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Ki-67 is one of the most famous marker proteins used by histologists to ident-
ify proliferating cells. Indeed, over 30 000 articles referring to Ki-67 are listed
on PubMed. Here, we review some of the current literature regarding the
protein. Despite its clinical importance, our knowledge of the molecular
biology and biochemistry of Ki-67 is far from complete, and its exact molecu-
lar function(s) remain enigmatic. Furthermore, reports describing Ki-67
function are often contradictory, and it has only recently become clear that
this proliferation marker is itself dispensable for cell proliferation. We discuss
the unusual organization of the protein and its mRNA and how they relate to
various models for its function. In particular, we focus on ways in which the
intrinsically disordered structure of Ki-67 might aid in the assembly of the
still-mysterious mitotic chromosome periphery compartment by controlling
liquid–liquid phase separation of nucleolar proteins and RNAs.
1. Introduction to Ki-67
Ki-67 was originally identified as an antigen recognized by a monoclonal anti-
body created by immunizing mice with nuclei isolated from Hodgkin
lymphoma cell line L428 [1]. Cloning and sequencing of the Ki-67 cDNA
[2,3] revealed that the amino acid sequence had little similarity to other
known proteins. The protein was therefore named after the antibody that ident-
ified it. The Ki derives from Kiel (Germany), where the antibodies were
developed, with 67 being the well number from the 96-well plate. The entire
Ki-67 gene locus was sequenced in 1996 and found to contain approximately
30 000 bases [4].

The original Ki-67 monoclonal antibody was found to stain a specific
nuclear sub-structure (subsequently shown to be the nucleolus). This staining
was observed in nuclei of cells during G1, S and G2 phases of the cell cycle
but not in cells in G0 phase [5]. Given this staining pattern, it was proposed
that Ki-67 antibody and protein might be good candidates for evaluating the
proliferative status of normal and abnormal human cell populations. Indeed,
even in the first study, all proliferating cells tested were positive for Ki-67 stain-
ing [1]. Since this initial discovery, several further antibodies, including MIB-1
[6], have been developed against the Ki-67 protein for use as diagnostic tools
in the clinical setting. This was necessary as the original antibody failed to
stain cells in formalin-fixed paraffin sections, which are normally used in
clinical pathology laboratories [7].

Ki-67 is now commonly used as a prognostic marker in the clinic due to its
specificity for proliferating cells and ready detection in all cell cycle stages.
Positive staining for Ki-67 protein [8–12], alongside other markers [13,14] in a
patient tumour sample can be used in grading the primary tumour [15] and
metastases [16]. Ki-67 staining has been reported to be of prognostic value in
predicting cancer survival rates [9,17,18] and the likelihood of relapse [19].
Many cancer types have been investigated in this way, including non-Hodgkin
lymphomas [20], multiple myeloma [21], soft tissue sarcoma [22], prostate
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Figure 1. Schematic diagram of human Ki-67. This schematic of Ki-67 isoform I highlights conserved regions. The Ki-67 forkhead associated (FHA) domain (red) is
accompanied by its solution NMR structure (PDB:1R21) [37]. Exon 7, highlighted in grey, is missing from isoform II. The PP1-binding domain (green) is accompanied
by the crystal structure of the Ki-67 (green):PP1γ (grey) holoenzyme complex (PDB:5J28) [35]. The repeat region is highlighted in blue with each individual repeat
marked. The FKELF motif, which binds the original Ki-67 monoclonal antibody, is indicated by an asterisk. The disorder probability graphs show disorder across all
(top) and the first (bottom) repeat calculated by the PrDOS software [38]. The red line indicates a disorder probability of 0.5. Anything above this is highly likely to
be disordered. The LR domain (yellow) is responsible for DNA binding and chromosome association of Ki-67.
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cancer [23] and breast cancer [24]. The majority of the greater
than 30 000 results on PubMed relate to Ki-67 in this context,
while comparatively little work has focused on the cell
biology or biochemistry of the protein. Despite the avail-
ability of clones and antibodies, the latter studies have
yielded a remarkable level of disagreement and controversy.

2. Regulation of Ki-67 protein levels
The average level of Ki-67 mRNA and protein in proliferating
cells appears to be independent of cell type; similar levels of
RNA and protein are seen across several human cell lines
[25,26]. Ki-67 levels increase as cells progress through the
cell cycle and are controlled by stage-specific regulation of
mRNA transcription and protein degradation [25]. Ki-67
protein levels are maximal in mitosis and minimal in late
G1. The protein half-life is around 90 min [27] so inhibition
of protein synthesis for 60 min results in a significant
reduction in Ki-67 protein levels [28].

The MKI67 promotor region contains binding sites for the
transcription factor Sp1. Sp1 regulates expression of genes
that promote cell cycle progression, including E2F [29],
which stimulates Ki-67 transcription [30]. Upon passage of
the G1 restriction point, CDK4/CDK6 activation triggers
phosphorylation of RB which releases E2F [31,32], resulting
in increased Ki-67 mRNA transcription. These effects are
counter-balanced by continuous degradation of Ki-67 protein
in late mitosis and early G1 (and G0) via the ubiquitin-proteo-
some system [25,26]. CDK4/CDK6 activation also promotes
accumulation of the protein via inhibition of APC/CCdh1

[25]. Thus, in the absence of CDK4/CDK6 activation, cellular
pools of Ki-67 protein drop to the extremely low levels
characteristic of non-proliferating cells.

3. Structural elements of human Ki-67
protein

Ki-67 is encoded in humans by the gene MKI67. The Ki-67
cDNA was first cloned by expression screening using the
original monoclonal antibody [2]. Analysis of the correspond-
ing transcripts revealed two splice variants [4] encoding two
isoforms, both with very large molecular weights (359 and
320 kDa, respectively) and containing a large repetitive
region consisting of 16 approximately 360 bp (120 aa) ‘Ki-67
repeats’. Subsequent completion of the cloning and publi-
cation of the primary sequence [3] revealed that the shorter
variant is missing exon 7. Three additional human splice var-
iants were later identified, all of which have been detected in
tissues as well as primary and cultured cells. These variants
show characteristic patterns of expression in particular cell
types [33]. The significance of these splice variants is cur-
rently unknown, however, overexpression of exon 7 (from
the longer isoform) in HeLa cells resulted in a reduction in
the proliferation rate. The same study reported that overex-
pression of a fragment of the Ki-67 N-terminus increased
cellular proliferation [33].

Much of the Ki-67 protein is predicted to be unstructured
and shows very little cross-species conservation outside of a
few conserved functional regions. These recognized struc-
tural features include a forkhead-associated (FHA) domain
[34], a PP1-binding domain [35], a large region of tandem
repeats containing the so-called ‘Ki-67 motif’ region and a
C-terminal LR (leucine/arginine-rich) chromatin-binding
domain [3,36] (figure 1).

The FHA domain is an 11-stranded β-sandwich fold that
is commonly found in proteins involved in cell cycle regu-
lation [39]. FHA domains recognize phospho-threonine
epitopes on proteins [40–42]. The structure of this domain
was determined using solution NMR on a bacterially
expressed fragment of Ki-67 in 2004 [37] (figure 1).

The PP1-binding motif (RVxF) is conserved in all ortholo-
gues of Ki-67, but is not found in the shortest human isoform.
This PP1 interacting domain is very similar to that of Repo-
Man [43], which is probably derived from a duplication of
the Ki-67 gene [44]. In vivo, both proteins can bind the β
and γ isoforms of PP1, but not the α isoform [35,44]. Repo-
Man and Ki-67 target PP1γ to anaphase chromosomes
through their PP1-binding domains [35,45]. This is required
during mitotic exit to reverse mitotic histone phosphorylation
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Figure 2. Alignment of the amino acid sequences of human Ki-67 repeats. Sequence alignment of human Ki-67 amino acid repeats in Jalview 2 [49] aligned using
ClustalO algorithm [50] and coloured by ClustalX [51]. The consensus sequence is shown at the bottom with a histogram showing the local variation in sequence
conservation. The FKELF motif, which binds the original Ki-67 monoclonal antibody is underlined in yellow.
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[46]. Repo-Man and PP1 are also reported to regulate hetero-
chromatin during interphase; therefore, this domain of Ki-67
could also have roles in heterochromatin maintenance [47,48].

The most unusual structural feature of the Ki-67 protein is
the Ki-67 repeat region. This is a region, all encodedwithin the
single huge exon 13, that in human encodes 16 repeats of
approximately 120 amino acids. An alignment of the amino
acid sequence of the human repeats is shown in figure 2.
Within these repeats, there is a highly conserved 22 amino
acid sequence (TPKEKAQALEDLAGFKELFQTP) known as
the Ki-67 motif. This motif contains the epitope to which the
original Ki-67 antibody developed by Gerdes binds (FKELF)
[1]. Remarkably, this allows a single monoclonal antibody to
bind nine sites on the protein. The Ki-67 repeat region also con-
tains residues phosphorylated by CDK1 during mitosis
[3,52,53]. This repeat region is present in all observed isoforms
of humanKi-67 and, as it is containedwithin a single exon, it is
always there in full [33]. A Ki-67 repeat motif is also present in
a protein independently identified from rat-kangaroo PtK2
cells named Chmadrin (named because its staining of mitotic
chromosomes resembles the striped pattern of Japanese Noh
masks). Chmadrin has several regions of structural similarity
to Ki-67 as well as a similar subcellular localization [54].
Other vertebrates also contain Ki-67 but, the sequence and
number of copies within the repeat region are extremely vari-
able. Interestingly, where present, this region is always found
in a single exon.

The first investigation into the evolutionary conservation
of Ki-67 was carried out in 1989 [55]. In this study, the orig-
inal Ki-67 monoclonal antibody was used to determine if
the antigen could be detected in other mammalian species.
Both normal and transformed proliferating cells were tested
and several species (e.g. lamb, calf, dog, rabbit, rat) exhibited
positive staining. Ki-67 staining was weakly observed in
mouse samples and was absent from others (swine, cat,
chicken, pigeon) [55]. At this time, the antigen had still
not been cloned, and therefore little work was done to
characterize proteins homologous with Ki-67.
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With modern developments in genome sequencing, it is
possible to search for the presence of a Ki-67 motif in many
species. The size and number of Ki-67 repeats vary greatly
over evolution, and even though nothing was visualized
using the original antibody in several species, it is now poss-
ible to locate homologous proteins. Ki-67 protein can be
identified in all types of vertebrates. Mammalian Ki-67
tends to have a large number of repeats, all of a similar
size, however, a Ki-67 gene can also be identified in other tet-
rapods, including birds, reptiles and amphibians albeit with a
lower sequence similarity. Zebrafish (Danio rerio) have only
four repeats and chickens (Gallus gallus) have 9, all of
which are much shorter than the repeats in human Ki-67.
The organization of Ki-67 protein from a range of arbitrarily
selected species is shown in figure 3, with the proteins
aligned to the PP1-binding motif. All homologues contain a
version of the Ki-67 motif region, but the configuration of
this region of the protein is remarkably variable between
species. For example, although the chicken has a Ki-67
motif, its sequence is diverged from that in human and the
epitope recognized by the original monoclonal antibody is
no longer present. This combination of conservation and
variability is one of the unanswered enigmas posed by Ki-67.

The human Ki-67 repeats are better conserved in their
DNA sequence (73 ± 10%) than their amino acid sequence
(57 ± 16%) (figure 4). This trend is also observed in other ani-
mals, although some vertebrates have relatively higher
conservation of their amino acid sequence between repeats.
For example, Gallus gallus (with 76 ± 15% conservation for
the DNA sequence) shows a 65 ± 23% identity for the
amino acid sequence of the various repeats. The repeats are
also much shorter in chicken, at approximately 60 amino
acids, around half the size found in humans. This higher con-
servation of the DNA sequence than the polypeptide
sequence could reflect reduced purifying selection on DNA
variants in this region of the protein. Nevertheless, purifying
selection has not been absent. Ki-67 repeats are associated
with a median Ka/Ks ratio of 0.675 (n = 34 comparisons
using the software of [56]), less than a ratio of 1.0 which
would be indicative of neutral evolution, but also far higher
than values for most human protein-coding sequences
[57,58]. The Ka/Ks ratio compares amino acid substitutions
likely to have little effect on protein function (Ka) to those
that are likely to affect function strongly (Ks). This can yield
insights into the selective pressure on conserving the protein
sequence. We conclude that the repeats have been subject to
mild purifying selection, reflecting a moderate tendency to
preserve the protein sequence over evolutionary time.

This lower degree of purifying selection could be consist-
ent with the repeat region of Ki-67 being involved in
somehow controlling phase separation on the surface of
nucleoli and mitotic chromosomes. Intrinsically disordered
proteins that are prone to liquid–liquid phase separation gen-
erally evolve faster than their non-disordered counterparts
[59]. However, the process must be constrained so any
amino acid changes are still consistent with promoting
phase separation. Thus, this unusual organization of the
Ki-67 repeat region could potentially reflect its involvement
in forming phase separated condensates.

Analysis of the DNA sequence of the repeat region using
the software UNAFOLD [60] reveals a high probability for
the mRNA to fold into a relatively stable complex secondary
structure (figure 5). Although predictions of RNA secondary
structures are notoriously unreliable, the predicted ΔG of
melting for these folds is similar to that calculated for the 50

external transcribed spacer of ribosomal RNAs, which are
known to have complex secondary structures [61]. The high
conservation of the DNA sequences of these repeats suggests
that the repeat structure is likely to be maintained by replica-
tion slippage facilitated by the sequences being contained in a
single exon. Given that different species have differing
sequences, but a similar repeat organization, it is possible
that there could be some selection to conserve this organiz-
ation of the mRNA. One highly speculative possibility is
that the Ki-67 mRNA may have a conserved function in
addition to simply encoding the polypeptide.

The C-terminus of Ki-67 protein including the leucine/
arginine-rich (LR domain) [54,62,63] has been shown in vivo
to be required for Ki-67 to associate with mitotic chromo-
somes [64,65]. Ki-67 binds to mitotic chromosomes creating
a brush-like layer on their surface [65], with the C-terminus
associated with the chromatin and the N-terminus extending
66 ± 27 nm out from the surface of the chromosome [66], as
discussed below.

4. Ki-67 interactions
Mass spectrometry of Ki-67 immunoprecipitates revealed
over 400 proteins, including numerous chromatin proteins,
many of which are involved in transcription and splicing,
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as well as proteins involved in pre-rRNA processing, riboso-
mal biogenesis and protein translation [48]. CDK1, the critical
regulatory kinase necessary for mitotic entry, was also pre-
sent and indeed, Ki-67 has many consensus sites for CDK1
phosphorylation. Ki-67 also interacts with PP1 via its con-
served RVxF binding motif [44,48]. PP1 is the principal
phosphatase responsible for the reversal of CDK1 phos-
phorylation during mitotic exit [67–70]. LacI-Ki-67, but not
a PP1-non-binding RAXA mutant, can recruit PP1 to an ecto-
pic LacO array. Moreover, PP1γ is reduced on anaphase
chromosomes upon Ki-67 depletion [44].

Ki-67 interacts with HP1α, β and γ [36,63]. The interaction
with HP1α, β and γ has been observed in vitro and that with
HP1α and β also in a yeast two-hybrid assay. HP1 overexpres-
sion caused Ki-67 to redistribute from nucleoli to
heterochromatic foci elsewhere in the nucleus [63]. The inter-
action between Ki-67 and HP1 occurs via the LR domain of
Ki-67 and the chromoshadow domain (CSD) of HP1 [36,63].
These interactions with HP1 may explain the tendency of
Ki-67 to associate with constitutive heterochromatin.

Other studies have reported interactions between Ki-67
and Hklp2 (human kinesin-like protein 2) and NIFK (nucleo-
lar protein interacting with the FHA domain of pKi-67), both
of which were reported to interact with Ki-67 FHA domain
[34,71]. As with HP1, these interactions were identified
in vitro and in yeast two-hybrid assays. The interaction of
NIFK with Ki-67 was reported to occur preferentially in mito-
tic (rather than interphase) cell-free extracts [34] and NIFK
fails to localize to the mitotic chromosome periphery upon
Ki-67 depletion [44].

Ki-67, together with several other nucleolar proteins, was
reported to be present in immunoprecipitates of CAF-1 p150
from HeLa S3 cells [72]. CAF-1 is the histone chaperone
responsible for the co-replicative deposition of histone H3.1
and H3.2 in chromatin [73–76]. This study found that CAF-
1 was concentrated in nucleoli based on indirect immuno-
fluorescence [72]. These authors also reported that CAF-1
participates in the recruitment of Ki-67 both to nucleoli and
the mitotic chromosome periphery [72,77].
5. The localization of Ki-67 across the
cell cycle

Ki-67 is present throughout the cell cycle but is not detected in
G0/quiescent cells. During early G1, Ki-67 partially localizes to
constitutive heterochromatin associated with satellite DNAs
[78]. It then associates with reforming nucleoli with a pattern
distinct from either fibrillarin or RNA polymerase I. By mid
G1, it is concentrated in the newly reformed nucleoli [79],
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where it remains until the end of G2. In HDF and MCF7 cells,
Ki-67 was reported to be in the dense fibrillar component
[79,80]. However, in most studies with human cancer cell
lines, it has been localized to a nucleolar cortex or rim
[48,81,82] A recent high throughput immuno-staining study
of the nucleolus described 157 other proteins that co-localized
with Ki-67 at the nucleolar rim [82].

The greatest change in Ki-67 localization occurs during
prophase when it moves away from the nucleolus. By late
prophase, it is detectable on the surface of newly forming
chromosomes, where it remains throughout mitosis until
telophase. There it is localized to a compartment referred
to as the mitotic chromosome periphery compartment
(MCPC), or perichromosomal layer [83,84] (figure 6). The
MCPC consists of proteins and RNAs that comprise more
than a third of mitotic chromosome volume and up to a
third of mitotic chromosome mass [86]. In one study of
human and mouse mitotic chromosome spreads, Ki-67
immunostaining was excluded from centromeric and
nucleolar organizer regions, as well as pericentromeric het-
erochromatin as defined by the mouse major satellite [87].
Relocalization of Ki-67 protein away from the mitotic chro-
mosomal surface and into pre-nucleolar bodies was
reported to start during telophase as the G1 nuclei start to
reassemble [84].

Many proteins belonging to the MCPC are nucleolar in
interphase [86]. A recent study described 65 nucleolar pro-
teins that localize to the mitotic chromosomal periphery at
various times in mitosis. Two major recruitment patterns
were observed: early (during prometaphase, 46 proteins)
and late (after metaphase, 19 proteins). Interestingly, 49 of
these 65 proteins localized to the nucleolar rim in interphase
together with Ki-67 [82]. In this study, live-cell imaging also
detected a sub-population of exogenous GFP-tagged Ki-67
protein near the nuclear periphery.

The changes in Ki-67 localization when cells transition
from G2 to mitosis are likely to result from hyperphosphoryla-
tion, which can be detected by a change in the electrophoretic
mobility of Ki-67 [52,64]. The Ki-67 sequence contains 90
CDK1 traditional consensus target sequences, of which 70
are in the repeat region [3,52,53]. Indeed, Ki-67 immunopreci-
pitates were reported to contain CDK1 [48]. Immunoblotting
studies also reveal that mitosis-specific phosphorylated
bands of Ki-67 react with the MPM-2 antibody [52,88,89].
This could be due to the action of any of the several reported
MPM-2 kinases, including casein kinase 2 [90], MAP kinase
[91], Cdk1 (Cdc2), Polo/Plk [92,93] and NIMA [94].

Ki-67 remains phosphorylated throughout mitosis and is
then dephosphorylated by PP1 during anaphase/telophase
[45]. This may help to promote the dissociation of the
chromosome periphery [45,62]. It may also trigger the aggre-
gation of chromosomes, which has recently been shown to be
involved in excluding large particles such as ribosomes from
the inter-chromosomal space and therefore, from the daugh-
ter nuclei [66].
6. Controversies concerning the effects of
Ki-67 depletion in cells and organisms

There have been several investigations into the effect of
depleting Ki-67 protein from cells and organisms using a
range of techniques including antisense oligonucleotides,
RNAi and classical/CRISPR gene targeting. These studies
report a diverse range of often contradictory results. Ki-67
depletion has been variously reported to result in cell
death, reduced cell proliferation or have no significant
defect, depending on the method used and cell type studied.

6.1. Reduced proliferation/cell death
There appears to be a consensus that Ki-67 antisense oligonu-
cleotide (ASO) treatment results in inhibition of cell
proliferation and/or increased cell death. This was tested
with similar results in various cell lines, including IM-9 [3],
RT-4, MCF-7, RM-11 and MB-49 [95]. IM-9 and RT-4 also
exhibited increased levels of apoptosis following Ki-67 ASO
treatment [95]. Exposure of 786-0 (human renal carcinoma)
cells to siRNAs targeted against Ki-67 resulted in an inhi-
bition of cell growth and increased apoptosis [96]. Similar
phenotypes were also observed after shRNA treatment in
these cells [97]. One possible weakness of these studies is
that none have showed a rescue of the phenotype using
ASO/siRNA/shRNA-resistant Ki-67 cDNAs.

In an orthogonal approach, microinjection of anti-Ki-67
antibodies into mouse Swiss 3T3 cells also inhibited cell pro-
liferation, apparently by blocking the cell cycle progression in
the following mitosis [98].

As a follow-up to those earlier findings and attempt to
resolve controversies (see below), a more recent study
attempted to examine Ki-67 function in several cell types.
Depletion of Ki-67 by siRNA resulted in a reduction in the
number of cells in S-phase for hTERT-RPE-1, WI-38, IMR90
and hTERT-BJ [99]. This effect was only seen in cells that
induced expression of p21 in response to the reduction in
Ki-67. The pathway linking Ki-67 depletion to p21
expression/accumulation remains to be identified, although
it is tempting to speculate that Ki-67 depletion may activate
p53 via a nucleolar stress response [100,101].

6.2. No obvious phenotypic consequences
In another recent study, shRNA-mediated knockdown of
Ki-67 in U2OS, HeLa and BJ-hTERT cells had no obvious
effect on the proliferation of these cells [48]. Furthermore,
shRNA depletion of Ki-67 in NIH-3T3 cells did not affect
their ability to re-enter the cell cycle after serum starvation.
Finally, and most convincingly, a Ki-67 knockout mouse
was created using TALEN-mediated gene targeting. The
authors looked carefully for residual Ki-67 protein and
failed to detect any. These Ki-67 mutant mice developed
normally and MEFs from the mice proliferated normally [48].

Further support for the non-essential nature of Ki-67 was
obtained when Ki-67 was depleted in MCF-10A and DLD-1
cells by insertion of a premature nonsense (STOP) mutation
into the first coding exon [102]. This Ki-67 gene disruption
was not lethal and did not result in chromosomal instability.
Likewise, HeLa cells in which the Ki-67 gene was disrupted
by CRISPR/Cas9 targeting continued to proliferate, although
some differences in mitotic progression could be observed in
the live-cell analysis [65,103]. By contrast, mitotic spreads of
chromosomes from HCT116 cells did not display any obvious
abnormalities following Ki-67 depletion [104]. However, 3D-
CLEM analysis of Ki-67 depleted chromosomes did show an
apparent reduction in chromosomal volume in hTERT-RPE-1
cells [86].



DNA

Ki-67

merge

(a) (b)

Figure 6. Ki67 is enriched at the chromosome periphery during mitosis. (a) Immunofluorescence microscopy of chromosome spread from HeLa CDK1as cells, show-
ing Ki-67 (yellow) enriched on the surface of the DNA (grey). (b) Selected chromosomes from a chromosome spread similar to that in A were rendered in three-
dimensions using AMIRA, showing how Ki-67 coats the chromosome surface. The discontinuous appearance of the layer is likely to be an artefact of the rendering
process in AMIRA. HeLa CDK1as [85] were maintained in DMEM (Invitrogen) supplemented with 5% fetal bovine serum (Invitrogen) and 100 U/ml penicillin G and
100 µg ml−1 streptomycin sulphate (Invitrogen). Colcemid was added to the culture at a final concentration of 0.1 µg ml−1 for 75 min before harvesting by mitotic
shake off. Cells were treated with hypotonic solution (75 mM KCl) for 10 min before Cytospin at 1900 RPM, High intensity for 10 min. Following fixation with 4%
paraformaldehyde for 10 min at 37°C, immunofluorescence of metaphase chromosomes was carried out using Anti-Ki-67 mouse monoclonal antibody 1 : 500 (9449S,
Cell Signalling) and Alexa 555 1 : 1000. Chromosomes were mounted with VECTASHIELD Antifade Mounting Medium with DAPI. Scale bar, 5 mm.
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Perhaps the definitive evidence for a lack of an essential
role of Ki-67 in cancer cells comes from a recent analysis of
data using the Dependency Mapper of the Cancer Depen-
dency Map Project. There, the loss of Ki-67 protein was
found to have no effect on the proliferation in 725 out of
739 cell lines [105]. The loss of Ki-67 was found to correlate
with broad changes in the levels of thousands of transcripts
in several different cell lines [105]. This was interpreted as
evidence for Ki-67 in establishing general chromatin states,
rather than playing specific roles in the regulation of particu-
lar genes. This hypothesis was consistent with previous
results from the same group, indicating that Ki-67 can interact
with a wide range of factors involved in modifying chromatin
states [48]. In the more recent study, the authors went on to
show that although Ki-67 protein is not required for cell pro-
liferation, in its absence prominently affects the behaviour of
cancer cell lines introduced into immune-compromised
mouse models [105]. There, lack of Ki-67 correlated with
impaired tumorigenesis and an impaired ability of injected
tumour cells to metastasize.

Despite several decades of controversy, it now appears
clear with the advent of CRISPR/Cas9 technology that the
Ki-67 protein is not essential for life. Why antisense oligonu-
cleotides can reportedly kill cells remains to be determined.
However, the huge size of the Ki-67 mRNA has made it dif-
ficult to construct rescue cDNAs to confirm the specificity of
oligonucleotide-based targeting constructs.
7. Roles of Ki-67 in the nucleolus and
surrounding heterochromatin

The nucleolus was the first nuclear subdomain to be recog-
nized [106]. Nucleoli are multifunctional compartments in
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which ribosomal RNAs are transcribed, processed and
assembled into mature ribosomes [107–110]. Other RNPs,
including signal recognition particle (SRP) and telomerase
are also matured within nucleoli [111]. These functional
events are associated with a characteristic substructure of
the nucleolus, which has recently been described as a
multi-phase liquid condensate [112,113]. rRNA transcription
occurs in and around the fibrillar centres. These transcripts
are then initially processed in the dense fibrillar component
and finally matured and assembled into ribosomes in the
granular component [114,115]. More recently, a number of com-
ponents of a fourth nucleolar compartment—the nucleolar
cortex—has been described [82].

Although it is clear that Ki-67 localizes to nucleoli, there
remains some controversy over whether it is required for
rRNA production. In support of such a link, Ki-67 was
found to physically associate with the promoter and gene
body of the rDNA cluster [116]. Ki-67 also co-immunoprecipi-
tates with proteins involved in ribosome biogenesis [48].
Furthermore, Ki-67 depletion leads to a loss of association
of chromosome 17 alpha-satellite sequences [72] and chromo-
some 13p [44] with nucleoli. This is accompanied by
increased transcription of alpha-satellite DNA, suggesting
that centromeres move away from the repressive perinucleo-
lar environment [103]. The latter is consistent with nucleolar
inactivation (or a failure of nucleolar re-activation after mito-
tic exit) upon Ki-67 depletion since both loci are physically
proximal to the rDNA on those respective chromosomes.
Finally, nucleolar morphology was found to be abnormal
upon Ki-67 RNAi and levels of 47S pre-ribosomal RNA tran-
scripts were decreased [44]. However, a later study reported
Ki-67 to be dispensable for pre-rRNA production [48].
The reason for these differing conclusions is not clear, and
the connections between Ki-67 and rRNA production and
processing merit further exploration.

Nucleoli are typically surrounded by constitutive hetero-
chromatin characterized by the histone marks H3K9me2/3
and H4K20me3 [117–120], as well as their readers HP1α
and Su(var)3-9 proteins. HP1α binds via its chromodomain
to H3K9me3 [121,122] and interacts with the H3K9 methyl-
transferase Su(var)3-9 via its chromo shadow domain (CSD)
[123,124]. Su(var)3-9 anchored via HP1α to H3K9me3 nucleo-
somes can modify neighbouring nucleosomes, thus creating
an epigenetic loop that can locally spread heterochromatin
[124]. Constitutive heterochromatin is enriched on α-satellite
DNA at pericentromeres and at telomeres, as well as other
regions where transcription is generally silent, e.g. near the
nuclear periphery [125,126].

Apart from any effect on rRNA production, Ki-67 was
reported to functionally interact with constitutive heterochro-
matin near nucleoli. Ki-67 depletion caused a decrease in
peri-nucleolar levels of H3K9me3 and H4K20me3, which
were redistributed to foci scattered throughout the nucleo-
plasm. Paradoxically, cellular levels of perinucleolar HP1
proteins were unchanged and overall levels of H3K9me3
and H4K20me3 also remained constant following Ki-67
depletion [48]. Interestingly, the same study reported that
peri-nucleolar chromatin compaction was reduced upon
Ki-67 depletion, as measured by FLIM-FRET of H2B-GFP/
H2B-mCherry [48]. These effects of Ki-67 on heterochromatin
were reported to be dosage-dependant. Overexpression of
Xenopus Ki-67 in human cancer cells caused ectopic hetero-
chromatin formation, visualized as areas of more intense
DNA staining associated with local concentrations of
H3K9me3 [48]. Overexpression of the LR-domain, which is
required for chromatin binding of Ki-67, resulted in chroma-
tin hyper-condensation as visualized by DNA staining
[36,54]. Interestingly, this domain is necessary for Ki-67’s
interaction with HP1 [36,63], although the mechanism for
the hyper-condensation remains to be determined.

In addition to being functionally linked with peri-nucleolar
constitutive heterochromatin, Ki-67 was reported to influence
facultative heterochromatin on the X-chromosome, but only
when that chromosome was located adjacent to the nucleolus
[99]. Ki-67 depletion led to an apparent decrease in H4K20me1
and H3K27me3 levels on the peri-nucleolar inactive X, which
tended to show an increased tendency to localize to the
nuclear periphery [99].

Together, these results suggest that Ki-67, and possibly
also other components of the nucleolar cortex have a role in
establishing a compartment of transcriptionally inactive chro-
matin that coats the surface of nucleoli [127]. The role of this
peri-nucleolar heterochromatin compartment is not known.
The proteins of the nucleolar cortex are enriched in intrinsi-
cally disordered domains, a feature that has been associated
with phase separation, often in association with RNAs
[82,128–130]. Indeed, heterochromatin was one of the first
chromatin types to be shown to be able to undergo phase sep-
aration in vitro [131–134]. It is thus possible that Ki-67 and
other cortex components merge with heterochromatin to
establish a phase surrounding nucleoli. Such a phase could
help to insulate nucleoli from the surrounding euchromatin
of the bulk nucleoplasm.
8. Roles of Ki-67, topoisomerase IIα and
condensin in mitotic chromosome
structure

Acute depletion of condensin subunit SMC2 in human
HCT116 cells produces a severe chromosome clumping phe-
notype; however, the chromosome periphery is not perturbed
[104,135]. By contrast, simultaneous acute depletion of Ki-67
plus total condensin (SMC2 depletion), but not depletion of
condensin I or II alone (depletion of CAP-H or CAP-H2,
respectively) in HCT116 cells gives rise to a so-called ‘rice
cake’ phenotype, where mitotic chromosomes become a con-
tiguous mass, in which separate chromosomes cannot be
distinguished [104]. As in the case of the chromosome aggre-
gation phenotype seen after Ki-67 depletion [44,65] this ‘rice
cake’ structure appears only after nuclear envelope break-
down [104].

The ‘rice cake’ is often observed at one side of the
cytoplasm, with HOECHST-stained protrusions projecting
towards the other side of the cell [104]. These protrusions
contain Topoisomerase IIα, CENP-A, CENP-I, NDC80 and
BubR1 [104]. Similar protrusions were previously seen in
SMC2-depleted cells [135–137]. Loss of condensin does not
abolish kinetochore formation or activity, but does reduce
the compliance of pericentromeric heterochromatin. Thus,
kinetochores can attach to microtubules and undergo ‘excur-
sions’ in which they move away from the body of the
chromosomes, which stretch, forming thin fibres. These
observations suggest that Ki-67 is not required for assembly
of a functional kinetochore [104].
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In the more recent study, Ki-67 acute depletion did not
perturb SMC2 localization to mitotic chromosomes, based
on indirect immunofluorescence [104]. This is consistent
with a previous report in HCT116 cells, where SMC2 and
CAP-H localization to mitotic chromosomes was not changed
upon Ki-67 acute depletion [138]. By contrast, the association
of CAP-H2 (always) and Topoisomerase IIα (depending on
the staining protocol) with the mitotic chromosome axis
was reduced [138]. Furthermore, Ki-67 was found to recipro-
cally co-immunoprecipitate with Topoisomerase IIα from
mitotic cell extracts, leading the authors to suggest that Ki-
67 might influence the mode of Topoisomerase IIα associ-
ation with the mitotic chromosome scaffold [138]. In a
previous study, Ki-67 depletion by RNAi in HeLa cells did
not influence KIF4 localization on mitotic chromosomes
and did not impair mitotic chromosomal architecture, as
probed using the intrinsic metaphase structure (IMS) assay
upon Ki-67 depletion [44].

In the more recent study, a supervised machine-learning
algorithm could separate DNA-stained images of control,
Ki-67-depleted, SMC2-depleted and Ki-67/SMC2-depleted
cells into 4 distinct classes. This suggests that either depletion
of either SMC2 or Ki-67 or both together results in a unique
phenotype [104]. Taken together, these results suggest that
Ki-67 may cooperate with both condensin I and II to influence
the structure of chromosomes in mitosis.
9. Ki-67 organizes the mitotic chromosome
periphery compartment

Ki-67 binds to the mitotic chromosome periphery via its
C-terminal LR domain [65], with the N-terminal end of the
protein projecting outwards 66 ± 27 nm into the cytoplasm
forming an extended molecular brush-like arrangement
[66]. Upon treatment with the CDK inhibitor flavopiridol,
which induces mitotic exit accompanied by clustering of the
chromosomes, this brush collapses to about 50% of its pro-
metaphase length [66]. Interestingly, GFP-Ki-67 is highly
mobileduringprometaphase inFRAPexperiments,witha recov-
ery time of approximately 12 s and amobile fraction of 90%. This
mobility drops approximately fivefold after the onset of ana-
phase with the mobile fraction decreasing to approximately
30% [64]. Throughout all of this, Ki-67 remains localized to
the MCPC. Interestingly, the Ki-67 mobility drops a further
approximately twofold in early G1 after nucleolar reformation.

FCS measurements using endogenously tagged Ki-67
suggested that about 270 000 Ki-67 molecules bind to mitotic
chromosomes in HeLa cells [65]. The authors calculated that
this would yield a density of 210 Ki-67 molecules/µm2,
although it is not clear how they calculated the surface area
of HeLa mitotic chromosomes. Remarkably, this high density
of Ki-67 is precisely conserved in chicken DT-40 cells. IBAQ
analysis of proteomics data from isolated mitotic chromosomes
yields 89 000 Ki-67 molecules per DT40 cell (I. Samejima 2015,
unpublished, based on datasets of [139]). With a chromosome
surface area of 424 µm2 measured by serial block-face scanning
electron microscopy [135], this yields 210 Ki-67 molecules/µm2

in metaphase DT40 cells.
Ki-67 is apparently required to recruit all known com-

ponents of the MCPC to the chromosome surface in mitosis
[44,82]. This was first demonstrated by staining for a
number of components of the MCPC and by quantitating
density profiles at the chromosome periphery in electron
micrographs of mitotic cells [44,82]. More recently, of 61
MCPC proteins tested in HeLa cells, none was able to fully
localize to the mitotic chromosome periphery upon Ki-67
depletion [82]. In the absence of Ki-67, the MCPC components
form aggregates in the mitotic cell cytoplasm [44,82].
Although it has yet to be formally demonstrated, these aggre-
gates almost certainly reflect LLPS by the MCPC components.
Curiously, when examined by correlative light and electron
microscopy, the aggregates were indistinguishable from bulk
cytoplasm [44,82].

The function of Ki-67 in the MCPC remains enigmatic. It
is clear that Ki-67 is required to keep chromosomes indivi-
dualized after nuclear envelope breakdown. This led to the
proposal that Ki-67 functions as a surfactant to disperse mito-
tic chromosomes [65]. Upon Ki-67 depletion, chromosomes
form as individual bodies during prophase, often on the
inner surface of the nuclear envelope. However, they
become tightly clustered into one or more clumps following
nuclear envelope breakdown [44,65,82,86]. In another study,
double acute depletion of condensin and Ki-67 in HCT116
cells gave rise to the so-called ‘rice cake’ phenotype, with
the mitotic chromosomes forming a single contiguous mass
[104]. Paradoxically, despite these striking abnormalities,
cells survive Ki-67 depletion by siRNAs and shRNAs and
disruption of the Ki-67 gene [48,65,99,103]. Live cell imaging
of HeLa Ki-67 knockout cells revealed problems with
chromosome congression and with anaphase onset after
release from a nocodazole arrest; however, the cells lacking
Ki-67 survived and continued to proliferate [65,103]. The
underlying survival mechanism remains to be determined.

Chromosome clumping following Ki-67 depletion can be
avoided by overexpressing the Ki-67 LR domain, provided
that it is fused to any of several other parts of Ki-67 [65]. The
effect of chromosome individualization is dosage-dependent
since, upon Ki-67 overexpression, chromosomes are spaced
further apart [65]. Overexpression of positively charged his-
tones also partially rescues Ki-67 depletion phenotype [65],
leading to the notion that the MCPC establishes a net positive
charge on the surface of chromosomes, so that electrostatic
repulsion may help to keep them separate. However, this
would seem to contrast with the observation that the Ki-67
molecular brush collapses during mitotic exit, at which point
it seems to actively promote aggregation of the segregating
chromosomes into a tight mass. This timing plus the obser-
vation that Ki-67 has been described to associate with CDK1
would tend to suggest that phosphorylation of the protein
may be required for its surfactant function in early mitosis.
Under this scenario, the differences in Ki-67 organization
and function after anaphase onset would be likely to depend
at least in part on dephosphorylation, possibly by PP1
recruited to its binding site on Ki-67.

In contrast to its role in chromosome dispersion during
early mitosis, Ki-67 has been proposed to play a role in the
exclusion of cytoplasmic components during nuclear reforma-
tion at the end of mitosis [66]. Upon Ki-67 depletion,
ribosomes, as well as ectopically expressed genetically
encoded multimeric nanoparticles, are interspersed between
chromosomes and end up inside the reforming nucleus [66].
By contrast, in the presence of Ki-67, the chromosomes cluster
more tightly together during mitotic exit, with the result that
these large particles are excluded from the inter-chromosomal
space, and therefore, from the newly reformed nucleus [66].
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A third possible function for Ki-67 and the MCPC is as a
site where key nucleolar components are concentrated so that
they end up inside the nuclear envelope as cells exit mitosis.
Indeed, the volume of the MCPC roughly equals the nucleo-
lar volume [86]. By concentrating rRNA processing factors
with pre-rRNAs and other nucleolar proteins on the chromo-
some surface, cells would avoid the need to transport these
components into the nucleus to re-activate its nucleoli and
begin ribosome biogenesis in the next cell cycle. Since nuclear
pore formation and maturation occurs with a time lag after
nuclear envelope assembly [140,141], this would avoid a kin-
etic bottleneck for cell growth and homeostasis. Indeed, in
one study, nucleolar reactivation after mitosis and rRNA syn-
thesis was found to be impaired following Ki-67 depletion
[44]. By contrast, a later study reported Ki-67 to be dispensa-
ble for pre-rRNA production [48]. Further investigations are
needed to explain this contradiction.
1:210120
10. Is Ki-67 a regulator of liquid–liquid
phase separation?

In cells depleted of Ki-67, components that are normally
associated with the mitotic chromosome periphery mis-
localize and form large aggregates in the cytosol [44]. Strikingly,
these aggregates often localize at one end of the metaphase
plate [44]. This could result from passive pushing by microtu-
bules extending from the spindle poles. The aggregates are
not detected by SBS-SEM in 3D-CLEM experiments, suggesting
that their density resembles that of bulk cytoplasm [44].

Although this remains to be experimentally proven, we
speculate that these aggregates are likely to be formed by
liquid–liquid phase separation (LLPS). Intrinsically disor-
dered regions are a common feature of proteins that
undergo LLPS. In a recent study, many proteins of mitotic
chromosomes [84,86,142–147] were predicted to be disor-
dered using the protein disorder prediction tool IUPred2A
[82,148]. Indeed, at least 81% of the MCPC proteome was pre-
dicted to have at least one long disordered domain [82].

Prominent among those proteins with disordered
domains is Ki-67. As shown in figure 1, much of the Ki-67
repeat region is predicted to be intrinsically disordered.
This suggests a mechanism by which Ki-67 might recruit
the proteins and RNAs of the MCPC. Tethering the
C-terminus of the protein to the chromosome surface would
potentially create a region coating the chromosomes with a
high potential to undergo LLPS. This might explain why no
single region of Ki-67 (other than the chromatin-binding
motif ) is required for its function in keeping mitotic chromo-
somes separate. It may be that rather than acting as a
surfactant, as previously proposed, Ki-67 on the chromosome
surface might act more like a detergent, ‘dissolving’ many
nucleolar proteins and RNAs (which also undergo phase
separation).

The above predicts that the chromosome periphery, rather
than being a structured protein:RNA assembly may be a teth-
ered liquid-like phase, at least in early mitosis. This would be
consistent with the high mobility of periphery components
observed by FRAP. It would also suggest that components
of liquid-like domains such as nucleoli and heterochromatin)
[112,113,131–134] may retain their phase separation behav-
iour even during mitosis. Indeed, a brief treatment of
mitotic cells with 1,6-hexanediol (a known disruptor of
many liquid-like phases) causes a rapid disruption of the
MCPC (F.C.-S. 2021, unpublished).

As described above, FRAP data suggest that the MCPC
layer may become more static during mitotic exit. This is
consistent with recent experiments suggesting that Ki-67
undergoes a functional switch when CDK1 activity starts to
decline causing the molecular brush to collapse. Also at this
time, pre-nucleolar bodies begin to form, possibly reflecting
the release of nucleolar components from the MCPC.
11. Perspectives
Despite being one of the most highly cited of cellular
proteins, many aspects of Ki-67 function remain to be
explained. What explains the remarkable mixture of con-
served overall organization but highly divergent detailed
structure of the single-exon repeat region? Does Ki-67 func-
tion in organization of the peri-nucleolar heterochromatin
and mitotic chromosome periphery compartment (MCPC)
by locally regulating and organizing LLPS of chromatin
and nucleolar proteins? Is this how it modulates the
expression of thousands of genes in cancer cells and is this
its main function? And what is the cellular function of the
MCPC? Does Ki-67 or the MCPC have a role in promoting
nucleolar re-activation and efficient rRNA production after
cell division? The availability of specific reagents and devel-
opment of methods for working with huge proteins and
genes should ultimately allow us to assemble a more orderly
picture of the role of this fascinating protein.
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