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Abstract

Animal African Trypanosomiasis (AAT) is a debilitating livestock disease prevalent across

sub-Saharan Africa, a main cause of which is the protozoan parasite Trypanosoma congo-

lense. In comparison to the well-studied T. brucei, there is a major paucity of knowledge

regarding the biology of T. congolense. Here, we use a combination of omics technologies

and novel genetic tools to characterise core metabolism in T. congolense mammalian-infec-

tive bloodstream-form parasites, and test whether metabolic differences compared to T.

brucei impact upon sensitivity to metabolic inhibition. Like the bloodstream stage of T. bru-

cei, glycolysis plays a major part in T. congolense energy metabolism. However, the rate of

glucose uptake is significantly lower in bloodstream stage T. congolense, with cells remain-

ing viable when cultured in concentrations as low as 2 mM. Instead of pyruvate, the primary

glycolytic endpoints are succinate, malate and acetate. Transcriptomics analysis showed

higher levels of transcripts associated with the mitochondrial pyruvate dehydrogenase com-

plex, acetate generation, and the glycosomal succinate shunt in T. congolense, compared

to T. brucei. Stable-isotope labelling of glucose enabled the comparison of carbon usage

between T. brucei and T. congolense, highlighting differences in nucleotide and saturated

fatty acid metabolism. To validate the metabolic similarities and differences, both species

were treated with metabolic inhibitors, confirming that electron transport chain activity is not

essential in T. congolense. However, the parasite exhibits increased sensitivity to inhibition

of mitochondrial pyruvate import, compared to T. brucei. Strikingly, T. congolense exhibited

significant resistance to inhibitors of fatty acid synthesis, including a 780-fold higher EC50 for

the lipase and fatty acid synthase inhibitor Orlistat, compared to T. brucei. These data high-

light that bloodstream form T. congolense diverges from T. brucei in key areas of metabo-

lism, with several features that are intermediate between bloodstream- and insect-stage T.
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brucei. These results have implications for drug development, mechanisms of drug resis-

tance and host-pathogen interactions.

Author summary

Animal African Trypanosomiasis (AAT), also known as Nagana, is a devastating disease

affecting livestock across sub-Saharan Africa. AAT is primarily caused by the parasite Try-
panosoma congolense, yet our biological knowledge about this pathogen is poor, especially

compared to the related species T. brucei, subspecies of which cause the human disease

Sleeping Sickness. Understanding the core metabolism of T. congolense is crucial in order

to gain insights into the infection biology of this important pathogen, as well as providing

the potential to identify new drug targets. In this work, we addressed the lack of knowl-

edge concerning T. congolense by carrying out a comprehensive analysis of core metabo-

lism, and comparing the data to T. brucei. We then used the findings of metabolic

differences to predict differential sensitivity to inhibitors of metabolic function. We show

that unlike T. brucei, where glucose metabolism leads to high levels of pyruvate excretion,

T. congolense metabolises glucose to other end-products, namely succinate, malate and

acetate. Moreover, there are pronounced differences in the way T. congolense uses glucose

to feed into other areas of metabolism. Further analysis also suggests that T. congolense
mostly scavenges lipids and fatty acids, rather than synthesising them de novo. To validate

these findings, we confirm that T. congolense is differentially susceptible to metabolic

inhibitors compared to T. brucei, and that, in particular, T. congolense is significantly less

sensitive to inhibitors of fatty acid synthesis. Our study provides a foundation of func-

tional metabolic knowledge on T. congolense, with insights into how this parasite funda-

mentally differs from T. brucei.

Introduction

The hemoflagellate protozoan parasite Trypanosoma congolense is a primary causative agent of

animal African trypanosomiasis (AAT), which can also be caused by T. vivax and T. brucei [1].

AAT is one of the most important livestock diseases across sub-Saharan Africa and accounts

for livestock deaths in excess of 3 million annually, with up to 120 million cattle at risk [2–4].

Current methods of disease control centre around chemotherapy and prophylaxis (reviewed

in [3]), but the very few available veterinary trypanocidal drugs have been used extensively for

decades, resulting in resistance and inadequate protection [5–8]. In contrast to T. brucei [9],

the resistance mechanisms of T. congolense are still poorly understood [10]. As such, there is a

critical need for the development of new and improved chemotherapeutics to manage AAT

[3,11], and furthering our knowledge of how T. congolense develops resistance to drugs can

facilitate optimising the lifetime of both existing and new drugs.

Most of our biological understanding of African trypanosomes derives from studies on T.

brucei, subspecies of which (T. b. gambiense and T. b. rhodesiense) cause Human African Try-

panosomiasis (HAT) [12]. The ability to culture both procyclic (PCF; tsetse fly) and blood-

stream (BSF; mammalian) forms of T. brucei in vitro, combined with its tractability with

respect to genetic manipulation, have enabled extensive study of this species at a molecular

level [13,14]. In stark contrast, very few T. congolense strains are amenable to continuous BSF

culture, with a single strain (IL3000) used in most studies [15]. Whilst genetic modification
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has been feasible in PCF stage T. congolense for some time, routine BSF transfection has only

recently become possible [16–18]. Additionally, although T. congolense exhibits a superficially

similar morphology and life cycle to T. brucei [19,20], emerging evidence increasingly suggests

that T. brucei, T. congolense and T. vivax exhibit some profound differences at the genomic

level [21–25], including in genes and phenotypes of direct relevance to metabolism, infection

biology and disease epidemiology. For example, T. brucei has an elaborate nucleoside trans-

porter lineage, whilst T. congolense has instead diversified its nucleobase transporter lineage

[21]. There is a lack of understanding to what extent these genetic differences translate into

biological differences, including with respect to metabolism.

Understanding metabolism is critical to identifying how pathogens survive and thrive in

the varying host environments they encounter, as well as being a means of identifying drug tar-

gets, elucidating modes of drug action and mechanisms of drug resistance [26–28]. T. brucei
metabolism has been extensively studied, aided by the application of technologies such as liq-

uid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR)

spectroscopy (reviewed in detail by [29,30]), which enable global profiling of the cellular

metabolome.

The BSF stage of T. brucei utilizes the high levels of glucose that are available in the mam-

malian bloodstream, and depends almost exclusively on the glycolytic pathway to generate

ATP [31]. The first seven steps of glycolysis are enclosed in a specialized organelle, the glyco-

some, which maintains its own ATP/ADP and NAD/NADH balance, allowing glycolysis to

proceed at an extraordinarily high rate in comparison to most other eukaryotic cells [32]. The

endpoint of glycolysis, pyruvate, is a waste product of T. brucei, and the majority is excreted

from the cell in large quantities. However, small amounts of pyruvate are further metabolized

in the mitochondrion to acetate by pyruvate dehydrogenase (PDH) and acetate:succinate CoA

transferase (ASCT), a secondary, yet essential pathway [33]. The acetate generated from this

pathway is utilized, at least partially, for the de novo synthesis of fatty acids [34]. Indeed, both

BSF and PCF T. brucei are highly sensitive to the lipase and fatty acid synthase inhibitor Orli-

stat [35].

Conversely, in the absence of blood meals, glucose is scarce in the tsetse fly midgut [36],

and the main energy source of PCF T. brucei is L-proline. Its catabolism leads to production of

acetate, succinate and L-alanine in PCF, which have a more developed and active mitochon-

drion than BSF (including an active respiratory chain capable of generating ATP, which is

inactive in BSF T. brucei [37]). Until recently, it was thought that PCF T. brucei did not exhibit

an active citric acid (TCA) cycle, although recent data have shown that TCA intermediates

such as succinate and 2-oxoglutarate can stimulate PCF T. brucei growth [38–40].

Among the glycolytic enzymes, T. brucei expresses three isoforms of phosphoglycerate

kinase (PGK), which catalyze the conversion of 1,3-bisphosphoglycerate to 3-phosphoglycerate

[41]. These are developmentally regulated, with the major isoform in BSF parasites present in

the glycosome (PGK-C), whilst the primary PCF isoform is found in the cytosol (PGK-B) [42].

The localization of PGK-B in the PCF cytosol is thought to result in an ATP/ADP imbalance

in the glycosome, which is rectified by upregulating the glycosomal “succinate shunt”, a path-

way that includes the ATP-generating phosphoenolpyruvate carboxykinase (PEPCK)- and

pyruvate phosphate dikinase (PPDK)-mediated conversion of phosphoenolpyruvate (PEP) to

oxaloacetate and pyruvate respectively [42,43]. Succinate shunt activity, combined with amino

acid metabolism, results in the excretion of high levels of succinate in PCF T. brucei [44].

Stable isotope labelling data has revealed that BSF T. brucei utilize D-glucose to a greater

extent than first realized, with its carbons disseminating into amino acid, lipid and nucleotide

metabolism [45]. This study also showed that some of the succinate and malate excreted from

BSF T. brucei originates from glycolysis and that, unexpectedly, inhibition of PEPCK is lethal
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for this life-cycle stage [45]. It has also been shown that acetate production is essential to BSF

T. brucei, in particular for the synthesis of fatty acids (FAs) [33]. Acetate excretion, as well as

that of succinate and malate, is negligible in BSF T. brucei compared to that of pyruvate and L-

alanine.

In contrast to T. brucei, the literature on metabolism in T. congolense is scarce. More than

half a century ago it was suggested that BSF T. congolense has a significantly lower rate of glu-

cose consumption compared to BSF T. brucei [46]. Furthermore, pyruvate is not the main gly-

colytic end product and instead, acetate and succinate are excreted at high levels, indicative of

metabolism more akin to PCF T. brucei [46]. Further work has revealed additional differences

that support this hypothesis [47–49]. For example, BSF T. congolense primarily express cyto-

solic PGK-B, rather than glycosomal PGK-C [49]. Transmission electron microscopy has also

revealed a more developed mitochondrion in BSF T. congolense, with visible cristae, suggesting

that mitochondrial energy metabolism could play a more prominent role in BSF T. congolense
[50]. The high levels of acetate excretion first shown by Agosin & Von Brand [46] are consis-

tent with this hypothesis. However, other studies have shown that BSF T. congolense is sensitive

to inhibitors of Trypanosome Alternative Oxidase (TAO), including salicylhydroxamide

(SHAM); and is insensitive to cyanide, suggesting that, as for BSF T. brucei, TAO is the sole

terminal oxidase, responsible for reoxidising glycerol 3-phosphate, in BSF T. congolense [51–

54]. Notably, nitroblue tetrazolium staining indicates the presence of NADH dehydrogenase

(complex I) activity in BSF T. congolense [51]. However, to date, no studies have assessed BSF

T. congolense sensitivity to chemical inhibition of the electron transport chain, or the F1Fo-

ATPase.

Post-genomic technologies allow for the generation of large datasets that enable analysis of

cellular processes on a systems scale, including metabolomics and transcriptomics. Integration

of these data can provide a detailed snapshot of cell metabolism at the transcript and metabo-

lite levels and help to dissect differences between species or conditions in unprecedented detail

[55]. Furthermore, this knowledge can aid in prediction and understanding of drug efficacy

and mode of action.

This study aimed to generate the first comprehensive overview of the metabolome of BSF

T. congolense IL3000 parasites, allowing a global metabolic comparison of differences between

T. congolense and T. brucei. Glycolytic metabolism in BSF T. congolense appears to be similar

to PCF T. brucei, particularly in terms of metabolic outputs and gene expression. However,

there are pronounced differences in parasite reliance on exogenous amino acids as well as car-

bon dissemination into pathways involved in nucleotide and lipid metabolism, as shown by

stable isotope-labelled metabolomics. Using these data, we further validated these metabolic

differences in T. congolense by pharmacological inhibition, which highlighted increased sensi-

tivity to inhibition of mitochondrial pyruvate uptake, as well as significant resistance to inhibi-

tion of fatty acid synthesis, tested using inhibitors of fatty acid synthase and acetyl-coA

synthetase. Taken together, these results suggest that T. congolense and T. brucei differ in some

fundamental aspects of their core metabolism, which may have important implications for

their interactions with the mammalian host, as well as potentially impacting upon drug

sensitivity.

Results

Comparative RNA-sequencing of T. congolense and T. brucei
To compare BSF T. congolense and T. brucei transcriptomes, RNAseq analysis was carried out

on parasites cultured in vitro (sampled from actively dividing cultures grown to densities of

1.8–2.0 × 106 cells/mL) and trypanosome samples isolated from infected mice at first peak
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parasitaemia (107 cells/mL; ex vivo; Fig 1). T. congolense (IL3000) and pleomorphic T. brucei
(STIB 247) in vitro and ex vivo samples were prepared, in order to assess similarities and differ-

ences between trypanosomes grown in culture and those from an infection (Fig 1A and 1B),

and to compare and contrast the transcriptome across the species (Fig 1C and 1D). Sequencing

data were aligned to the respective genome sequences with a mean overall alignment rate of

88.8 ± 6.5% and 92.6 ± 2.0% for T. brucei and T. congolense reads, respectively. The lower

alignment rate for T. brucei was likely due to the TREU 927 reference genome having a differ-

ent VSG repertoire than STIB 247. Resultant files were sorted and filtered for quality and read

counts were normalised using transcripts per million (TPM) [56]. Orthologues were inferred

between the species using Orthofinder [57], in order to directly compare TPM values for 1-to-

1 orthologues, as well as sum-of-TPM values for groups containing families of paralogues (e.g.

hexose transporters). These normalised read counts are henceforth referred to as orthoTPM

values (S1 Table). The Orthofinder dataset (S2 Table) consisted of 6,677 orthogroups (denoted

with the prefix “TbTc_”), of which 5,398 (80.84%) were 1-to-1 orthologues. The Orthofinder

tool was also used to predict genes only present in one of the two species (S2 Table).

There are several metabolic genes that are not present in the T. congolense genome, includ-

ing a putative delta-4 desaturase (Tb927.10.7100), a succinate dehydrogenase subunit (SDH11;

Tb927.8.6890) and mitochondrial pyruvate carrier 1 (MPC1; Tb927.9.3780). These genes are

encoded in regions exhibiting high levels of synteny between the species (S1 Fig) and thus

seem likely to represent genuine deletions in T. congolense. Furthermore, guanine deaminase

(GDA; Tb927.5.4560) was not identified in the T. congolense genome (S2 Table). Although the

GDA locus is subtelomeric in the T. brucei genome, and these regions are not syntenic with T.

congolense, sequences matching GDA could not be found either in the assembled genome or

the available unassembled contigs. Therefore, the most parsimonious explanation is that GDA

is also not encoded in the T. congolense genome. Based on the redundancy in trypanosomal

purine salvage pathways, it is highly unlikely that GDA would be essential in BSF T. brucei
[58].

Differences between four sample groups were assessed based on orthoTPM values (Fig 1;

full dataset in S1 Table). There was a strong intra-species correlation between the in vitro and

ex vivo transcriptomes (Pearson correlation coefficient, T. congolense (ρ) = 0.914, Fig 1A; T.

brucei ρ = 0.838, Fig 1B), showing that in vitro-derived BSF T. congolense and T. brucei closely

resemble parasites isolated from infections at the transcriptome level. Furthermore, although

correlations between species in the same condition were also high (ex vivo: ρ = 0.622, Fig 1C;

in vitro: ρ = 0.614, Fig 1D), the reduced correlation coefficient values do indicate a degree of

implying transcriptional differences between the species.

To compare data from this study to BSF T. congolense transcriptomics data generated by

Silvester et al. at ascending and peak parasitaemia [59], TPM values for each annotated T. con-
golense gene were compared directly (S2 Fig and S1 Table). There was good correlation

between both in vitro and ex vivo T. congolense BSF datasets and the data from Silvester et al.
(ρ> 0.85, S2 Fig), with highest correlation between the ex vivo and ascending data (ρ = 0.905,

S2 Fig), albeit the correlation between the ‘ascending’ and ‘peak parasitaemia’ in Silvester et al.
was higher (ρ = 0.988, S2 Fig).

T. congolense metabolite consumption and output

Global metabolite (metabolomics) analysis of in vitro culture supernatant samples provides a

detailed insight into the metabolic inputs and outputs of cultured cells [60]. However, high lev-

els of medium components can often mask subtle but significant changes in culture medium

composition over time. To counteract this, a modified culture medium was designed for T.
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congolense strain IL3000, based on previously published medium formulations (Steketee’s con-
golense medium, SCM-3; for details see Materials and Methods) [17,18].

A BSF T. congolense IL3000 time course was initiated, with cells isolated during mid-expo-

nential growth phase inoculated into fresh SCM-3 medium (0 h time point). Culture superna-

tant samples were collected at 0, 8, 24, 32, 48 and 56 hours (n = 4 at each time point) and

metabolites extracted for LC-MS analysis.

A total of 290 putative metabolites were detected across all samples (207 after removing

putative metabolites that did not map to metabolic pathways, e.g. peptides and medium com-

ponents), of which 37 were matched to an authentic standard to confidently predict their iden-

tity (S3 Table). Of the 207 metabolites in the final dataset, 100 were putatively annotated as

lipids. Annotations of putative mono- and poly-unsaturated fatty acids are of lower confidence

Fig 1. Overview of comparative transcriptomics analysis of T. brucei and T. congolense, isolated from ex vivo and in vitro
conditions. RNAseq data from T. congolense (IL3000) and T. brucei (STIB 247) in both in vitro and ex vivo (from mouse

infections) conditions were aligned to the species’ respective reference genomes and read counts were normalised by the

transcripts per million (TPM) method. To directly compare the species, a pseudogenome was generated using the

Orthofinder tool [57]. TPM values from the 4 sample groups were plotted against each other to analyse correlation between

conditions (A and B) and between species in the same conditions (C and D). Correlation was assessed using both Pearson

correlation (ρ; Pearson’s r) and Spearman’s rank correlation coefficients.

https://doi.org/10.1371/journal.ppat.1009734.g001
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due to the challenges of identifying these metabolite species using this LC-MS platform (see

Materials and Methods for details).

80 of the 207 putative metabolites were significantly altered across the dataset (false discov-

ery rate-adjusted p<0.05; one-way repeated measures ANOVA; Fig 2A and S3 Table). To ana-

lyse metabolites undergoing similar changes, K-means clustering with Pearson correlation

coefficient as the similarity metric was used, highlighting seven clusters with two clusters of

particular interest: one containing metabolites that accumulated over time, and the other con-

taining metabolites depleted over time (Fig 2A). Log2 fold change (log2 FC) between the first

and final time points (0 and 56 h, respectively) was also calculated for each metabolite (S3

Table).

Glucose, the primary energy source for T. brucei, whilst clearly consumed, was not fully

depleted after 56 hours in T. congolense culture (log2 FC: -0.76; Figs 2A and 3A), in contrast to

T. brucei, where 10 mM glucose is consumed by the same time-point [60]. Ribose, glucos-

amine, inosine and threonine were similarly depleted in T. congolense culture (log2 FC: -0.78,

-0.97, -2.82 and -0.89, respectively).

In contrast, a number of metabolites accumulated in the medium (Fig 2A). The most signif-

icant of these were guanine (log2 FC: 6.34; Fig 2A), succinate (log2 FC: 5.60; Figs 2A and 3B)

and (S)-malate (malate, log2 FC: 1.37; Figs 2A and 3B). Interestingly, pyruvate (log2 FC: 0.24;

Fig 3B) was not excreted at the high levels relative to starting concentration, in contrast to BSF

T. brucei culture where pyruvate secretion is consistently observed in both HMI-11 and in

Creek’s Minimal medium (CMM) [60]. Instead, succinate and malate appear to be the primary

glycolytic outputs from BSF T. congolense, which is similar to PCF T. brucei. Elevated levels of

2-oxoglutarate and a metabolite putatively identified as 2-oxoglutaramate were observed,

which potentially originate from alanine aminotransferase activity using L-glutamate and L-

glutamine, respectively, as substrates [45,61]. Moreover, a significant build-up of N6-Acetyl-L-

lysine (log2 FC: 6.30) was observed (Fig 2B). Whilst the low molecular weight of acetate means

it could not be detected by the LC-MS platform used, concentrations of this molecule were

measured directly using an acetate assay in samples taken at the same time points from four

independent cultures, which confirmed high levels of acetate excretion by BSF T. congolense
(Fig 3F).

Other notable observations included the depletion of several putatively identified lysopho-

sphatidylcholine species at 56 hours (Fig 2A and S3 Table), as seen in T. brucei [60], coincident

with increased medium levels of sn-glycero-3-phosphocholine, choline and choline phosphate,

indicating lyso-phospholipase activity where the charged headgroup moiety of a lyso-species is

cleaved from its bound fatty acid [62]. However, given the putative nature of these fatty acid

annotations, we could not confidently establish the origin of the elevated choline-related

metabolites. In addition, tryptophan (log2 FC: -0.74; S3 Table) was significantly consumed

(p = 0.042), in contrast with cysteine (log2 FC: -0.07; p> 0.05), despite the latter being essential

to T. brucei [63] (S3 Table).

The log2 metabolite fold changes after 56 hours of culture of T. congolense were compared

to those of T. brucei grown in HMI-11 (Fig 2B) [60]. A total of 90 metabolites were identified

in both datasets, with some showing divergence between the two species (Fig 2B). Several

metabolites only accumulated in T. brucei supernatant, in particular pyruvate, D-glycerate,

2-oxoglutarate and hydroxydodecanoic acid (Fig 2B). Conversely, succinate, N6-acetyl-L-

lysine, 4-hydroxy-4-methylglutamate, N6,N6,N6-trimethyl-L-lysine and choline only accumu-

lated in T. congolense supernatant (Fig 2B). Whilst cystine (Fig 2B; 12) was depleted in T. bru-
cei samples, this metabolite remained unchanged in those from T. congolense.

In summary, whilst core elements of metabolism have been conserved between BSF T. con-
golense and T. brucei, several pronounced differences in T. congolense metabolism were
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Fig 2. Analysis of supernatant metabolites after T. congolense culture. A heatmap covering the 80 putative medium components judged to be

significantly altered after 56 hours of in vitro cell culture containing T. congolense strain IL3000, as calculated by a one-way repeated measures

ANOVA (P< 0.05). Peak abundances were log transformed and mean centred and metabolites were clustered based on Pearson correlation. Two

clusters of interest were identified, which are shown in a larger format on the right. Metabolites in the top cluster were observed to increase

significantly over time, whilst those in the bottom cluster decreased. Metabolite names followed by {�} were matched to an authentic standard and all

other identifications are putative based on mass, retention time and formula. B) Comparison of metabolite changes in medium supernatants after 56

hours between T. brucei [60] and T. congolense (S3 Table). Relative changes in metabolite abundance were calculated as log2 fold change of 56 h vs 0 h

and metabolites exhibiting differences between the species are listed next to the figure.

https://doi.org/10.1371/journal.ppat.1009734.g002
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Fig 3. Energy metabolism in T. congolense. A-E) Supernatant metabolomics analysis of metabolites involved in glycolytic metabolism in T. congolense. Grey bars

indicate a negative medium control incubated for 56 hours. F) A commercial kit was used to measure acetate concentration during T. congolense culture, with
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identified based solely on metabolic input and output in in vitro culture. An integrated analysis

of the metabolomic and transcriptomic datasets was then undertaken in order to further define

the metabolic differences between the two species.

Energy metabolism

As described above, RNA sequencing and culture supernatant metabolomics provided initial

indications that BSF T. congolense energy metabolism, specifically with respect to glucose

usage, diverges substantially from that of BSF T. brucei (simplified map of glycolysis depicted

in Fig 3G). To dissect metabolic differences at the transcriptome level, pathway analysis was

carried out using the TrypanoCyc database [64], which contains 186 manually curated path-

ways covering 288 genes or groups of multi-copy genes (S4 Table). These analyses showed

broadly similar levels of gene expression of glycolytic components between BSF T. brucei and

T. congolense (Fig 3G and 3I). However, the T. brucei ex vivo samples displayed a more distinct

expression profile, with low transcript abundances for most glycolytic components compared

to all sample groups. This is most likely the result of cells being sampled near peak parasitae-

mia, and as the pleomorphic strain STIB 247 was used, having a higher proportion of tsetse-

transmissible, quiescent short stumpy forms–consistent with this there was elevated expression

of stumpy markers such as the PAD array (TbTc_0074), PIP39 (TbTc_0700) and reduced

expression of RBP10 (TbTc_0619) (S1 Table) [65–67].

Transcripts associated with gluconeogenesis, the succinate shunt, and the acetate genera-

tion pathway were increased in abundance in BSF T. congolense under both in vitro and ex
vivo conditions compared to BSF T. brucei. Key examples of this are PPDK, PEPCK, glycoso-

mal malate dehydrogenase (gMDH) and two subunits of pyruvate dehydrogenase (PDH) (Fig

3I). PPDK was previously reported to be expressed in BSF T. congolense, but not in BSF T. bru-
cei [47], and it may be assumed that the enzyme serves a similar function in BSF T. congolense
as it does in PCF T. brucei; primarily in a glycolytic role to maintain ATP/ADP balance in the

glycosome. The high levels of gMDH expression in BSF T. congolense contrasts with BSF T.

brucei, where gMDH expression is reported to be mostly absent, and cytosolic MDH (cMDH)

is the major isoform [68]. The RNAseq analysis also supports a previous study showing high

levels of glycerol kinase expression in BSF T. congolense [48].

To test whether elevated levels of succinate and malate seen in T. congolense supernatant

medium samples originated from glucose, LC-MS analysis using 13C-U-D-glucose was carried

out on intracellular metabolites isolated from in vitro-cultured cells. Stable isotope analysis has

provided valuable insights into T. brucei central carbon metabolism [45], and generating T.

congolense datasets enabled comparative analysis of glucose catabolism (albeit with an

supernatant samples analysed at the same time points as the supernatant metabolomics experiment. G) A simplified overview of the glycolytic pathway. Numbers refer to

the following proteins: 1, hexokinase; 2, glucose 6-phosphate isomerase; 3a, phosphofructokinase; 3b, fructose-1,6-bisphosphatase; 4, aldolase; 5, triosephosphate

isomerase; 6, glycerol 3-phosphate dehydrogenase; 7, glycerol kinase; 8, glyceraldehyde 3-phosphate dehydrogenase; 9, phosphoglycerate kinase; 10, phosphoglycerate

mutase; 11, enolase; 12, phosphenolpyruvate carboxykinase; 13, malate dehydrogenase; 14, fumarate hydratase; 15, NADH-dependent fumarate reductase; 16, pyruvate

kinase; 17, alanine aminotransferase; 18, pyruvate dehydrogenase complex; 19, acetate:succinate CoA-transferase and acetyl-CoA thioesterase. H) Tracing glucose

derived carbon usage through glycolytic metabolism. T. congolense were incubated with a 50:50 mix of 12C-D-glucose:13C-U-D-glucose before cell pellets were isolated

for metabolomics analysis. Results were compared to those generated in T. brucei by Creek and colleagues [45]. Colours indicate the number of 13C atoms in each

metabolite. I) Comparative analysis of transcript level activity of glycolysis in T. brucei and T. congolense from both in vitro and ex vivo conditions. Gene IDs: HK1 & 2,

hexokinase, TbTc_0341; GPI, glucose 6-phosphate isomerase, TbTc_1840; PFK, phosphofructokinase, TbTc_1399; ALDA, aldolase, TbTc_0358; TPI, Triosephosphate

isomerase, TbTc_1075; GPDH, glycerol 3-phosphate dehydrogenase, TbTc_2722; GK, glycerol kinase, TbTc_0392; GAPDH, glyceraldehyde 3-phosphate

dehydrogenase, TbTc_0377; PGK, phosphoglycerate kinase, TbTc_6030; PGKA, phosphoglycerate kinase A, TbTc_0241; PGKB/C, phosphoglycerate kinase B & C,

TbTc_0240; PGM, phosphoglycerate mutase, TbTc_5039; ENO1, enolase, TbTc_0465; ENO, putative, enolase, putative, TbTc_3614; PK1, pyruvate kinase 1, TbTc_0372;

FBPase, fructose-1,6-bisphosphatase, TbTc_1967; PEPCK, phosphoenolpyrvuate carboxykinase, TbTc_0348; gMDH, glycosomal malate dehydrogenase, TbTc_0642;

FH, fumarate hydratase, TbTc_0242; Frd, NADH-dependent fumarate reductase, TbTc_0141; PPDK, pyruvate phosphate dikinase, TbTc_1304; AAT, alanine

aminotransferase, TbTc_0675; PDH E1α, pyruvate dehydrogenase E1 alpha subunit, TbTc_4169; PDH E1β, pyruvate dehydrogenase E1 beta subunit, TbTc_5437.

https://doi.org/10.1371/journal.ppat.1009734.g003

PLOS PATHOGENS Divergent metabolism between Trypanosoma congolense and Trypanosoma brucei

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009734 July 26, 2021 10 / 45

https://doi.org/10.1371/journal.ppat.1009734.g003
https://doi.org/10.1371/journal.ppat.1009734


unavoidable difference in medium supplementation of goat serum for T. congolense, rather

than foetal bovine serum for T. brucei).
BSF T. congolense was grown for 48 hours in a custom medium (SCM-6; S5 Table), contain-

ing a total D-glucose concentration of 10 mM in a 1:1 ratio of D-glucose:13C-U-D-glucose

prior to LC-MS analysis. Labelling ratios of downstream metabolites were largely similar to

that of intracellular glucose, and carbon labelling patterns matched those that would be

expected in the BSF T. brucei glycolytic pathway (i.e. three 13C atoms in all metabolites down-

stream of glyceraldehyde 3-phosphate and glycerol-3-phosphate). Similar to T. brucei, a high

percentage of 3-carbon labelled fructose-1,6-bisphosphate (FBP) (34.8%) was observed in T.

congolense (Fig 3H), probably a result of the “reverse” aldolase reaction occurring in the glyco-

some [45]. Importantly, two-carbon labelling was observed in several acetylated compounds

(N-acetylornithine & N-acetyl-L-lysine; Fig 3H), confirming that acetyl groups used to gener-

ate these metabolites originate from D-glucose. Although acetyl-CoA, the product of pyruvate

oxidation, was not detected for technical reasons, the 2-carbon labelling patterns of acetylated

metabolites suggests that the acetyl moieties in these compounds originate from glucose,

potentially through acetyl-CoA and acetate, as previously evidenced in other trypanosomatids

[45,69]. Taken together, these data indicate that the flow of carbon atoms for glycolytic compo-

nents in T. congolense is very similar to that in T. brucei. However, the metabolic outputs differ

drastically from BSF T. brucei and appear to be more similar to PCF T. brucei.
Metabolite labelling was corrected for the 1:1 (50%) ratio of natural glucose to 13C-U-D-

glucose, which equated to a mean percentage labelling of 43.2% (the value is less than 50% due

to D-glucose in the serum). All glycolytic metabolites up to pyruvate showed>40% labelling

when corrected (for glucose 6-phosphate and fructose-1,6-bisphosphate, both 3-carbon and

6-carbon labels were taken into account), although glycerol and glycerol 3-phosphate exhibited

28.5% and 32.5% labelling, respectively, as these metabolites can also be obtained from catabo-

lism of lipid precursors. Moreover, 42.4% (49.1% corrected) labelling was detected in L-ala-

nine, suggesting that the alanine aminotransferase reaction that utilizes pyruvate to generate

2-oxoglutarate and L-alanine in both BSF and PCF T. brucei, also occurs in BSF T. congolense
[45,70]. For both malate and succinate, 3 carbons were derived from glucose and these metab-

olites showed 40.2% (46.6% corrected) and 32.3% (37.7% corrected) labelling, respectively.

These results suggest that glucose is not the only source of intracellular succinate and malate in

T. congolense. However, these values were higher than those reported in T. brucei (35% and

26% for malate and succinate, respectively [45]).

Whilst PCF T. brucei exhibit TCA cycle activity, this pathway is not used to catabolize glu-

cose [38,40]. No citric acid cycle intermediate isotopologues (e.g. citrate) were found when

BSF T. congolense were incubated with 13C-U-D-glucose, indicating that like in T. brucei, T.

congolense TCA metabolism is not linked to glycolysis. However, small amounts of 2-carbon

labelled succinate and malate were observed (Fig 3H), which can be explained by the reversal

of the glycosomal succinate shunt. Taken together, these data suggest that BSF T. congolense,

both from in vitro cultures and in vivo infection, metabolically resemble an intermediate

between BSF and PCF T. brucei, with moderate glycolytic capacity and significant levels of suc-

cinate shunt activity (glycosomal, rather than mitochondrial; S1 Table) as well as a highly

active mitochondrial acetate generating pathway.

Previous work has shown that reduction of glucose concentrations in BSF T. brucei culture

from 10 mM to 5 mM leads to decreased cellular motility, reduction in growth and cell body

rounding morphology within 8 hours [71]. Given that glucose was not substantially depleted

in T. congolense cultures after 56 h, we tested the effect of reduced glucose concentrations on

BSF T. congolense viability. Unlike T. brucei, T. congolense was able to maintain a growth rate

equal to controls at concentrations as low as 2 mM (Fig 4A) when continuously passaged with
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no observable change in morphology or motility. To test whether glucose-derived ATP was

essential to T. congolense, cells were incubated with D-glucose in addition to varying concen-

trations of 2-deoxy-D-glucose (2DG), which can be internalised, but not metabolised further

than 2-deoxy-D-glucose 6-phosphate. As a result, glycolysis and pentose phosphate pathway

metabolism are inhibited and glycosomal ATP levels are depleted as they cannot be regener-

ated in the latter stages of glycolysis, leading to a drastic change in glycosomal ATP/ADP ratio

[72] (Fig 4B). Incubation of T. congolense in medium supplemented with 2DG (in addition to

10 mM glucose) led to growth defects in a dose dependent manner, likely due to 2DG being

outcompeted by glucose at lower concentrations (Fig 4B). Although the growth defect was

minor in the presence of 1 mM 2DG, there was a more pronounced reduction with 5 mM

2DG. When equimolar concentrations of glucose and 2DG were used, growth was repressed

and cell death occurred within 48 hours (Fig 4B). T. congolense viability was also tested in

SCM-6 in the presence of N-acetyl-D-glucosamine (GlcNAc), a sugar that inhibits glucose

Fig 4. In vitro analysis of glycolytic metabolism. To further probe glycolytic metabolism in T. congolense, novel RNAi technology was employed to knock-down key

glycolytic and gluconeogenic steps. A) T. congolense remains viable in reduced glucose concentrations. A growth defect was only observed when glucose concentrations

were reduced to<2 mM. B) Supplementation with increased concentrations of 2-deoxy-D-glucose leads to T. congolense cell death (red dotted line indicates detection

limit by haemocytometer). C) Analysis of growth in the presence and absence of N-acetyl-D-glucosamine. Parasites were cultured in SCM-6 supplemented with 10 mM

or 2 mM glucose in the presence or absence of 60 mM GlcNAc and density monitored by haemocytometer every 24 hours. D) Knock-down of the entire glucose

transporter (TcoHT) array does not affect in vitro cell viability. RNAi was induced in three independent clones by the addition of 1 μg/mL tetracycline, and cell densities

of induced and uninduced cells were monitored daily. E) Normalised TcoHT mRNA abundance over time after RNAi induction. F) Changes in glucose uptake in RNAi-

induced cells were detected via an enzyme-linked luminescence assay coupled to 2-deoxy-D-glucose uptake over a period of 30 minutes. The assay was carried out

72-hours post-induction. Of the three RNAi lines, 2 showed a significant reduction in glucose uptake capability (Student’s T-test, �P< 0.05; ���P< 0.001).

https://doi.org/10.1371/journal.ppat.1009734.g004
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uptake [73] (Fig 4C). In the presence of 60 mM GlcNAc with 10 mM glucose, there was a mod-

erate, yet significant (p< 0.0001 at 96 h, t-test of cell densities) growth defect in T. congolense
(Fig 4C). Viability was further reduced when the same concentration of GlcNAc was used

alongside 2 mM glucose (p< 0.0001 at 96 h, t-test of cell densities), the lowest concentration

T. congolense could tolerate (Fig 4C). The rate of glucose consumption was measured by assay-

ing glucose concentrations in cell culture supplemented with 4 mM glucose. Doubling times

(6–7 hours and 11–12 hours for T. brucei and T. congolense, respectively) were taken into

account, and rate of glucose uptake was shown to be 47.17 ± 27.91 nmol-1 min-1 108 cells in T.

congolense, significantly lower than the rate (132.18 ± 16.31 nmol-1 min-1 108 cells) in T. brucei
(n = 4, p = 0.0039; t-test) which was comparable to previous studies [27,61].

To further probe the essentiality of glucose uptake in BSF T. congolense, RNAi was used to

knock down expression of the hexose transporter (TcoHT) array, specifically those matching

the THT1 and THT2 array in T. brucei (TcIL3000.A.H_000260500, TcIL3000.A.H_000260600,

TcIL3000.A.H_000794500, TcIL3000.A.H_000794600, TcIL3000.A.H_000794700), which has

been shown to significantly restrict growth of BSF T. brucei [74]. Whilst growth rate was unaf-

fected in BSF T. congolense (Fig 4D), induction of HT RNAi led to a reduction in transcript

abundance at all time points (mean transcript levels of 83%, 75%, 68% and 65% compared to

uninduced controls at 24, 48, 72 and 96 h post-induction, respectively; Fig 4E). Glucose uptake

was decreased (mean reduction of 37% in uptake compared to uninduced controls after 72 h;

Fig 4F), suggesting that either lower levels of glucose are sufficient for energy generation in T.

congolense, or the parasite can utilize other carbon sources for ATP production. These alterna-

tive sources could include medium or serum components such as amino acids [75].

PCF T. brucei express most components of the electron transport chain (ETC) to generate

ATP through oxidative phosphorylation. In contrast, BSF T. brucei express an F1Fo-ATPase

that functions in reverse, and alternative oxidase [76]. In addition, a recent study has suggested

that complex I is expressed and functional in BSF T. brucei [77]. Transcriptomics analysis of

the ETC was carried out, using a gene list generated by Zikova and colleagues [76], but no sig-

nificant patterns could be discerned, and thus we were not able to draw a conclusion with

regards to ETC activity in BSF T. congolense based on transcriptomics data alone (S1 Table

and S3 Fig).

Nucleotide metabolism

Metabolomic analysis of BSF T. congolense culture supernatants indicated a significant uptake

of exogenous ribose, a contributor to nucleotide metabolism via uptake, or via the pentose

phosphate pathway (PPP; Figs 2A and 5A). Whilst guanosine was not detected in the superna-

tant, significant accumulation of guanine (Fig 5B) was observed, suggesting either excretion of

this metabolite, or, hydrolysis of guanosine through parasite-secreted hydrolases/nucleosidases

(previously identified in BSF T. brucei secretomes [78,79]). This mechanism would enable

uptake of guanine and other nucleobases through nucleobase transporters, for which multiple

orthologues have been identified in the T. congolense genome [21] through homology with

known T. brucei nucleobase transporters TbNT8.1 and TbNBT1 [80,81]. In addition, there

was an accumulation of xanthine, a product of xanthosine hydrolysis, and depletion of inosine,

an important nucleoside composed of hypoxanthine and ribose (Fig 5C and 5D). The nucleo-

side cytidine and the nucleobase hypoxanthine were also detected, but appeared to remain

unchanged during the time course, although the latter was a medium supplement potentially

added in excess (S3 Table). It is noteworthy that only a single nucleoside transporter gene

(TbTc_1072; T. congolense gene IDs: TcIL3000.A.H_000665800 and the pseudogene

TcIL3000.A.H_000679300; S2 Table) can be identified in T. congolense, which is a syntenic
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Fig 5. Nucleotide metabolism in T. congolense. Supernatant analysis of T. congolense in vitro cultures showing changes in abundance of D-ribose (A), guanine (B),

xanthine (C) and inosine (D) over 56 hours. Grey bar indicates a negative medium control group E) Simplified overview of purine salvage and synthesis in

trypanosomatids adapted from [148]. Numbers indicate the following enzymes: 1, APRT; 2, AD; 3, HGPRT; 4, IMPD; 5, HGXPRT; 6, GMPR; 7, GMPS; 8, HGPRT.

Red cross indicates guanine deaminase, which is not encoded/annotated in the T. congolense genome (based on current assembly). F) Comparison of glucose-derived

purine carbon labelling in T. congolense and T. brucei [45]. Colours indicate the number of 13C atoms in each metabolite. D) Comparative RNAseq analysis of T.

congolense and T. brucei under both in vitro and ex vivo conditions. Gene IDs from top to bottom: PWY0-162 (pyrimidine biosynthesis): PYR1A-B, glutamine

hydrolysing carbomoyl phosphate synthase, TbTc_1631; DHODH, dihydroorotate dehydrogenase (fumarate), TbTc_0620; CTPS, cytidine triphosphate synthase,

TbTc_0920; PYR3, dihydroorotase, TbTc_3801; PYR2, aspartate carbamoyltransferase, TbTc_1630; CMF40a, nucleoside diphosphate kinase, TbTc_5784; OMPDC/

OPRT, orotidine-5-monophosphate decarboxylase/orotate phosphoribosyltransferase, TbTc_0735. PWY0-163 (pyrimidine salvage): CMF40a, nucleoside diphosphate
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homologue of TbNT10 [21], functionally characterized as a P1-type purine nucleoside trans-

porter [82], and is thus unlikely to transport cytidine [83].

Purine salvage is an essential process in trypanosomatids, as they lack the de novo synthesis

pathway for the purine ring [84], and previous analysis of cell pellets to investigate intracellular

nucleotide metabolism utilizing 13C-U-D-glucose in BSF T. brucei showed purine salvage

pathways incorporating 5-carbon labelled ribose derived from glucose [45] (Fig 5F). Whilst

the ribose incorporated into these nucleosides originates almost exclusively from glucose in T.

brucei (Fig 5F), T. congolense appears to use far less glucose-derived ribose to make purine

nucleosides such as adenosine, guanosine and inosine (Fig 5F).

Transcriptomics analyses indicated upregulation of genes associated with generation of

adenosine nucleotides (Fig 5G; red vertical bar), especially in ex vivo T. congolense, as well as

hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and uracil phosphoribosyltrans-

ferase (UPRT). Upregulation of nucleoside hydrolases and phosphoribosyltransferases sup-

ports a previous suggestion based on genome content that T. congolense has a capacity for

nucleobase uptake [21].

The purines guanosine and inosine, which incorporate glucose-derived ribose in T. brucei,
were almost entirely unlabelled in T. congolense (Fig 5F). However, the phosphorylated nucleo-

sides GMP, GDP and GTP all incorporate glucose-derived carbon atoms, presumably through

ribose. Given the labelling patterns seen in adenosine, one possible explanation could be con-

version of AMP to inosine monophosphate (IMP; adenosine monophosphate deaminase;

TbTc_0145), IMP to xanthosine monophosphate (IMP dehydrogenase; TbTc_1648) and XMP

to GMP (GMP synthase; TbTc_1452). However, only one of these enzymes, GMP synthase,

was expressed at higher abundance in T. congolense (log2 fold change: 1.61 and 2.06 for ex vivo
and in vitro, respectively; false discovery rate-adjusted p< 0.001). Overall, incorporation of

glucose-derived carbons into purine nucleosides is reduced in T. congolense compared to T.

brucei. It should be noted that in both experiments, there was no ribose supplementation in

the media

Of the pyrimidines, uracil and its derivatives were detected during the glucose labelling

experiment (S4 Fig). Uracil is known to be the main pyrimidine salvaged by other kinetoplas-

tids including T. brucei [85–87]. Whilst the majority of the uridine, UMP, UDP and UTP

pools incorporate glucose-derived ribose (five 13C labels), 5-carbon isotopologues of these

pyrimidines were reduced in abundance in T. congolense compared to T. brucei. Conversely,

2-carbon labelled isotopologues appeared to comprise the majority of uridine, uracil and their

nucleotides (S4 Fig).

Whilst uracil biosynthesis is not essential in T. brucei [88], the uracil pool in T. congolense
appears to derive almost entirely from glucose, when corrected for 50% glucose labelling

(45.9% in T. congolense vs 24% in T. brucei [45]; S4 Fig), suggesting that this species predomi-

nantly synthesizes uracil from orotate to UMP (orotate phosphoribosyltransferase/orotidine

5-phosphate decarboxylase; TbTc_0735) and from UMP to uracil (uracil phosphoribosyltrans-

ferase; TbTc_4220), as can occur in T. brucei [45]. Both these genes are expressed at higher

abundance in T. congolense, both in vitro and ex vivo, compared to T. brucei (Fig 5G and S1

Table), which could explain the increased isotopologue labelling.

kinase, TbTc_5784; NDPK3, nucleoside diphosphate kinase 3, TbTc_2560; NDPK, nucleoside diphosphate kinase, TbTc_0593; CDA, cytidine deaminase, TbTc_3318;

UPRT, uracil phosphoribosyltransferase, TbTc_4220; UP, uridine phosphorylase, TbTc_5794. P121-PWY (adenine/adenosine salvage): ADSL, adenylosuccinate lyase,

TbTc_1986; APRT-2, glycosomal adenine phosphoribosyltransferase, TbTc_5918; GMPR, GMP reductase, TbTc_4627; IMPDH1, inosine-5’-monophosphate

dehydrogenase, TbTc_1648; HGXPRT, hypoxanthine-guanine-xanthine phosphoribosyltransferase, TbTc_3696; APRT-1, cytosolic adenine phosphoribosyltransferase,

TbTc_3522; HGPRT, hypoxanthine-guanine phosphoribosyltransferase, TbTc_0726; ADSS, adenylosuccinate synthetase, TbTc_1142.

https://doi.org/10.1371/journal.ppat.1009734.g005
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These data indicate that, at least under the growth conditions used here, BSF T. congolense
favours purine nucleoside/nucleotide synthesis from nucleobases with a reduced dependence

on glucose-derived ribose 5-phosphate, in addition to de novo synthesis of orotate, uracil and

uridine nucleosides. However, the difference in serum requirements for the two organisms is a

confounding factor to the interpretation of this difference.

Amino acid metabolism

It is well established that trypanosomatid parasites scavenge amino acids, key nutrients for sur-

vival, from their hosts [89,90]. Therefore, comparative analyses of T. congolense and T. brucei
amino acid metabolism were undertaken. Whilst the majority of amino acids were detected

during the supernatant time course, relative abundances in the medium did not vary greatly

after 56 hours of in vitro culture (Fig 6A–6C and S3 Table). The greatest reductions were

observed in threonine (log2 FC after 56 hours: -0.89; Fig 6A), tryptophan (log2 FC: -0.74; Fig

6B), glutamine (log2 FC: -0.39), asparagine (log2 FC: -0.35) and phenylalanine (log2 FC: -0.35).

Interestingly, cysteine, an essential factor for the in vitro culture of T. brucei [63,91], was not

significantly consumed by 56 hours (log2 FC: -0.07; Fig 6C). However, at least low-level exoge-

nous cysteine is still required to sustain parasite growth in vitro, as viability was significantly

affected in the absence of cysteine (for both 1.5 mM and 1 mM vs 0 mM cysteine, p< 0.0001,

t-test of cells densities at 96 h; S5 Fig). Experiments were carried out to test the essentiality of

all other individual amino acids (with the exception of glutamine, known to be an important

amino donor in trypanosomatid metabolism [60,89]). Using the minimal medium SCM-6, cell

viability was monitored for 72 hours in the absence of specific amino acids. Removal of the fol-

lowing amino acids from culture medium led to defects in growth over 72 hours: asparagine,

histidine, isoleucine, leucine, methionine, proline, serine, tyrosine and valine (Fig 6D–6G).

Whilst aspartate appeared to be depleted in spent culture supernatants (S3 Table), this also

occurred in the medium only control. Furthermore, removal of aspartate did not lead to

reduced cell viability or growth rate in culture (Fig 6F). Long term culture was impossible

without the addition of phenylalanine and threonine, leading to a final culture formulation,

SCM-7 (S5 Table), containing a total of 14 amino acids. Therefore, BSF T. congolense appears

to require a higher number of amino acids than BSF T. brucei, at least in vitro, with CMM con-

taining only 8 amino acids in total, including cysteine and glutamine [60]. To further probe

amino acid metabolism, pathway analysis was carried out on the transcriptome (S6 Fig) and

metabolome (Figs 6 and S7 and S8).

BSF T. brucei utilizes exogenous L-glutamine as the primary source of intracellular gluta-

mate and 2-oxoglutarate, and produces significant levels of glutamine-derived succinate

[45,89] (Fig 6I). Given the high levels of succinate excreted by T. congolense, stable isotope

labelling was used to determine the contribution of L-glutamine to this pool. T. congolense was

incubated for 48 hours with 1 mM 13C-U-L-glutamine and cell pellets were analysed by

LC-MS. Results indicated the presence of biochemical activities consistent with those previ-

ously observed in T. brucei [89] (Fig 6). Significant glutamine-derived carbon labelling was

detected after 48 h incubation for succinate (41.3%, 48.5% corrected), glutamate (76.1%, 89.2%

corrected), 2-oxoglutarate (80.5%, 94.3% corrected) and succinate semialdehyde (94.7% cor-

rected, Fig 6I). As would be anticipated, labelling of glutathione (86.1%) and trypanothione

(98.4%) from glutamine through glutamate were also observed (S7 Fig). No labelling of malate

or aspartate was seen in this study, despite the use of high concentrations of 13C-U-L-gluta-

mine compared to the equivalent study performed in T. brucei with a 50:50 ratio of 13C-U-L-

glutamine [89]. Transcriptomics analysis showed high expression levels of glutamine synthe-

tase in T. congolense, compared to T. brucei, under ex vivo conditions only, suggesting ATP-
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Fig 6. Amino acid metabolism in T. congolense IL3000. A-C) Analysis of indicated amino acids in T. congolense IL3000 culture supernatants over a

56 h time course. Grey bars indicate a negative medium control group. D-F) Growth curves in SCM-6 excluding one amino acid at a time, to
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dependent generation of glutamine may occur in the parasite under these conditions (S1

Table).

The apparent essentiality of several amino acids was also investigated using stable isotope

labelling. Proline is an essential carbon source for PCF T. brucei and is required for protein

synthesis in BSF T. brucei, although it is not a required supplement in BSF medium [92]. In

contrast, removal of proline from BSF T. congolense medium led to reduced growth (Fig 6F).

RNAi-mediated knock-down of proline metabolism (specifically pyrroline-5-carboxylate

dehydrogenase, TbP5CDH) in PCF T. brucei has highlighted the requirement of proline

metabolism for mitochondrial function [92]. Indeed, both P5CDH (TbTc_1695) and proline

dehydrogenase (TbTc_1591) were expressed at higher levels in ex vivo T. congolense, compared

to T. brucei (S1 Table and S6 Fig). However, 13C-U-L-proline labelling showed that this amino

acid did not contribute meaningfully to the biosynthesis of other metabolites (S8 Fig). There-

fore, similar to BSF T. brucei, a requirement for proline in BSF T. congolense may be for the

purposes of polypeptide synthesis only.

As in T. brucei [45], glucose-derived carbon usage was detected in several amino acids in T.

congolense (S6A Fig). Aspartate (a precursor for pyrimidine nucleotide biosynthesis) and ala-

nine (a by-product of a pyruvate-utilising aminotransferase reaction) (S6A Fig) exhibited

3-carbon isotopologues derived from 13C-U-D-glucose in both species. However, in T. brucei,
a small proportion of L-asparagine labelling was observed (1.2% 3-carbon labelling) [45],

whilst none was observed in T. congolense (S6A Fig). The metabolism of asparagine has not

been studied in African trypanosomes; given the reduction of cell growth in the absence of this

amino acid (Fig 6F), labelling with 13C-U-L-asparagine was performed, but no other labelled

metabolites were detected (S8 Fig). This indicates that, as with proline, asparagine uptake is

required principally for protein synthesis in T. congolense. The reduced expression of aspara-

gine synthetase (TbTc_4894; TcIL3000.A.H_000497800), which converts aspartate to aspara-

gine (S6 Fig), suggests that BSF T. congolense may rely upon scavenging of exogenous

asparagine.

Serine was also shown to be essential to T. congolense (Fig 6F), in contrast to minimal cul-

turing requirements for T. brucei [60]. 13C-U-L-serine labelling indicated that T. congolense L-

serine metabolism mirrors that of T. brucei in several aspects, such as de novo sphingolipid bio-

synthesis, with 70.0% 2-carbon labelling of sphinganine and downstream labelling of ceramide

and sphingomyelin species (S8 Fig). Similarly, phosphatidylserine decarboxylase activity was

evidenced at both transcript and metabolite levels, with 40.1% 2-carbon labelling of glycerol-

phospho-ethanolamine (S1 Table and S8 Fig). However, L-serine also has a minor role in S-

adenosyl-L-homocysteine detoxification in T. congolense, where serine-derived carbon ulti-

mately contributes to cysteine biosynthesis (S8 Fig). Serine-derived carbon labelling can be

detected in cystathionine (18.1%) and cysteine (16.7%), through to glutathione (4.1%) and try-

panothione disulfide (3-carbon labelled, 6.8%; 6-carbon labelled, 0.02%; S7 Fig). Therefore, the

inability to exclude L-serine from T. congolense in vitro culture media may primarily be attrib-

utable to lipid metabolism and an increased demand for serine-derived cysteine, potentially

over exogenously obtained cysteine, depending on bioavailability. Indeed, metabolomics

determine those essential to T. congolense viability. In each experiment, full SCM-6 was used as a positive control. Legends indicate which amino acid

was removed in each experiment. G) Growth analysis of SCM-6 and SCM-7, the latter containing only amino acids deemed essential, compared to

HMI-93 [124]. H) Simplified map of intracellular glutamine metabolism. Numbers refer to the following enzymes: 1, glutaminase; 2, glutamate

decarboxylase; 3, 4-aminobutyrate aminotransferase; 4, succinate semialdehyde dehydrogenase; 5, glutamate dehydrogenase; 6, 2-oxoglutarate

dehydrogenase; 7, Succinyl-CoA synthetase; 8, isocitrate dehydrogenase; 9 & 10, aconitase. I) Carbon utilisation from L-glutamine was analysed in T.

congolense (100% 13C-U-L-glutamine) and compared to that in T. brucei (50:50 ratio of L-glutamine and 13C-U-L-glutamine) [89].

https://doi.org/10.1371/journal.ppat.1009734.g006
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analysis of culture medium indicates that the ability of T. congolense to take up cysteine from

its environment may be lower than in T. brucei (Fig 6C).

Although L-cysteine is primarily a source of sulphur for trypanosomatids [89,91,93], we

also investigated the carbon contribution of this amino acid in T. congolense, and in particular,

whether L-cysteine-derived carbon atoms contribute to the biosynthesis of glutathione and

trypanothione. 13C-U-L-cysteine stable isotope labelling experiments were performed (S7 and

S8 Figs). Direct replacement of the 1.5 mM L-cysteine present in SCM-6 with 13C-U-L-cyste-

ine led to high levels of labelling in glutathione and trypanothione disulfide (S7B Fig). This

indicates that T. congolense can readily take up and metabolise exogenous cysteine, even

though abundance of the amino acid is not reduced significantly over 56 hours of parasite in
vitro culture. Although no clear pattern could be observed in transcriptomic analysis of the try-

panothione biosynthesis pathway, both trypanothione synthase (TRYS; TbTc_1359) and try-

panothione reductase (TRYR; TbTc_4239) were expressed at high levels in in vitro T.

congolense cells relative to ex vivo cells, indicating that under in vitro conditions, cells may be

subjected to higher levels of oxidative stress (S7C Fig).

There were several further notable observations in the transcriptomics data regarding

deamination and decarboxylation of amino acids. For example, cytosolic aspartate amino-

transferase (cASAT; TbTc_0799) was expressed at similar levels in both species, indicating that

the transamination of tryptophan, tyrosine and phenylalanine to generate aromatic ketoacids

[94,95] likely occurs in T. congolense. The mitochondrial isoform (mASAT; TbTc_0877) was

expressed at higher levels in cultured T. congolense (log2 FC: 1.73, p< 0.001), indicative of

increased mitochondrial amino acid metabolism.

Fatty acid metabolism in T. congolense
Lipids have a variety of crucial roles in trypanosomes, in particular as a major constituent of

membranes. BSF T. brucei require large quantities of myristic acid in particular, for the synthe-

sis of glycosylphosphatidylinositol (GPI) that anchors the parasite’s major surface glycopro-

teins [96]. To do this, BSF T. brucei both synthesises and scavenges myristic acid. Glucose

labelling experiments in T. brucei have shown that myristic acid is partially synthesized from

glucose-derived carbon through acetyl-CoA, using a system of fatty acid elongases [97] (Fig

7A). One previous study suggested that GPI anchors in T. congolense also incorporate myristic

acid [98]. However, no saturated fatty acid carbon labelling was detected after incubation of T.

congolense with 13C-U-D-glucose (Fig 7A), unlike T. brucei [45]. Carbon dissemination was

also investigated from threonine, which is used as a source of acetate, and thus, lipids [99] (Fig

7B). Similarly, no saturated lipid carbon labelling was observed, suggesting that T. congolense
either uses alternative sources of carbon for lipid biosynthesis, or does not rely on acetate as a

source of lipids in the same way as T. brucei [33].

Several genes associated with acetate/acetyl-CoA metabolism were highly expressed in T.

congolense compared to T. brucei (Fig 7C). For example, ASCT (TbTc_0236), which catalyses

ATP-coupled acetate production, was higher under both conditions in T. congolense (log2 fold

changes: 2.04 and 0.46 for in vitro and ex vivo, respectively, p< 0.001; S1 Table). Conversely,

acetyl-CoA hydrolase (also known as acetyl-CoA thioesterase, ACH; TbTc_5515), an enzyme

involved in ATP synthesis-uncoupled acetate production in T. brucei [100] was expressed at

lower levels in ex vivo T. congolense compared to T. brucei (Fig 7C). Consistent with metabolic

data, expression of acetyl-CoA synthetase (AceCS; TbTc_0318), a key enzyme in lipid biosyn-

thesis from acetate, was reduced in both ex vivo and in vitro T. congolense (Fig 7C). Other

enzymes involved in fatty acid biosynthesis, namely acetyl-CoA carboxylase (ACC;

TbTc_0754), β-ketoacyl-CoA synthase (BKS; TbTc_3372) and β-ketoacyl-CoA reductase
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Fig 7. Fatty acid metabolism in T. congolense. A) Glucose-derived 13C carbon labelling of saturated fatty acids in T. congolense and T. brucei [45]. Colours correspond

to the number of 13C labels detected in each metabolite. B) L-threonine-derived saturated fatty acid 13C labelling in T. congolense. Fatty acid systematic names and

numbers: lauric acid: dodecanoic acid, C12:0; myristic acid: tetradecanoic acid, C14:0; palmitic acid: hexadecanoic acid, C16:0; nonadecyclic acid: nonadecanoic acid,

C19:0. C) Transcriptomics analysis of acetate and lipid metabolism. Gene names and IDs: Acetate metabolism (PWY1V8-8): AKCT, 2-amino-3-ketobutyrate-CoA

ligase, TbTc_6236; TDH, L-threonine 3-dehydrogenase, TbTc_5991; AceCS, acetyl-CoA synthetase, TbTc_0318; PYK1, pyruvate kinase, TbTc_0372; PDHe3, pyruvate

dehydrogenase E3, TbTc_4765; PDHe1β, pyruvate dehydrogenase E1 β subunit, TbTc_5437; PPDK, pyruvate phosphate dikinase, TbTc_1304; SCSα, succinyl-CoA

synthetase α subunit, TbTc_0813; PDHe1α, pyruvate dehydrogenase E1 α subunit, TbTc_4169; ACH, acetyl-CoA hydrolase/thioesterase, TbTc_5515; PDHe2,

dihydrolipoamide acetyltransferase, TbTc_1015. Fatty acid biosynthesis (PWY0-881): ACC, acetyl-CoA carboxylase, TbTc_0754; BKS, β-ketoacyl synthase, TbTc_3372;

BKR, β-ketoacyl-ACP reductase, TbTc_1241. Sterol metabolism (PWY1V8-3): SPPS, solanesyl-diphosphate synthase, TbTc_3025; SQase, squalene synthase,

TbTc_2577; CYP51A1, lanosterol 14α demethylase, TbTc_4837; SMT, sterol 24-c methyltransferase, TbTc_0387; LSS, lanosteral synthase, TbTc_4540; MVK,

mevalonate kinase, TbTc_3761; FPPS, farnesyl pyrophosphate synthase, TbTc_5375; HMGCL, hydroxymethylglutaryl-CoA lyase, TbTc_6160; SM, squalene

monooxygenase, TbTc_3357; MDD, mevalonate diphosphate decarboxylase, TbTc_0546; IDI, isopentenyl-diphosphate delta-isomerase, TbTc_1099; PTase,

prenyltransferase, TbTc_1352; GGTase-IIβ, geranylgeranyl transferase type II β subunit, TbTc_0680; SCP2, 3-ketoacyl-CoA thiolase, TbTc_4024; PMVK,

phosphomevalonate kinase, TbTc_3039; HMGR, 3-hydroxy-3-methylglutaryl-CoA reductase, TbTc_3189. Fatty acid oxidation (FAO-PWY): ECH, enoyl-CoA

hydratase, TbTc_3283; ACS3/ACS4, fatty acyl-CoA synthetase 3 & 4, TbTc_0101; ACS2, fatty acyl-CoA synthetase 2, TbTc_0102; LACS5, fatty acyl-CoA synthetase,

TbTc_0099; ACSL_0688, long-chain-fatty-acid-CoA ligase, TbTc_0688; ACSL_2381, long-chain-fatty-acid-CoA ligase, TbTc_2381; ACS1, fatty acyl-CoA synthetase 1,

TbTc_0100; TFEα1, enoyl-CoA hydratase/enoyl-CoA isomerase, TbTc_3362; ECI_4184, 3,2-trans-enoyl-CoA isomerase, TbTc_4184; SCP2, 3-ketoacyl-CoA thiolase,

TbTc_4024; ECI_0360, 3,2-trans-enoyl-CoA isomerase, TbTc_0360; ACAD, acyl-CoA dehydrogenase, TbTc_4954.

https://doi.org/10.1371/journal.ppat.1009734.g007
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(BKR; TbTc_1241), were all expressed at lower abundance in T. congolense than T. brucei, in

particular in ex vivo cells (Fig 7C). Of the four elongases, ELO1 (TbTc_0159) and ELO2

(TbTc_1882) were expressed at similar levels in both BSF T. congolense and T. brucei (S1

Table). Whilst expression of ELO3 (TbTc_0235) appeared to be reduced in T. congolense (log2

FC: -1.53 and -1.93 compared to T. brucei for in vitro and ex vivo, respectively, p< 0.001; S1

Table), T. congolense cells expressed higher levels of ELO4 (TbTc_0737) in both in vitro and ex
vivo conditions, compared to T. brucei (log2 FC: 1.43 and 1.44 for in vitro and ex vivo compari-

sons, respectively, p< 0.001).

Lipoic acid, a fatty acid de novo synthesised by kinetoplastids [97,101], was not detected

using the LC-MS platform. However, gene expression data indicated that transcript abundance

of genes involved in lipoic acid synthesis (lipoic acid synthase, TbTc_4472; dihydrolipodamide

dehydrogenase, TbTc_0275 and TbTc_0276) was similar across both species (p = 0.115), sug-

gesting T. congolense also synthesise lipoic acid de novo.

The variation in observed gene expression associated with the sterol pathway appeared to

correlate with sample condition rather than species (Fig 7C). However, T. congolense tran-

scripts for genes involved in lanosterol synthesis were reduced, especially under in vitro condi-

tions (squalene synthase, SQase, TbTc_2577; squalene monooxygenase, SM, TbTc_3357;

lanosterol synthase, LSS, TbTc_4540; Fig 7C).

Transcripts associated with fatty acid oxidation were less abundant in T. congolense com-

pared to T. brucei under both conditions (Fig 7C). Energy generation from fatty acids has not

been reported for T. brucei. In T. congolense, high abundance of transcripts in key genes such

as enoyl-CoA hydratase (ECH; TbTc_3283), particularly in ex vivo samples, was observed. It

would therefore be important to establish whether this species has a capacity for fatty acid

oxidation.

Exploiting differences in metabolism for potential pharmacological

intervention

Differences in metabolism between T. congolense and T. brucei have implications for differen-

tial drug efficacy between the two species. To validate our findings in key areas of metabolism,

pharmacological inhibition was attempted for specific targets in trypanosome metabolism, in

order to compare inhibitory concentrations (EC50).

To assess whether areas of mitochondrial metabolism were more necessary in BSF T. congo-
lense than in BSF T. brucei, both species were treated with FCCP, an uncoupling agent that

depolarises the mitochondrial membrane. However, there was no difference in sensitivity

between the species (EC50: 13.0 ± 5.0 μM and 12.6 ± 5.3 μM for T. brucei and T congolense,

respectively; Table 1). Given both metabolic and transcriptomic data indicated no increased

electron transport chain activity, we also treated with the complex III inhibitor antimycin A,

again with no significant differences observed between the species (Table 1). In addition, there

was no change in sensitivity to azide, an inhibitor of ATP hydrolysis by the F1-ATPase

(Table 1). However, T. congolense appeared to be less sensitive to rotenone, a complex I

NADH dehydrogenase inhibitor (Table 1). Previous data inferred complex I activity in BSF T.

congolense based on nitroblue tetrazolium staining [51]. Rotenone resistance could indicate

NADH dehydrogenase activity of a rotenone-insensitive NADH dehydrogenase, such as the

inner membrane space-facing NDH2 [77].

T. congolense also showed enhanced sensitivity to salicylhydroxamic acid (SHAM), an

inhibitor of the trypanosome alternative oxidase (TAO; Table 1) [102]. Sensitivity of both spe-

cies to SHAM was also tested in the presence of 10 mM glycerol (Table 1). Addition of glycerol

as a carbon source has previously been shown to increase T. brucei sensitivity to SHAM [103].
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Both species exhibited increased sensitivity to SHAM in the presence of glycerol (EC50 of

2.28 ± 3.0 μM and 5.00 ± 0.1 μM for T. congolense and T. brucei, respectively). This represented

a 12.1- and 13.3-fold increase in sensitivity for T. congolense and T. brucei, respectively. Taken

together, these data indicate that, like T. brucei, T. congolense does not rely on oxidative phos-

phorylation for ATP production, as indicated by transcriptomics analysis, and that, as previ-

ously reported, TAO is the terminal oxidase [51,54].

Metabolomics and transcriptomics data indicated that T. congolense direct pyruvate

towards mitochondrial metabolism, with high transcript levels in PDH and enzymes involved

in acetate generation, compared to T. brucei (Figs 3 and 7). We therefore hypothesised T. con-
golense to be more sensitive to inhibition of mitochondrial pyruvate uptake and to investigate

this further, we tested drug sensitivities for UK5099, an inhibitor of mitochondrial pyruvate

transport [104]. As expected, T. congolense (EC50: 82.1 μM) was significantly more sensitive

(p = 0.0091, unpaired t-test) to UK5099 compared to T. brucei (130.0 μM; Table 1).

Whilst acetate generation appears to be important in T. congolense, our data suggest that

the acetate does not appear to be utilised for the biosynthesis of fatty acids, in contrast to what

has been shown for T. brucei. To probe this further, we compared drug sensitivity of the two

species with compounds targeting fatty acid synthesis (S9 Fig). Indeed, T. congolense was sig-

nificantly more resistant than T. brucei to an acetyl-CoA synthetase inhibitor (AceCS inhibitor;

1-(2,3-di(thiophen-2-yl)quinoxalin-6-yl)-3-(2-methoxyethyl)urea, [105]; S9 Fig and Table 1),

indicating that AceCS is not as essential to this species. AceCS is essential to both BSF and PCF

T. brucei [33,69], thus indicating a key metabolic difference between the species.

We next compared drug sensitivity to Orlistat, an inhibitor of fatty acid synthase and phos-

pholipase [35]. Here, a striking difference was found, with T. congolense exhibiting signifi-

cantly less sensitivity (780-fold increase in EC50) to the compound compared to T. brucei (S9

Fig and Table 1), providing further evidence that T. congolense primarily relies on fatty acid

scavenging, instead of synthesis, as predicted by the combination of metabolomics and

transcriptomics.

Discussion

The protozoan parasite T. congolense is a principal cause of AAT, but crucially, T. brucei
remains the dominant model for laboratory-led studies of African trypanosomes, even in the

face of mounting evidence that T. brucei and T. congolense differ profoundly in many facets of

their biology. This study aimed to generate a detailed comparison of metabolism in T.

Table 1. Comparative analysis of sensitivity to metabolic inhibitors in T. congolense and T. brucei. Abbreviations: FCCP, carbonyl cyanide-p-trifluoromethoxyphenyl-

hydrazone; SHAM, salicylhydroxamic acid; TAO, trypanosome alternative oxidase; AceCS, acetyl-CoA synthetase.

Compound Target T. congolense EC50 Mean ± SEM T. brucei EC50 Mean ± SEM Fold change (Tc/Tb) P value (t-test)

Antimycin Complex III 271.2 ± 143.5 μM 144.2 ± 18.1 μM 1.9 0.4295

FCCP Uncoupling agent 12.6 ± 5.3 μM 13.0 ± 5.0 μM 1.0 0.9592

Azide F1-ATPase 432.3 ± 127.9 μM 235.0 ± 6.0 μM 1.8 0.1982

Oligomycin Complex V (F0 ATPase) 33.9 ± 14.1 nM 197.6 ± 39.0 nM 0.2 0.0169

Rotenone Complex I 27.4 ± 1.4 μM 7.4 ± 0.9 μM 3.7 0.0003

SHAM TAO 30.22 ± 0.7 μM 60.23 ± 1.8 μM 2.0 0.0001

SHAM + 10 mM glycerol TAO 2.28 ± 3.0 μM 5.00 ± 0.1 μM 2.2 0.0008

UK5099 Pyruvate transport 82.1 ± 8.8 μM 130.0 ± 5.0 μM 0.6 0.0091

AceCS inhibitor Acetyl-CoA synthetase 57.7 ± 15.2 μM 7.1 ± 2.4 μM 8.1 0.0304

Orlistat Fatty acid synthase/lipases 15.6 ± 2.5 μM 0.02 ± 0.01 μM 780.0 0.0033

Diminazene Kinetoplast 50.0 ± 5.6 nM 32.0 ± 0.5 nM 1.6 0.0425

https://doi.org/10.1371/journal.ppat.1009734.t001
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congolense and T. brucei, through a combination of metabolomics, transcriptomics and gene

knockdown approaches. Based on these comparisons, areas of metabolism were further

probed with chemical inhibition, in order to validate findings.

Transcriptomic data were generated from T. congolense and T. brucei with parasite samples

isolated from both in vitro culture and in vivo murine infections (ex vivo). There were high lev-

els of correlation between ex vivo and in vitro T. congolense samples, indicating that the cul-

tured form of the parasite closely resembles the in vivo situation, at a transcriptomic level. In

contrast, there was lower inter-species correlation between T. brucei and T. congolense.

To complement the transcriptomic data, several metabolomic analyses were carried out to

gain an understanding of specific areas of metabolism. These data demonstrated that BSF T.

congolense, while possessing some metabolic similarities with BSF T. brucei, differs substan-

tially in several core components, including having a reduced reliance on glucose, excretion of

distinct glycolytic end products (acetate, malate and succinate in T. congolense compared to

pyruvate in T. brucei), and increased gene expression and metabolic signatures of specific

mitochondrial pathways, in particular pyruvate to acetate conversion. Additionally, we have

shown that T. congolense has increased reliance on exogenous substrates such as ribose for

nucleotide synthesis, as demonstrated by reduced glucose-derived carbon labelling in nucleo-

side species in addition to upregulation of hydrolases and phosphoribosyltransferases. Further-

more, while there is overlap in amino acid utilisation (e.g. glutamine), T. congolense relies on

more exogenous amino acids than T. brucei. Surprisingly, this included serine which, in the

case of T. congolense, appears to be important in the transsulfuration pathway that is geared

towards trypanothione biosynthesis. This may also explain the observed decreased reliance on

exogenous cysteine. Unlike T. brucei, T. congolense also requires asparagine and proline for

viable in vitro culture, although carbon usage from these amino acids is minimal. Finally, T.

congolense exhibits increased acetate/acetyl-CoA metabolism compared to T. brucei, despite a

reduction in fatty acid biosynthesis through the classical trypanosomatid pathways involving

acetyl-CoA synthase, acetyl-CoA carboxylase, β-ketoacyl-CoA synthase and β-ketoacyl-CoA

reductase, the expression of which are reduced in T. congolense (both in ex vivo and in vitro
conditions). This is further underlined by lack of glucose- and threonine-derived carbon label-

ling of saturated fatty acids, most notably myristic acid, a key GPI anchor component of vari-

ant surface glycoproteins of T. brucei and T. congolense [98]. However, fatty acid elongase 4,

previously shown to extend exogenously scavenged arachidonic acid (C22:4) to docosatetrae-

noic acid (C22:5) [106], was expressed at higher levels under in vitro conditions, compared to

T. brucei, which may indicate a reliance on long-chain polyunsaturated fatty acids. These find-

ings are summarised in Fig 8.

Analyses of culture supernatants showed that 10 mM glucose was not substantially depleted

after T. congolense cultures reached high cell density, as would be expected from an equiva-

lently dense T. brucei culture [60]. T. brucei requires at least 5 mM glucose in culture [71],

whereas BSF T. congolense were viable and maintained doubling times in levels as low as 2

mM. This reduced flux indicates that T. congolense is unlikely to be as susceptible to glycolytic

inhibition as T. brucei, where 50% inhibition is sufficient to kill the parasite [27]. Interestingly,

we observed a reproducible reduction in pyruvate levels in T. congolense supernatants over

time, before abundance of this metabolite returned to levels similar to those observed in nega-

tive controls. A recent study in PCF T. brucei demonstrated that these parasites can re-metabo-

lize glycolytic end products such as pyruvate and succinate [40]. Stable isotope labelling

patterns in catabolic products derived from glucose do not support cyclical TCA activity, nor

re-uptake of excreted metabolites in BSF T. congolense. However, it would be of interest to

determine whether this species can recycle the aforementioned metabolites.
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Fig 8. Summary of T. congolense and T. brucei in vitro transcriptome. Log2 fold change (T. congolense/T.brucei) was calculated for each gene. Dashed lines represent

transport processes. Genes: 1, hexose transporters, TbTc_0095; 2, hexokinase, TbTc_0341; 3, glucose-6-phosphate isomerase, TbTc_1840; 4, phosphofructokinase,

TbTc_1399; 5, fructose-1,6-bisphosphatase, TbTc_1967; 6, aldolase, TbTc_0358; 7, triosephosphate isomerase, TbTc_1075; 8, glycerol-3-phosphate dehydrogenase,

TbTc_2722; 9, glycerol kinase, TbTc_0392; 10, glyceraldehyde 3-phosphate dehydrogenase, TbTc_0377; 11, phosphoglycerate kinase, TbTc_0240; 12, phosphoglycerate

mutase, TbTc_5039; 13, enolase, TbTc_0465; 14, pyruvate kinase 1, TbTc_0372; 15, alanine aminotransferase, TbTc_0675; 16, pyruvate phosphate dikinase, TbTc_1304;

17, Phosphoenolpyruvate carboxykinase, TbTc_0348; 18, glycosomal malate dehydrogenase, TbTc_0642; 19, glycosomal fumarate hydratase, TbTc_0242; 20, glycosomal

NADH-dependent fumarate reductase, TbTc_0140; 21, glucose-6-phosphate dehydrogenase, TbTc_0931; 22, 6-phosphogluconolactonase, TbTc_4165; 23,

6-phosphogluconate dehydrogenase, TbTc_2025; 24, ribulose-5-phosphate epimerase, TbTc_4356; 25, ribose 5-phosphate isomerase, TbTc_3090; 26, transketolase,

TbTc_1701; 27, transaldolase, TbTc_1823; 28, ribokinase, TbTc_5212; 29, malic enzyme, TbTc_0296; 30, Mitochondrial pyruvate carrier 2, TbTc_2668; 31, FAD-

dependent glycerol-3-phosphate dehydrogenase, TbTc_2282; 32, NADH dehydrogenase (NDH2), TbTc_5033; 33, Alternative oxidase, TbTc_6589; 34, mitochondrial

fumarate hydratase, TbTc_0243; 35, mitochondrial NADH-dependent fumarate reductase, TbTc_0141; 36, mitochondrial malate dehydrogenase, TbTc_0256; 37, citrate

synthase, TbTc_0486; 38, aconitase, TbTc_5765; 39, isocitrate dehydrogenase, TbTc_0510; 40, 2-oxoglutarate dehydrogenase E1 component, TbTc_2864; 41,

2-oxoglutarate dehydrogenase E1 component, TbTc_3111; 42, 2-oxoglutarate dehydrogenase E2 component, TbTc_3057; 43, succinyl-CoA synthetase α, TbTc_0813; 44,

succinyl-CoA ligase β, TbTc_3392; 45, glutamine synthetase, TbTc_2226; 46, glutamate dehydrogenase, TbTc_0872; 47, pyruvate dehydrogenase E1 α subunit, TbTc_4169;

48, pyruvate dehydrogenase E1 β subunit, TbTc_5437; 49, dihydrolipoamide acetyltransferase, TbTc_1015; 50, pyruvate dehydrogenase complex E3, TbTc_4765; 51, L-

threonine 3-dehydrogenase, TbTc_5991; 52, 2-amino-3-ketobutyrate coenzyme A ligase, TbTc_6236; 53, Acetyl-CoA hydrolase (ACH), TbTc_5515; 54, Succinyl-

CoA:3-ketoacid coenzyme A transferase (ASCT), TbTc_0236; 55, Acyl carrier protein, TbTc_5262; 56, beta-ketoacyl-ACP synthase, TbTc_3372; 57, beta-ketoacyl-ACP
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T. congolense exhibits high levels of expression in genes involved in the glycosomal succi-

nate shunt, with the exception of fumarate reductase, the last step of succinate production, for

reasons we could not identify (Fig 8). In T. brucei these phenotypes are associated with PCF

rather than BSF. Furthermore, whilst the major PGK isoform in BSF T. brucei is expressed in

the glycosome, a previous study suggested that the major isoform of phosphoglycerate kinase

in BSF T. congolense lacks the glycosomal targeting signal present in T. brucei, and is thus

expressed in the cytosol, akin to PCF T. brucei [49]. This has significant implications for glyco-

somal ADP/ATP balance, as the expression of cytosolic PGK in BSF T. brucei is lethal [42].

Taken together, these data suggest that T. congolense appears to carry out glycolytic metabo-

lism in the same fashion as PCF, not BSF T. brucei, including in ex vivo cells.

Whilst both 2-deoxy-D-glucose and GlcNAc have a detrimental impact on T. congolense
viability, knock-down of the glucose transporter array did not affect growth, even though glu-

cose uptake appeared to be reduced by 37% after 72 h of RNAi induction. Consistent with

other studies RNAi penetrance does not appear as efficient as in T. brucei [107] and techniques

such as CRISPR/Cas9 and conditional knock-out would greatly enhance our capabilities to

study this parasite. Nevertheless, these experiments highlight a crucial difference between BSF

T. congolense and T. brucei in a pathway that has become a metabolic paradigm in the latter

species. Whilst T. brucei requires high levels of glucose to sustain a significant glycolytic flux,

T. congolense remains viable in significantly lower glucose concentrations, with a reduced flux,

again more similar to PCF T. brucei. However, glucose remains an essential carbon source in

this species, as growth is abolished in the absence of glucose. Of particular interest is whether

the parasite generates the majority of ATP from this reduced glucose intake, or if it can thrive

on other carbon sources such as amino acids or even fatty acids. If the latter, this adaptation

could be due to the reduced bioavailability of glucose in the ruminant host bloodstream. Blood

concentrations of glucose in humans are approximately 5.5 mM [108]. Glucose concentrations

in ruminants are typically lower (2–4 mM [109–111]), and primary sources of energy are typi-

cally volatile fatty acids in the form of acetic, propionic and butyric acid [112,113]. To date,

products of volatile fatty acid metabolism, such as 2-methylcitrate and 2-methyl-cis-aconitase

have not been reported in T. congolense. However, it is thought T. brucei can metabolise ketone

bodies such as β-hydroxybutyrate through the action of a β-hydroxybutyrate dehydrogenase

(Tb927.10.11930) to generate acetoacetate [114]. T. congolense possesses an orthologue of this

gene (TcIL3000.A.H_000824100), and therefore, the ability of T. congolense to utilise other

products available in adult ruminant blood merits further investigation.

RNAseq analyses of T. congolense indicate high levels of expression of mitochondrial path-

ways associated with glucose catabolism, specifically acetate and acetyl-CoA metabolism

involving PDH, ASCT and succinyl-CoA synthetase (SCS; Fig 8). Given that the large amounts

of acetate generated by the parasite appear not to be required for fatty acid synthesis, these

findings could suggest significant reliance on mitochondrial substrate level phosphorylation

for growth, similar to PCF T. brucei cultured in glucose-rich medium [115,116]. Interestingly,

T. congolense does not appear to encode a syntenic orthologue of MPC1 (S1 Fig), and attempts

reductase, TbTc_1241; 58, Trans-2-enoyl-ACP reductase 1, TbTc_5269; 59, acetyl-CoA synthetase, TbTc_0318; 60, acetyl-CoA carboxylase, TbTc_0754; 61, Fatty acid

elongase (ELO1), TbTc_0159; 62, Fatty acid elongase (ELO2), TbTc_1882; 63, Fatty acid elongase (ELO3), TbTc_0235; 64, elongation of very long chain fatty acids protein

(ELO4), TbTc_0737; 65, aspartate aminotransferase, TbTc_0799; 66, aspartate carbamoyltransferase, TbTc_1630; 67, dihydroorotase, TbTc_3801; 68, dihydroorotate

dehydrogenase, TbTc_0620; 69, orotidine-5-phosphate decarboxylase/orotate phosphoribosyltransferase, TbTc_0735; 70, uracil phosphoribosyltransferase, TbTc_4220;

71, Adenine phosphoribosyltransferase (APRT-2), TbTc_3522; 72, inosine-adenosine-guanosine-nucleoside hydrolase, TbTc_4998; 73, adenosine kinase, TbTc_1024; 74,

AMP deaminase, TbTc_5808; 75, hypoxanthine-guanine phosphoribosyltransferase (HGPRT), TbTc_0726; 76, inosine-guanine nucleoside hydrolase, TbTc_0808; 77,

inosine-5’-monophosphate dehydrogenase, TbTc_1648; 78, Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT), TbTc_3696; 79, GMP reductase,

TbTc_4627; 80, GMP synthase, TbTc_1452. Abbreviations: PUFA, polyunsaturated fatty acid.

https://doi.org/10.1371/journal.ppat.1009734.g008
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to identify the gene by orthoMCL or Orthofinder were unsuccessful. In T. brucei, the mito-

chondrial pyruvate carrier is composed of two paralogous proteins, MPC1 and MPC2, both of

which are essential [104]. The absence of an MPC1 orthologue in T. congolense, in spite of

these cells requiring mitochondrial pyruvate transport, inferred from acetate production from

glucose, indicates a key difference in the constitution of pyruvate carrier in this species. Struc-

tural differences to pyruvate carriers between the two species, or the enhanced mitochondrial

pyruvate catabolism in T. congolense may explain its enhanced sensitivity to UK5099, a mito-

chondrial pyruvate transport inhibitor. In addition, previous data suggest that in T. brucei,
there is likely another mitochondrial pyruvate carrier that is insensitive to UK5099 [104].

Our data are consistent with the absence of oxidative phosphorylation, based on transcrip-

tomics and lack of sensitivity to chemical inhibition, compared to T. brucei. One previous

study reported NADH dehydrogenase activity in BSF T. congolense, which was presumed to

originate from complex I, indicating potential ATP generation via complex V [51]. However,

T. congolense exhibit significantly reduced sensitivity to rotenone, compared to T. brucei, sug-

gesting that NADH dehydrogenase activity may originate from a rotenone-insensitive NADH

dehydrogenase such as NDH2, known to be important for acetate production in BSF T. brucei
[77,117,118]. This result must be treated with caution, as high concentrations of rotenone can

leads to off-target effects [119]. Sensitivity to the TAO inhibitor SHAM suggests that TAO is

the terminal oxidase, with no significant complex III or IV activity. These conclusions support

one previous study of BSF T. congolense [51], although further work must be carried out to

confirm the roles of complex I and V in this species.

Rather than oxidative phosphorylation, we propose it is more likely that considerable ATP

production occurs in the ASCT–SCS cycle, which would explain the high levels of acetate gen-

erated by T. congolense, in addition to increased sensitivity to inhibition of mitochondrial

uptake of pyruvate, the key metabolic precursor. Given that 2-oxoglutarate dehydrogenase

complex expression appears to be less than, or equal to, that in T. brucei (under in vitro cultur-

ing conditions; Fig 8), it is likely that SCS activity occurs in the acetate-generating pathway

rather than in the TCA cycle, which is not thought to be fully functional in BSF African try-

panosomes [38], although recent data have challenged this paradigm in PCF T. brucei [40].

The mechanisms proposed here bear some similarities to the scheme proposed by Dewar and

colleagues for stumpy-form T. brucei metabolism, which also exhibit increased mitochondrial

metabolism compared to BSF T. brucei [120].

In T. brucei, carbon atoms from glucose disseminate through multiple pathways in the cell

[45] and, using stable isotope-labelled glucose, our data demonstrate that this pattern is also

seen in T. congolense, in particular through the glycolytic pathway, suggesting some of the key

metabolic differences observed are quantitative, rather than qualitative. However, there were

key differences in glucose-derived carbon usage. In particular, a reduction in labelling was

observed in purine nucleotides in T. congolense. In both species, carbon labelling is likely due

to generation of ribose phosphate sugars via the PPP and these data suggest that T. congolense
does not obtain its ribose through the PPP (from glucose), to the same extent that T. brucei
does. Interestingly, T. congolense appears to express higher levels of APRT1 (cytosolic) com-

pared to APRT2 (glycosomal) to synthesise adenosine (Fig 5). This discrepancy could under-

pin the reduced fraction of glucose-derived purine labelling, with a reliance on ribose from

alternative sources (for example, exogenously).

Whilst the majority of pyrimidine labelling is 5-carbons in T. brucei, indicating labelled

ribose, there is decreased 5-carbon labelling and higher abundance of 2-carbon labelling in T.

congolense, likely through uridine generated from aspartate through orotate, again highlighting

a reduction in glucose-derived ribose, but conversely, an increase in glucose-derived UMP and

its derivatives. This study was not able to assess whether T. congolense has a capacity for
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cytosine uptake. It is established that T. brucei does not take up this pyrimidine [121], but

given the expanded nucleobase transporter repertoire in the T. congolense genome [21], it

would be of interest to carry out more in depth analysis of cytosine metabolism, as well as

nucleotide metabolism in general, given the interest in drug development.

There was also a reduced abundance of glucose- and threonine-derived fatty acid labelling

in T. congolense relative to T. brucei. One previous study noted that, like T. brucei, the major

constituent of T. congolense GPI anchors is glycosyl-sn-1,2-dimyristylphosphatidylinositol,

suggesting that this species will have a substantial requirement for myristic acid [98]. However,

lack of glucose- or threonine-derived fatty acid labelling, in addition to decreased transcript

abundance of AceCS, suggests that T. congolense may scavenge exogenous lipids in favour of

carrying out fatty acid biosynthesis. Supernatant metabolomics showed accumulation of both

choline and choline phosphate, with a corresponding decrease in putative LysoPCs, which

appears to indicate activity of the phospholipases that T. congolense is known to secrete

[62,122]. It is unknown whether T. congolense is able to generate cytosolic acetyl-CoA for fatty

acid biosynthesis through the action of citrate lyase, although transcript abundance of this

putative citrate lyase gene was reduced compared to T. brucei. Analysis of drug sensitivity sup-

ports the above conclusions, as T. congolense is significantly less sensitive to acetyl-CoA syn-

thetase inhibition, as well as Orlistat, an inhibitor of fatty acid synthase, suggesting that fatty

acid scavenging (e.g. lipid or fatty acid transporters) could be a viable therapeutic target for

this species. However, the efficacy of orlistat in vivo has not been reported to our knowledge.

BSF T. brucei growth in CMM required only cysteine and glutamine when supplemented

with FBS gold, although a further 6 amino acids (Tyr, Phe, Trp, Leu, Met and Arg) were

required when supplemented with standard FBS [60]. As part of this study, 14 amino acids

essential for T. congolense growth were identified. Tryptophan and arginine, essential to T.

brucei, were not required to sustain T. congolense growth in 10% goat serum. Conversely, sev-

eral amino acids considered not essential to T. brucei were crucial for T. congolense growth in
vitro (Asp, His, Ile, Pro, Ser and Val). Proline is a well-established carbon source for PCF T.

brucei [92]. However, based on stable isotope labelling experiments, this amino acid is solely

used for protein synthesis in BSF T. congolense, as there was no evidence of carbon dissemina-

tion from proline into the metabolome (likewise for asparagine). Unlike BSF T. congolense,

BSF T. brucei must be able to synthesise sufficient amounts of these amino acids from alterna-

tive sources, or obtain them from the serum supplement.

One metabolic area of interest in trypanosomatids is trypanothione biosynthesis, a crucial

pathway for parasite response to oxidative stress. Indeed, trypanothione synthase, as well as

proteins involved in the trypanothione biosynthesis pathway, such as ornithine decarboxylase

(targeted by Eflornithine), have long been considered prime chemotherapeutic targets due to

their absence from other organisms [123]. Whilst cysteine was previously known to be a main

carbon contributor to trypanothione synthesis in T. brucei along with glutamine and methio-

nine [89], we show here that serine, an amino acid essential to T. congolense, also contributes

to the generation of this metabolite in addition to the aforementioned amino acids. These data

indicate that T. congolense can both synthesise and transport cysteine. Interestingly, cysteine

was not significantly depleted from T. congolense culture supernatants and future work should

ascertain whether the presence of L-serine in medium can compensate for reduced cysteine

levels in T. congolense culture.

The data presented here have led to the generation of a novel semi-defined medium for cul-

turing the strain IL3000, which must be further optimized for the culture of multiple strains of

T. congolense. Of interest is the peculiar requirement of adult bovine or goat serum for in vitro
culture of T. congolense, rather than foetal bovine serum (FBS) which is typically used to cul-

ture T. brucei [18,63]. Whilst this study made no attempts to adapt T. congolense to FBS-
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supplemented medium (indeed, even in SCM-7, growth rate is drastically reduced in the pres-

ence of FBS after 2–3 passages), this is of crucial importance, as it would allow the study of

multiple species of African trypanosome under the same in vitro conditions. Analysis of

metabolism presented here indicates that this phenomenon is likely to centre on the lipid

requirements of T. congolense, although it remains to be seen if this requirement is for energy

generation or synthesis of lipids in general. Furthermore, adult ruminant serum composition

drastically differs from that of non-ruminants and of foetal ruminants [112,113], and this likely

has significant implications on the extracellular environment faced by livestock trypanosomes.

The information presented here is a significant step in laying the foundation for fundamen-

tal understanding of metabolism for an important livestock parasite. Understanding essential

areas of metabolism in both T. brucei and T. congolense enables the development of drugs

effectively targeting both species. Conversely, understanding the key differences between the

two species aids in dissecting drug mechanisms of action and resistance, as well as enabling a

greater understanding of host-pathogen dynamics.

Materials and methods

Ethics statement

All animal experiments were performed in accordance with the Animals (Scientific Proce-

dures) Act 1986 and the University of Glasgow care and maintenance guidelines. All animal

protocols and procedures were approved by The Home Office of the UK government and the

University of Glasgow Ethics Committee.

Compounds and reagents

All compounds were obtained from Sigma/Merck with the exception of: Orlistat (Cambridge

Bioscience), oligomycin A (VWR International), diminazene aceturate (Cambridge BioSci-

ence) and FCCP (Abcam).

Cell lines and in vitro culture

In all cases, T. congolense strain IL3000 [51] was used (originally received from Theo Baltz,

University of Bordeaux). For RNAi experiments a T. congolense IL3000 single marker line,

TcoSM, was used [107]. For in vitro experiments, cells were grown at 34˚C, 5% CO2 and rou-

tinely cultured in either TcBSF3 [17] or HMI-93 [18], in both cases without a serum plus sup-

plement, with 20% goat serum (Gibco). For global metabolite analysis of culture supernatant,

an experimental medium (SCM-3) was used with the following components: 77 mM NaCl, 1.5

mM CaCl2, 4.5 mM KCl, 0.8 mM MgSO4, 36 mM NaHCO3, 25 mM HEPES, 0.05 mM batho-

cuproinedisulfonic acid, 0.22 mM 2-mercaptoethanol, 50 U/mL penicillin/streptomycin, 2.5

mM glucose, 1 mM pyruvate, 10% goat serum, 10% TcBSF3 [17], 1 mM each of L-cysteine and

L-glutamine, and 100 μM L-tyrosine, L-phenylalanine, L-tryptophan, L-leucine, L-methionine

and L-arginine. BSF T. congolense in exponential growth phase were centrifuged at 1,500 × g
for 10 minutes, washed with PBS and inoculated into this medium (0 h time point).

For stable isotope labelling experiments, as well as experiments involving the removal or

addition of specific medium components, a custom medium, Steketee’s Congolense Medium-

6 (SCM-6) was used (S5 Table). The final medium formulation based on this study’s findings,

SCM-7, is provided in S5 Table. This medium is essentially HMI-93, although i) vitamins

(with the exception of folate) were removed, ii) D-glucose concentrations were modified

depending on experimental procedure, but was routinely kept at 10 mM, iii) goat serum levels

were reduced to 10% and, iv) of the 20 amino acids, 14 were added. Increasing the temperature
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to 37˚C led to a detrimental effect on cell viability after several passages, as previously reported

[18].

For experiments involving T. brucei, either the monomorphic Lister 427 (in vitro experi-

ments and growth curves) or pleomorphic STIB 247 (RNAseq experiments, both in vitro and

ex vivo sample groups) strains were used. Lister 427 cells were grown in HMI-11 [124], whilst

STIB 247 were grown in modified HMI-9 containing 1.1% methylcellulose and 20% serum

plus (Sigma) [125,126]. In both cases, cells were incubated at 37˚C, 5% CO2.

For both species, cell counts were carried out using a haemocytometer, and in the case of T.

congolense, cells were mechanically detached from the culturing plasticware by pipetting prior

to counting. Growth curves were routinely carried out in 2 mL samples incubated in 24-well

plates, resuspended using a P1000. For detachment of cells from flasks, 10 mL plastic pipettes

were used. In cases where cells were harvested for experiments other than those involving

metabolomics, cells could also be detached by replacing the medium with PBS for incubating

at room temperature for several minutes, prior to vigorously tapping the flask to detach

parasites.

RNAi experiments using TcoSM were carried out in HMI-93 in 20 mL cultures. Cells were

seeded at 7 × 105 cells/mL and RNAi induction was initiated with the addition of 1 μg/mL tet-

racycline (Sigma) and 1 × 107 cells were isolated every 24 hours for RNA analysis (outlined

below) before cells were passaged.

Animal experiments

Adult female CD-1 mice (20–30 g body weight; Charles River Laboratories) were infected with

5 × 104 wild-type T. brucei STIB 247 or 1 × 105 wild-type T. congolense IL3000 by intraperito-

neal injection. Parasitaemia was monitored daily by venesection of the lateral tail vein [127].

At first peak of parasitaemia (>107 cells/mL) mice were euthanised and blood isolated. Para-

sites of both species were purified from blood by anion exchange using DEAE cellulose [128].

Purified cells were counted, and a total of 1 × 108 cells were centrifuged for 10 minutes at 1,500

× g prior to RNA extraction.

RNA extraction

For in vitro parasite RNA isolation, samples (108 cells) of both T. congolense (IL3000) and T.

brucei (STIB 247) were taken from actively dividing cultures grown to densities of 1.8–2 × 106

cells/mL. For ex vivo parasite RNA isolation, samples (also 108 cells) were derived from mouse

infections as described above. RNA was extracted using the QIAgen RNeasy kit (Qiagen) with

an on-column DNase treatment step. Sample concentrations were analysed by Nanodrop and

QuBit, and concentrations adjusted to 37 ng/μL of which 80 μL (2.96 μg) was submitted for

RNAseq.

For RNAi time course experiments, cell pellets (107 cells) were resuspended in 1 mL TRIzol

(Invitrogen) and stored at -80˚C. Samples were thawed, 200 μL chloroform was added, samples

were shaken vigorously for 15 seconds and incubated at room temperature for 3 minutes,

prior to centrifugation at 12,000 × g for 15 minutes, 4˚C. The aqueous layer was transferred to

a fresh tube and 500 μL isopropanol and 1 μL Glycoblue (Invitrogen) were added. Samples

were mixed by inverting, incubated at room temperature for 10 minutes and centrifuged at

12,000 × g for 10 minutes at 4˚C. RNA pellet was washed in ice-cold 75% ethanol and centri-

fuged at 12,000 × g for 10 minutes at 4˚C. After air-drying, RNA was resuspended in 20 μL

RNase-free water and concentration adjusted to 100 ng/μL. DNase treatment was carried out

using the Ambion TURBO DNase kit (Applied Biosystems) as per manufacturer’s

instructions.
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Metabolomics sample preparation

For metabolomics analysis of supernatants, 10 mL T. congolense cultures were incubated in

T25 flasks in relevant media. Cells were centrifuged at 1,500 × g for 10 minutes, washed with

PBS, resuspended in relevant media and density adjusted to 1 × 105 cells/mL. At each time-

point, 500 μL medium was transferred to a 1.5 mL Eppendorf tube and briefly quenched in a

dry ice/ethanol bath, before centrifuging at 1,500 × g for 10 minutes at 4˚C. A 5 μL aliquot was

then transferred to a new Eppendorf containing 200 μL metabolite extraction solvent (chloro-

form:methanol:water in a 1:3:1 ratio) and samples vortexed at 4˚C for one hour. Samples were

centrifuged for 5 minutes at 13,000 × g (4˚C) and supernatants transferred to new Eppendorf

tubes. Samples were stored at -80˚C prior to analysis.

For analysis of intracellular metabolites, cells were grown to a final density of 2 × 106 cells/

mL and a total of 108 cells isolated. Cells were quenched in 50 mL falcon tubes to 4˚C using a

dry ice/ethanol bath (stirred and measured by thermometer) and all subsequent steps were car-

ried out at 4˚C. Cells were centrifuged at 1,500 × g for 10 minutes and if supernatant samples

were required in addition to cell pellets, 5 μL was transferred to an Eppendorf containing

200 μL extraction solvent. Cells were resuspended in residual medium before transfer to

Eppendorf tubes. Cells were then centrifuged (1,500 × g, 5 minutes) and washed twice with

ice-cold phosphate buffered saline (PBS) before resuspension in 200 μL extraction solvent

(chloroform:methanol:water in a 1:3:1 ratio). Samples were vortexed at 4˚C for 1 hour, and

then centrifuged for 5 minutes at 13,000 × g. Supernatants were transferred to clean Eppendorf

tubes. For all experiments, a quality control sample was generated by pooling 10 μL from each

sample and samples were stored under argon gas at -80˚C.

Primers and plasmids

RNAi experiments were carried out using a T. congolense single marker line, TcoSM [107] that

expresses Tet repressor and T7 polymerase, maintained in 0.5 μg/mL puromycin, and gene

specific RNAi constructs were introduced with a T. congolense specific plasmid, p3T7-TcoV

[107]. Primers carrying a HindIII (forward) or an FseI (reverse) restriction site were used to

amplify a fragment of TcoHT (fwd: AAGCTTAAACAGAGCAATGCCAGTCG; rev:

GGCCGGCCTTATTACGTTTGGCATTATG; restriction sites underlined). Gene fragments

were amplified using a HiFi polymerase master mix (NEB) and cloned into pGEM-T easy

(Promega) and sequenced to confirm correct sequence identity of each fragment. The con-

structs were then digested with HindIII and FseI and ligated into the p3T7-TcoV vector [107]

using T4 DNA ligase (Promega). The final plasmid was linearised with NotI before purification

by ethanol precipitation prior to electroporation into TcoSM cells.

Transfections/electroporations

T. congolense IL3000 electroporation experiments and selection experiments were performed

as developed by [107]. A total of 4 × 107 cells were used per transfection, including a negative

(buffer only) control. A transfection buffer previously published for use with T. brucei was

used for T. congolense transfections [129]. Cells were centrifuged at 1,500 × g for 10 minutes,

pellets resuspended in residual medium and transferred to Eppendorf tubes for a further cen-

trifugation step. Cells were subsequently washed in transfection buffer prior to final resuspen-

sion in 100 μL buffer per transfection. Up to 12 μg linearised plasmid DNA was added to an

electroporation cuvette (Sigma), and 100 μL cells were subsequently added. Electroporation

was carried out using a Nucleofector II (Lonza) programme Z-001. Transfected cells were then

incubated overnight in 25 mL warm medium in the absence of selective antibiotics, prior to

their addition and plating out at dilutions of 1:50, 1:100 and 1:200 in 96-well plates. Antibiotics
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were added at the following concentrations: Puromycin: 0.5 μg/mL; Neomycin (G418): 0.4 μg/

mL. Clones were retrieved after 7–10 days, and these were maintained in 0.25 μg/mL puromy-

cin and 0.2 μg/mL G418.

Drug sensitivity assays

Drug sensitivity assays were carried out using the alamar blue method developed by Raz and

colleagues [130]. Briefly, Compounds were diluted to 2× starting concentration in SCM-6

(with 10% goat serum for T. congolense IL3000 or 10% FBS for T. brucei Lister 427) and 200 μL

was transferred to the first well of a solid white flat-bottomed 96-well plate. 100 μL medium

was then added to 23 further wells and compounds were diluted 1:2 over this series of wells,

with the exception of the last well, for a negative control. Subsequently, 100 μL cells were

added at 2× starting density (4 × 104 cells/mL for T. brucei and 5 × 105 cells/mL for T. congo-
lense). Plates were incubated for 48 hours (37˚C or 34˚c for T. brucei and T. congolense, respec-

tively, 5% CO2 in both cases), prior to addition of 20 μL resazurin sodium salt (0.49 mM in 1×
PBS, pH 7.4) to each well. Plates were then incubated for a further 24 hours before measure-

ments of cell viability.

Reduction of the resazurin salt was measured as a function of cell viability. Fluorescence of

each plate was read using a Cytation 5 imaging reader (BioTek) and GEN5 software. Parame-

ters were as follows: λexcitation = 540 nm and λemission = 590 nm. Raw values were plotted against

concentrations (converted to log10 values) and normalised (0% defined as smallest mean in the

data; 100% defined as largest mean in the data) using Graphpad Prism version 8.4.0. EC50 val-

ues for each compound were calculated using a non-linear sigmoidal dose-response curve.

Each assay was performed in duplicate and each EC50 value represents a mean of three inde-

pendent experiments.

Real-time quantitative PCR (RT-qPCR)

RNA was extracted as described above, and reverse transcription was carried out in 20 μL

using 1 μg RNA, using a high capacity cDNA kit (Applied Biosystems). Primers for RT-qPCR

analysis were designed using Primer 3 [131], and primer efficiency was tested using serial dilu-

tions of T. congolense IL3000 genomic DNA by plotting Ct value against log10(DNA concentra-

tion). Real-time PCR was carried out using the SensiFAST SYBR Hi-ROX kit (Bioline,

BIO92005). Briefly, a 20 μL reaction was set up using 10 μL SYBR mix, RT template and 400

nM of each primer. Primers targeting all five HT genes were used (TcoHT_fwd: ATAGTG

ACGGAGCGGTTCAT; TcoHT_rev: GACGCAACGACACCAATGAT). Cycling conditions

were: 96˚C, 120 seconds, followed by 40 cycles of 95˚C for 5 seconds, 62˚C for 10 seconds and

72˚C for 20 seconds. Previously published endogenous control primers for TcoTERT were

used for within sample normalisation (TcoTert_fwd: TTTCGCCCTCGTTTTCCTCA;

TcoTert_rev: AGAAATCACGACCACACGCT) [132], and normalised transcript level was

calculated using the delta delta Ct method [133].

Glucose uptake assays

For analysis of wild-type T. congolense and T. brucei glucose uptake, cells were seeded in 10

mL cultures of SCM-6 at an initial density of 2 × 105 cells/mL (four cultures per species), with

10 mM glucose added separately at the start of the experiment. Upon the addition of glucose, 1

mL supernatant was immediately centrifuged (1,500 × g, 10 minutes) and supernatant stored

at -80˚C. This process was repeated at 12, 15, 18, 21 and 24 h, and cell density measured by

haemocytometer. A medium-only control (4 replicates) was also incubated alongside in vitro
cultures. Glucose concentration of each supernatant sample was analysed using the Glucose
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(GO) assay kit (GAGO-20; Sigma) in a 96-well format. Briefly, 40 μL supernatant sample

(diluted if necessary) was incubated with 80 μL assay reagent for 30 minutes at 37˚C, after

which 80 μL 12 N sulphuric acid was added and absorbance measured at 540 nm using a spec-

trophotometer. A standard curve was also run to calculate glucose concentration. Rate of glu-

cose consumption was calculated using a custom script [61]. Doubling times of T. congolense
IL3000 (11–12 hours) and T. brucei Lister 427 (6–7 hours) were taken into account when cal-

culating rate of glucose consumption.

For glucose consumption of the TcoHT RNAi line, the Glucose Uptake-Glo kit (Promega)

was used. RNAi was induced for 72 hours prior to carrying out the assay. Cells were centri-

fuged, washed in PBS and resuspended in assay buffer (77 mM NaCl, 1.5 mM CaCl2-2H2O, 4.5

mM KCl, 0.8 mM MgSO4-7H2O, 36 mM NaHCO3, 25 mM HEPES and 0.02 mM bathocuproi-

nedisulfonic acid), as it was determined T. congolense viability is reduced in PBS alone. Density

was adjusted to 108 cells/mL, and three 100 μL replicates of each sample were added to wells of

a black flat-bottomed 96-well plate. The uptake reaction was started by the addition of 50 μL 1

mM 2-deoxy-D-glucose. Plate was shaken for 15 minutes at 34˚C prior to addition of 25 μL

stop buffer, 25 μL neutralisation buffer and 100 μL pre-prepared 2DG6P detection reagent.

Plates were shaken in between addition of the buffers. Finally, the plate was read with 0.3–1

second integration on a luminometer (Cytation 5 Imaging reader, BioTek). Wild-type T. con-
golense, and T. congolense supplemented with glucose were used as controls, in addition to

cells without 2-deoxy-D-glucose and assays in the absence of cells.

Acetate concentration assay

Acetate was not detectable by mass spectrometry and therefore, a commercial colorimetric

acetate assay kit (MAK086, Merck) was used to analyse changes in supernatant acetate concen-

trations in trypanosome cultures over time. T. congolense IL3000 were seeded in 10 mL SCM-6

at a density of 1 × 105 cells/mL as outlined in the supernatant metabolomics experiment. At

each time-point, 500 μL supernatant was taken from each flask and transferred to an Eppen-

dorf tube. Samples were centrifuged at 1,500 × g, the supernatant was transferred to a fresh

Eppendorf tube, and samples were stored at -80˚C until samples from all time-points had been

collected. Acetate concentration assays were carried out according to the manufacturer’s

instructions. Briefly, for each sample, 5 μL was added to the wells of a 96-well plate in duplicate

and 45 μL assay buffer was added to each sample. Subsequently, 50 μL reaction mix was added

to each well, and the plate was mixed and incubated for 40 minutes at room temperature

before absorbance was read at 450 nm. Acetate concentrations were calculated using the stan-

dard curve comprised of six concentrations run alongside the experimental samples.

Metabolomics–liquid chromatography mass spectrometry

Hydrophilic interaction liquid chromatography (HILIC) was carried out by Glasgow Polyo-

mics (Glasgow, UK), using a Dionex UltiMate 3000 RSLC system (Thermo Fischer Scientific)

coupled to a ZIC-pHILIC column (150 mm × 4.6 mm, 5 μm column, Merch Sequant). The col-

umn was maintained at 30˚C and samples were eluted with a linear gradient (20 mM ammo-

nium carbonate in water and acetonitrile) over 26 minutes with a flow rate of 0.3 mL/minute.

Sample injection volume was 10 μL and samples were maintained at 4˚C before injection. A

Thermo Orbitrap Exactive (Thermo Fischer Scientific) was used to generate mass spectra, and

was operated in polarity switching mode with the following settings: Resolution: 50,000; AGC:

106; m/z range: 70–1,400; sheath gas: 40; auxiliary gas: 5; sweep gas: 1; probe temperature:

150˚C; capillary temperature: 275˚C. Samples were run in both positive and negative polarity

with the following ionisation: source voltage +4.5 kV, capillary voltage +50 V, tube voltage +70
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kV and skimmer voltage +20 V for positive mode; source voltage -3.5 kV, capillary voltage -50

V, tube voltage -70 V and skimmer voltage -20 V for negative mode. Mass calibration was per-

formed for each polarity immediately prior to each analysis batch. The calibration mass range

was extended to cover small metabolites by inclusion of low-mass contaminants with the stan-

dard Thermo calmix masses (below m/z 1400), C2H6NO2 for positive ion electrospray ionisa-

tion (PIESI) mode (m/z 76.0393) and C3H5O3 for negative ion electrospray ionisation (NIESI)

mode (m/z 89.0244). To enhance calibration stability, lock-mass correction was also applied to

each analytical run using these ubiquitous low-mass contaminants. A set of authentic stan-

dards was run prior to the sample set for each experiment.

Metabolomics data analysis

RAW spectra were converted to mzXML files (mzML files for fragmentation data) using

XCMS for untargeted peak detection [134]. The resultant files were further processed using

mzMatch [135] for peak matching and annotation, resulting in a tabular output that was ana-

lysed using IDEOM with default settings [136]. Identification of metabolites was performed in

Ideom (as previously described by [45]), by matching accurate masses and retention times of

authentic standards (MSI confidence level 1). When standards were not available, predicted

mass and retention time was calculated by a validated model [137] (MSI confidence level 2;

putative annotation based on exact mass determination). Many of the metabolites names given

in the datasets in this study are generated automatically as the Ideom software provides a best

match to public database entries of the given mass and formula. Published literature and path-

way/genome databases were considered to improve annotation in cases where isomers could

not be differentiated based on accurate mass and retention time. Metabolites included in the

manuscript were manually annotated using authentic standards where available. However,

note that many of the metabolite names given in the Ideom file are generated automatically as

the software provides a best match to database entries of the given mass and formula (S3

Table). In the absence of additional information these must be considered as putatively-anno-

tated hits; the confidence score in the column adjacent to putative metabolite name (S3 Table)

serves as a guide to this. In addition, potential isomers matching the formula are provided in a

drop down list for each metabolite (S3 Table). Clearly it is beyond the scope of any study to

provide authenticated annotations to many hundreds of detected compounds, but the full

datasets are included in the spirit of open access data.

For stable-isotope assisted metabolomics experiments, mzMatch output (in.peakml format)

was analysed using mzMatch-ISO to extract all carbon isotopologue abundances from putative

metabolites [138]. Data analysis of stable isotope-labelled metabolomics was based on a 48

hour time-point in all experiments. Data was further analysed using Microsoft Excel, R or

Metaboanalyst v4.0 [139]. The raw data from all metabolomics analyses are available in Meta-

bolights (accession number: MTBLS2372; URL: www.ebi.ac.uk/metabolights/MTBLS2372).

RNA sequencing and data processing

RNA sequencing was carried out by Edinburgh Genomics (Edinburgh, UK). Libraries were

prepared from 16 samples (8× T. brucei, 8× T. congolense) using the TruSeq Stranded mRNA

kit (Illumina) and 2 × 75 bp paired-end sequencing was carried out using a HiSeq 4000 system

(Illumina). Sequencing reads were aligned to the corresponding genome sequence using

HiSat2 (default settings with “-k 1—no-spliced-alignment” to limit multi-mapping reads to one

alignment) [140]. For T. brucei, the TREU 927 reference genome sequence was used (v51.0

from TriTrypDB [141]), whilst a PacBio assembly of T. congolense IL3000 (2019, v51.0 from

TriTrypDB) was used for T. congolense [142]. The resulting SAM files were converted to BAM
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files using samtools [143], and subsequently filtered for quality (-q 1). Read counts were

extracted from the filtered BAM files using HTSeq-count (“-s reverse -f bam -t CDS -i Parent
-m union -a 0—nonunique-all”). “CDS” was chosen as feature for read counting instead of

“exon”, as UTRs are not annotated in the T. congolense genome, in contrast to the T. brucei
TREU 927 genome, which could lead to further discrepancies during cross-species transcrip-

tome analysis. Read counts are provided in S1 Table.

For all samples, transcripts per million (TPM) values for each gene were calculated manu-

ally from the read count files using Microsoft Excel as follows: 1) Reads per kilobase (RPK)

were calculated by dividing the read counts by the length of gene in kilobases (S1 Table); 2) All

RPK values in a sample were summed and divided by 1 million as a scaling factor (S1 Table);

3) Each RPK value was divided by the scaling factor to yield TPM values [56]. To compare

transcript abundances between the two species, Orthofinder [57] was used to infer orthologue

genes or gene groups. Default parameters were used to compare the T. brucei TREU 927 and

the T. congolense IL3000 annotated proteins (S2 Table). A custom MATLAB (version R2020a)

script was used to combine the Orthofinder dataset and the TPM values for 1-to-1 orthologues,

as well as “sum of TPM” values for groups containing multiple genes, where TPM value for

each gene was summed, resulting in a final dataset (S1 Table). Raw RNA-seq data is deposited

at GEO (accession number: GSE165290). Transcriptomics data were cross-referenced with the

TrypanoCyc database (vm-trypanocyc.toulouse.inra.fr/; [64]) to enable pathway analysis of the

data.

Statistical analysis of the orthoTPM dataset was performed using the limma package in R

[144]. Briefly, genes with an orthoTPM value of< 1 across three or more of the four sample

groups were removed from the dataset (98 genes). The data set was then log-transformed

(log2[TPM+1]) prior to analysis with the eBayes() function including the parameters

“trend = TRUE” and “robust = TRUE”. Statistical output is included in S1 Table.

Computation

Figures were generated using Graphpad Prism version 8.4.0 (www.graphpad.com) with the

exception of scatter plots and heatmaps, which were generated using R [145]. Heatmaps were

generated using the R packages pheatmap and ComplexHeatmap [146]; scatter plots were gen-

erated using GGplot2 and GGally; synteny plots were generated using the python tool MCScan

[147]; pathway maps were generated with Inkscape v1.0.

Supporting information

S1 Fig. Synteny analysis of T. brucei and T. congolense. Plots were generated to assess levels

of synteny between the species in regions where genes appear to be absent in T. congolense. For

3 genes, SDH11 (top), MPC1 (middle) and a putative delta-4 fatty acid desaturase (bottom),

surrounding regions are highly syntenic between T. brucei and T. congolense, indicating that

these are likely 3 deletions from the T. congolense genome. Whilst this does not rule out exis-

tence of these genes in other genomic regions, approaches such as orthoMCL and BLAST did

not yield high probability orthologues in T. congolense.

(TIFF)

S2 Fig. Comparative analysis of published T. congolense RNAseq data and data generated

in this study. Scatter matrix of T. congolense datasets from this study compared to ascending

and peak parasitaemia in vivo transcriptomics data generated by Silvester and colleagues [59].

TPM values were calculated for each gene in the T. congolense genome (S1 Table) and

log2(TPM+1) was plotted. Lower panels: Scatter plots of individual comparisons of the 4
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datasets. Red dots correspond to genes associated with glycolysis, green dots correspond to

genes possessing transmembrane domains that are likely to be transporters; Diagonal panels:

sample names; Upper panels: Pearson correlation coefficients for comparisons of entire data-

sets (black), glycolytic pathway (“Glyc”, green) and proteins with predicted transmembrane

domains (“Trans”, red).

(TIFF)

S3 Fig. Comparative transcriptomics analysis of the electron transport chain in T. congo-
lense and T. brucei. A heatmap of all ETC complexes based on a table generated by Zikova

and colleagues [76]. Heatmaps are divided into the alternative oxidases (AOX), NADH dehy-

drogenase 2 (NDH2), complex I, II, III, IV and ATPase (complex V).

(TIFF)

S4 Fig. Stable isotope labelled (13C)-glucose derived pyrimidine labelling. Comparative

analysis of glucose-derived pyrimidine labelling in T. congolense and T. brucei (taken from

[45]).

(TIFF)

S5 Fig. Effect of cysteine exclusion on T. congolense growth. Parasites were grown in SCM-6

supplemented with 1.5 mM, 1.0 mM or absence of L-cysteine. Cell density was monitored

every 24 hours.

(TIFF)

S6 Fig. Comparison of amino acid metabolism in T. congolense and T. brucei. A) glucose-

derived carbon labelling of amino acids B) Transcriptomics pathway analysis. TrypanoCyc

pathways and gene IDs: A) Arginine and polyamine synthesis (ARG+POLYAMINE-SYN):

SpSyn, spermidine synthase, TbTc_1034; AdoMetDC_3193, AdoMet decarboxylase,

TbTc_3193; ODC, ornithine decarboxylase, TbTc_5903; AdoMetDC_0696, AdoMet decar-

boxylase, TbTc_0696. B) Aspartate and asparagine biosynthesis (ASPASN-PWY): ASNS,

asparagine synthetase, TbTc_4894; mASAT, mitochondrial aspartate aminotransferase,

TbTc_5877; cASAT, cytosolic aspartate aminotransferase, TbTc_0799. C) Glutamate degrada-

tion (GLUCAT-PWY): OGDH-E1, 2-oxoglutarate dehydrogenase E1, TbTc_2864; GDH, glu-

tamate dehydrogenase, TbTc_0872; SUCLG2, succinyl-CoA ligase, TbTc_3392; SCSα,

succinyl-CoA synthetase, TbTc_0813; OGDH-E2, 2-oxoglutarate dehydrogenase E2,

TbTc_3057. D) Isoleucine degradation (ILEUDEG-PWY): ECH, enoyl-CoA hydratase,

TbTc_3283; BCAAT, branched-chain amino acid aminotransferase, TbTc_0559; SCP2,

3-ketoacyl-CoA thiolase, TbTc_4024. E) Leucine degradation (LEUDEG-PWY): ECH, enoyl-

CoA hydratase, TbTc_3283; BCKDHα, 2-oxoisovalerate dehydrogenase α, TbTc_1182; AUH,

methylglutaconyl-CoA hydratase, TbTc_5348; BCKDHβ, 2-oxoisovalerate dehydrogenase β,

TbTc_0682; MCCα, 3-methylcrotonyl-CoA carboxylase α, TbTc_1670; IVDH, isovaleryl-CoA

dehydrogenase, TbTc_3112; SCP2, 3-ketoacyl-CoA thiolase, TbTc_4024; HMGCL, hydroxy-

methylglutaryl-CoA lyase, TbTc_6160; BCAAT, branched-chain amino acid aminotransferase,

TbTc_0559; MCCβ, 3-methylcrotonyl-CoA carboxylase β, TbTc_5385. F) Aspartate super-

pathway (PWY0-781): NADSYN, NAD+ synthase, TbTc_2404; mASAT, mitochondrial aspar-

tate aminotransferase, TbTc_5877; METK1, AdoMet synthase, TbTc_0178; NMNAT,

nicotinamide/nicotinic acid mononucleotide adenylyltransferase, TbTc_4133; cASAT, cyto-

solic aspartate aminotransferase, TbTc_0799; MTR, 5-methyltetrahydropteroyltriglutamate-

homocysteine S-methyltransferase, TbTc_5805. G) Threonine degradation (PWY1V8-11):

AKCT, 2-amino-3-ketobutyrate-CoA ligase, TbTc_6236; TDH, L-threonine dehydrogenase,

TbTc_5991. H) Valine degradation (VALDEG-PWY): ECH, enoyl-CoA hydratase,

TbTc_3283; HOPR, 2-hydroxy-3-oxopropionate reductase, TbTc_2903; BCAAT, branched-
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chain amino acid aminotransferase, TbTc_0559. I) Proline degradation (PROLINE--

DEG2-PWY): ProDH, proline dehydrogenase, TbTc_1591; GDH, glutamate dehydrogenase,

TbTc_0872; P5CDH, delta-1-pyrroline-5-carboxylate dehydrogenase, TbTc1695.

(TIFF)

S7 Fig. Carbon utilisation for trypanothione biosynthesis in T. congolense. Metabolomics

and transcriptomics analyses were carried out to analyse trypanothione biosynthesis. A) A

simplified map of trypanothione biosynthesis as known in T. brucei. Numbers refer to the fol-

lowing enzymes: 1, S-adenosyl-L-methionine synthase, METK1; 2, S-adenosyl-L-methionine

decarboxylase, AdoMetDC; 3, spermidine synthase, SpSyn; 4, methyltransferase reaction,

MTase; 5, S-adenosyl-L-homocysteine dehydrolase, AdoHycase; 6, cystathionine beta

synthase, CBS; 7, cystathione gamma lyase, CTH; 8, glutaminase/amidase, AM; 9, gamma-glu-

tamylcysteine synthetase, GCS; 10, glutathione synthetase, GSS; 11, ornithine decarboxylase,

ODC; 12, spermidine synthase, SpSyn; 13, glutathionylspermidine synthase, GSP; 14, trypa-

nothione synthetase, TRYS; 15, tryparedoxin peroxidase, TXN1b; 16, trypanothione reductase,

TRYR. B) Isotopologue labelling experiments using 100% 13C-L-serine, 13C-L-glutamine,
13C-L-methionine or 13C-L-cysteine, showing the abundance of carbon labelling derived from

these amino acids in components of the trypanothione biosynthesis pathway. C) Transcrip-

tomics analysis. TrypanoCyc pathways and gene IDs: Trypanothione biosynthesis (PWY1V8-

6): AdoMetDC_0696, S-adenosylmethionine decarboxylase, TbTc_0696; GSS, glutathione syn-

thetase, TbTc_3678; AM, amidase, TbTc_5549; AdoMetDC_3193, S-adenosylmethionine

decarboxylase, TbTc_3193; TRYS, trypanothione synthetase, TbTc_1359; ODC, ornithine

decarboxylase, TbTc_5903; TRYR, trypanothione reductase, TbTc_4239; SpSyn, Spermidine

synthase, TbTc_1034; TNX1b, tryparedoxin 1b, TbTc_0324; METK1, S-adenosylmethionine

synthetase, TbTc_0178; GCS, gamma-glutamylcysteine synthetase, TbTc_3424. Homocysteine

degradation/cysteine biosynthesis (HOMOCYSDESGR-PWY1): CBS, cystathionine beta

synthase, TbTc_0413; CTH, cystathione gamma lyase, TbTc_1051. Methionine degradation I

(METHIONINE-DEG1-PWY): AdoHcyase, S-adenosylhomocysteine hydrolase, TbTc_0685;

METK1, S-adenosylmethionine synthase, TbTc_0178.

(TIFF)

S8 Fig. Analysis of LC-MS utilising stable isotope labelled amino acids. Percentage total

labelling of metabolites identified in data from 6 stable isotope labelling experiments using
13C-L-asparagine, 13C-L-cysteine, 13C-L-glutamine, 13C-L-methionine, 13C-L-proline and
13C-L-serine. Colour intensity correlates to the total fraction of the metabolite that was 13C-

labeled.

(TIFF)

S9 Fig. Inhibition of fatty acid synthesis in T. brucei and T. congolense. Sigmoidal dose-

response curves to determine differential sensitivity of the two species of parasite to inhibition

of an ACS inhibitor (panel A) and Orlistat (B).

(TIFF)

S1 Table. RNAseq dataset–T. congolense ex vivo, T. congolense in vitro, T. brucei ex vivo, T.

brucei in vitro, Silvester et al. [59] dataset. Separate worksheets include the final OrthoTPM

dataset, raw read counts (HTSeq-count output), RPK counts, scaling factors and TPM counts

for each sample aligned to its respective genome. A legend is provided in the first worksheet.

(XLSX)

S2 Table. Orthofinder output comparing T. congolense IL3000, T. congolense IL3000 2019,

T. brucei TREU 927 and other trypanosomatids. Further worksheets include lists of genes
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present in only T. brucei or only T. congolense, with no orthologue detected in the other.

(XLSX)

S3 Table. Supernatant metabolomics dataset for in vitro cultured T. congolense over a

period of 56 hours. Metabolites highlighted in yellow were confidently predicted (MSI

level 1) using a set of metabolite standards run alongside the experimental samples. Where

applicable, a list of potential isomers based on matching formula is provided. Not that confi-

dence value only applies to the original metabolite identified by the Ideom software. Results of

statistical analysis by means of a one-way repeated measures ANOVA (false discovery rate-

adjusted P value, FDR) is also shown for metabolites that were taken forward for downstream

analysis. Further details for each column are provided in a separate worksheet in the same

excel file.

(XLSX)

S4 Table. TrypanoCyc pathways and linked Orthogroup (TbTc) gene IDs.
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S5 Table. Formulation of Steketee’s congolense medium (SCM)-6 & -7.
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