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Dynamics of a spherical colloid at a liquid interface: a lattice Boltzmann

study

I. Intro

Harinadha Gidituri,! Alois Wiirger,""® Kevin Stratford,2 and Juho S. Lintuvuori':®)
Y Univ. Bordeauz, CNRS, LOMA, UMR 5798, F-33405 Talence, France

D EPCC, University of Edinburgh, EH8 9BT, Edinburgh, United Kingdom

(Dated: 8 April 2021)

We study the dynamics of a spherical colloidal particle pulled along fluid-fluid interface using lattice Boltz-
mann (LB) simulations. We consider an interface with a finite width and include both the effects of the
thermodynamics of the interface and the particle wetting, characterised by the contact angle § between the
particle surface and the interface, in addition to the viscosity ratio A between the two fluids. We characterise
the particle dynamics by applying a constant pulling force along the interface and measure both the trans-
lational and the rotational dynamics as a function of the contact angle and the viscosity ratio. We observe
that the hydrodynamic drag is reduced and the particle rotation is increased when the particle resides more
in the low viscosity fluid, in agreement with previous hydrodynamic theories. We also present a case where
the particle rotation is suppressed. Then, the drag is observed to increase as compared to the situation where
rotation is allowed, while the general behaviour of reducing drag while the particle thermodynamically prefers
the lower viscosity fluid, is retained.

Keywords: Colloidal particle, contact angle,wetting, Lattice-Boltzmann Method (LBM), drag force, torque

duction drag coefficient??, accounted for the thermodynamics of

Colloidal particles trapped at fluid-fluid interface can
be seen in plethora of systems, such as stabilization of
emulsions! ™, foams®®, bijels®® and liquid marbles!0:'1,
Colloidal particles are spontaneously adsorbed on to the
fluid-fluid interface and energetics govern the state of the
system to reach a minimum energy as first observed by
Ramsden'? and Pickering!®. The dynamics of a spher-
ical particle trapped at an interface between two flu-
ids or fluid and gas is a widely studied problem both
experimentally'4~'® and theoretically'®~2®, due to its im-
portance in various chemical, oil and mineral flotation in-
dustries. The hydrodynamic drag of the colloid along the
interface depends crucially on the viscosity difference be-
tween the two fluids and the particle wetting. In several
experiments it has been observed that the hydrodynamic
drag decreases when a larger portion of the particle is
immersed in the low viscosity fluid or gas'* %, This be-
havior has been reproduced in theoretical studies, where
the drag force is calculated using Stokes hydrodynamics
with various boundary conditions, including the presence
of shear and dilational surface viscosities'?, a finite ratio
of bulk viscosities?”, or a solid or membrane boundary
on the opposite surface of a thin film?2.

In most previous theoretical approaches'® 22 the par-
ticle dynamics was studied from a purely hydrodynamic
perspective, with the boundary conditions implemented
through an infinitely thin interface. The thermodynam-
ics of the interface was reduced to the definition of a con-
tact angle. A very recent study concerning the effects of
buoyancy-driven interface deformations on the effective

a)Electronic mail: alois.wurger@u-bordeaux.fr
b) Electronic mail: juho.lintuvuori@u-bordeaux.fr

the interface between the two fluids in 2-dimensions.

In this paper we consider the hydrodynamics of an in-
terface particle, and take into account both the thermo-
dynamics of a finite-thickness interface and particle wet-
ting. Using lattice Boltzmann simulations, we explicitly
solve the coupled Navier-Stokes and Cahn-Hilliard equa-
tions for the binary fluid with surface wettable colloidal
particles?® in 3-dimensions. The hydrodynamic bound-
ary conditions at the interface arise from the thermo-
dynamic stress. To simulate the particle dynamics, we
set the particle wetting properties, the interfacial tension
and the viscosities of the two fluids. The particle is pulled
along the interface by a constant force F' simulating an
active microrheology experiment. The translational and
rotational dynamics of the particle are governed by the
thermo-hydrodynamic stress integrated over the particle
surface as a response to the applied force. We consider
two situations: In the first one, the particle rotates due
to the torque resulting from the unlike traction exerted
on the upper and lower hemispheres, which occurs for a
free interface and a perfectly spherical particle. In the
second case, particle rotation is inhibited, which in phys-
ical terms may occur for surfactant laden interfaces or
for contact-line pinning on the particle surface.

Il.  Methods and simulation details

A. Binary fluid model

To model the thermodynamics of the interface, we con-
sider a phase separating binary fluid characterised by a
composition ¢(r). The phase behavior is described by a
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Ginzburg-Landau free energy functional®®,

A
Glo = [ av <75¢2 + 24t g|w>|2> G

where A, B and k are constants. The first two terms
describe the bulk properties; the choice of A = B > 0
corresponds to a phase separated state with equilibrium
compositions ¢* = +A/B = +1. The third term repre-
sents the energy cost of interfaces. The interfacial thick-
ness x and tension o are related to the above parameters,

2k _[8k|A]P
X = [y o= 0B (2)

At the equilibrium, the composition profile is given by
¢/¢" = tanh(z/x), ®3)

where z is the coordinate normal to the interface, and
the location of an idealized interface can be identified by
¢ =0.

The temporal evolution of phase field variable ¢ is gov-
erned by a Cahn-Hilliard advection-diffusion equation,

Ohp+v-Vo=MVp, (4)

where v is the fluid velocity, M is the mobility and p
is the chemical potential derived from the free energy
functional in Eq. 1 by p = 5& = A + B¢® — s|V2¢)|.
The fluid velocity is obtained by solving incompressible
Navier-Stokes equation,

POV +v Vv =nV3v - VP - ¢Vp, (5)

where the gradient of the hydrodynamic pressure P is
supplemented by the thermodynamic force ¢pVp.

Binary fluids with different wetting preferences to-
wards a solid surface can be modeled by including an
additional surface free energy G(¢s) to Eq. 1, where ¢
is the order parameter in contact with the surface. The
total free energy of the combined system (binary fluid +
colloid) is given by?”

Grotat = Glo] + [ Gulou)is, (©)
with a surface contribution
C

G = 500+ Hos. (M

The equilibrium order parameter profile ¢, and the
boundary condition at the solid surface

dG,
dos

where n is the particle surface normal, can be obtained
from the functional minimization of the total free energy

= K|Vl (8)

(Eq. 6)%7.

Different wetting behaviors can modeled by tuning of
C and H values in Eq. 7. A finite value of C should be
considered for systems with a wetting phase transition.
In the current study, we considered C' = 0 in all cases.
The two fluid-solid interfacial tensions can be readily be
modified by changing the parameter H. For H = 0 the
surface will have an equal affinity towards both fluids,
corresponding to a neutrally wetting colloid (8 = 90°).
A non-zero value of H causes an asymmetry which results
in a deviation of the contact angle from 90°.

B. Simulation details

The simulations were carried out using a hybrid
method, where the evolution of the order parameter was
solved using finite difference and the flow field v(r), aris-
ing from the continuity and Navier-Stokes equations, us-
ing lattice Boltzmann®®. The colloids were modelled as
spherical particles with a radius R lattice sites. The
no-slip boundary condition at the particle surface was
realised by a standard method bounce-back on links
method. 2%3° and the boundary condition for ¢ was
solved numerically??.

‘We use a 3-dimensional simulation domain consisting
of 128 x 128 x 128 lattice sites with periodic boundary
conditions in all directions.

The simulation parameters below are given in lattice
units, where the lattice spacing, time step and density are
fixed to unity: Az =1, At =1 and p = 1, as customary
in LB simulations. The size of the colloid is fixed at
R = 12Az. The validation of the domain and colloid
sizes are presented in the appendix.

The viscosity of the ¢ = +1 fluid was fixed 17, = 0.625
throughout the paper. The viscosity ratio (A = n2/m1)
is varied by changing the viscosity 72 of the ¢ = —1
fluid. To have a continuous viscosity across the interface,
a composition dependant viscosity 7(¢) following an Ar-
rhenius relation3!,

n(r)=mny? m° 9)

was used.

The densities of both of the fluids and the colloids were
fixed for a constant value of 1.0. For the binary fluid A =
B = 0.00258, surface penalty £ = 0.004 and mobility M
= 4.0 were used. Using the parameters above and Eq.
2, we get an interfacial width x =~ 1.76 and interfacial
tension o &~ 0.003 in lattice units.

‘We consider both freely rotating particles, and parti-
cles without rotational motion. To inhibit the rotation, a
director § is assigned on the particle and strong magnetic
field By is applied to align the particle director § along
the applied force F. The resulting torque T = Bg x §
inhibits the rotational motion of the particle.
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FIG. 1. Schematic representation of a colloid particle with
radius R at fluid-fluid interface with two different viscosities
m and 72 respectively. The contact angle () is defined as the
angle measured between the tangent at the colloid surface and
fluid-fluid interface.

C. Particle contact angle

We study the dynamics of a colloidal particle at a fluid-
fluid interface. A spherical colloidal particle of radius R
is placed at an interface between two fluids with different
viscosities 71 > n2 (Fig. 1). Depending on the surface
wetting, the particle adopts a contact angle 6 in equilib-
rium which can be measured using a relation

Al
cost) = 7 (10)
where Al is the difference between interface position and
center of the colloid (Fig. 1).

In the simulations, the contact angle can be tuned
by varying the free energy parameters and follows
theoretically?”

cos@:%[—(l—h)%+(1+h)%] (11)

where the wetting parameter h is given by,

H
h= = (12)

D. Non-dimensional numbers

The hydrodynamic non-dimensional numbers describ-
ing the interface deformation and flow behavior are the
capillary and Reynolds numbers, respectively

Ca=V (13)
g

Re = PRV (14)
it

where V' is the steady state particle velocity, and the vis-
cosity 1 of the fluid ¢ = +1 was used in the calculation
of both Re and Ca. Using the simulations parameters,
we recover Re ~ O(107% — 107*) and capillary number
Ca ~ O(1072). Due to low value of the Ca, we are in
the regime where deformation of the interface can be ne-
glected.

We consider a density matched system, thus the grav-
itational Bond number

Bo = (p, — p1)gR*/o = 0. (15)

An additional non-dimensional measure associated
with interface thickness is given by Cahn number,

=X
Cn = 7 (16)

In the current study, Cn is fixed at a constant value of
0.15.

I1l.  Results and Discussion
A. Contact angle validation

Depending the wetting of the particle surface, the col-
loid is displaced vertically with respect to the interface
(Fig. 2). This allows the measurement of the contact
angle ¢ using equation 10. In Fig. 2(a) the influence of
wetting parameter h on the contact angle observed from
the simulations is compared with the theoretical values.
The simulations are in good agreement with the theoret-
ical estimation for 6 € [60°,120°]. However, a deviation
from the theoretical prediction is observed towards the
two extremes h = +0.4 (Fig. 2(a)). This deviation prob-
ably arises due to the discretisation of the particle surface
on the lattice. We have thus limited our range between
0 ~ 108° and 6 ~ 72° respectively as upper and lower
limit for # in the simulations of the particle dynamics.

B. Drag on a neutrally wetting colloid

To validate our simulation method, we conducted a
numerical experiment with a neutrally wetting colloidal
particle (6 = 90°) dragged along the fluid-fluid interface
with a viscosity ratio A =1 (Fig. 2c).

Under Stokes flow, the drag force on a translating
spherical particle in the bulk fluid is given by,

F = 6mRV (17)

where 7 is the viscosity of the fluid, R is the radius of
the particle and V' is its velocity. By varying F', we find
a linear force-velocity relation as expected from Stokes’s
law (Fig. 3).

Since our domain size is finite and we used periodic
boundary conditions our drag coefficient would be af-
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FIG. 2. (a) Contact angle versus wetting parameter defined
as h = H,/é for the case of viscosity ratio A = 1.0. Blue
circles are the values obtained from the simulation using Eq.
10 and red line is from theoretical calculation using Eq. 11.
Different values of colloidal contact angles measured at the
interface. (b-d) Snapshots from the simulations for different
contact angles: (b) 8 ~ 72°, (¢) 6§ =~ 90° and (d) 6 ~ 108°.
Red colour corresponds to ¢ = +1 and and blue to ¢ = —1
fluids with viscosities 71 and 72, respectively.

fected by finite size effects. To correct for these, we use
a correction by Hasimoto®? derived for the Stokes’ drag
of a periodic array of spherical particles. For the case of
simple cubic arrangement, corresponding a single colloid
in a cubic box with periodic boundary conditions, the

0.02
0.015 §
< 0.01 —Stokes law| ]
0.005
0

0 02 04 06 08 1 1.2
14 %107

FIG. 3. The force-velocity characteristics for the colloidal
particle of radius R = 12.0 at the interface with contact angle
0 = 90° and viscosity ratio A = 1.0. The simulation data is
fitted with Stokes drag (Eq. 17) of a spherical particle and
includes Hashimoto®? correction parameter Q Eq. 18 (see the
text for more details).

correction is given by>?

Q =1-1.7601/C, + C, — 1.5593C? (18)

4m R3
where C is the volume fraction, L is the box length.

Using the correction, we recover an excellent agreement
between the simulations and the Stokes’ result (Eq. 17)
for a neutrally wetting colloid at an interface with A =1
(Fig. 3).

C. Translation dynamics: the effect of the viscosity ratio
and a contact angle

The main aim of this work is to study the hydrody-
namic drag of a spherical colloidal particle trapped at
an interface between two fluids. The drag coefficient
is determined as the function of the viscosity contrast
A = n2/m and the contact angle #. To investigate the
translational dynamics, the particle was pulled along the
interface by a constant force F' = 0.01125. After initial
transient, the particle velocity was averaged over the last
1 x 10° steps in the steady state.

For a contact angle different from 90° or for a viscosity
ratio different from 1, the drag on the upper and lower
hemispheres differs, resulting in a torque around an axis
perpendicular on the interface normal and the direction
of the translational velocity V. The resulting translation-
rotation coupling leads to a superposition of gliding and
rolling motion with a finite angular velocity €2, as dis-
cussed in more detail in the section IIID. Further, we
consider the case where the rotation is inhibited and find
a velocity V' which in general differs from V.

In Fig. 4(a) we plot both V and V as a function of
€ = cos ), for various values of the viscosity ratio A. The
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FIG. 4. (a) Velocity versus e = cos 6 for different values of the
viscosity ratio A. Closed and open symbols correspond to ob-
served velocities with V' and without rotation V', respectively.
(b) The effective drag coefficient ratio ¢, and ¢, as defined
in Eq. (20).

velocity shows a roughly linear variation with € and de-
creases with increasing viscosity ratio A. Both dependen-
cies are qualitatively understood when noting that cos
provides a measure of the fraction of the particle volume
immersed in the less viscous fluid, and that 1+ A accounts
for the mean viscosity of the two fluids in the units of 7;.

Regarding the effect of the rolling motion, we find that
the velocity of rotating particles is in general larger, V' >
V', and that this effect increases with € yet decreases with
A. These dependencies are readily understood from the
data in Fig. 4: The overall reduction of the viscous stress
due to the rotation is most efficient for a large volume
fraction immersed in the low-viscosity fluid (large €) and
for a large viscosity contrast (small \).

The drag coefficient ( = F/V of a freely rotating par-
ticle is given by the ratio of the applied force F' and the
velocity V; we also define a reduced drag coefficient

)
=S (20)

Similarly we define ¢ and (. when the particle rotation
is inhibited. The drag ratio ¢, is plotted against con-
tact angle for different values of the viscosity ratio A in
Fig. 4(b). We find that at constant e, the drag increases
with increasing viscosity ratio A\. At constant A < 0,
the drag increases with the immersion parameter €, that
is, with the fraction of the particle volume immersed in

(S

a) Q<o b) Q>0 c) Q>0
Py
4 L
-«
A=1, e<0 A=1,€e>0 A1<1,e=0

FIG. 5. Schematic view of translation-rotation coupling of a
particle moving at velocity V' to the right. (a) The viscosity
is the same above and below the interface, A = 1, wheres the
large contact angle 6 > 90° implies ¢ < 0. Because of the
additional viscous stress at the contact line, the drag force
on the lower hemisphere is larger than on the upper one, as
indicated by double arrows, resulting in a clockwise rotation
of the particle. (b) For a small contact angle 6 < 90°, the
contact line is on upper hemisphere, and the particle rotates
counter-clockwise. (¢) The viscosity in the upper halfspace is
larger than in the lower, A < 1. The larger viscous drag on
the upper hemisphere favors counter-clockwise rotation.

the high-viscosity phase, in agreement with the previous
studies!? 2233,

D. Rotational dynamics

The hydrodynamic drag forces on the upper and lower
hemispheres differ in general, thus exerting a torque
which results in a steady-state rotation of the particle,
as shown schematically in Fig. 5. We calculated the an-
gular velocity 2 of the colloid using the same averaging
procedure as the calculation of V.

In Fig. 6 we plot  as a function of the immersion
parameter ¢ = cosf for different values of the viscosity
ratio A. For identical viscosities, A = 1, the angular ve-
locity is small and roughly linear in e. The sign of € is
readily understood when noting that the interface posi-
tion with respect to the particle center reads Re. Close
to the contact line the flow field is strongly perturbed by
the presence of the interface, thus engendering additional
viscous stress and enhancing the backward drag force on
the lower hemisphere in Fig. 5a and on the upper hemi-
sphere in Fig. 5b. As a consequence, the particle rotates
clockwise in (a) and counter-clockwise in (b).

Much larger values of Q2 occur for a finite viscosity con-
trast between the two fluids. In our simulations A < 1 in-
dicates higher viscosity in the upper halfspace, such that
the backward drag force is larger on the upper hemi-
sphere and the particle rotates counterclockwise (Fig.
5¢). In the case A < 1 and e < 0, the mechanisms (a)
and (c) partly cancel each other. The data in Fig. 6 show
that the viscosity ratio has a stronger effect; for A < 0.8
the angular velocity is positive, even for negative e.

Das et. al.?? considered spherical neutrally wetting
particles straddling on a liquid film on a solid surface.
Our value QR/V = 0.206 for A = 0.1 and € = 0, differs
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FIG. 6. The angular velocity of the colloid € versus cosine
of contact angle e = cos @ for different values of the viscosity
ratio A.

by less than 2% from QR/V = 0.21 calculated by Das et.
al.?2 for A = 0 and e = 0 at large film depth. At present
it is not clear whether this tiny discrepancy arises from
the difference in A or to the fact that Das et al. consider
an ideal interface (see below).

E. Comparison with theory

Our simulations for non-rotating particles are largely
motivated by the existence of theoretical predictions for
particles moving along an ideally thin and stiff interface.
Regarding the dependence on the contact angle, we com-
pare our findings for the velocity V' with the perturba-
tive expression for the drag force at a gas-liquid interface
(A = 0), first derived by Brenner®® and reinterpreted by
Dérr and Hardt3®,

F = 3mm RV (1719—6(:039+<..>4 (21)

This formula is exact to linear order in ¢; for ¢ = 0 it
reduces to half of the Stokes drag in a bulk liquid. Solving
for V and taking the derivative with respect to € we find

Lav
vV de

9
=5 (=0 (22)

e=

In Fig. 7 we show this derivative obtained from our sim-
ulation as a function of . As expected the derivative
vanishes at A = 1 and increases for smaller values of ),
that is, for increasing viscosity contrast. The simulation
data at small \ agree almost quantitatively with the the-
oretical result (22), indicated as an open star. Still, ex-
trapolating our data to A = 0 would suggest a derivative
slightly larger than the value % expected for an ideally
thin and stiff interface.

Now we turn to the dependence of the drag on a neu-
trally wetting particle as a function of the viscosity ratio,

0.6r * g
L]
- o
S 0.4¢ "
~
> o
3 .
= 0.2 o
- [}
o
]
or .
0 0.2 0.4 0.6 0.8 1

A

FIG. 7. Velocity derivative taken with respective to € in the
close neighbourhood around e = 0, where linear approxima-
tion is valid (slopes from Fig.  4(a) normalized with colloid
velocity at e = 0 at corresponding A value. Open star cor-
responds to theory (Eq. 21); closed squares correspond to
case with rotation and open squares correspond to without
rotation of the colloid.

which has been derived by Pozrikidis?°,

F=3mmRV(1+)), (e=0). (23)
The corresponding drag ratio reads as

L= (=0 (24)
For A = 1 this corresponds to a bulk fluid, whereas for
A = 0 it represents a gas-liquid interface, where the drag
force is half of the bulk value. In Fig. 8 we compare
the drag ratio obtained from our simulation data for e =
0 with Pozrikidis’s result. For viscosity ratios A > 1
we find a good agreement. For smaller values, however,
our simulation shows a lower drag ratio than expected
from theory for interfaces of zero thickness and infinite
capillary number. In the limit A — 0 the simulation data
for fT (open circles) clearly do not converge toward %
but toward a significantly smaller value below 0.4. This
effect occurs for both rotating and non-rotating particles,
though it is slightly larger for the former.

Furthermore, we also present the simulation data of
Das et al.?2 (open and closed stars) for an ideal gas-liquid
interface (A = 0). Their data for a non-rotating particle
(open star) is in excellent agreement with Pozrikidis’s
data, whereas the drag ratio for a rotating particle (closed
star) is reduced by about ten percent. This reduction in
the drag ratio for rotating particles compares well with
the findings at small A of the present work.

To rationalize the deviation of our data for the drag
ratio ¢, from theory, we remind that our simulations are
done for a Cahn-Hilliard diffuse interface of a finite width
and a finite surface tension, whereas the theory results,
eqs. (22) and (24), and the data of Das et al. are ob-
tained for an an ideal interface of infinite tension and
zero width. In the view of the rather small capillary
number used in our simulations, Ca = 0.01, the strong
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FIG. 8. Comparison of non-dimensional drag ratio ({») given
in Eq. 20 for the colloidal particle at fluid-fluid interface with
contact angle ¢ = 0 for different values of viscosity ratio (\)
with Refs.?%22, Here circles are from the simulations, closed
and open stars correspond to Das et. al.?? with and without
particle rotation. The solid line is obtained from a theoretical
estimation given by Eq. 23.

discrepancy shown visible in Fig. 8 can hardly be re-
lated to deformation of the interface. This suggest that
the observed deviations may stem from the finite inter-
facial width, and could be related to a decoupling of the
thermodynamic and hydrodynamic interfaces, defined by
zero composition variable ¢ = 0 and zero normal velocity
v = 0, respectively.

¢ nin

1

zly zly

FIG. 9. Phase and viscosity variation through the interface,
with the length scale x defined in (2).

In the steady-state and for small Reynolds number, the
Navier-Stokes equation (5) simplifies to

nV3v — VP — ¢V = 0. (25)

At the thermodynamic definition for the interface, ¢ = 0,
the last term vanishes. Yet there does not seem to be an
obvious argument why the vertical velocity should vanish
at the surface defined by ¢ = 0. In Fig. 9 we plot the
phase ¢ and the viscosity 1 across the interface. Both
vary smoothly at the scale of the interface width y, and
so does the stress term in (25). Intuitively one would
expect that, in order to minimize the overall dissipation,
the flow field becomes smoother in the more viscous fluid
above the interface, and that the sharp velocity changes
required at the contact line rather occur in the less vis-

cous phase. This would imply an asymmetric flow profile
in the vicinity of the surface ¢ = 0, and an overall re-
duction of dissipation with respect to the ideal interface
of zero thickness. This could explain our observation of
the reduced drag coefficient shown in Fig. 8. The spatial
resolution of the interface in our simulations was not suf-
ficient to provide unambiguous data on the flow profile
within and close to the surface ¢ = 0. In future studies,
this could improved by increasing the interfacial width

X

IV. Conclusions

In summary, we studied the dynamics of a spherical
colloidal particle at fluid-fluid interface using Lattice-
Boltzmann Method (LBM). Our simulations include the
effects of interfacial thermodynamics and particle wet-
ting, in addition to the hydrodynamics. The transla-
tional and angular velocities of the particle were analysed
both as the function of the viscosity ratio A between the
two fluids, and the contact angle 6 between the fluids and
the colloidal surface.

Our results are in overall good agreement with previ-
ous hydrodynamic theories. The drag is reduced when
the particle prefers thermodynamically a position where
its surface is more in the low viscosity fluid. Further,
the viscosity contrast leads to a rotational motion of the
particle. The effect of the rotation was analysed by ap-
plying a strong aligning field, which stops the rotation
and slighlty increases the hydrodynamic drag. Compari-
son with theoretical findings and previous simulations for
ideally thin and stiff interfaces, reveals a discrepancy in
the drag coefficient, which could be related to the finite
width of the interface considered here.

Acknowledgements

HG would like to thank Dr. Zaiyi Shen and Sotiris
Samatas for engaging and helpful discussions. HG and
JSL acknowledge IdEx (Initiative d’Excellence) Bor-
deaux for funding, Curta cluster for computational time.
JSL acknowledges support by the French National Re-
search Agency (ANR) project GASPP through Contract
No. ANR-19-CE06-0012-01. AW acknowledges support
through contract No. ANR-19-CE30-0012-01

Appendix
Domain and grid independence

The simulations were initialised with a fully separated
binary fluid mixture with a well-defined interface between
the fluids following an equilibrium profile (Eq. 3). A col-
loidal particle is placed at the interface, and a constant
pulling force F is applied along the interface. The accu-
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racy of the numerical results is sensitive to choice of both
size of the simulation box (L) and particle radius (R).
Table I shows the domain independence study on drag
force calculations with particle radius R = 12, viscosity
ratio A = 1.0 and contact angle § = 90° using three val-
ues of domain sizes 108, 128 and 160. It is evident from
the table that, increasing the domain size from 128 to
160, there is a negligible change (< 1%) in the value of
drag force value. Since the error is under an acceptable
limit, we have used domain size of 128 x 128 x 128 in all
our simulations to reduce the computational cost.

Domain size error%
108 1.1423
128 0.7061
160 0.4424

TABLE I. Relative error in drag force measurement from sim-
ulations and theory (Eq.17) of a particle with radius R = 12,
contact angle § = 90° and viscosity ratio A = 1 for different
domain sizes.
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°
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° . ° .
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0
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R

FIG. 10. Error percentage between drag force obtained from
simulation and theory (Eq. 23) for different values particle
radius (R) and interfacial thickness (x). Simulations were
carried out using a periodic simulation domain 128 x 128 x 128.

After fixing the domain size at a satisfactory value, it
is also important to find satisfactory size of the particle.
Fig. 10, shows the deviation from the theoretical drag
force calculation for different particle sizes with viscosity
ratio A = 1.0 and contact angle § = 90° using two values
of interfacial widths x = 1.13,1.76. The error percentage
is small (< 2%) for the particle sizes 10,12 and 14 with
x = 1.76. We have chosen the colloid radius R = 12 and
interfacial width x = 1.76 in the present work.

DATA AVAILABILITY

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.

LA. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A. R.
Bausch, and D. A. Weitz, “Colloidosomes: Selectively permeable
capsules composed of colloidal particles,” Science 298, 1006-1009
(2002).

2R. Aveyard, B. P. Binks, and J. H. Clint, “Emulsions stabilised
solely by colloidal particles,” Advances in Colloid and Interface
Science 100, 503-546 (2003).

3P. S. Clegg, E. M. Herzig, A. B. Schofield, T. S. Horozov, B. P.
Binks, M. E. Cates, and W. C. K. Poon, “Colloid-stabilized
emulsions: behaviour as the interfacial tension is reduced,” Jour-
nal of Physics: Condensed Matter 17, 3433-3438 (2005).

4T, S. Horozov, “Foams and foam films stabilised by solid parti-
cles,” Current Opinion in Colloid and Interface Science 13, 134—
140 (2008).

58. Lam, K. P. Velikov, and O. D. Velev, “Pickering stabilization
of foams and emulsions with particles of biological origin,” Cur-
rent Opinion in Colloid & Interface Science 19, 490-500 (2014).

6M. E. Cates and P. S. Clegg, “Bijels: a new class of soft materi-
als,” Soft Matter 4, 2132-2138 (2008).

7K. Stratford, R. Adhikari, I. Pagonabarraga, J.-C. Desplat, and
M. E. Cates, “Colloidal jamming at interfaces: A route to fluid-
bicontinuous gels,” Science 309, 2198-2201 (2005).

88. Aland, J. Lowengrub, and A. Voigt, “A continuum model of
colloid-stabilized interfaces,” Physics of Fluids 23, 062103 (2011).

9R. Arabjamaloei, R. S. Shah, S. Bryant, and M. Trifkovic, “Con-
trolling structure of materials derived from spinodally decompos-
ing liquids,” Physics of Fluids 33, 032020 (2021).

10P. S. Bhosale, M. V. Panchagnula, and H. A. Stretz, “Mechani-
cally robust nanoparticle stabilized transparent liquid marbles,”
Applied Physics Letters 93, 034109 (2008).

1IN. Janardan, M. V. Panchagnula, and E. Bormashenko, “Liquid
marbles: Physics and applications,” Sadhana 40, 653—-671 (2015).

12W. Ramsden, “Separation of solids in the surface-layers of so-
lutions and ‘suspensions’ (observations on surface-membranes,
bubbles, emulsions, and mechanical coagulation,” Proc. R. Soc.
Lond. 72, 156-164 (1903).

133, U. Pickering, “Cxcvi.—emulsions,” J. Chem. Soc., Trans. 91,
2001-2021 (1907).

14B. Radoev, M. Nedyalkov, and V. Dyakovich, “Brownian motion
at liquid-gas interfaces. 1. diffusion coefficients of macroparticles
at pure interfaces,” Langmuir 8, 2962-2965 (1992).

153, T. Petkov, N. D. Denkov, K. D. Danov, O. D. Velev, R. Aust,
and F. Durst, “Measurement of the drag coefficient of spheri-
cal particles attached to fluid interfaces,” Journal of Colloid and
Interface Science 172, 147-154 (1995).

16R. B. Walder, A. Honciuc, and D. K. Schwartz, “Phospholipid
diffusion at the oilwater interface,” Journal of Physical Chemistry
B 114, 11484-11488 (2010).

17D. Wang, S. Yordanov, H. M. Paroor, A. Mukhopadhyay, C. Y.
Li, H. J. Butt, and K. Koynov, “Probing diffusion of single
nanoparticles at water—oil interfaces,” Small 7, 3502-3507 (2011).

181, Sriram, R. Walder, and D. K. Schwartz, “Stokes—einstein
and desorption-mediated diffusion of protein molecules at the
oil-water interface,” Soft Matter 8, 6000 (2012).

19K. Danov, R. Aust, F. Durst, and U. Lange, “Influence of the
surface viscosity on the hydrodynamic resistance and surface dif-
fusivity of a large brownian particle,” Journal of Colloid and
Interface Science 175, 36-45 (1995).

20, Pozrikidis, “Particle motion near and inside an interface,”
Journal of Fluid Mechanics 575, 333-357 (2007).

2LA. Dérr, S. Hardt, H. Masoud, and H. A. Stone, “Drag and dif-
fusion coefficients of a spherical particle attached to a fluid—fluid
interface,” Journal of Fluid Mechanics 790, 607-618 (2016).

228. Das, J. Koplik, R. Farinato, D. R. Nagaraj, C. Maldarelli, and
P. Somasundaran, “The translational and rotational dynamics of
a colloid moving along the air-liquid interface of a thin film,”
Scientific Reports 8, 8910 (2018).

23], C. Loudet, M. Qiu, J. Hemauer, and J. J. Feng, “Drag force
on a particle straddling a fluid interface: Influence of interfa-
cial deformations,” The European Physical Journal E 43, 1-13



Publishing

AlP

(2020).

24@G. Lecrivain, R. Yamamoto, U. Hampel, and T. Taniguchi,
“Direct numerical simulation of a particle attachment to an im-
mersed bubble,” Physics of Fluids 28, 083301 (2016).

25A. Gaddam, A. Agrawal, S. S. Joshi, and M. C. Thompson,
“Slippage on a particle-laden liquid-gas interface in textured mi-
crochannels,” Physics of Fluids 30, 032101 (2018).

26y, M. Kendon, M. E. Cates, I. Pagonabarraga, and J. Desplat,
“Inertial effects in three dimensional spinodal decomposition of
a symmetric binary fluid mixture: A lattice boltzmann study,”
Journal of Fluid Mechanics 440, 147-203 (2001).

27].-C. Desplat, I. Pagonabarraga, and P. Bladon, “Ludwig: A
parallel lattice-boltzmann code for complex fluids,” Computer
Physics Communications 134, 273-290 (2001).

2K, S. et al, “ludwig: v0.11.0,”
https://github.com/ludwig-cf/ludwig.

29A. J. C. Ladd, “Numerical simulations of particulate suspensions
via a discretized boltzmann equation. part 1. theoretical founda-

(2020), see

tion,” Journal of Fluid Mechanics 271, 285 (1994).

30A. J. C. Ladd, “Numerical simulations of particulate suspensions
via a discretized boltzmann equation. part 2. numerical results,”
Journal of Fluid Mechanics 271, 311 (1994).

31K. Langaas and J. Yeomans, “Lattice boltzmann simulation of
a binary fluid with different phase viscosities and its application
to fingering in two dimensions,” The European Physical Journal
B 15, 133-141 (2000).

32H. Hasimoto., “On the periodic fundamental solutions of the
stokes equations and their application to viscous flow past a cubic
array of spheres,” Journal of Fluid Mechanics 5, 317-328 (1959).

33T, M. Fischer, P. Dhar, and Heinig, “The viscous drag of spheres
and filaments moving in membranes or monolayers,” Journal of
Fluid Mechanics 558, 451-475 (2006).

34H. Brenner, “The stokes resistance of a slightly deformed sphere.”
Chemical Engineering Science 19, 519-539 (1964).

35A. Dorr and S. Hardt, “Driven particles at fluid interfaces act-
ing as capillary dipoles,” Journal of Fluid Mechanics 770, 5-26
(2015).



Fluid 1

Interface

Publishing

AlP



140

L esimulatz'on
<120 ° ® _etheoretical i
N
5
80 100
oy}
S 80t
g
() 60 Y N
(a)
40 L 1 1
-0.4 -0.2 0 0.2 0.4

wetting parmeter (h)

Publishing

AlP



Publishing

AlP




0.02+
0.015¢
e simulation
= 0.01L —Stokes law |
0.005 ¢
0

4 %1074

Publishing

AlP



%1074

0.2

0.1

-0.1

-0.2

e O 0O ©
e O 00 ® oo
® 0O 00 ® e o

0 00 ® oo
0 00 ® eeo
o0 00 @ ee
e0 ®© @ ee

R

SoccScSco e ©® @ ee

1 | R I |

<K<K <<

eceoeo0

®© ® eeoo
1 1 1
N LN —
—

-0.3

0.3

guiysiiqnd

dIV



T T I
® @ ce OC@

0.3

® @ ce OO

0.2

o @ ce O@

0.1

® @ ce 0@

0
€

o @ ce O

® @ ce Oe

-0.1

® @ O» Oe

-0.2

e ® O O

-0.3

o ® O »

0.8}
0.6}
0.4}

9

guiysiiqnd

dIV



a) 0<o0 b) >0 C) >0

A=1, <0 A=1e>0 A1<1, e=0

Publishing

AlP



S 2r

Publishing

AlP

><10'6

e \—01]
|@ A=10.2 o
e \=04
e \=0.6 ° °
e \=0.8 €]
oA=1.0 °® <)
° 1)
o : © ° . - i
° (5}
@ ° ° o . ° °
5 S s & 2 s 8 8
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
€




-m |

£5 .

€95

894

mo= R
o

- D. |fo-
o
~<
4

- D. - -
o

i Om N
o

om

- & 10

1 1 1 1

© < N o

o o o

0€52¥00°5/€901°0} -10@ SV 372114V SIHL 3110 3SV31d
"1osadA} pue paupaAdod usaq sey Jl 83U0 UOISIOA SIU} WOJ) JUBJaHIP 84 ||IM PI0J3. JO UOISIBA BUIjUuo 8y} ‘JarsmoH 1diosnuew peidedde ‘pamainal jaad s Joyine ays S Siy|

sulysiqng

1dI4OSNNVIN d31d303V spIn|4 jo sJisAyd dIV



0.8

Gr

0.6

e rotation
O no rotation

—Pozrikidis (2007)
* Das et al. (2018)

0.4

Publishing

AlP

0.6 0.8 1




1N
-
N
° N
-
I
<
S . I
£
< - .
1N
1
VA
o
N
1
I
4™
< |
- i o i -

0€6.00°6/€901°01 10@ SV 371J1LHV SIHL 3110 3SV31d
‘1988041 pue palPakdoo Usag Sey i 9UO UOISISA SIU) OIS JUBIBHIP 8 [|IM PI0J8I JO UOISIBA BUIUO 8y ‘JaremoH ‘1duasnuew paldedde ‘pemalrsl Jead s Joyine sy si siy|

guysnqnd

1dI4OSNNVIN d31d303V spIn|4 jo sJisAyd dIV




o y=113
® x =176
[ ]
[
14

10
8
6
4
2
0

&LO&&@

0€52¥00°5/€901°0} -10@ SV 372114V SIHL 3110 3SV31d
"1osadA} pue paupaAdod usaq sey Jl 83U0 UOISIOA SIU} WOJ) JUBJaHIP 84 ||IM PI0J3. JO UOISIBA BUIjUuo 8y} ‘JarsmoH 1diosnuew peidedde ‘pamainal jaad s Joyine ays S Siy|

sulysiqng

1dI4OSNNVIN d31d303V spIn|4 jo sJisAyd dIV



	Manuscript File
	1
	2a
	2b
	3
	4a
	4b
	5
	6
	7
	8
	9
	10

