

Prominent network intrusion detection methods as Kitsune [19] or DeepCorr
[21] learn structures in the sizes, flags, or interarrival times (IATs) of packet
sequences for decision-making. These structures reveal information about attack
behaviour, but are also influenced by a number of other factors such as network
congestion or the transmitted data. We define traffic microstructures either
as reoccurring patterns in the metadata of packet sequences within a connection,
such as the packet sizes of a Diffie-Hellman exchange or typical IATs of video
streaming, or as patterns within the summary statistics of individual connections
or short sequences observed on a host such as the pattern of port 53 (DNS)
connections being followed by port 80 or 443 connections (HTTP/S). No effort
has been made so far to monitor or control these factors to probe models for
specific microstructures, with the current quasi-benchmark NID-datasets paying
more attention to the inclusion of specific attacks and topologies rather than the
documentation of the generated traffic. This situation has so far led researchers
to often simply evaluate a variety of ML-models on these datasets in the hope of
edging out competitors, without understanding model flaws and corresponding
data structures through targeted probing.

We demonstrate how to produce traffic effectively to probe a state-of-the-art
traffic classifier, and why a certain degree of generative determinism is required
for this to isolate the influence of traffic microstructures. The model insights
and corresponding performance improvements achieved through probing moti-
vate our experimental examination of various influence factors over microstruc-
tures and how to control them during traffic generation. Finally, we present
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DetGen, a traffic generation tool that provides near-deterministic control over
microstructure-shaping factors such as conducted activity, communication fail-
ures or network congestion to generate reproducible traffic samples along with
corresponding ground-truth labels.

This work provides the following contributions:

1. We demonstrate why model probing with controllable traffic microstructure
is a crucial step to understand and ultimately improve model behaviour
by probing a state-of-the-art LSTM traffic classifier and lowering its false
positives five-fold.

2. We discuss requirements for traffic data suitable to probe models pre-trained
on a given NIDS-dataset, and demonstrate how to generate probing traffic
effectively through DetGen-IDS, a dedicated probing dataset.

3. We examine experimentally how different factors affect traffic microstruc-
tures, and how well they can be controlled in a more effective manner when
compared to common VM-based traffic generation setups.

4. We propose DetGen, a container-based traffic generation paradigm that pro-
vides accurate control and labels over traffic microstructures, and experimen-
tally demonstrate the level of provided generative determinism compared to
traditional generation set-ups.

DetGen and the DetGen-IDS data are openly accessible for researchers on
GitHub.

1.1 Outline

The remainder of the paper is organized as follows: Section 2 discusses the need
for generating probing data with sufficient microstructure control before present-
ing the probing and corresponding improvement of a state-of-the-art intrusion
detection model as a motivating example. Section 3 proceeds to examine over
which traffic characteristics DetGen exerts control and the corresponding con-
trol level. Section 4 provides details over the design paradigm of DetGen and
the resulting advantages over traditional setups, while Section 5 discusses the
level of control DetGen provides when compared to traditional setups. Section 6
discusses how to generate probing data appropriately for pretained models, and
provides an overview over the DetGen-IDS data. Section 7 concludes our work.

1.2 Existing datasets and corresponding ground-truth information

Real-world NID-datasets such as those from the Los Alamos National Labora-
tory [12] (LANL) or the University of Grenada [16] provide large amounts of
data from a particular network in the form of flow records. Due to the lack of
monitoring and traffic anonymisation, it is impossible for researchers to extract
detailed information about the specific computational activity associated with
a particular traffic sample. Synthetic NID-datasets such as the CICIDS-17 and
18 [26] or the UNSW-NB-15 [20] aim to provide traffic from a wide range of
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attacks as well as an enterprise-like topology in the form of pcap-files and flow-
statistics. The CICIDS-17 data for example contains 5 days of network traffic
from 12 host that include different Windows, Ubuntu, and Web-Server versions,
and covers attacks from probing and DoS to smaller SQL-injections and infil-
trations. While some effort is put in the generation of benign activities using
activity scripting or traffic generators, we have seen no attention being spent at
monitoring these activities accordingly, which leaves researchers with the limited
information available through packet inspection. Furthermore, synthetic datasets
can be criticised for their limited activity range, such as the CICIDS-17 dataset
where more than 95% of FTP-transfers consist downloading the Wikipedia page
for ‘Encryption’ [24], which leads to insufficient structural nuances for effective
probing.

1.3 Scope of DetGen

The scope of DetGen is to generate traffic with near-deterministic control over
factors that influence microscopic packet- and flow-level structures. DetGen sep-
arates program executions and traffic capture into distinct containerised environ-
ments to exclude any background traffic events, and simulates influence factors
such as network congestion, communication failures, data transfer size, content
caching, or application implementation.

2 Methodology and example

Assume the following problem: You are designing a packet-level traffic classifier
which is generating a significant number of false positives, something that is
still a common problem for the state-of-the-art [22]. The false positives turn
out to be caused by a particular characteristic such as unsuccessful logins or
frequent connection restarts. However, existing real-world or synthetic datasets
do not contain the necessary information to associate traffic events with these
characteristics, which prevents you from identifying the misclassification cause
effectively. To address this problem, we need a way to controllably generate and
label traffic microstructures driven by these characteristics.

To provide an example, we look at a Long-Short-Term Memory (LSTM) net-
work, a deep learning design for sequential data, by Hwang et al. [9], which is
designed to classify attacks in web traffic and has achieved some of the highest
detection rates of packet-based classifiers in a recent survey [29]. Through prob-
ing we will learn that retransmissions in a packet sequence dramatically deplete
the model’s classification accuracy. We take the following steps:

Step 1: Determine model performance and feed it suitable probing traffic.
Step 2: Examine the correlation between traffic misclassification scores and
the generated traffic microstructure labels to find a likely cause.
Step 3: Examine at which latency levels specific connections are misclassi-
fied.
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Step 4: Generate two similar connections, with one exposed to strong packet
latency.
Step 5: Show that by removing retransmission sequences in the pre-processing,
misclassification is significantly reduced.

We now explain these steps in more detail:
Step 1: To detect SQL injections, we train the model on the CICIDS-17

dataset [26] (85% of connections). For the evaluation, we also include a set of
HTTP-activities generated by DetGen (7.5%) that mirror the characteristics in
the training data, as explained in Section 6. In total, we use 30,000 connections
for training and for evaluating the model, or slightly under 2 million packets.
The initially trained model performs relatively well, with an Area under curve
(AUC)-score of 0.981, or a detection/false positive rate3 of 96% and 2.7%.
However, to enable operational deployment the false positive rate would need to
be several magnitudes lower [18].

Fig. 2: Scores for the LSTM-traffic model before and after the model correction.

Step 2: Now suppose we want to improve these rates to both detect more
SQL-injections and retain a lower false positive rate. To start, we explore which
type of connections are misclassified most often. We retrieve the classification
scores for all connections and measure their linear correlation to the microstruc-
ture labels available for the probing data. The highest misclassification ratio was
measured for one of the three SQL injection scenarios (19% correlation) and con-
nections with multiple GET-requests (11% correlation). When not distinguishing
activities, we measured a high misclassification correlation with simulated packet
latency (12%), which we now examine. More details on this exact procedure can
be found in [3].

Step 3: Fig. 2 depicts classification scores of connections in the probing
data in dependence of the emulated network latency. The left panel depicts the
scores for the initially trained model, while the right panel depicts scores after

3 tuned for the geometric mean
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the model correction that we introduce further down. The left panel shows that
classification scores are well separated for lower congestion, but increased la-
tency in a connection leads to a narrowing of the classification scores, especially
for SQL-injection traffic. Since there are no classification scores that reach far
in the opposing area, we conclude that congestion simply makes the model lose
predictive certainty. Increased latency can both increase variation in observed
packet interarrival times (IATs), and lead to packet out-of-order arrivals and
corresponding retransmission attempts. Both of these factors can decrease the
overall sequential coherence for the model, i.e. that the LSTM-model loses con-
text too quickly either due to increased IAT variation or during retransmission
sequences.

Fig. 3: LSTM-classification output in dependence of connection phases.

Step 4: We use DetGen to generate two similar connections, where one con-
nection is subject to moderate packet latency and corresponding reordering while
the other is not. DetGen’s ability to shape traffic in a controlled and determin-
istic manner allows us to examine the effect of retransmission sequences on the
model output and isolate it from other potential influence factors. Fig. 3 depicts
the evolution of the LSTM-output layer activation in dependence of difference
connection phases for the connection subject to retransmissions. Depicted are
packet segment streams and their respective sizes in the forward and backward
direction, with different phases in the connection coloured and labelled. Below is
the LSTM-output activation while processing the packet streams. The red line
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shows the output for the connection without retransmissions4 as a comparison.
Initially the model begins to view the connection as benign when processing
regular traffic, until the SQL-injection is performed. The model then quickly ad-
justs and provides a malicious classification score after processing the injection
phase and the subsequent data transfer, just as it is supposed to.

The correct output activation is however quickly depleted once the model
processes a retransmission phase and is afterwards not able to relate the still
ongoing data transfer to the injection phase and return to the correct output
activation. When we compare this to the connection without retransmissions,
depicted as the red line in Fig. 3, we do not encounter this depletion effect.
Instead, the negative activation persists after the injection phase.

Step 5: Based on this analysis, we try to correct the existing model with
a simple fix by excluding retransmission sequences at the pre-processing stage.
This leads to significantly better classification results during network latency, as
visible in the right panel of Fig. 2. SQL-injection scores are now far-less affected
by congestion while scores for benign traffic are also less affected, albeit to a
smaller degree. The overall AUC-score for the model improves to 0.997 while
tuned detection rates improved to 99.1% and false positives to 0.345%, a five-
fold improvement from the previous false positive rate of 2.7%.

3 Traffic microstructures and their influence factors

As shown above, traffic microstructures and corresponding model predictions
can be significantly influenced by external factors. The biggest and most ob-
vious influence on traffic microstructures is the choice of the application layer
protocols. For this reason, the range of protocols is often used as a measure for
the diversity of a dataset. However, while the attention to microstructures in
current NID-datasets stops here, computer communication involves a myriad of
other different computational aspects that shape observable traffic microstruc-
tures. Here, we highlight and quantify the most dominant ones, which will act as
a justification for the design choices we outline in Section 4.4. We look at both
findings from previous work as well as our own experimental results.

1. Performed task and application. The conducted computational task as well
as the corresponding application ultimately drives the communication between
computers, and thus hugely influences characteristics such as the direction of
data transfer, the duration and packet rate, as well as the number of connections
established. These features are correspondingly used extensively in application
fingerprinting, such as by Yen et al. [33] or Stober et al. [28].

2. Application layer implementations. Different implementations for TLS, HTTP,
etc. can yield different computational performance and can perform handshakes

4 scaled temporally to the same connection phases
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differently and differ in multiplexing channel prioritisation, which can signifi-
cantly impact IAT times and the overall duration of the transfer, as shown in a
study by Marx et al. [17] for the QUIC/HTTP3 protocol5.

3. LAN and WAN congestion. Low available bandwidth, long RTTs, or packet
loss can have a significant effect on TCP congestion control mechanisms that
influence frame-sizes, IATs, window sizes, and the overall temporal characteristic
of the sequence, which in turn can influence detection performance significantly
as shown in Section 2.

Fig. 4: Packet-sequence similarity comparison under different load.

4. Host level load. In a similar manner, other applications exhibiting significant
computational load (CPU, memory, I/O) on the host machine can affect the
processing speed of incoming and outgoing traffic, which can again alter IATs
and the overall duration of a connection. An example of this is visible in Fig.
4, where a FTP-client sends significantly fewer PUSH-packets when under heavy
computational load. Colours indicate packet flags while the height of the packets
indicates their size. This effect is dependent on the application layer protocol,
where at a load number of 3.5 we see about 60% less upstream data-packets
while the downstream is only reduced by 10%, compared to HTTP where both
downstream and upstream packet rates are throttled by about 40%.

5. Caching/Repetition effects. Tools like cookies, website caching, DNS caching,
known hosts in SSH, etc. remove one or more information retrieval requests
from the communication, which can lead to altered packet sequences and less

5 Fig. 2 in [17] illustrates these differences in a nice way
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connections being established. For caching, this can result in less than 10% of
packets being transferred, as shown by Fricker et al. [5].

6. User and background activities. The choice and usage frequency of an applica-
tion and task by a user, sometimes called Pattern-of-Life, governs the larger-scale
temporal characteristic of a traffic capture, but also influences the rate and type
of connections observed in a particular time-window [1]. The mixing of different
activities in a particular time-window can severely impact detection results of re-
cent sequential connection-models, such as by Radford et al. [23] or by Clausen et
al. [4]. To quantify this effect, we look at FTP-traffic in the CICIDS-17 dataset.
As explained in Section 1.2, the FTP-traffic overwhelmingly corresponds to the
exact same isolated task, and should therefore spawn the same number of connec-
tions in a particular time window. However, we observe additional connections
from other activities within a 5-second window for 68% of all FTP-connections,
such as depicted in Table 1, which contains FTP-, HTTPS- and DNS-, as well
as additional unknown activity.

Time Source-IP Destination-IP Dest. Port

13:45:56.8 192.168.10.9 192.168.10.50 21

13:45:56.9 192.168.10.9 192.168.10.50 10602

13:45:57.5 192.168.10.9 69.168.97.166 443

13:45:59.1 192.168.10.9 192.168.10.3 53

13:46:00.1 192.168.10.9 205.174.165.73 8080

Table 1: 5-second window for host 192.168.10.9 in the CICIDS-17 dataset.

Other prominent factors that we found had less effect on traffic microstruc-
tures include:

7. Networking stack load. TCP or IP queue filling of the kernel networking stack
can increase packet waiting times and therefore IATs of the traffic trace, as
shown by [25]. In practice, this effect seems to be constrained to large WAN-
servers and routers. When varying the stack load in otherwise constant settings
on an Ubuntu-host, we did not find any notable effect on packet sequences when
comparing the corresponding traffic with a set of three similarity metrics. More
details on this setting and the metrics can be found in Section 5.

8. Network configurations. Network settings such as the MTU or the enabling of
TCP Segment Reassembly Offloading have effects on the captured packet sizes,
and have been exploited in IP fragmentation attacks. However, these settings
have been standardised for most networks, as documented in the CAIDA traffic
traces [31].
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We designed DetGen to control and monitor factors 1-6 to let researchers
explore their impact on their traffic models, while omitting factors 7 and 8 for
the stated reasons.

4 DetGen: precisely controlled data generation

4.1 Design overview

Detgen is a container-based network traffic generation framework that distin-
guishes itself by providing precise control over various traffic characteristics and
providing extensive ground-truth information about the traffic origin. In contrast
to the pool of programs running in a VM-setup, such as used in the generation
of the CICIDS-17 and 18 [26], or UGR-16 [16], DetGen separates program exe-
cutions and traffic capture into distinct containerised environments in order to
shield the generated traffic from external influences.Traffic is generated from a
set of scripted scenarios that define the involved devices and applications and
strictly control corresponding influence factors. Fig. 5 provides a comparison of
the DetGen-setup and traditional VM-based setups and highlights how control
and monitoring is exerted.

Fig. 5: Traditional traffic-generation-setups (left), and DetGen (right).

4.2 Containerization and activity isolation

As we will demonstrate in Section 5, containers provide significantly more iso-
lation of programs from external effects than regular OS-level execution. This
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isolation enables us to monitor processes better and create more accurate links
between traffic events and individual activities than on a virtual machine were
multiple processes run in parallel and generate traffic. The corresponding one-
to-one correlation between processes and network traces allows us to capture
traffic directly from the process and produce labelled datasets with granular
ground truth information.

Additionally, containers are specified in an image-layer, which is unaffected
during the container execution. This allows containers to be run repeatedly
whilst always starting from an identical state, allowing a certain level of de-
terminism and reproducibility in the data generation.

4.3 Activity generation

Scenario. We define a scenario as a composition of containers conducting a
specific interaction. Each scenario produces traffic from a setting with two (clien-
t/server) or more containers, with traffic being captured from each container’s
perspective. This constructs network datasets with total interaction capture, as
described by Shiravi et al. [27]. Examples may include an FTP interaction, an
online login form paired with an SQL database, or a C&C server communicating
with an open backdoor. Our framework is modular, so that individual scenarios
are configured, stored, and launched independently. We provide a complete list
of implemented scenarios in Table 3 in the Appendix.

Task. To provide a finer grain of control over the traffic to be generated, we
create a catalogue of different tasks that allow the user to specify the manner
in which a scenario should develop. To explore the breadth of the correspond-
ing traffic structures efficiently, we prioritise tasks that cover aspects such as
the direction of file transfers (e.g. GET vs POST for HTTP), the amount of
data transferred (e.g. HEAD/DELETE vs GET/PUT), or the duration of the
interaction (e.g. persistent vs non-persistent tasks) as much as possible. For each
task, we furthermore add different failure options for the interaction to not be
successful (e.g. wrong password or file directory).

4.4 Simulation of external influence

Caching/Cookies/Known server. Since we always launch containers from
the same state, we shield traffic impact from repetition effects such as caching
or known hosts. If an application provides caching possibilities, we implement
this as an option to be specified before the traffic generation process.

Network effects. Communication between containers takes place over a virtual
bridge network, which provides far higher and more reliable throughput than
in real-world networks [6]. To retard and control the network reliability and
congestion to a realistic level, we rely on NetEm, an enhancement of the Linux
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traffic control facilities for emulating properties of wide area networks from a
selected network interface [8].

We apply NetEm to the network interface of a given container, providing
us with the flexibility to set each container’s network settings uniquely. Packet
delays are drawn from a Paretonormal-distribution while packet loss and corrup-
tion are drawn from a binomial distribution, which has been found to emulate
real-world settings well [10]. Distribution parameters such as mean or correla-
tion as well as available bandwidth can either be manually specified or drawn
randomly before the traffic generation process.

Host load. We simulate excessive computational load on the host with the tool
stress-ng, a Linux workload generator. Currently, we only stress the CPU of the
host, which is controlled by the number of workers spawned. Future work will
also include stressing the memory of a system. We have investigated how stress
on the network sockets affects the traffic we capture without any visible effect,
which is why we omit this variable here.

4.5 Data generation

Execution script. DetGen generates traffic through executing script that are
specific to the scenario. The script creates the virtual network and populates
it with the corresponding containers. The container network interfaces of the
containers are then subjected to the chosen NetEm settings and the host is
assigned the respective load before the inputs for the chosen task are prepared
and mounted to the containers.

Labelling and traffic separation. Each container network interface is hooked
to a tcpdump-container that records the packets that arrive or leave on this
interface. Combined with the described process isolation, this setting allows us
to exclusively capture traffic that corresponds to the conducted activity and
exclude any background events. The execution script then stores all parameters
(conducted task, mean packet delay, ...) and descriptive values (input file size,
communication failure, ...) for the chosen settings.

5 Traffic control and generative determinism of DetGen

We now assess the claim that DetGen controls the outlined traffic influence
factors sufficiently, and how similar traffic generated with the same settings
looks like. We also demonstrate that this level of control is not achievable on
regular VM-based NIDS-traffic-generation setup.

To do so, we generate traffic from three traffic types, namely HTTP, file-
synchronisation, and botnet-C&C, each in four configurations that varied in
terms of conducted activity, data/credentials as well as the applied load and
congestion. Within each configuration all controllable factors are held constant
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to test the experimental determinism and reproducibility of DetGen’s generative
abilities. As a comparison, we use a regular VM-based setup, were applications
are hosted directly on two VMs that communicate over a virtual network bridge
that is subject to the same NetEm effects as DetGen, such as depicted in Fig.
5. Such a setup is for example used in the generation of the UGR-16 data [16].

To measure how similar two traffic samples are, we devise a set of similarity
metrics that measure dissimilarity of overall connection characteristics, connec-
tion sequence characteristics, and packet sequence characteristics:

Fig. 6: Dissimilarity scores for DetGen and a regular VM-setup, on a log-scale.

– Overall connection similarity We use the 82 flow summary statistics
(IAT and packet size, TCP window sizes, flag occurrences, burst and idle
periods) provided by CICFlowMeter [13], and measure the cosine similarity
between connections, which is also used in general traffic classification [2].

– Connection sequence similarity To quantify the similarity of a sequence
of connections in a retrieval window, we use the following features to describe
the window, as used by Yen et al. [33] for application classification: The
number of connections, average and max/min flow duration and size, number
of distinct IP and ports addresses contacted. We then again measure the
cosine similarity based on these features between different windows.

– Packet sequence similarity To quantify the similarity of packet sequences
in handshakes etc., we use a Markovian probability matrix for packet flags,
IATs, sizes, and direction conditional on the previous packet. We do this
for sequences of 15 packets and use the average sequence likelihood as this
accommodates better for marginal shifts in the sequence.

We normalise all dissimilarity scores by dividing them by the maximum dis-
similarity score measured for each traffic type to put the scores into context.
For each configuration, we generate 100 traffic samples and apply the described
dissimilarity measures to 100 randomly drawn sample pairs. Fig. 6 depicts the
resulting dissimilarity scores on a log-scale.
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Fig. 7: Packet-sequence similarity comparison for HTTP-activity for DetGen and
a regular setting.

The DetGen-scores yield consistently less than 1% of the dissimilarity ob-
served on average for each activity. Scores are especially low when compared to
traffic groups collected in the VM setting, which are consistently more dissimilar,
in particular for connection-sequence metrics, where the average dissimilarity is
more than 30 times higher than for the DetGen setting. Manual inspection of the
VM-capture showed that high dissimilarity is caused by additional flow events
from background activity (OS and application HTTP, NTP, DNS, device discov-
ery) being present in about 24% of all captures. . While sequential dissimilarity
is roughly the same for the DetGen- and the VM-settings, overall connection
similarity for the VM-setting sees significantly more spread in the dissimilarity
scores when computational load is introduced.

Fig. 7 depicts an exemplary comparison between HTTP-samples generated
using DetGen versus generation using the VM-setup. Colours indicate packet
flags while the height of the packets indicates their size. Even though samples
from DetGen are not perfectly similar, packets from the VM-setup are subject
to more timing perturbations and reordering as well as containing additional
packets. Additionally, the packet sizes vary more in the regular setting.

These results confirm that DetGen exerts a high level of control over traffic
shaping factors while providing sufficient determinism to guarantee ground-truth
traffic information.

6 Reconstructing an IDS-dataset for efficient probing

Moving towards a more general dataset constructed to apply the probing method-
ology discussed in Sect. 2, we constructed DetGen-IDS. This dataset is suit-
able to quickly probe ML-model behaviour that were trained on the CICIDS-17
dataset [26]. The dataset mirrors properties of the CICIDS-17 data to allow pre-
trained models to be probed without retraining. The DetGen-IDS data therefore
serves as complementary probing data that provides microstructure labels and
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a sufficient and controlled diversity of several traffic characteristics that is not
found in the CICIDS-17 data.

We focus on mirroring the following properties from the CICIDS-17 data:

1. Application layer protocols (ALP)
2. ALP implementations
3. Typical data volume for specific ALPs
4. Conducted attack types

Extracting more information on characteristics such as conducted activities of
current NID-datasets is difficult for the reasons explained in Sect. 1.2. However,
our examination shows that aligning these high-level features with the original
training data helps to significantly reduce the validation error of a model on the
probing data, as discussed further down in this section and depicted in Fig. 8.

We then took the following steps to extract the necessary information from
the CICIDS-17 data and implement the traffic-generation process accordingly:

1. The primary ALPs in the dataset can be identified using their correspond-
ing network ports. We ordered connections by the frequency of their respective
port, and excluded connections that do not transmit more than 15 packets per
connection as these do not provide enough structure to create probing data
from it. This leaves us with the ALPs HTTP/SSL, SMTP, FTP, SSH, SQL,
SMB, LDAP, and NTP. We had already implemented traffic scenarios for each
of them except SMB and LDAP, which we then added to the catalogue described
in Section 4.3. Table 2 displays the frequency of the most common ALPs in the
CICIDS-17 along with their average size and packet number per connection and
how we adopted them in the DetGen-IDS data.

2. Most of the used ALP implementations, such as Apache and Ubuntu Web-
server for HTTP, could be gathered from the description of the CICIDS-17
dataset. When this was not the case, it is mostly possible to gather this infor-
mation by inspecting a few negotiation packets for the corresponding ALP with
Wireshark to identify the TLS version or the OpenSSH -client. The correct ALP
implementation can then be included in the traffic generation process by sim-
ply identifying and including a Docker-container that matches the requirements,
which is explained more in Section 4.3.

3. Since the total size of a connection is one of the most significant features
for its classification, we restrict connections in the DetGen-IDS data to cover the
same range as their counterparts in the CICIDS-17 data. For this, we extracted
the maximum and minimum connection size for each ALP in the benign data
and use it as a cut-off to remove all connections from the DetGen-IDS data that
do not meet this requirement.

4. Included attacks are well documented in the CICIDS-17 description. These
include SQL-injections, SSH-brute-force, XSS, Botnet, Heartbleed, GoldenEye,
and SlowLoris. We aim to cover as many of these attack types in the DetGen-
IDS data as well as adding them to the overall DetGen-attack-catalogue. We
were not able to cover all attacks though as DetGen either did not provide the
necessary network topology to conduct the attack, such as for port-scanning, or
the attack types are not implemented in the catalogue of scenarios yet.
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CICIDS-17 DetGen-IDS

ALP Port
Av. Conn.

Size

Av. Packets

/Conn.
# Packets # Packets # Activities

HTTP 80 131626.4 120.4 26631853 724032 7

HTTPS 443 24637.5 36.7 18531661 432104 7

DNS 53 286.2 3.6 3515510 - -

SSH 22 4699.6 40.9 430380 379421 13

LDAP 389 5429.2 22.3 133471 94587 3

FTP 21 311.3 41.7 121472 183587 9

NetBIOS 137 773.6 14.3 111341 - -

SMB 445 12941.5 61.9 88175 47945 3

NTP 123 157.0 3.2 73057 1243 1

SMTP 465 2663.5 21.5 77650 104967 3

Kerberos 88 2687.7 6.9 38262 - -

mDNS 5353 3685.5 35.5 24592 - -

Table 2: ALPs in CICIDS-17 data and their adoption in DetGen-IDS.

In addition to the pcap-files, we used the CICFlowMeter to generate the
same 83 flow-features as included in the CICIDs-17 data. Table 2 displays the
content and statistics of the DetGen-IDS data.

Fig. 8: Validation errors of LSTM-model [4] on DetGen-IDS data.

In Fig. 8, we compare the validation error of a recent LSTM-model for net-
work intrusion detection by Clausen et al. [4] on the DetGen-IDS data to demon-
strate that a model trained on the CICIDS-17 data is able to perform well with-
out retraining. We distinguish models when trained exclusively on the CICIDS
data (green), and when also trained on the probing data (red). Even though
the validation error is slightly higher when only trained on the CICIDS data,
the difference is almost negligible compared to the error resulting from a model
trained on a completely different dataset (UGR-16 [16], blue). These results do
not fully prove that every model is able to transfer observed structures between
the original CICIDS-17 and our DetGen-IDS dataset, but it gives an indicator
that DetGen-IDS mirrors the characteristics of CICIDS-17.
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7 Conclusions

In this paper, we described and examined a tool for generating traffic with con-
trollable and extensively labelled traffic microstructures with the purpose of
probing machine-learning-based traffic models. For this, we demonstrated the
impact that probing with carefully crafted traffic microstructures can have for
improving a model with a state-of-the-art LSTM-traffic-classifier with a detec-
tion rate that improved by more than 3% after understanding how the model
processes excessive network congestion.

To verify DetGen’s ability to control and monitor traffic microstructures, we
performed experiments in which we quantified the experimental determinism of
DetGen and compared it to traditional VM-based capture setups. Our similarity
metrics indicate that traffic generated by DetGen is on average 10 times, and
for connection sequences up to 30 times more consistent.

Alongside this work, we are releasing DetGen-IDS, a substantial dataset suit-
able for probing models trained on the CICIDS-17 dataset. This data should
make it easier for researchers to understand where their model fails and what
traffic characteristics are responsible to subsequently improve their design ac-
cordingly.

Difficulties and limitations: While the control of traffic microstructures helps
to understand packet- or connection-level models, it does not replicate realis-
tic network-wide temporal structures. Other datasets such as UGR-16 [16] or
LANL-15 [30] are currently better suited to examine models of large-scale traffic
structures.

While controlling traffic shaping factors artificially helps at identifying the
limits and weak points of a model, it can exaggerate some characteristics in
unrealistic ways and thus alter the actual detection performance of a model.

The artificial randomisation of traffic shaping factors can currently not com-
pletely generate real-world traffic diversity. This problem is however more pro-
nounced in commonly used synthetic datasets such as CICIDS-17, where for
example most FTP-transfers consist of a client downloading the same text file.

Discussions about the implications of the model correction proposed in Sec-
tion 2 are above the scope of this paper, and there likely exist more complex
and suitable solutions.

Future work: DetGen is currently only offering insufficient control over under-
lying application-layer implementations such as TLS 1.3 vs 1.2. In theory,
it should be unproblematic to provide containers with different implementations,
and we are currently investigating how to compile containers in a suitable man-
ner.

We are currently investigating how to better simulate causality in connec-
tion spawning and other medium-term temporal dependencies, such as by
importing externally generated activity timelines from tools such as Doppel-
ganger [14].
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A Existing Scenarios

DetGen contains 31 scenarios, each simulating a different benign or malicious
interaction. The protocols underlying benign scenarios were chosen based on
their prevalence in existing network traffic datasets. According to our evaluation,
our scenarios can generate datasets containing the protocols that make up at
least 87.8% (MAWI), 98.3% (CICIDS 2017), 65.6% (UNSW NB15), and 94.5%
(ISCX Botnet) of network flows in the respective dataset. Our evaluation shows
that some protocols that make up a substantial amount of real-world traffic
are glaringly omitted by current synthetic datasets, such as BitTorrent or video
streaming protocols, which we decided to include.

Name Description #Ssc.

Ping Client pinging DNS server 1

Nginx Client accessing Nginx server 2

Apache Client accessing Apache server 2

SSH Client communicating with 9

SSHD server

VSFTPD Client communicating with 12

VSFTPD server

Wordpress Client accessing Wordpress site 5

Syncthing Clients synchronize files 7

via Syncthing

mailx Mailx instance sending 5

emails over SMTP

IRC Clients communicate via IRCd 4

BitTorrent Download and seed torrents 3

SQL Apache with MySQL 4

NTP NTP client 2

Mopidy Music Streaming 5

RTMP Video Streaming Server 3

WAN Wget Download websites 5

SMB File-sharing 3

LDAP Access directory services 3

Name Description #Ssc.

SSH B.force Bruteforcing a password 3

over SSH

URL Fuzz Bruteforcing URL 1

Basic B.force Bruteforcing Basic 2

Authentication

Goldeneye DoS attack on Web Server 1

Slowhttptest DoS attack on Web Server 4

Mirai Mirai botnet DDoS 3

Heartbleed Heartbleed exploit 1

Ares Backdoored Server 3

Cryptojacking Cryptomining malware 1

XXE External XML Entity 3

SQLi SQL injection attack 2

Stepstone Relayed traffic using 2

SSH-tunnels

Table 3: Currently implemented traffic scenarios along with the number of im-
plemented subscenarios

In total, we produced 19 benign scenarios, each related to a specific protocol
or application. Further scenarios can be added in the future, and we do not claim
that the current list exhaustive. Most of these benign scenarios also contain many
subscenarios where applicable.

The remaining 12 scenarios generate traffic caused by malicious behaviour.
These scenarios cover a wide variety of major attack classes including DoS,
Botnet, Bruteforcing, Data Exfiltration, Web Attacks, Remote Code Execution,
Stepping Stones, and Cryptojacking. Scenarios such as Stepping Stone behaviour
or Cryptojacking previously had no available datasets for study despite need
from academic and industrial researchers.


