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Abstract

Sequence-to-sequence speech synthesis models are notorious

for gross errors such as skipping and repetition, commonly as-

sociated with failures in the attention mechanism. While a lot

has been done to improve attention and decrease errors, this

paper focuses instead on automatic error detection and analy-

sis. We evaluated three objective metrics against error detection

scores collected by human listening. All metrics were derived

from the synthesised attention matrix alone and do not require

a reference signal, relying on the expectation that errors occur

when attention is dispersed or insufficient. Using one of this

metrics as an analysis tool, we observed that gross errors are

more likely to occur in longer sentences and in sentences with

punctuation marks that indicate pause or break. We also found

that mechanisms such as forcibly incremented attention have

the potential for decreasing gross errors but to the detriment of

naturalness. The results of the error detection evaluation re-

vealed that two of the evaluated metrics were able to detect er-

rors with a relatively high success rate, obtaining F-scores of up

to 0.89 and 0.96.

Index Terms: speech synthesis, attention, sequence-to-

sequence modelling

1. Introduction

Many sequence-to-sequence models rely on an attention mech-

anism in order to learn to associate segments of the output

sequence to segments of the input sequence. Sequence-to-

sequence systems like DCTTS [1] significantly outperform

frame-level systems like Merlin [2] in terms of naturalness

and quality [3]. However, unlike Merlin, a frame-level sys-

tem that has an explicit duration model, attention-based models

are prone to so-called gross errors, commonly associated with

failures in the attention mechanism. Such errors include skip-

ping and repetition of phones or words, muffling and early stop

(a special case of skipping). The same model might produce

gross pronunciation errors for some sentences and yet synthe-

sise other sentences with human-like naturalness.

Several types of attention mechanisms and workarounds

have been proposed to mitigate such errors. TTS systems like

DCTTS [1] employ the so-called dot-product attention mecha-

nism [4] where the attention matrix is calculated as the multipli-

cation between a key (derived from a text encoder) and a query

vector (derived from an audio encoder). Dot-product mecha-

nisms are computationally efficient but do not take into account

location information: the product between the two vectors is

the same independent of the location of the segment in the in-

put sequence, making it harder for the system to learn to move

along the input sequence. To stabilise attention and encour-

age a monotonic behaviour an additional loss component can

be added into training. The so-called guided attention loss, the

expected value of the attention matrix weighed by a diagonal

guide, encourages the model to generate matrices whose non-

zero components are closer to the diagonal. Another way to

encourage monotonicity is to add positional information to the

key and query vectors as done in Deep Voice 3 [5]. More com-

plex types of attention mechanism like the additive model used

in Tacotron [6, 7] and the GMM based [8] used in Char2wav [9]

and VoiceLoop [10] are able to incorporate location information

in different ways with mechanisms such as location sensitive

attention [11] and the dynamic convolution and GMM-based

methods proposed in [12]. Such mechanisms are however com-

putationally expensive and have also been shown to benefit from

an additional guided attention loss [13].

In this paper, rather than proposing new ways of stabilis-

ing attention, we focus on understanding when errors are more

like to occur and how to automatically detect errors. Automatic

error detection is a useful tool to reduce human listening effort

when choosing which model to store while training, comparing

systems and producing samples for a listening test. We focus

our analysis on the DCTTS system as it can generate the large

amount of sentences we required in a timely manner.

2. Attention errors and metrics

The most common errors associated with attention failures are

skipping, repetition and the so-called “muffling”. In Fig. 1 we

present the attention matrix of three different sentences gener-

ated by the DCTTS text-to-speech model, each containing one

of these errors. In the left most image we can see the atten-

tion matrix of a sentence with a skipped segment and an early

stop (incomplete sentence). These are obvious from the clear

discontinuity and the abrupt end of the “attention path”. The

image in the middle shows the attention matrix of a sentence

with a repeated segment, where a different kind of discontinu-

ity appears. Rather than attending to the current part of sentence

the attention path “jumps” to a later encoder step, that is synthe-

sised twice. This is marked by a stronger competing path. The

right most image, that displays the attention matrix of a sen-

tence with a “muffling” error, shows a similar pattern, but this

time the competing path is not as pronounced. The “divided”

attention between two segments of the text is what leads to the

muffled quality.

These examples show that it is possible to identify that a

synthesis error occurred by visually inspecting the attention ma-

trix. The authors in [14] proposed a metrics for output transla-

tion confidence based on attention distributions. This metric is

based on three separate metrics: the coverage deviation penalty

(CDP) and the absentmindedness penalties (Ain and Aout).

The CDP is calculated per phone and averaged across

phones. The metric increases when too much or too little at-

tention is given to a particular phone. It should be able to detect

skipping (and early stop) as well as repetition (too much atten-

tion). From the original definition in [14] we dropped the minus
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Figure 1: Example attention matrix for skipping and early stop (left), repetition (middle) and “muffling” (right).

sign so CDP is always a positive value:

CDP =
1

J

∑

j

log(1 + (1−
∑

i

αij)
2) (1)

where α is an element in the attention matrix, j indexes encoder

steps (phones or letters) and i decoder steps (acoustic frames)

and J the total number of encoded steps.

The other remaining metrics, the absentmindedness penal-

ties, targets scattered attention either per input (Ain) or per out-

put token (Aout). Dispersion is measured as the entropy of the

predicted distribution. Ain and Aout increase when attention

is more scattered and should be able to detect multiple modes

(repetition and muffling).

Ain is then calculated as the entropy of the attention distri-

bution per phone and averaged across phones:

Ain = −

1

J

∑

j

∑

i

α̂ij log α̂ij (2)

α̂ij =
αij∑
i
αij

(3)

Aout is calculated as the entropy of the attention distribu-

tion taken along the encoded steps, calculated per frame and

averaged across frames:

Aout = −

1

I

∑

i

∑

j

α̂ij log α̂ij (4)

α̂ij =
αij∑
j
αij

(5)

where I is the total number of decoder steps (in our case, acous-

tic frames).

None of these measures require a reference natural speech

signal and are very fast to calculate. They could be used during

training as additional losses or as part of generation for moni-

toring purposes.

3. TTS system

DCTTS is a sequence-to-sequence model that synthesises

frame-wise Mel spectrograms directly from text. DCTTS’s

acoustic model generates Mel spectogram features at a 50ms

frame shift. Then, a spectrogram super-resolution network, con-

verts this coarse representation into a higher resolution linear

scale spectrogram which is passed to a waveform generator for

synthesis, in our case the phase reconstruction method Griffin-

Lim [15]. DCTTS is fully convolutional and for that reason
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Figure 2: CDP, Ain and Aout scores calculated using the at-

tention matrices generated during training, averaged across all

training sentences.

trains and generates faster than models that contain recurrent

units.

DCTTS relies on a dot-product attention mechanism and an

additional guided attention loss. At synthesis time it employs

the forcibly incremented attention (FIA) mechanism to force

attention to focus on neighbouring encoder inputs only. This

is done by applying a mask to the generated attention matrix

before the softmax operation. This mask is updated at every

decoder step according to the current phone position.

The results reported in this paper were obtained from a

DCTTS model trained with data from the Jane Eyre audiobook

(14 hours) from the Blizzard 2013 dataset [16]. The acous-

tic model was trained for 1000 epochs using Ophelia 1. Fig.2

shows the average CDP, Ain and Aout calculated from the train-

ing data for each trained epoch. Even though these metrics were

not explicitly minimised during model training they do decrease

over epochs, a possible side effect of minimising the guided at-

tention loss.

4. Evaluation

In this section we evaluate how well these three metrics are able

to detect errors. We do not evaluate whether these metrics can

1Code and samples: https://github.com/CSTR-Edinburgh/ophelia
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Figure 3: Boxplot distribution of CDP scores over sentences

grouped in terms of number of phones (top) and number of

punctuation marks (bottom).

tell where the error occurred or which kind of error occurred.

We focus instead on whether they are able to detect if an error

occurred in a sentence at all.

To evaluate this we annotated a large dataset of synthesised

speech by asking human listeners to detect whether a synthe-

sised sentence contained an error given the expected transcrip-

tion. To create the stimuli for this we first performed an error

analysis to identify when gross errors are more likely to occur.

4.1. Error analysis

Sequence-to-sequence models produce gross errors but they do

not occur very frequently, particularly if a model has converged

during training. In order to obtain a substantial amount of errors

one would have to synthesise a large set material.

To simplify this task and understand when errors are more

like to occur we used the CDP as an automatic analysis tool. We

synthesised close to 8,000 sentences derived from a book (“Far

from the Madding Crowd”) and calculated the CDP scores of

each sentence from the generated attention matrix.

4.1.1. Sentence structure

The boxplot in Fig. 3 shows the distribution of the CDP values

grouped in terms of number of phones and number of pause

related punctuation marks. We identify that errors occur more
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Figure 4: Distribution of CDP scores over sentences. The two

distributions refer to sentences synthesised with FIA (blue) and

without FIA (orange)

often (higher CDP values) with sentences that contain between

20 to 60 phones and one or two of pause related punctuation

marks (, ; :).

The fact that we observed higher CDP values with increas-

ing number of pause related punctuation marks could indicate a

failure of the trained model to learn to insert pauses, a notorious

issue of sequence-to-sequence models.

4.1.2. Forcibly incremented attention

We also noticed that higher CDP values are more likely to occur

when forcibly incremented attention is turned off, as shown by

the boxplot in Fig. 4.

Forced incremented attention has a substantial effect on the

CDP values as it forces the attention matrix to focus on neigh-

bouring phones, limiting coverage and dispersion. FIA has

however a negative effect on naturalness. To test this and find

whether FIA is necessary when no gross errors occur we per-

formed an online listening test.

Listeners were asked to choose which sample was more nat-

ural (a sample synthesised with FIA and one synthesised with-

out, both synthesised from the same model). Each test covered

100 sentence pairs: 10 focus checks pairs (TTS x vocoded) and

90 test pairs. The order of samples in the pair and the order

of sentences was randomised. The focus checks were used for

participant removal. The sentences were selected from the Har-

vard set [17] . These contained between 21 to 52 phones and

no pause related punctuation marks (CDP< 0.42, Ain< 0.22).

None of the synthesised sentences presented gross errors (with

our without FIA).

We analysed the results of 49 participants (11 participants

were excluded out of the 60 that took the test). A total of 4,398

preference scores were analysed. The preference score was

calculated as the percentage of times a system was preferred

(pooled across all sentences and participants). Results showed

that participants significantly preferred samples generated with-

out FIA (63.2%) over samples generated with FIA (36.8%).



Figure 5: Classification results for CDP (left) and Ain (right).

4.2. Error detection

To evaluate if the metrics are able to detect gross errors in syn-

thesised speech, we performed a listening test to gather human

annotation of when gross errors occur. The listening test was

carefully designed to assure sensible coverage of the material,

best use of participant’s effort and that the task was manageable.

For this to happen we designed the test such that at least 50%

of the material each listener was asked to annotate could poten-

tially have errors (assuming errors occur when CDP > 0.5).

Listeners were presented with examples of what kind of

errors they should detect, alongside speech samples and their

transcriptions: early stop, skipping (missing phones and miss-

ing words) and repetition. Each participant listened to 100 sen-

tences synthesised from a DCTTS system: 25 with errors we

intentionally created (“focus” checks), 25 with suspected errors

(CDP > .5) (selected from a set of 199 sentences) and 50 with-

out suspected errors (CDP < .5) (selected from a set of 1490

sentences). The focus check sentences were used to check if

the participant was doing the task correctly and were used to

exclude participants from the final analysis.

4.2.1. Results

We analysed the results of 52 participants (6 participants were

excluded from the total of 58 that took the test). We calculated

the detection agreement for every sentence as the percentage of

participants that marked that an error occurred.

We found that participants agreed on 84% of sentences, out

of these, 40% of sentences were marked with errors, which in-

dicates the task was reasonably easy and balanced.

As an initial evaluation metric we calculated the correla-

tion coefficient between the human detection agreement and the

scores each metric produced for a particular sample. We found

a strong correlation (.73 and .78) for CDP and Ain and a week

correlation for Aout (-.08). This result could be related to the

fact that the most common error occurred was skipping, an error

that Aout would not be able to detect.

To further evaluate the metrics we converted the detection

agreement into zero (no error) and one (error) values and calcu-

lated the classification performance of each metric for this two

class problem. Fig. 5 presents the accuracy, precision, recall

and F scores for different detection thresholds (an error occurs

when the measure is above the detection threshold). The max-

imum F-score=0.89 was obtained for a CDP threshold of 0.42

while a maximum F-score=0.94 was obtained for Ain threshold

of 0.26, as presented in Fig. 5.

5. Conclusions

In this paper we evaluated automatic metrics for detecting gross

errors in sequence-to-sequence speech synthesis. We focused

on gross errors associated with attention failures and on met-

rics that rely on the attention metric alone without the need of a

natural speech reference. We observed that a metric based on at-

tention coverage and one based on dispersion are able to detect

when a gross error occur with an F-score of .89 and .94 respec-

tively. Using one of the measures to analyse a large number of

synthesised samples we noticed that gross errors are more likely

to occur in sentences with pause related punctuation marks and

when the forcibly incremented attention mechanism is turned

off. We showed, however, that imposing focus on attention by

using a fixed mask degrades naturalness. These results motivate

alternative mechanisms that takes into consideration coverage

and dispersion.
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