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Active and sparse methods in smoothed model
checking

Paul Piho, Jane Hillston

University of Edinburgh

Abstract. Smoothed model checking based on Gaussian process clas-
sification provides a powerful approach for statistical model checking
of parametric continuous time Markov chain models. The method con-
structs a model for the functional dependence of satisfaction probabil-
ity on the Markov chain parameters. This is done via Gaussian process
inference methods from a limited number of observations for different
parameter combinations. In this work we incorporate sparse variational
methods and active learning into the smoothed model checking setting.
We use these methods to improve the scalability of smoothed model
checking. In particular, we see that active learning-based ideas for it-
eratively querying the simulation model for observations can be used
to steer the model-checking to more informative areas of the parameter
space and thus improve sample efficiency. We demonstrate that online
extensions of sparse variational Gaussian process inference algorithms
provide a scalable method for implementing active learning approaches
for smoothed model checking.

1 Introduction

Stochastic modelling coupled with verification of logical properties via model
checking has provided useful insights into the behaviour of the stochastic mod-
els from epidemiology, systems biology and networked computer systems. A large
number of interesting models in these fields are too complex for the application
of exact model checking methods [13]. To improve the scalability of model check-
ing there has been significant work on statistical model checking that aims to
estimate the satisfaction probability of logical properties based on independently
sampled trajectories of a stochastic model [3].

This paper considers statistical model checking in the context of parametrised
continuous time Markov chain models. Statistical model checking methods have
generally considered single parametrisations of a model. Based on a large number
of independent sample trajectories, one can estimate the probability of the model
satisfying a specified logical property defined over individual sample trajectories.
In order to gain insight across the entire parameter space associated with a
model, it can be necessary to repeat the estimation procedures with different
parametrisations to cover the whole space, which leads to poor scalability.

As an alternative, a model checking approach based on Gaussian process
classification, named smoothed model checking, was proposed in [6]. The main
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result of that paper was to show that under mild conditions the function which
maps parameter values to satisfaction probabilities is smooth. Thus the problem
can be solved as a Gaussian process classification problem where the aim is to
estimate the function describing the satisfaction probability over the parame-
ter space. Model checking results, returning a label true or false, of individual
simulation trajectories are used as the training data to infer how the satisfac-
tion probability depends on the model parameters. This method can be used
to greatly reduce the number of simulation trajectories needed to estimate the
satisfaction probability in exchange for some accuracy.

There are two aspects that limit the speed of such model checking proce-
dures. Firstly, the computational cost of gathering the individual trajectories
and secondly, the cost of (approximate) Gaussian process inference itself. Both
benefit from keeping the number of gathered trajectories as low as possible while
minimising the impact a smaller set of training data has on the accuracy of the
methods. In order to keep the gathered sample size small we propose a method
based on active learning. In particular, we make the observation that the pa-
rameter space of models is usually constrained to physically reasonable ranges.
However, even when constrained to such ranges there can be large parts of the
parameter space where the probability of satisfying a formula undergoes little
change. Adaptively identifying parts of the parameter space where the satisfac-
tion probability changes in order to decide where to concentrate the computa-
tional effort leads to improved algorithms for smoothed model checking.

The main contribution of this paper is considering smoothed model checking
in a sparse online setting and proposing active learning strategies for querying
the parameter space of a model. We make use of state of the art sparse varia-
tional Gaussian process inference methods and streaming variational inference
with inducing points [8]. This combination of sparse inference methods and ac-
tive learning improves the scalability of smoothed model checking in two ways.
The use of sparse inference methods reduces the complexity of the underlying
Gaussian process inference, while active learning query methods improve the
sample efficiency by concentrating the model checking efforts to the parts of the
parameter space where the satisfaction probability undergoes most change.

2 Related work

A wealth of literature exists on statistical model checking of stochastic systems.
The use of statistical methods in the domain of formal verification is motivated
by the fact that in order to perform statistical model checking it is only necessary
to be able to simulate the model. Thus these methods can be used for systems
where exact verification methods are infeasible including black-box systems [14].
In its classical formulation, this involves hypothesis testing [20] with respect to
the desired (or undesired) property based on independent trials, or in this case,
stochastic simulations.

In addition to the frequentist approaches based on hypothesis testing, there
have been Bayesian approaches [12] to estimate the satisfaction probability of a
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given logical formula. Our work follows the approach presented in [6] where the
dependence of the satisfaction probability on model parameters is modelled as
a Gaussian process classification problem.

The problem of deciding where to concentrate the model checking efforts is
closely related to optimal experimental design. Experimental design problems
are commonly treated as optimisation problems where the goal is to allocate
resources in a way that allows the experimental goals to be reached more rapidly
and thus with smaller costs [19]. This idea is also known in the machine learning
literature as active learning [22]. The idea is to design learning algorithms that
interactively query an oracle to label new data points.

In the context of model checking, active learning was used in [7] to solve a
threshold synthesis problem which is closely related to the model checking prob-
lem considered in this paper. That approach used a base grid on the parameter
space for initial estimation. The estimates were then refined around values where
the satisfaction probability was close to a defined threshold. However, the thresh-
old for synthesis has to be defined a priori making the introduced active step
not applicable when we are interested in the satisfaction probability. We further
address the scalability of the ideas presented by the authors of [7] by considering
sparse approximation results for Gaussian process based model checking.

Finally, Bayesian optimisation is another example of active learning. Bayesian
optimisation methods refine the posterior distribution over the black-box objec-
tive function based on function evaluations. An example relevant to model check-
ing was given in [4] where Bayesian optimisation was used to optimise parameters
of stochastic models to maximise robustness of the given logical specification.

3 Background

3.1 Continuous time Markov chains

Stochastic models are widely used to model a variety of phenomena in natu-
ral and engineered systems. We focus on a type of stochastic model commonly
used in biological modelling, epidemiology and performance evaluation domains.
Specifically, we consider continuous time Markov chain models (CTMCs). To
define a CTMC we start by noting that it is a continuous-time stochastic pro-
cess and thus defined as an indexed collection of random variables {X}t∈R≥0

.
We consider CTMCs defined over a finite state space S with an |S| × |S| matrix
Q whose entries q(i, j) satisfy

1. 0 ≤ −q(i, i) <∞ , 2. 0 ≤ q(i, j) for i 6= j , 3.
∑

j q(i, j) = 0 .

A CTMC is then defined by the following: for time indices t1 < t2 . . . < tn+1

and states i1, i2, . . . , in+1 we have

P(Xtn+1 = in+1|Xtn = in, . . . ,Xt1 = i1) = p(in+1; tn+1|in; tn)
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where p(j; t|i; s) is the solution to the following Kolmogorov forward equation

∂

∂t
p(j; t|i; s) =

∑
k

p(k; t|i; s)q(k, j), on (s,∞) with p(j; s|i; s) = δij

with δij being the Kronecker delta taking the value 1 if i and j are equal and the
value 0 otherwise. By convention the sample trajectories of CTMCs are taken
to be right-continuous.

In the rest of the paper we consider parametrised models Mx and assume
that the model M for a fixed parametrisation x ∈ Rk defines a CTMC. Thus,
the model M specifies a function mapping parameters x to generator matrix Q
of the underlying CTMC. A commonly studied special class of CTMC models
are population CTMCs where each state of the CTMC corresponds to a vector
of counts. These counts are used to model the aggregate counts of groups of
indistinguishable agents in a system. In biological modelling and epidemiology
such models are often defined as chemical reaction networks (CRN).

Example 1. Let us consider the following susceptible-infected-recovered (SIR)
model defined as a CRN

S + I
kI−→ I + I I

kR−−→ R

where S gives the number of susceptible, I the infected and R the recovered
individuals in the system. The first type of transition corresponds to infected
and susceptible individuals interacting, resulting in the number of infected in-
dividuals increasing and the number of susceptible decreasing. The second type
of transition corresponds to recovery of an infected individual and results in the
number of infected decreasing and the number of recovered increasing. The states
of the underlying CTMC keep track of the counts of different individuals in the
system. For the example let us set the initial conditions to (95, 5, 0) — at time
0 there are 95 susceptible, 5 infected and 0 recovered individuals in the system.
The parameters kI and kR give the infection and recovery rates respectively. We
revisit this example throughout the paper to illustrate the presented concepts.

3.2 Smoothed model checking

Smoothed model checking was introduced in [6] as a scalable method for statis-
tical model checking where Gaussian process classification methods were used to
infer the functional dependence between a parametrisation of a model and the
satisfaction probability given a logical specification.

As described in Section 3.1, suppose we have a model Mx parametrised by
vector of values x ∈ Rd such that the model M for a fixed parametrisation x
defines a CTMC. Additionally assume we have a logical property ϕ we want to
check against. The logical properties we consider here are defined as a mapping
from the time trajectories over the states of Mx to {0, 1} corresponding to
whether the property holds for a given sample trajectory ofMx or not. One way
to define such mappings would be, for example, to specify the properties in metric
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interval temporal logic (MiTL) [15] or signal temporal logic (STL) [10] and map
the paths satisfying the properties to 1 and those not satisfying the properties to
0. Through sampling multiple trajectories for the same parametrisation we gain
an estimate of the satisfaction probability corresponding to the parametrisation.

With that in mind, a logical property ϕ with respect to Mx can be seen to
give rise to a Bernoulli random variable. The binary outcomes of the random
variable correspond to whether or not a randomly sampled trajectory of Mx

satisfies the property ϕ. We introduce the notation fϕ(x) for the parameter of
the said Bernoulli random variable given the model parameters x. In particular,
samples from the distribution Bernoulli(fϕ(x)) model whether a randomly sam-
pled trajectory ofMx satisfies ϕ — for a parameter value x the logical property
is said to be satisfied with probability fϕ(x).

A naive approach for estimating fϕ(x) at a given parametrisation x is to
gather a large number N of sample trajectories and give simple Monte Carlo
estimates for the fϕ(x) by dividing the number of trajectories where the property
holds by the total number of sampled trajectories N . An accurate estimate
requires a large number of samples. However, having such an estimate at a set
of given parametrisations does not provide us with a rigorous way to estimate
the satisfaction function at a nearby point.

In [6] the authors considered population CTMCs. It was shown that the
introduced satisfaction probability fϕ(x) is a smooth function of x under the
following conditions: the transition rates of the CTMC Mx depend smoothly
on the parameters x; and the transition rates depend polynomially on the state
vector X of the CTMC.

The result was exploited by treating the estimation of the satisfaction func-
tion fϕ(x) as a Gaussian process classification problem. The main benefit of
this approach is that, based on sampled model checking results, we can recon-
struct an approximation for the functional dependence between the parameters
and satisfaction probability. This makes it easy to make predictions about the
satisfaction probability at previously unseen parametrisations.

Simulating Mx we gather a finite set of observations D = {(xi, yi)|i =
1, · · · , n} where xi are the parametrisations of the model and yi correspond
to model checking output over single trajectories. For classification problems, a
Gaussian process prior with mean m and kernel k is placed over a latent function

gϕ(x) ∼ GP(m(x), k(x,x′)) .

Here, let us consider the standard squared exponential kernel defined by

k(x,x′) = a2 exp

(
−|x− x′|2

2l

)
where a2 is the amplitude and ` is the length scale parameter governing how far
two distinct points have to be in order to be considered uncorrelated.

The function gϕ is then squashed through the standard logistic or probit
transformation σ so that the composition σ(gϕ(x)) takes values between 0 and 1.
The quantity σ(gϕ(x)) is interpreted as the probability that ϕ holds given model
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Fig. 1: Left is the baseline satisfaction probability surface. Satisfaction probabil-
ity estimated for parameters on a regular 20×20. At each parameter the estimate
is based on 3000 SSA trajectories. Right is the smoothed model checking satis-
faction probability surface. Training data is constructed from a set of 10 SSA
trajectories at parameter points on a regular 15×15 grid.

parametrisation x and thus estimates the probability fϕ(x) that a simulation
trajectory for parameters x satisfies the property ϕ.

The general aim of Gaussian process inference is to find the distribution
p(gϕ(x∗)|D) over the values gϕ at some test point x∗ given the set of training
observations D. This distribution is then used to produce a probabilistic predic-
tion at parameter x∗ of σ(gϕ(x∗)) ≈ fϕ(x∗). We present details of inference in
the next section. This section is ended by returning to the running SIR example.

Example 2. The property we consider is the following: there always exists an
infected agent in the population in the time interval (0.0, 100.0) and in the
time interval (100.0, 120.0) the number of infected becomes 0. Constraining the
parameters to the ranges kI ∈ [0.005, 0.3] and kR ∈ [0.005, 0.3] gives satisfaction
probabilities as depicted in Figure 1. There each estimate on the 20×20 grid
is calculated based on 3000 stochastic simulation algorithm (SSA) sample runs
of the model. For comparison, Figure 1 also gives the results of the smoothed
model checking where 10 sample trajectories are drawn for each parameter on
the 12×12 grid. The smoothed model checking approximation for the model
checking problem shows good agreement with the baseline surface and is much
faster to perform.

3.3 Variational inference with inducing points

In order to infer the latent Gaussian process gϕ based on training data D we
have to deal with two problems. Firstly the inference is analytically intractable
due to the non-Gaussian likelihood model provided by Bernoulli observations. To
counter this there exists a wealth of approximate inference schemes like Laplace
approximation, expectation propagation [16, 11], and variational inference meth-
ods [23]. Here we consider variational inference. The second problem is that the
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methods for inference in Gaussian process models have cubic complexity in the
number of training cases. To address that, there exist sparse approximations
based on inducing variables. Sparse variational methods [9, 23] are popular meth-
ods for reducing the complexity of Gaussian process inference by constructing an
approximation based on a small set of inducing points that are typically selected
from training data. In this section we detail the inference procedure.

Variational inference methods choose a parametric class of variational dis-
tributions for the posterior and minimising the KL-divergence between the real
posterior and the approximate posterior. To accommodate large training data
sets we work with sparse variational methods. We start by defining the prior
distribution

p(gϕ,u) = N

([
gϕ

u

] ∣∣∣∣∣0,
[
Knn Knm

KT
nm Kmm

])
where gϕ is a vector of n latent function values [gϕ(x1), · · · , gϕ(xn)]. Similarly,
u is a vector of m latent function values [gϕ(z1), · · · , gϕ(zm)] evaluated at cho-
sen inducing points zi. The matrices Knn, Knm and Kmm are defined by the
kernel function. In particular, the (i, j)-th element of the matrix Knn is given
by k(xi,xj). Similarly, Knm gives the kernel matrix between the training points
x and the inducing points z and Kmm gives the kernel matrix between the lo-
cations of inducing points. We then fit the variational posterior at those points
rather than the whole set of training data points. The assumption we are mak-
ing is that p(gϕ(x∗)|gϕ,u) = p(gϕ(x∗)|u). That is, the inducing values u are a
sufficient statistic for a function value at a test point x∗.

Under this assumption we make predictions at a test point x∗ as follows:

p(gϕ(x∗)|y) =

∫
p(gϕ(x∗),u|y)du =

∫
p(gϕ(x∗)|u)p(u|y)du .

Thus, we need posterior distribution p(u|y) at the inducing points. Here, as
mentioned, we consider variational approximations where p(u|y) is approximated
by a multivariate Gaussian q(u) making the expression for p(gϕ(x∗)|y) tractable.
Finding the parameters of q(u) is done by minimising the KL divergence between
the approximate posterior q(u) and true posterior p(u|y). In particular, we have

DKL(q(u), p(u|y)) =

∫
q(u) log

q(u)

p(u|y)
du = −

〈
log

p(y,u)

q(u)

〉
q(u)

+ log p(y) (1)

where 〈·〉q(u) denotes the expectation with respect to distribution q(u). The
term log p(y) is known as the log marginal likelihood. In the following we use
the well-known Jensen’s inequality1 to derive a lower bound for the log marginal
likelihood. As log function is concave we get the following:

log p(y) = log

∫
p(y,u)du = log

〈p(y,u)

q(u)

〉
q(u)
≥
〈

log
p(y,u)

q(u)

〉
q(u)

= 〈log p(y|u)〉q(u) −DKL(q(u), p(u)) . (2)

1 For a concave function f and a random variable X we have the following well-known
inequality: f〈X〉 ≥ 〈f(X)〉.
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The right-hand side of the inequality 2 is known as the evidence-based lower
bound or ELBO. Now note that the first term in the expression for KL-divergence
in Equation 1 is exactly the derived ELBO. As the KL-divergence is always non-
negative and ELBO serves as a lower bound for the log marginal likelihood p(y),
then maximising the ELBO minimises the KL-divergence between the approxi-
mate and true posteriors q(u) and p(u|y).

Choosing our approximating family of variational distribution to be multi-
variate Gaussian makes the KL term in ELBO easy to evaluate. The integral in
the expectation term 〈log p(y|u)〉q(u) can be computed via numerical approxima-
tion schemes making it possible to use ELBO as a utility function for optimising
the parameters of the approximate posterior q(u) via gradient ascent. When q(u)
is chosen to be a multivariate Gaussian these parameters are the mean µ and
covariance matrix Σ. With the approximation p(u|y) ≈ q(u) the predictions are
given by the integral

p(gϕ(x∗)|y) ≈
∫
p(gϕ(x∗)|u)q(u)du .

This can be shown [18] to be a probability density function of a Normal distri-
bution with the following mean µ and variance σ2

µ∗ = k(x∗,u)K−1
mmµ

σ2
∗ = k(x∗,x∗)− k(x∗,u)K−1

mm [Kmm −Σ]
−1 [

k(x∗,u)K−1
mm

]T
.

Note that the terms in ELBO depend on the chosen kernel and in particu-
lar the kernel hyperparameters. As mentioned, the ELBO is maximised directly
via gradient ascent with respect to the parameters of the variational distribu-
tion. The kernel hyperparameter can be tuned in the same fashion. A common
approximate technique we use in this paper is to interleave the optimisation
steps in the variational distribution parameters with optimisation steps in the
hyperparameters.

We have made the assumption that the posterior distribution is fitted at a se-
lection of inducing points z such that number of inducing points is much smaller
than the whole training data set. There exists a variety of possible methods to
select the inducing points. For simplicity in this paper we use a regular grid over
the parameter space as our inducing points.

3.4 Active learning

Active learning methods in machine learning are a family of methods which
may query data instances to be labelled for training by an oracle [21]. The
fundamental question asked by active learning research is whether or not these
methods can achieve higher accuracy than passive methods with fewer labelled
examples. This is closely related to the established area of optimal experimental
design, where the goal is to allocate experimental resources in a way that reduces
uncertainty about a quantity or function of interest [19, 22].
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In the case of Gaussian process classification problems like smoothed model
checking, an active learning procedure can be set up as follows. An active learner
consists of a classifier learning algorithm A and a query function Q. The query
function is used to select an unlabelled sample u from the pool of unlabelled
samples U . This sample is then labelled by an oracle. In the case of stochastic
model checking, the pool of unlabelled samples U corresponds to a subset of the
possible parametrisations for the model. An oracle is implemented by running the
stochastic simulation for the selected parametrisation and then model checking
the resulting trajectory.

The above describes a pool-based active learner. Common formulations of
such pool-based learners select a single unlabelled sample at each iteration to be
sampled. However, in many applications it is more natural to acquire labels for
multiple training instances at once. In particular, the query function Q selects
a subset U ⊂ U . We see in the next section that the sparse inference methods
can be extended to a setting where batches of training data become available
over time making it natural to decide on a query function that selects batches
of queries. The main difficulty of selecting a batch of queries instead of a single
query is that the instances in the subset U need to be both informative and
diverse in order to make the best use of the available labelling resources.

4 Active model checking

The shape and properties of the functional dependence of satisfaction for a logical
specification with respect to parameters are generally not known a priori and
can exhibit a variety of properties. For example, in the running example much of
the sampling was performed in completely flat regions of the parameter space.
Thus the key challenge addressed in this section is where to sample to make the
posterior estimates as informative as possible about the underlying mechanics.
We aim to decide on the regions where the satisfaction probability surface is not
flat and concentrate most of our model checking effort there. To that end we
introduce the main contribution of this paper — active sparse model checking.

The general outline of the procedure is given by Algorithm 1. The first step,
given by the procedure generate initial data, is to simulate the initial data set
Dold via stochastic simulation of the CTMC model M for a sample of the pa-
rameter space X and checking whether or not the individual trajectories satisfy
the property ϕ or not. The initial set of parameter samples can, for example, be
a regular grid or sampled uniformly from the parameter space.

In general the inducing points are then chosen based on the results Dold

and adjusted as new data is seen. However, for simplicity we are going to set
the inducing points so that they form a regular grid over the parameter space
and keep them fixed throughout the active iterations. The posterior at inducing
points zv is then initialised as a multivariate Gaussian q(v) = N (0, I)) with 0
mean and identity covariance matrix. Each iteration of the model checking loop
will first update the variational posterior q(v) via update variational . The details
of how this is done in a sparse streaming setting are given in Section 4.1. Secondly,
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Algorithm 1 Active smoothed model checking

1: procedure Model checking(model M, property ϕ, parameter space X )
2: Dold ← generate initial data(M, ϕ,X )
3: Dnew ← Dold

4: zu ← inducing points(Dold)
5: zv ← zu
6: q(v)← initialise posterior(v)
7: while true do
8: q(v)← update variational(q(u),v,Dnew ,Dold)
9: Dold ← Dold ∪ Dnew

10: Dnew ← query new(q(v),M, ϕ,X )
11: end while
12: return q(v)
13: end procedure

each iteration uses the fitted approximate posterior to query new points in the
parameter space to perform model checking through the query new procedure.
The proposed query functions are discussed in Section 4.2.

There are two issues to be resolved before the procedure can be implemented.
First is that the direct use of ELBO as introduced in Section 3.3 does not suffice
in the online setting where new data becomes available in batches. Second is
the challenge of choosing an appropriate query function that is going to suggest
more points in the parameter space at which to gather more model checking
data. These will be addressed in the following sections.

4.1 Streaming setting

In order to incorporate active learning ideas into the Gaussian process based
model checking approach we need to address the problem that not all of the
training data is available a priori. For our purposes it is important to be able
to conduct inference in a streaming setting where data is gradually added to
the model. A naive approach would refit a Gaussian process from scratch every
time a new batch of data arrives. However, with potentially large data sets this
becomes infeasible. To perform sparse variational inference in a scalable way the
method needs to avoid revisiting previously considered data points. In particular,
we consider the method proposed in [8] that derives a correction to ELBO that
allows us to incorporate streaming data incrementally into the posterior estimate.

The main question is how to update the variational approximation to the
posterior at time step n, denoted qold(u), to form an approximation at the time
step n+ 1, denoted qnew (v). In the following we note the variational posteriors
qold and qnew at gϕ and inducing values u and v, respectively, are approximations
to the true posteriors given observations yold and ynew . It was shown in [8] that
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the lower bound of log p(ynew |yold) becomes∫
qnew (gϕ,v) log p(ynew |gϕ,v)d(gϕ,v)−DKL(qnew (v), p(v))

−DKL(qnew (u), qold(u)) +DKL(qnew (u), p(u)) .

The above can be interpreted as follows: the first two terms give the ELBO under
the assumption that the new data seen at iteration n+ 1 is the whole data set;
the final two terms take into account the old likelihood through the approximate
posteriors at old inducing points and the prior p(u). This allows us to implement
an online version of the smoothed model checking where the observation data
arrives in batches.

4.2 Query strategies

As discussed in Section 3.4, in order to implement an active learning method for
model checking we need to decide which new parameters are tested based on the
existing information. In the following we consider two query strategies for active
model checking.

Predictive variance The first approach is a commonly used experimental
design strategy which aims to minimise the predictive variance. Recall that in
smoothed model checking for a property ϕ we fit a latent Gaussian process gϕ.
The posterior satisfaction probability for parameter x∗ given the GP gϕ is then
calculated via

p(y∗ = 1|D,x∗) =

∫
σ(gϕ(x∗))p(gϕ(x∗)|D)dgϕ(x∗) .

The above can also be seen as the expectation of σ(gϕ(x∗) with respect to the
distribution gϕ(x∗), denoted E [σ(gϕ(x∗)]. Similarly, we can consider the variance
of this estimate

E
[
σ(gϕ(x∗)

2
]
− E [σ(gϕ(x∗)]

2
.

Our aim is then to iteratively train the Gaussian process model so that predictive
variance over the parameter space is minimised.

Before giving the outline of the proposed procedure we address the issue of
redundancy in the query points. As pointed out in Section 3.4, simply taking a
set of points with the highest predictive variance leads to querying parameters
that are clustered together. We can overcome this problem by clustering the pool
of unlabelled samples U from which the query choice is made. In particular, the
points with the highest predictive variance are chosen from a pool of samples
where the redundancy is already reduced. Informally, this leads to the following
basic outline of the procedure:

1. Sample an initial set of training points or parametrisations x of the model
(via uniform or Latin hypercube sampling or taking points on a regular grid)
and conduct model checking based on sampled trajectories. These points are
used to fit the first iteration of the Gaussian process model.
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2. For the next iteration we randomly sample another set of points U and
cluster them via regular kmeans clustering algorithm. From the set of cluster
centres Uk the query function Q selects a set of points for model checking.
The query function is simply defined by taking the subset U∗ of cluster
centres Uk where the predictive variance, as defined above, is the highest.
This concentrates the sampling to points where the model is most uncertain
about its prediction.

3. The points in U∗ are labelled by simulating the model for the parametrisa-
tions in U∗ and checking the resulting trajectories against the logic specifi-
cation ϕ. The results are incorporated into the Gaussian process model via
the streaming method discussed in Section 4.1.

4. Repeat points 2 and 3 until a set computational budget is exhausted.

Predictive gradient The second strategy we consider is based on the predictive
mean ḡϕ(x) of the Gaussian process. Our aim is to concentrate the sampling at
the locations where the predictive mean undergoes the most rapid change. This
requires gradients of the predictive mean.

We recall from Section 3.3 that for a variational posterior q(u) with mean µ
and covariance Σ, the posterior mean at a point x is given by

ḡϕ(x) = k(x, zu)K−1
mmµ

def
= k(x, zu)α .

Only the first part, the kernel function, depends on x. Thus, in order to get the
derivative of the predictive mean we need to differentiate k(x, zu). Recall that
in this paper we chose to work with the squared exponential kernel given by

k(x, zui
) = exp

(
−|x− zui |2

2`

)
.

We have used zui
to denote a single inducing point in the set of inducing points

zu. Thus, the derivative of k(x, zui
) with respect to x is given by

dk(x, zui
)

dx
= −x− zui

`
exp

(
−|x− zui

|2

2`

)
= −x− zui

`
k(x, zui

) . (3)

Equation 3 is given for a single inducing point zui
. In order to compute the

derivative of the posterior mean we need to concatenate this derivative for all m
inducing points. Thus, we get

dḡϕ(x)

dx
= −`−1

x− zu1

· · ·
x− zum

 (k(x, zu)�α)

where � denotes element-wise multiplication. Given this we can proceed as in
the case of the predictive variance. The only change is that instead of considering
the predictive variance for each sampled set of parameters we calculate the norm

of
dḡϕ(x)

dx and define the query function to choose a subset U∗ of cluster centres
Uk with the highest norms.
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Fig. 2: Mean satisfaction probability surface for sparse smoothed model checking.
Inducing points are set as a regular 7×7 grid. Training data is constructed from
a set of 10 SSA trajectories at parameter points on a 15×15 grid.

4.3 Implementation

The prototype implementation in written in the Julia programming language
and makes use of the tools provided as part of Julia Gaussian Processes reposi-
tories [1] to set up the Gaussian process models. The variational inference-based
fitting which maximises the ELBO with respect to parameters of the posterior
distributions as well as the kernel hyperparameters was implemented for all of
the sparse methods. For the standard smoothed model checking we use the U-
Check tool [5] available on GitHub [2]. The CTMC models are defined as CRNs
with tools provided as part of the SciML ecosystem for scientific simulations [17].
The simulations were carried out on a laptop with Intel i7-10750H CPU.

4.4 Results

In this section we evaluate the proposed active learning methods for model check-
ing on the running SIR example. The methods are compared to the baseline naive
stochastic simulation-based model checking and smoothed model checking with-
out the sparse approximation and the active step. We present several metrics
for comparing the smoothed model checking results with the empirical mean
based on stochastic simulation. The first is the mean and standard deviation
of the difference between the mean probability predicted by the fitted Gaussian
processes and the empirical mean from the stochastic simulation results at each
of the points on the 20× 20 grid. Secondly, we consider the maximum difference
between the predicted mean probability and the naive empirical mean. Finally,

we give the root-mean-square error (RMSE)

√
1
N

∑(
ḡϕ(xi)− f̄ϕ(xi)

)2
where

ḡϕ(xi) is the predicted mean satisfaction probability for parametrisation xi. We
denote by f̄ϕ(xi) the empirical estimate of the satisfaction probability at xi given
3000 sample trajectories.

In the active learning experiments we start with a 12×12 grid followed by an
active iteration where an additional 81 parameter points are chosen to refine the
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Table 1: Comparison of accuracy for smoothed model checking and the sparse
and active learning extensions. All of the smoothed model checking methods are
assigned the same computational budget of 225 parameter values with training
data constructed from 10 SSA trajectories of the SIR model at each parametrisa-
tion. For smoothed MC and sparse smoothed MC the parameters are considered
on a regular grid.

Method Error mean/var Maximum RMSE

Smoothed MC (U-Check) (0.044, 0.042) 0.166 0.666
Sparse smoothed MC (0.042, 0.036) 0.147 0.6
Active sparse smoothed MC

Predictive variance (0.033, 0.029) 0.131 0.479
Predictive gradient (0.03,0.026) 0.14 0.436
Random sampling (0.049, 0.039) 0.149 0.681

Table 2: Comparison of computation times (in seconds) for smoothed model
checking and the sparse and active learning extensions. The hyperparameter
tuning time is included in the inference column.

Method SSA Inference Active query Total

Naive statistical MC 191.5 N/A N/A 191.5
Smoothed MC (U-Check tool) 0.21 16.8 N/A 17.0
Sparse smoothed MC 0.48 4.1 N/A 4.5
Active sparse smoothed MC

Predictive variance 0.57 5.7 0.003 6.2
Predictive gradient 0.55 3.1 0.2 3.9
Random sampling 0.60 2.9 0.00 3.5

approximation for a total of 225 training points. At each parameter point the
model checking is conducted for 10 sample trajectories. The inducing points are
initialised by choosing a regular 7×7 grid and kept constant for the remainder
of the fitting procedure. Similarly we present the results for sparse smoothed
model checking for a 15× 15 grid with the 7×7 grid of inducing points, as well
as smoothed model checking where inducing points are not chosen.

Figure 2 gives the mean satisfaction probability surface based on the fitted
sparse Gaussian process. Figure 3 presents the evolution of the predictive mean
surface through two active learning iterations. All figures are accompanied by
the scatter plots showing where the samples were drawn.

The results for accuracy are summarised in Table 1. Table 1 gives the com-
parisons for each point on the 20× 20 grid where the naive model checking was
conducted and satisfaction probability estimates exceeding 0.02. This is done to
concentrate the analysis to the parts of the parameter space where the surface is
not completely flat. As expected, the main benefit of the sparse methods comes
from significant reductions in computation costs. Surprisingly however, the stan-
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(a) First iteration.
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(b) Second iteration. Predictive variance-based query func-
tion.
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(c) Second iteration. Predictive mean gradient-based query
function.

Fig. 3: Mean satisfaction probability surfaces for the active and sparse smoothed
model checking methods with 2 iterations. The first iteration of the active
learning-based methods fits the Gaussian process inference model based on 10
model checking results for each parameter on a regular 12×12 grid. The active
step is then used to exhaust the total computational budget of 225 parameters
and refine the approximation.

dard sparse method without active step performs better than the method pro-
vided by the U-Check tool with respect to the error metrics considered. The
reasons for this may be the differences in the recovered hyperparameters — no-
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tably, amplitude ≈ 2.7 for U-Check versus ≈ 4.5 for the sparse methods. These
differences can be attributed to different methods for tuning the hyperparameters
as well as the sparsity assumption. Note that the active methods with predictive
variance and gradient-based query functions provide further improvements in
the approximation compared to sparse model checking without an active step.

When it comes to computation time, it has to be noted that one of the down-
sides of directly optimising the variational posterior parameters with respect to
ELBO by gradient ascent means that choosing a step size for the optimiser is
not always trivial. The step size affects the rate of convergence and can have
significant effects on the computation times. Hence work into the computational
robustness of the variational inference methods in the context of model checking
as well as comparisons with other approximate inference methods like sparse
expectation propagation are a direction of further research.

5 Conclusions

In this paper we applied sparse approximation and active learning to smoothed
model checking. By leveraging existing sparse approximations, we improved scal-
ability of the inference algorithms for Gaussian process classification correspond-
ing to the smoothed model checking problem. Additionally, we showed that by
concentrating the sampling to high variance or high predictive gradient areas
of the parameter space, we improved the resulting approximation compared to
sparse models with uniform or grid-based sampling of model parameters. When
compared to the standard smoothed model checking approach with no inducing
point approximation and no active step, our method significantly speeds up the
inference procedure while attempting to reduce errors inherent in sparse approx-
imations. This aligns with the pre-existing results from active learning literature
which aim to construct learning algorithms that actively query for observations
in order to improve accuracy while keeping the number of observations needed
to a minimum.

As further work, we aim to refine our query methods and make a comparison
with other existing methods in the active learning literature. Secondly, we plan
to link the choice of inducing points to the active query methods more directly.
In particular, we will test if the inducing points, and perhaps the underlying
kernel parameters, can be effectively reconfigured through active iterations. This
would further improve the approximation to the satisfaction probability surface
at parts of the parameter space where satisfaction probability undergoes change.
Finally we will consider alternative kernel functions. The kernel function chosen
in this paper is a standard first approach in many settings but is best suited for
modelling very smooth functions — not necessarily the case with satisfaction
probability surfaces for parametric CTMCs.
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