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Structure-aware Dual-branch Network for Electrical
Impedance Tomography in Cell Culture Imaging

Zhou Chen, Student Member, IEEE, and Yunjie Yang, Member, IEEE

Abstract—lectrical Impedance Tomography (EIT) is an emerg-
ing imaging modality to monitor 3D cell culture dynamics
through reconstructing the electrical properties of cell clus-
ters.lectrical Impedance Tomography (EIT) is an emerging
imaging modality to monitor 3D cell culture dynamics through
reconstructing the electrical properties of cell clusters.E Re-
cently, Machine Learning (ML) based approaches have achieved
significant gains for the image reconstruction of EIT against
conventional physical model based methods. However, continu-
ous, multi-level conductivity distributions, which commonly exists
in cell culture imaging, are more rigorous to reconstruct and
remains challenging. This paper aims to tackle this challenge by
proposing a structure-aware dual-branch deep learning method
to predict both structure distribution and conductivity values.
The proposed network comprises two independent branches to
encode respectively the structure and conductivity features. The
two branches are jointed later to make final predictions of con-
ductivity distributions. Numerical and experimental evaluation
results demonstrate the superior performance of the proposed
method in dealing with the multi-level, continuous conductivity
reconstruction problem.

Index Terms—Deep learning, electrical impedance tomogra-
phy, image reconstruction.

I. INTRODUCTION

ELECTRICAL Impedance Tomography (EIT) has been
extensively investigated over the last decades, on account

of its intrinsic characteristics of non-destructiveness, low-
cost fabrication, portability, non-ionizing radiation and real-
time imaging capability. EIT reveals the internal conductivity
distribution within the Region of Interest (ROI), and its
sensing mechanism depends on a set of current injections
followed by measuring the induced voltages on the boundary
[1]. Compared to other tomographic imaging modalities, the
advantageous properties of EIT have attracted increasing inter-
ests in diverse research areas, ranging from industrial process
monitoring [2], [3] to biomedical imaging [4], [5]. In tissue
engineering, non-destructive and label-free imaging and mon-
itoring are demanding for the 3D cell culture process, where
EIT has demonstrated its attractive potential with miniaturized
sensors [5]–[7].

The major challenge of applying EIT for cell culture
imaging lies in its highly nonlinear and ill-conditioned im-
age reconstruction problem, leading to its susceptibility to
distorted electric field lines and imperfect measurement data
[8]. Majority of physical model based image reconstruction
methods approximate the solution by minimizing least square
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errors and introducing a variety of regularization terms that
encode prior information. Prevailing methods of this kind
include, for instance, Tikhonov regularization [9], Total Vari-
ation (TV) regularization [10], sparsity regularization [11],
Adaptive Group Sparsity (AGS) regularization [12], etc.

Despite the continuous advancement of the physical model
based methods, it is still very difficult to accurately pre-
dict both the structure distribution and conductivity values,
especially for the cases with multiple objects and different
conductivity values, which commonly exist in cell culture
processes. This essentially prevents EIT’s transition from gen-
erating qualitative images to quantitative images. The emer-
gence of machine learning has recently brought new possibility
for high quality EIT image reconstruction. Some pioneering
work includes [13] and its 3D version [14], which employed
Sparse Bayesian Learning (SBL) and structure-aware priors
to improve image quality. However, these works are based on
the linearized EIT model and sparsity assumption, making it
challenging to accurately estimate conductivity values and deal
with non-sparse cases. Some other works [15]–[17] mapped
directly from boundary voltage measurements to conductivity
distributions, but focused on binary contrast reconstruction.
The work in [18] adopted an UNet architecture [19] to remove
aliasing artefacts from the TV results [10], but the network
was trained using only hundreds of samples. Similarly, the
Deep D-Bar approach [20] and the dominant-current deep
learning scheme (DC-DLS) [21] used UNet to estimate the
conductivity based on the approximated solution from different
analytical methods. The DC-DLS is relatively time-consuming
as the approximation is derived by an iterative algorithm.
The induced-current learning method (ICLM) [22] was further
proposed to resemble the inverse scattering problem. Our
previous work [23] found the structure of target objects could
be accurately estimated in the form of binary masks and
facilitate distinguishing the conductivity contrast of multiple
targets. However, the conductivity value still could not be pre-
cisely estimated due to the error introduced by the linearized
EIT model. Accurate reconstruction of continuous, multi-level
conductivity variations and the structural distribution remains
very challenging.

In this paper, targeting at high-quality cell culture imaging,
we propose a regression deep learning model to predict
accurately both the geometric structure and conductivity value
of multi-object, multi-level conductivity distributions. Inspired
by multi-modal learning for activity and context recognition
[24] and our previous work in [23], we develop a Structure-
Aware Dual-Branch Network (SADB-Net) for EIT image
reconstruction. The SADB-Net consists of two branches to
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Fig. 1. Schematic illustration of generic modality-specific deep neural network.

learn respectively the structural and conductivity representa-
tions in the first place. Then, the multi-branch features are
fused by two fully connected layers. We demonstrate the
effectiveness of the SADB-Net in reconstructing continuous,
multi-level conductivity distributions with both simulation and
experimental data on MCF-7 breast cancer cell aggregates, and
benchmark the results with the baseline and the state of the
arts.

The remainder of this paper is organized as follows. Prob-
lem formation and SADB-Net are presented in Section II.
Section III gives data generation and algorithm implementation
details. Image reconstruction results based on simulation and
experimental data are presented and discussed in Section IV.
Finally, conclusions are drawn in Section V.

II. METHODOLOGY

A. Problem Formulation

The forward problem of EIT computes the boundary voltage
u based on conductivity distribution σσσ within the ROI Ω, which
can be most accurately described by the Complete Electrode
Model (CEM) [25]. Let N be the number of electrodes
attached at the boundary ∂Ω, and n be the outward unit normal
of ∂Ω. With CEM, the potential u can be calculated using

∇ · (σσσ∇u) = 0, x ∈ Ω (1)

u + z`σσσ
∂u
∂n

= U`, x ∈ e`, ` = 1, . . . , N (2)∫
e`

σσσ
∂u
∂n

dS = I`, x ∈ e`, ` = 1, . . . , N (3)

σσσ
∂u
∂n

= 0, x ∈ ∂Ω\ ∪N`=1 e` (4)

where e` represents the `th electrode; z`, I`, and U` denote
respectively contact impedance, injected currents and corre-
sponding potential on e`. The conservation of the charge and

the choice of the reference point are added to CEM to further
stabilize the solution u, which are expressed as

N∑
`=1

I` = 0,

N∑
`=1

U` = 0. (5)

The inverse problem of EIT aims to recover the conductivity
distribution given the boundary voltage measurements. In
this work, we solve the problem based on deep network
parameterised by network weights θθθ, which is fed with the
measurements and predicts the conductivity distribution.

B. Multi-Modal Deep Neural Network

We introduce the multi-branch characteristics of multi-
modal deep learning to solve the target EIT-image-
reconstruction problem. Some challenging learning tasks usu-
ally involve more than one sensing modalities providing di-
verse input data. In such cases, the multi-modal solutions fuse
different sensing streams to boost the accuracy of the predicted
results. Deep architectures, e.g. Restricted Boltzmann Machine
(RBM) [26] and Convolutional Neural Network (CNN) [27],
have been applied for multi-modal learning.

A straightforward strategy of multi-modal learning is to
concatenate the inputs of different modalities, taking raw data
or lightly pre-processed data at the input layer. Then the fused
input is propagated through the neural network. However,
this early fusion learning approach tends to emphasize the
inherent cross-modality correlations [26], as early fusion and
unbalanced mixture of inputs make it difficult to extract the
potential intra-modality relations.

An alternative named Modality-specific Architecture (MA)
[24] leverages both intra-modality and cross-modality correla-
tions (see Fig. 1). In MA, information propagates through all
layers. The input layer is fed with data from each modality and
the output layer generates the final result. Separate branches
(Bn) are specified for each modality, without any connections
in between. Through a couple of hidden layers in each branch,
feature representations associated with each single modality
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Fig. 2. Schematic illustration of the proposed Structure-aware Dual-branch Network (SADB-Net).

are learned and merged afterwards by subsequent layers u(i)

in the network. The output neurons of the Lth hidden layer,
i.e. h(L)

i , are determined by every neuron in the previous layer,
i.e. h(L−1)

j . In general, it can be formulated as:

h
(L)
i = γ(

∑
j

w
(L)
ij h

(L−1)
j ) (6)

where w(L)
ij denotes the unit weight connecting the jth neuron

in layer L − 1 with the ith neuron in layer L, and γ is the
non-linear activation function. In this work, we simply adopt
Rectified Linear Unit (ReLU) [28]:

γ(x) = max(0, x). (7)

The generic MA in Fig. 1 comprises a multi-layer percep-
tron, which can be replaced with a CNN for multi-modal
learning. CNN is characterized by shared weights in form
of stacks of filters, which parameters are trained to extract
different high-level features. Using convolutional layers could
avail more complicated patterns with far fewer parameters to
learn. Inspired by MA, in this work we employ CNNs to
learn intra-branch correlations over several layers and use fully
connected layers to combine features from CNNs.

C. SADB-Net for EIT Image Reconstruction

We comprehend the EIT-image-reconstruction problem in
a multi-modal context in the sense that the conductivity
images reconstructed from the boundary voltage measurements
generally contain two types of information: (a) geometric
structure information and (b) conductivity value information.
We first extract the binary structural information of the conduc-
tivity distribution and then utilize this binary image together
with boundary voltage measurement as two inputs to tackle
the regression problem. We will demonstrate this leads to
more accurate estimation of both structure distribution and
conductivity values. Fig. 2 shows the schematic illustration of
the proposed Structure-Aware Dual-Branch Network (SADB-
Net) for EIT image reconstruction based on this idea. We

design two separate branches to deal with the two types of
information: one is the structure related branch (see orange
arrows in Fig. 2), and the other is conductivity-value related
branch (see blue arrows in Fig. 2).

The structure branch BS operates in the image domain,
which consists of a mask generator and a feature extractor.
The input vector first goes through the mask generator, which
generates a binary mask to distinguish objects from the
background. Following the work in [23], we use FC-UNet,
a cascade of a fully connected layer and a UNet [19] to learn
the mapping from boundary voltage measurement to a binary
mask. A sigmoid activation function is selected as the last layer
of FC-UNet to constrain all values within the range [0,1]. The
feature extractor A is constructed by a standard CNN, where
the stack of two convolutional layers with 3 × 3 kernels and
padding of 1 are followed by a max pooling layer. A batch
normalization layer and a ReLU activation layer are applied
after each convolutional layer. In this step, the binary mask
(64 × 64) is reduced to a feature map of size 16 × 16 × 16
(height, width, channel) by the feature extractor.

The conductivity branch BC takes the raw voltage measure-
ment as input. Feature extractor B for BC has exactly the same
architecture as that for the branch BS , except that all layers
operate in one dimension. The output is a 52 × 16 (length,
channel) feature map.

The two feature maps learned from branches BS and BC
are then concatenated together into a 4928-dimensional vector.
This vector passes through two fully-connected layers, which
fuse the information from the two branches. The first fully-
connected layer encodes the vector down to a hidden feature
with 4900 neurons. The second finally predicts conductivity
distributions in a continuous manner. Each fully-connected
layer is followed by a ReLU activation layer.

D. Loss Function

Let ∆σσσ ∈ Rn denote the conductivity variation distribution
and ∆V ∈ Rm be the boundary voltage measurements change,
which calculation is described in Section III-A2.
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1) Binary Cross Entropy Loss (LBCE): For binary mask
generation in BS , we explicitly train the FC-UNet parame-
terised by network weights θθθOD using binary cross entropy
loss on the predicted binary masks Mpred ∈ Rn, i.e.

LBCE = − 1

K

K∑
i=1

(M(i)
pred · logM(i)

gt +

(1−M(i)
pred) · log(1−M(i)

gt ))

(8)

where K represents the size of dataset, M(i)
gt denotes the

ground truth for the ith input-target pair. Given the ground
truth of conductivity distribution ∆σσσ

(i)
gt , M(i)

gt is generated by
setting all non-zero elements in ∆σσσ

(i)
gt to one while the rest

remains zero.
2) Total Loss (LTotal): For the ultimate reconstruction task,

our loss function intends to combine the per-pixel recon-
struction accuracy with spatial piecewise smoothness in the
predicted conductivity values.

Given the predicted conductivity distribution ∆σσσpred =
fmm−CNN (∆V;θθθ) and training dataset D, we first define per-
pixel losses with Mean Square Error (MSE), i.e.

LMSE =
1

K

∑
(∆V,∆σσσgt)∈D

‖∆σσσgt −∆σσσpred‖2 . (9)

In addition to MSE loss, we also include l2 loss (a regular-
ization term) that is a function of the network weights θθθ:

Ll2 = ‖θθθ‖22 =
∑
i

|θθθi|2. (10)

Inspired by the work in super-resolution style transfer [29],
the last loss term adopts the Total Variation (TV) loss LTV as
the piecewise smoothing penalty for ∆σσσpred, i.e.

LTV =
∑
i,j∈Ω

|∆σσσpred(i+ 1, j)−∆σσσpred(i, j)|+

|∆σσσpred(i, j + 1)−∆σσσpred(i, j)|.
(11)

The total loss LTotal is a combination of the above three
terms:

LTotal = λMSELMSE + λl2Ll2 + λTV LTV (12)

where λMSE , λl2 , λTV are scalars for corresponding loss
terms. Larger scalars are assigned to loss terms that are more
critical. Here we consider the pixel-by-pixel loss LMSE as
the most critical term. The loss term scalars are determined
by performing hyper-parameter searching on validation data
set. After a series of experiments, we found that (1, 3e-6, 1e-
8) is the most appropriate setting for (λMSE , λl2 , λTV ).

E. Supervision Strategy

A specialized supervision strategy is developed as illustrated
in Fig. 3. Inspired by multi-task deep learning [30], we first
train the mask generator only with LBCE for 100 epochs. Then
we freeze all parameters of the object detector and train the
remaining network with LTotal for around 200 epochs. That
is, the full network is established on top of the pre-initialized
mask generator.

Fig. 3. Deep supervision of SADB-Net.

An easier way is to perform the end-to-end supervision
by adding the binary cross entropy loss LBCE to the total
loss LTotal by imposing weighting factors. However, as the
mask generator is closer to the input layer and away from
the output layer, the gradients of the binary cross entropy
loss become much smaller when they arrive at the object
detector during back-propagation. Consequently, it requires
much longer training time and is more likely to converge to
a worse local minimum. In contrast, the proposed training
strategy directly feeds LBCE to the mask generator, which
has two advantages: first, the mask generator is more sensitive
to gradients from LBCE during training; second, it facilitates
faster and better convergence performance.

F. Evaluation Metrics

We adopt the commonly used Relative Image Error (RIE)
to assess the quality of the reconstructed images, i.e.

RIE =
||∆σσσpred −∆σσσgt||

||∆σσσgt||
× 100% (13)

where ∆σσσpred and ∆σσσgt represent respectively the predicted
and ground truth of conductivity distribution. RIE indicates
the overall accuracy of the reconstruction quality in a pixel-
by-pixel manner. Smaller RIE suggests better image quality.

III. EXPERIMENTAL SETUP

A. Training Data Generation

To date, no open source EIT data set is available. Therefore,
to mimic cell culture phantoms, we established an EIT dataset
containing multiple continuously varying conductivity levels
by modeling a circular 16-electrode EIT sensor in COMSOL
Multiphysics (see Fig. 4(a)). The background conductivity is
set as 0.05 S·m−1 and the conductivity of circular inclusions is
randomly selected within the range [1e-4, 0.05) S ·m−1. Apart
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Fig. 4. Sensor modelling and examples of nine patterns in the EIT data set.

from uniformly distributed circular targets, we also evaluated
the performance of phantoms with single ring-shaped objects.
We generated another group of ring-shaped dataset. Within
each circular object, a smaller circular region is randomly
created with the conductivity of 1 S ·m−1. The conductivity
of the rest part of each object and the background is 0.1
and 2 S ·m−1, respectively. To evaluate the performance of
non-circular imaging targets, we established another dataset
containing 1 to 4 rectangular inclusions. The conductivity of
each rectangular inclusion and the background are 0.0001 and
0.05 S · m−1, respectively. We adopt adjacent measurement
strategy [31] and a completed non-redundant measurement
vector contains 104 values. Further, we divide the circular
sensing region by a 64 × 64 quadrate mesh, which contains
3228 pixels.

In total, we randomly generated 54,333 pairs of samples
through finite element modelling simulation. The data set
consists of nine different patterns with random object sizes,
positions and conductivity values (see examples in Fig. 4).
This data set is further partitioned into training set (6k samples
of each circular pattern, 4k samples of ring-shape pattern,
4k samples of each rectangular pattern), validation set (500
samples of each pattern), and testing set (all the remaining
samples). Accordingly, the three subsets contain 44k, 4,500
and 5,833 samples, respectively.

1) Data Augmentation: We implement data augmentation
by adding noise with diverse levels to voltage measurements
in training, validation and testing data sets. The purpose is to
mitigate the data limitation issue and improve robustness when
dealing with noise-contaminated data. For the training and
validation set, white noise with Signal-to-Noise Ratio (SNR)
of 50dB and 40dB is added to half samples of each subset and
the other half samples, respectively. The number of samples in
training and validation subset is then doubled. In addition, we
add white noise with SNR of 50dB and 40dB to all samples in
the testing subset to validate the performance of SADB-Net.
Table I gives the number of samples in training, validation,

TABLE I
NUMBER OF SAMPLES IN EACH DATA SET

Dataset Training Validation Testing
Before Augmentation 44,000 4,500 5,833
After Augmentation 88,000 9,000 17,499

and testing subsets before and after augmentation.
2) Data Normalization: To reduce systematic defect caused

by sensor imperfection, an additional pre-processing procedure
is conducted to normalize the voltage measurements and
conductivity in the data set. Let σσσref and Vref represent
respectively the conductivity distribution and corresponding
voltage measurement when only background substance is
present; σσσmea and Vmea denote respectively the conductivity
distribution and voltage measurement after perturbations are
present in the ROI. We normalize the voltage measurement
and conductivity distribution in the following way:

∆V =
Vmea − Vref

Vref
, (14)

∆σσσ =
σσσmea − σσσref

σσσref
. (15)

B. Network Training

To train the FC-UNet as mask generator, the optimization
setup is exactly the same as that in previous work [23]. For
the rest of the SADB-Net, we use Adam [32] with a batch size
of 25 and a base learning rate of 0.0001, which is reduced by
a factor of 0.1 with a step size of 25. Except the pre-trained
weights of FC-UNet, all other weights are initialized randomly.
The weight decay in Adam has the same function with the l2
penalty and thus is set as 3e-6. Training was carried out on
two NVIDIA P5000 GPUs, and we select the model with the
least validation loss as the final one to avoid overfitting.
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C. Baseline

We select FC-UNet reported in [23] as the baseline al-
gorithm since it does not require further preprocessing of
the data set. As this paper tends to solve a regression prob-
lem, we replace the last sigmoid layer (suited for classifica-
tion/segmentation) in the original FC-UNet with a ReLU layer.

We also compare performance with L1 regularization
(L1) [11], Laplacian filter (Lap) [35], Sparse Bayesian Learn-
ing (SBL) [13] and LeNet [15]. L1 [11] is an iterative model-
based reconstruction algorithm with maximum iteration num-
ber of 50. Lap is the one-step linear Gauss-Newton solver with
Laplacian filter with a regularization factor of 0.05 [35]. LeNet
[15] and SBL [13] are two recently reported learning-based
EIT image reconstruction algorithms. SBL was implemented
according to [13], where we select the stopping tolerance to
be 1e − 9, the maximum iteration number to be 20 and the
block size to be 7, after a careful tuning process.

IV. RESULTS AND DISCUSSIONS

A. Evaluation on Simulation Data

1) Case Study: We show some representative reconstruc-
tion examples using testing data under 50dB SNR (see Fig. 5).
Fig. 6 gives the RIE of each phantom.

Overall, SADB-Net outperforms the other five methods. L1,
Lap, SBL, LeNet and the baseline are suboptimal because
the Lap, LeNet and baseline contain artifacts, L1 and SBL
keep underestimating the shape of the objects (see Fig. 5).
In Phantom 1 and 2, only SADB-Net manages to recover all
objects in terms of both shape and conductivity value. SADB-
Net uses an extra pipeline to learn the conductivity value,
merges this feature with the structural feature from the other
pipeline, and could better recover the global information. In
these cases, L1, Lap, SBL, LeNet and the baseline are unable
to reveal the conductivity difference of the objects, whereas
SADB-Net succeeds to reconstruct this critical information.
Regarding the more challenging Phantom 3, L1, Lap, SBL
and LeNet even fail to recognize the correct number of objects
within the region and the baseline hardly distinguishes the two
objects in the middle, not to mention the conductivity levels.
However, SADB-Net recovers the best structural information
and at least figures out the conductivity value of the one
at lower left corner that is most significantly different from
the background. For non-uniformly distributed inclusions, the
reconstruction results demonstrate that all networks can handle
Phantom 4 and 5 better than L1, Lap, and SBL especially in
terms of shape reconstruction. The baseline is comparable to
SADB-Net but SADB-Net can better localize the region with
a lower conductivity contrast. Comparing the reconstruction
results of Phantom 6, it is obvious that only SADB-Net
provides the most accurate shape while the other methods tend
to generate unexpected circular objects.

However, a remarkable advantage of the baseline can be
noted, i.e. its shallower architecture with a straight pipeline
is more sensitive to LTV so that the reconstructed results
are smoother than those of SADB-Net. The multi-branch
representations which are joint later in SADB-Net are more
informative, which consequently improves the overall image

quality in terms of conductivity values of multiple objects, at
the expense of less smoothness in the reconstructed images.

In Fig. 6, RIE of all methods in general get worse as the
number of objects increases. SADB-Net consistently yields
the best RIE of 27.73%, 41.61%, and 69.76% relatively for
Phantom 1-3, suggesting its high accuracy of estimating com-
plicated conductivity distributions. The gap among L1, Lap,
SBL, LeNet and baseline shrinks with increasing inclusions.
For ring targets in Phantom 4 and 5 and rectangular targets in
Phantom 6, deep learning methods show significantly lower
RIE than conventional methods.

Fig. 7 presents high- and low-contrast profiles of reconstruc-
tions for Phantom 1 and 2, marked by dashed line segments
in the first row of Fig. 5. For the high-contrast case, L1, Lap,
SBL and LeNet deviates far from the ground truth, while the
baseline and SADB-Net can smooth the details but SADB-
Net better follows the two transitions. With respect to the
low-contrast profile, L1 and SADB-Net overlaps with the
ground truth, but Lap, LeNet and baseline show deep troughs,
suggesting obvious artefacts in their reconstructed background.

2) Quantitative comparisons: Table II reports the statistical
average of RIE and running speed over all the testing data. We
partition the results based on four different patterns in Fig. 4
and three noise levels, i.e. noise free, 50dB, and 40dB.

Similar to the trend in Fig. 6, all methods show degraded
performance with increasing number of objects in the ROI,
as it becomes more challenging to reconstruct. Fig. 8 further
evaluates the performance of the given approaches under a
wide range of SNR levels from 30dB to 70dB. It suggests
all methods are generally robust to noise, with deep learning
based methods, i.e. LeNet, baseline and SADB-Net, yielding
much better RIE than conventional methods. Overall, SADB-
Net performs the best in terms of RIE. This implies that
learning the structure- and conductivity-related information
with separate branches helps effectively to discriminate con-
ductivity levels among inclusions, compared with concatenated
learning with simple network architectures.

In terms of the reconstruction time, we compute the average
running time of all the given algorithms on all cases in
the testing data set, which is a conventional approach as
adopted in [36]. Deep learning based approaches achieve high
quality image reconstruction results at a very fast speed,
approximately 50 times faster than L1, 600 times faster than
Lap, 10,000 times faster than SBL. The LeNet consistently
runs slightly faster than SADB-Net by 1.64ms, as it has a
shallower structure, which costs slightly less computation for
inferences. Nevertheless, the execution time of SADB-Net
(below 2ms) is sufficiently good for implementing real-time
EIT imaging.

B. Evaluation on Experimental Data

In addition to simulation study, we carried out real-world
experiments on different miniature EIT sensors to examine
the generalization ability of the proposed method. Image
reconstruction on miniature EIT sensors is challenging due
to its weak measurement signals and sensitivity to sensor
imperfection. The miniature EIT sensor [33] (see Fig. 9(a))
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Fig. 5. Image reconstruction results based on simulation data (SNR = 50 dB) in testing set. Each column corresponds to a phantom.

TABLE II
PERFORMANCE COMPARISONS (RIE AND SPEED) UNDER DIFFERENT PHANTOM PATTERNS AND NOISE LEVELS.

No. of Objects Noise Free 50dB 40dB
1 2 3 4 1 2 3 4 1 2 3 4

RIE (L1 [11]) (%) 95.73 111.9 118.6 116.9 96.29 111.9 118.8 117.3 96.76 112.4 119.5 117.1
RIE (Lap [35]) (%) 87.31 104.3 111.6 110.1 87.43 104.6 111.7 111.5 87.61 104.8 111.6 111.7
RIE (SBL [13]) (%) 77.95 80.74 83.68 84.29 77.19 80.22 83.55 84.30 78.26 79.21 83.04 84.01
RIE (LeNet [15]) (%) 62.62 75.76 78.50 82.71 62.83 75.98 78.55 82.99 65.32 77.48 79.87 83.88
RIE (Baseline [16]) (%) 49.65 62.11 65.71 73.73 58.60 65.61 70.53 77.04 64.24 73.49 76.96 82.03
RIE (SADB-Net) (%) 32.40 59.28 62.99 72.43 53.28 60.61 66.18 74.91 59.08 56.71 72.64 81.01
Speed (L1 [11]) (s) 0.05 0.05 0.05
Speed (Lap [35]) (s) 0.59 0.60 0.59
Speed (SBL [13]) (s) 12.63 13.09 12.91
Speed (LeNet [15]) (s) 0.22e-3 0.26e-3 0.25e-3
Speed (Baseline [16]) (s) 1.08e-3 1.08e-3 1.09e-3
Speed (SADB-Net) (s) 1.83e-3 1.91e-3 1.92e-3
Best results are highlighted in bold. Speed computes average model execution time per image.

is equipped with 16 planar electrodes at the substrate and
the inner diameter of the sensing chamber is 15 mm. We
use cucumber, carrot, and potato cylinders with similar size

but different conductivity values as imaging targets. The
background substance is saline with a conductivity of 0.25
S ·m−1. The excitation frequency is 20kHz. We also examined
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Fig. 6. Numerical comparisons of six phantoms based on RIE.

Fig. 7. (a) High-contrast profile in (3) of Fig. 5 and (b) low-contrast profile
in (4) of Fig. 5.

Fig. 8. Noise robustness comparison in terms of RIE.

the performance of the given methods on MCF-7 human
breast cancer cell spheroids with a quasi-2D miniature EIT
sensor [37], which has a diameter of 14mm. The two MCF-7
human breast cancer cell spheroids with a diameter of 2mm are
less conductive than the background substance. The parameter
setting for all methods is the same as in simulation.

Fig. 9 illustrates image reconstruction results of four phan-
toms. In experiment phantom 1, carrot has higher conductivity
than cucumber, but both are lower than that of the background
substance [34]. SBL could roughly recover such conductivity
contrast but severely underestimates the size of both objects
due to its strong sparsity constraint. Whilst L1, Lap, and
LeNet could recover the shape of each object much better,
but all generate significant artifacts (also can be found in

simulations). The baseline even fails to tell either conductivity
contrast or the target shape. SADB-Net performs better in
terms of target shape and noise reduction, whilst hardly
reconstruct the conductivity contrast. In experiment phantom
2, potato on the bottom-left corner induces a larger negative
conductivity change than carrot on the top-right corner [34].
We can explicitly observe that L1 could hardly recover the top-
right carrot cylinder, Lap suffers from significant artifacts, SBL
underestimates target sizes, LeNet and the baseline are unable
to reconstruct the conductivity contrast. Differently, SADB-
Net demonstrates consistent performance outperforming the
other approaches in terms of shape preservation, conductivity
contrast prediction and noise reduction. Based on Eq. (15)
and the measured conductivity of carrot, potato and cucumber
in [34], we could deduct the relative conductivity changes of
carrot, potato and cucumber under 20kHz are around -0.56,
-0.76 and -0.81. By comparing the reconstructed images for
experimental phantom 1 and phantom 2, we further confirm
SADB-Net could better estimate both the conductivity change
and the shape of imaging objects. Experiment phantom 3
and 4 contain two cell spheroids. L1, Lap, SBL and LeNet
suffer from significant artifacts. They exhibit poor ability to
distinguish the adjacent cell aggregates. SADB-Net yields
consistently better shapes than the baseline. These results
suggest that SADB-Net is able to generalize well to the real
experimental setups. Additionally, the unique architecture of
SADB-Net makes a worthwhile contribution to accurate pre-
dictions on not only structure but the conductivity difference
in between objects.

V. CONCLUSION

We attempt to tackle the challenge of accurate reconstruc-
tion of the multi-object, multi-value conductivity distributions
with EIT for tissue engineering applications. Typical convo-
lutional networks (LeNet and the baseline model) run much
faster than conventional approaches but are still unsatisfactory
when estimating conductivity values. We proposed a novel
network SADB-Net and demonstrated that:

1) by separating the estimation of structure distribution
and conductivity values using two branches and then
fusing the information together, SADB-Net could gen-
erate high-quality reconstructions of multi-object, multi-
value distributions with better structural and conductivity
estimation;

2) SADB-Net exhibits good generalization ability based on
the experimental results on miniature EIT sensors.

In future work, we will apply the proposed approach in
imaging dynamic 3D cell culture processes in tissue engineer-
ing. We also aim to extend this method to solve the 3-D EIT
image reconstruction problem and apply it to image the in
vitro 3D disease models in real time.
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