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A B S T R A C T

There is a large demand for models able to predict the future capacity retention and internal resistance (IR) of
Lithium-ion battery cells with as little testing as possible. We provide a data-centric model accurately predicting
a cell’s entire capacity and IR trajectory from one single cycle of input data. This represents a significant
reduction in the amount of input data needed over previous works. Our approach characterises the capacity
and IR curve through a small number of key points, which, once predicted and interpolated, describe the full
curve. With this approach the remaining useful life is predicted with an 8.6% mean absolute percentage error
when the input-cycle is within the first 100 cycles.
1. Introduction

Sales of electric vehicles and energy storage systems are undergoing
a marked growth as battery costs continue to fall and governments
around the world introduce increasingly strict emissions regulations.

Of importance to all applications is a cell’s state-of-health (SOH). In
many applications the key metric for cell health is capacity retention.
In this regard, SOH is often interpreted as the current capacity of a
cell as a percentage of its rated capacity. As the capacity degrades
over time so does the cell’s usefulness eventually reaching a point at
which the cell is no longer deemed useful for its current application.
This point, called the end-of-life (EOL), is often a predefined capacity
level. Another key health indicator is the internal resistance (IR) of the
cell: as the cell degrades its IR increases, impairing the cell’s ability to
provide and receive charge. Capacity degradation and IR rise of a Li-
ion cell are often not linear throughout its lifetime [1,2]. Cell capacity
typically starts to degrade in a linear manner until reaching a critical
point, called the ‘knee’ (referred to henceforth as the knee-point), at
which the rate of capacity degradation increases considerably [3–5].
In [1] the additional variable ‘knee-onset’ is introduced (along with an
alternative identification mechanism) to provide a useful indication of
the start of this rate of increased degradation. Building on this idea, [2]
introduced the variables ‘elbow-onset’ and ‘elbow-point’ describing the
same phenomena as the knee-onset and -point but for the IR rise
curve. Accurate identification and prediction of the occurrence of knee-
onset and -point can provide essential guidance for scheduling of
replacements and cell maintenance to prolong service life. However,

∗ Corresponding author at: School of Mathematics, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3FD, UK.
E-mail address: G.dosReis@ed.ac.uk (G. dos Reis).

knee-points (and knee-onset) may appear before or after the EOL is
reached and their occurrences are also cell chemistry dependent [6].
The same holds for elbow-onsets and points. Other degradation metrics,
such as the remaining useful life (RUL) or the whole capacity trajectory,
thus have to be considered collaboratively for a comprehensive view.

Much research has been dedicated to the modelling of Li-ion cells
and, in particular, lifetime prediction such as EOL and RUL. Broadly,
there are two approaches to this problem either model-based or data-
centric. The model-based approach encapsulates empirical models,
Equivalent circuit models and physics-based models. It includes elec-
trochemical type models where the cell’s internal physical degradation
mechanisms are simulated (see [7] for a review), and parametric/semi-
parametric type models where empirical models are fitted to realised
capacity fade curves and combined with advanced filtering techniques
to predict future degradation [8,9]. The data-centric approach consists
of machine learning and statistical models trained on in-cycle and
cycle-to-cycle measurement data such as voltage, current, capacity,
temperature and internal resistance. Feature based approaches allow
for expert input on essential features [10–13] but may also take a
purely data-driven feature selection approach. Feature free approaches
use deep learning techniques such as Convolutional neural networks
(CNN) to process ‘raw’ cycle data. The data-centric approach typically
requires larger data sets for training than model-based approaches,
nonetheless, this approach is showing great potential [14–16]. Physics-
informed models need to be calibrated to the cell’s data (a non-trivial
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problem) and if too simplified lose the inherent conservation laws.
The computational requirements of semi-parametric type modelling are
much lower than those of electrochemical-models or the data-centric
approach. For both data-centric and semi-parametric modelling, the
available data for training/calibration is a methodological limitation in
itself, be it on the quality of fitting, extrapolation or simply the method
one can use.

Data-driven research has mainly focused on the prediction of EOL or
RUL [1,10] in contrast the literature on the prediction of the complete
capacity trajectory is sparse. We point notably to [17] who make use
of a simple feed forward neural network to enhance the slope and bias
correction model migration technique. At its base, this approach uses a
parametric model for the capacity fade curve then a neural network is
trained to migrate this fitted model from the first 30% (50–150 cycles
depending on cell) of data into a prediction at a given future cycle. With
this approach, they are able to accurately describe the full capacity fade
curve of their 4 test cells.

Our study aims to determine the smallest number of cycles needed
to accurately predict the whole capacity/IR trajectory of a cell. We
found that the information contained in any one cycle of charge/
discharge data was sufficient. This speaks directly to cell manufacturers
who need to grade batteries and buyers of cells performing quality
control.

This aim stems from several gaps in the current literature. Firstly,
we address a gap that electrochemical/physics-based modelling is yet
to close. Concretely, the prediction of the lifespan of a cell from a
single cycle of input data. Take for instance the well-known Doyle–
Fuller–Newman (DFN) model for lithium-ion batteries and its variants
(see [18] for a review). Parameterising a DFN model from cycling
data is impossible (much less from one single cycle) without many
material assumptions: one would need stoichiometries of the two elec-
trodes which cannot be obtained from cycle data [19]; one would
need to dissemble the cell to carry specific measurements which may
take around 3 months [20,21]. Without disassembling the cell, one
needs to rely on current–voltage response, for which case many of the
parameters are not well identifiable — work on sensitivity analysis
and optimal excitation for parameter identification can be found in
[22]. Secondly, to the best of our knowledge, the machine learning
prediction models developed so far require gradient information for
prediction. This implies longitudinal data spanning a large number of
cycles, e.g., 50 to 100 cycles to predict EOL are needed [1,10] usually
involving a feature generation step. In terms of the amount of input
data, the current best art for quantitative early prediction of RUL is
using only 4 cycles of data achieving a 10.6% mean absolute percentage
error (MAPE) [23], and this result marks a non-trivial improvement
over earlier work. However, reducing this number further would repre-
sent a further reduction in testing times and costs. Thirdly, the majority
of the literature deals solely with the prediction of EOL or RUL. RUL
is a key indicator of cell health and the EOL of cell quality but neither
is a complete picture: both fail to capture non-linear dynamics in the
capacity fade trajectory. And lastly, the vast majority of work focuses
on capacity retention and ignores questions on IR degradation, both
are important SOH indicators and neither is a complete picture on
their own. In fact, the 80%-capacity level for EOL is an industry
postulation while the knee/elbow-point (and knee/elbow-onset) [1,2]
reflects better traceable physics/eletrochemical causal changes. There
is thus space for new approaches to predict the full capacity and IR
trajectory, and to do so from a reduced number of measurements.

The main contribution of this work addresses the above four lim-
itations from the data-driven modelling point of view. The model
proposed uses a CNN which jointly predicts, from a single cycle of data,
the full capacity fade trajectory and the full IR rise trajectory.

The rest of this study is organised as follows. Section 2 describes
this study’s datasets and Section 3 contains a full description of the
proposed modelling approaches and insights leading to it. An account
of the model’s performance is given in Section 4 including a comparison
with existing art: methods and approaches used, presented results, used
features, mode of feature selection and the number of cycles used for
2

prediction. Section 5 concludes this work.
2. Data description

We work with the datasets of [10] and [24] found at https://
data.matr.io/1; detailed descriptions provided there. The data consists
of high-throughput cycling data for 8 batches of commercial lithium
iron phosphate (LFP)/graphite cells cycled under fast-charging condi-
tions: [10] provides data for 3 batches of approximately 48 cells each
(referred to as batches 1 to 3); [24] provides data for 5 batches, of
between 45 and 48 cells each (referred to as batches 4 to 8). Cell code
otation: across the 8 batches of cells, bXcY refers to cell Y of batch X.

All cells in batches 1, 2, 3 and 8 are cycled close to or past their
EOL, defined as 80% of initial capacity, in a temperature controlled
environment (𝑇 = 30◦) with a variety of charge/discharge profiles. It
is important to note that for each individual cell, its charge/discharge
profile was kept constant from cycle to cycle. Batches 4–7 were only
run for 100–120 cycles and thus do not reach an EOL. The dataset
contains in-cycle measurements of temperature, current, charge and
discharge capacity, as well as per-cycle measurements of capacity,
internal resistance and charge time. Batch 8 does not include IR data,
for these cells we use the predicted IR data of [2] available at https:
//doi.org/10.7488/ds/2957.

The datasets of [10] and [24] both consist of the same type of
LFP/graphite cells cycled in a consistent experimental setting with data
logged in the same format. Combination of the two is thus natural.
For comparison with previous works, we present results both with and
without the inclusion of the data from [24]. A fuller description of these
datasets can be found by consulting the relevant papers or in the recent
review paper [25, Section 2.1.3].

3. Predicting future capacity and internal resistance

A question present in all battery applications is: what does the
future degradation of a particular cell look like, when will a cell no
longer be suitable for its current application and at what speed will
this degradation occur? When solely considering cycle-ageing, ideally
one would know the future capacity and internal resistance of a cell
any number of cycles into the future, up to (and perhaps beyond) the
EOL.

Following on from previous work [1,2], we describe the capacity
degradation by use of the knee-onset, knee-point and EOL, and the
IR rise curve by the elbow-onset and elbow-point. Fermin et al. [1]
proposed the use of the Bacon–Watts and double Bacon–Watts model to
identify the cycle at which the knee-point and knee-onset occur, respec-
tively. Strange et al. [2] proposed an additional smoothing process prior
to deploying the Bacon–Watts models — this process involves fitting an
empirical line-plus-exponential model to an isotonic regression of the
data. The linear relationships between these points are also explored in
the cited papers. Here, we use the second approach (with smoothing).
Additionally, as we are interested in describing the full curves, we must
select the capacity and IR values at the knees and elbows. Since the
recorded data (in particular the IR) is noisy, we take these capacity/IR
values from the smoothed (line-plus-exponential) curves and not the
raw data.

We now propose a simple empirical model with which we can
describe the full capacity and IR curves. In addition to the knees (for
the capacity) and elbows (for the IR) we need the first and last points of
both curves. As described previously, data was recorded until the cells
reached 80% of their nominal capacity (∼ 0.88Ah). So, we describe the
capacity curve by four points: the current cycle (measured capacity),
knee-onset (empirical capacity), knee-point (empirical capacity) and
EOL (0.88Ah). And, we describe the IR curve by the current cycle
(measured IR), elbow-onset (empirical IR), elbow-point (empirical IR)
and capacity-EOL (empirical IR). Our proposed approach (assuming the
current cycle is sampled ahead of the knee/elbow-onset and -point) is
as follows: (1) fit a cubic spline between the four points; (2) take the

cubic spline as the approximation between the last three points; (3)

https://data.matr.io/1
https://data.matr.io/1
https://data.matr.io/1
https://doi.org/10.7488/ds/2957
https://doi.org/10.7488/ds/2957
https://doi.org/10.7488/ds/2957
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Fig. 1. Empirical model fitted to the capacity and IR curves of cell b3c12.
Fig. 2. Representation of the CNN architecture. The ‘×3’ notation denotes three repeated blocks with the displayed configuration.
approximate between the first two points by a straight line. Applied
to the measured capacity fade curves of batches 1, 2, 3 and 8 (up
to EOL), and taking cycles 1 to 100 as the ‘current cycle’, this model
obtains a root mean square error (RMSE) of 0.0039 and a coefficient
of determination (𝑅2) value of 0.9931, and applied to the measured IR
curves it obtains a RMSE of 0.00015 and an 𝑅2 value of 0.9838 showing
a strong agreement with the measured values. Up to the onset points
the degradation is linear, and thus the straight line approximation (step
3) performs well. Comparing after the knee-onset the model obtains a
RMSE of 0.0046 and an 𝑅2 value of 0.9902, and restricted to after the
elbow-onset the model obtains a RMSE of 0.00017 and an 𝑅2 value
of 0.9832. So, our simple interpolation accurately describes the true
curves. An example of the approximated capacity and IR curves is given
in Fig. 1.

Then, in order to predict the entire capacity fade and IR rise
curves, it is enough to have a measurement (or prediction) of the
current capacity/IR value and predictions of the number of cycles
until (and the remaining capacity/IR values at) the knee-onset, knee-
point, EOL, elbow-onset and elbow-point. To illustrate these quantities,
we predict the ‘time to knee-onset ’ (ttk-o), ‘time to knee-point ’ (ttk-p),
RUL, ‘time to elbow-onset ’ (tte-o) and ‘time to elbow-point ’ (tte-p). In
addition, we predict the remaining capacities at knee-onset (Q@k-o)
and knee-point (Q@k-p), and the IR values at elbow-onset (IR@e-o),
elbow-point (IR@e-p) and the IR at (capacity) EOL (IR@EOL). The
retained capacity at EOL is known and thus does not need prediction.
The empirical model described above can then be fitted through the
predicted points giving a prediction of the entire capacity degradation
and IR rise curves. It should be pointed out that the characteristic points
we select are stylistic in nature and that not all cells display knees or
elbows. However, the authors believe that the basic idea of identifying
and predicting key points before fitting an empirical model should be
applicable to a wide range of ageing modes. Different ageing modes
may require a different stylised model (this is left to future research).
3

We restrict most of our discussion to ‘early’ prediction, here defined
as the first 100 cycles of data (initial setting). This is a more difficult
setting than prediction at later points (full setting) and allows for a
direct comparison with previous works in the literature. Indeed, as
expected, our model performs better as the cycle from which predic-
tions are made approaches the actual cycle of the predicted quantity.
For illustrative purposes, our model’s performance predicting the RUL
versus the distance from the EOL is presented in Fig. 5.

3.1. Modelling approach

Ideally, the testing required to make a prediction should be limited
in time, making prediction fast and convenient. Thus, we restrict to
the prediction from a single cycle of data. This removes the need for
past knowledge of a cell, a problem faced in so-called ‘second-life’
applications, where the historical cycling profiles of most cells are
unknown. Of course, (if present) it would not be difficult to incorporate
this knowledge into our approach. In addition, this restriction massively
multiplies the available data for training. For each cell (when restricting
to the first 𝑛 cycles of data) we have 𝑛 cycles of data and 𝑛 correspond-
ing distinct values for each item we are predicting. Predicting from
one cycle of data, we thus have 𝑛 examples from each train/test cell.
This multiplication of the training set allows us to use deep learning
techniques.

We will now describe our proposed model. We take a data-driven
and feature-free approach. We propose a model consisting of a convo-
lutional ‘feature extraction’ block followed by two densely connected
layers, displayed in Fig. 2 and described in Table 1. As output, this
model can be trained to predict values jointly (joint prediction) or
separately. As input our model takes a single cycle of voltage, current
and SOC data (obtained by the coulomb counting method, from one
full cycle). Our model was implemented in Python using TensorFlow
via the Keras API [26]. All layer names given in Fig. 2 refer to the
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Table 1
Proposed architecture of the CNN model for the prediction of ttk-o, Q@k-o, ttk-p, Q@k-
p, RUL, tte-o, IR@e-o, tte-p, IR@e-p and IR@EOL. The model can be trained to predict
multiple points at once (joint prediction) or separately. Hyper-parameters are given in
the format: filters, kernel size, activation for conv1d layers; pool size for max_pooling;
dropout for dropout; nodes, activation for dense layers.

Layer name Input size Hyper-parameters Output size

conv1d_1 926 × 3 24, 6, ReLU 921 × 24
batch_normalisation_1 921 × 24 – 921 × 24
max_pooling_1 921 × 24 2 460 × 24
conv1d_2 460 × 24 32, 3, ReLU 458 × 32
conv1d_3 458 × 32 32, 3, ReLU 456 × 32
batch_normalisation_2 456 × 32 – 456 × 32
max_pooling_2 456 × 32 2 228 × 32
conv1d_4 228 × 32 32, 3, ReLU 226 × 64
conv1d_5 226 × 64 32, 3, ReLU 224 × 64
batch_normalisation_3 224 × 64 – 224 × 64
max_pooling_3 224 × 64 2 112 × 64
conv1d_6 112 × 64 32, 3, ReLU 110 × 64
conv1d_7 110 × 64 32, 3, ReLU 108 × 64
batch_normalisation_4 108 × 64 – 108 × 64
max_pooling_4 108 × 64 2 54 × 64
flatten_1 54 × 64 – 3456
dense_1 3456 64, ReLU 64
dropout_1 64 0.4 64
dense_2 64 𝑛_𝑜𝑢𝑡𝑝𝑢𝑡𝑠, linear 𝑛_𝑜𝑢𝑡𝑝𝑢𝑡𝑠

corresponding Keras layers. To assist training, batch normalisation was
used before each MaxPooling1D layer. The model was trained using
the Adam optimiser for 100 epochs with a batch size of 512. And the
ean absolute error was set as the loss function. A learning rate scheduler

described in Eq. (1)) was used during training with a ‘decay rate’ of
.9 and a ‘decay step’ of 5 epochs.

Since the in-cycle data was not recorded at consistent time intervals
r for the same number of time-steps (after cleaning) the data was
nterpolated and nan-extended to a consistent length and time-step.
he interpolation was performed with the SciPy [27] function interp1d
nd interpolated to one measurement every four seconds. The data was
hen allocated at random (by cell) into an 80–20 train-test split. The
raining and testing sets were then restricted to the first 100 cycles of
ata before being standard scaled (when the model was trained in the
ull setting, the restriction step was dropped). Hyper parameters were
ptimised prior to testing using randomly selected validation subsets of
ells from the training set.

When using the model to predict future capacity (Q@k-o and Q@k-
) and IR (IR@e-o, IR@e-p and IR@EOL) the model was trained to
redict the loss in capacity and rise in IR, respectively. Given a mea-
urement (or prediction) of current capacity and current IR these can
asily be converted into predictions of future capacity and IR. The loss
n capacity from the start to EOL is of the order of 0.1. Similarly, the
oss in capacity to knee-onset and knee-point is quantitatively small.
he IR rises are even smaller, of order 0.001. Small target values can
ean small values in a model’s loss function which can negatively

mpact training. Thus to improve performance, our model was trained
o predict 10000×(loss in capacity) and 2000000×(rise in IR). These
ultiplications were accounted for when converting to a prediction

f future capacity and IR. The multiplicative constants selected here
re largely arbitrary (chosen to roughly match the range of RUL val-
es) and their exact specification did not significantly impact model
erformance.

.2. Prediction intervals via the forward-dropout method

Here we briefly describe the approach taken to provide prediction
ntervals. A simple approach is to train and predict with multiple
ndependent copies of a model calculating prediction intervals from
he independent predictions. Here by ‘independent’ we mean models
rained separately: due to the stochastic nature of the training each
4

trained model will provide different predictions. This approach is often
referred to as an ‘ensemble’ approach, and this is the approach taken
to produce the performance metrics displayed in this paper. However,
there are notable issues which may make such an approach unattrac-
tive or unfeasible. Firstly, there is the computational cost and time
associated with training a model repeatedly and independently. And
secondly, there is the cost of storing multiple models in memory —
which poses a particular barrier in storage limited applications such as
integrated chipsets.

Another approach, superior to the ensemble approach in both as-
pects described (although not necessarily in terms of accuracy), is to
deploy dropout during the forward pass of a network (forward dropout).
That is, predicting with a trained model multiple times each time with
a random dropout (of a pre-specified rate) applied and calculating pre-
diction intervals from these predictions. This approach can be viewed
as a Bayesian approximation of a Gaussian process [28]. The rate
at which dropout is applied during prediction is optimised such that
the distribution of ‘residuals’ from dropout prediction to the median
dropout prediction matches the distribution of residuals from the model
without dropout’s prediction to the true value. This optimisation can
be performed prior to deployment (on a validation set) or ‘on the fly’
after deployment as predictions are made and then compared with
realised results. This is our preferred approach when using the model
to predict the full capacity fade and IR rise curves. When this approach
was applied to our model the dropout layer present in Table 1 and
Fig. 2 was used to apply dropout in training with our selected training
dropout and then in prediction with a separately optimised prediction
dropout rate.

4. Model performance

4.1. Performance metrics

We now present our model’s performance metrics when predicting
each quantity in isolation. The figures for the prediction of ttk-o, ttk-p,
RUL, tte-o and tte-p are presented in Table 2. For the capacity related
predictions, the cycle error (MAE and RMSE) is lower for the points
which are temporarily closer to the cycle from which the prediction is
made: the knee-onset and knee-point. However, in percentage terms,
the model performs better predicting the RUL than the ttk-o or ttk-p.
This is explained by the larger target value and thus smaller percentage
error for a given cycle error. The larger percentage error for the knee-
onset prediction is explained by the smaller target value. The prediction
of the IR related quantities is quantitatively worse than the capacity
related ones; this is explained by the (much) noisier IR measurements
which in turn effect the elbow identification [2, page 8]. A more
granular view of the errors can be found in Fig. 4b (for the RUL) and
Fig. 3.

The results of comparing the predicted Q@k-o, Q@k-p, IR@e-o,
IR@e-p and IR@EOL with the values from the empirical fitted curve are
presented in Table 3 where it is shown that our model can accurately
predict these values from a single cycle of data.

4.2. Full curve prediction

We now inspect the performance of the model to predict the full
capacity and IR curves. For this we trained three models to predict
(jointly) related quantities. These three models were a ‘time to’ model
(predicting ttk-o, ttk-p, RUL, tte-o and tte-p), a ‘capacity’ model (Q@k-
o and Q@k-p) and an ‘IR’ model (IR@e-o, IR@e-p and IR@EOL). In
this way we recover the performance metrics of individual prediction
and avoid issues such as the knee-point being predicted before the
knee-onset. For each of these models forward dropout rates for each
of their outputs were optimised by training and testing on subsets of
the training data. For the ‘time to’ model the selected dropout rates
were 0.45, 0.325, 0.35, 0.35 and 0.30 for the ttk-o, ttk-p, RUL, tte-o
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Fig. 3. Plots of model predictions for nine randomly chosen test cells at randomly selected input cycles. Model predictions are produced from data of a single cycle, given the
measured capacity/IR at that cycle. The prediction intervals (95% and 80%) are calculated under a normality assumption from 100 predictions with forward dropout applied.
Moving from left to right, and then down a row repeating, the ‘test cell’ displayed is b2c30, b8c20, b3c9, b2c14, b1c7, b3c34, b2c45, b3c26 and b1c4. Here, we present the IR
and capacity values relative to the values measured at the input cycle.
Table 2
Performance of proposed model to predict Capacity’s: ttk-o, ttk-p and RUL; and IR’s: tte-o and tte-p.

RMSE (cycles) MAE (cycles) MAPE (%)

Train Test Train Test Train Test

ttk-o 38 ± 5.0 84 ± 12.0 21 ± 2.7 55 ± 6.5 4.9 ± 0.72 12.6 ± 1.44
ttk-p 41 ± 4.8 83 ± 14.4 26 ± 3.4 55 ± 6.1 4.2 ± 0.48 9.7 ± 0.94
RUL 50 ± 4.7 100 ± 19.3 32 ± 3.1 66 ± 7.8 3.8 ± 0.33 8.6 ± 0.95

tte-o 51 ± 3.7 112 ± 23.8 30 ± 2.6 71 ± 10.2 4.6 ± 0.37 11.9 ± 1.87
tte-p 50 ± 4.5 105 ± 28.3 31 ± 3.1 68 ± 11.7 4.2 ± 0.40 10.1 ± 1.54
Table 3
Performance of model to predict future capacity and IR, when current capacity/IR is known.

RMSE MAE MAPE (%)

Train Test Train Test Train Test

Q@k-o 0.0018 ± 2.4e−4 0.0082 ± 6.7e−4 0.0013 ± 1.9e−4 0.0041 ± 2.6e−4 0.13 ± 0.02 0.40 ± 0.03
Q@k-p 0.0022 ± 2.8e−4 0.0075 ± 4.6e−4 0.0017 ± 2.5e−4 0.0040 ± 2.1e−4 0.17 ± 0.02 0.41 ± 0.02

IR@e-o 5.4e−5 ± 6.2e−6 0.00019 ± 2.1e−5 3.3e−5 ± 3.8e−6 0.00014 ± 1.6e−5 0.20 ± 0.02 0.84 ± 0.10
IR@e-p 6.7e−5 ± 6.7e−6 0.00021 ± 2.5e−5 4.4e−5 ± 5.0e−6 0.00015 ± 2.1e−5 0.26 ± 0.03 0.85 ± 0.12
IR@EOL 0.00020 ± 4.9e−5 0.00041 ± 5.5e−5 0.00014 ± 2.0e−5 0.00032 ± 4.0e−5 0.72 ± 0.10 1.71 ± 0.21
and tte-p, respectively; for the ‘capacity’ model 0.3 and 0.15, Q@k-e
and Q@k-p; and, for the ‘IR’ model 0.75, 0.7 and 0.5, IR@e-o, IR@e-
p and IR@EOL. Final models were then trained on the full training set
and multiple predictions made with the selected dropout rates. Example
plots of the predictions produced by this model are presented in Fig. 3,
where we present plots for 9 randomly chosen cells from the 35 test
cells at random cycles from between cycle 1 and 10. The full curve
prediction intervals presented in this plot were calculated by fitting our
empirical model (Fig. 1(b)) to the prediction intervals calculated from
the dropout predictions of knee/elbow -onsets and points, and the EOL.
We do not address the impact of measurement noise on our input data.
A simple approach to address this issue would be to allow a normal
distribution around the measured capacity/IR with variance calibrated
5

to the training data, or to take capacity values from several cycles as
input.

It is clear from Fig. 3 and Fig. 4b that, on average, our model
performs worse on cells with longer cycle lives and Fig. 4c shows the
reason why: a significantly lower amount of training data is available
for cells with an EOL above 1200 cycles.

A related problem to the prediction of RUL is the classification
of cells by expected lifetime. For example, manufacturers may wish
to select only the best performing cells to place in a battery pack.
In the context of the Severson dataset we point to [10] who report
a 4.9% test error classifying cells by ‘long-lived’ (EOL > 550 cycles)
and ‘short lived’ (EOL < 550 cycles) from 5 cycles of data, and [1]
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Fig. 4. a. Confusion matrix for prediction of EOL classes ‘short life’ (EOL < 550), ‘medium life’ (550 < EOL < 1200) and ‘long life’ (EOL > 1200), based on quantitative prediction
for test set. b. Actual EOL vs predicted EOL with distribution of errors, showing a slight bias to under-predict EOL especially for longer lived cells. c. Distribution of training data
for EOL showing a significantly lower amount of training data for long lived cells.
Fig. 5. Plot of model’s performance to predict RUL in the full setting, showing a mostly
inear improvement in performance as the prediction point approaches the EOL.

ho achieve an accuracy of 88% classifying the batteries into ‘short’
knee-point < 500 cycles), ‘medium’ (knee-point between 500–1100
ycles) and ‘long-range’ (knee-point > 1100 cycles) from 5 cycles of
ata. For comparison with these results, Fig. 4a displays a confusion
atrix obtained from converting our model’s cycle predictions into

hree classes ‘short’ (EOL < 550 cycles), ‘medium’ (550-1200 cycles)
and ‘long’ lived (> 1200 cycles). We see that our model achieves a
comparable level of accuracy while performing the classification from a
single cycle of data. This shows that, while not performing well on long-
lived cells (in the regression problem), the prediction is competitive for
the classification problem. The barrier of 550 matches that used in [10],
and the barrier of 1200 is in line with that used in [1] (as the EOL occurs
somewhat after the knee-point).

In Fig. 5 we note that the model performance improves in a largely
linear manner as the cycle from which the prediction was made ap-
proaches the EOL.

4.3. Comparison with prior art

We report a comparative study of our work to existing art util-
ising the Severson dataset. A review of works presenting models for
prediction of EOL and RUL utilising different datasets can be found
in the introduction (and references therein). Model performance may
vary due to different employed datasets. In this regards, we can only
meaningfully compare our results to these in terms of methodology.
However, we choose to provide a quantitative comparison against liter-
ature drawing on the same dataset analysed in this work. In particular,
we discuss [10,23,29–31] to review methods and approaches used,
results presented, features selected, mode of feature selection and the
number of cycles required for prediction. A summary of this comparison
6

can be found in Table 4. We separate EOL and RUL prediction as these
problems are quantitatively distinct.

Prediction of RUL (summarised in Table 4 (a))
Hong et al. [23] propose a Dilated CNN to predict the RUL. Their

approach is feature free. As input their model takes 4 cycles of voltage,
current and temperature data. They introduce two settings: the ‘initial’
setting where they restrict to data from the first 100 cycles, and the ‘full’
setting where they restrict to data before EOL. They obtain a reported
MAPE of 10.6% and 19.7% in the initial and full settings, respectively.

In order to compare our model’s performance with that of [23] in
Table 5 we present our model’s performance in the initial and full
setting. Where we obtain an MAPE of 9.6% and 12.8%, respectively.
Outperforming the model of [23] in both settings using fewer cycles of
data. We emphasise the methodological difference here to [23]: their
use of 4 cycles is explicitly to capture inter-cycle cross-data correlations
and temporal patterns; our results need only 1 cycle which does not
contain any type of gradient information.

Prediction of EOL (summarised in Table 4 (b))
Severson et al. [10] predict the EOL using a Regularised Linear

Model trained on features extracted from the first 100 cycles of data.
They emphasise the importance of including voltage data in their re-
gression models, in particular capacity as a function of voltage (Q(V));
they propose three candidate models to predict EOL all utilising fea-
tures extracted from the gradients of voltage discharge curves. The
best performing of these models (utilising the most features) obtains
a reported MAPE of 9.1%

Ma et al. [29] propose a new ‘Broad Learning-Extreme Learning
Machine’. This model is tested to predict the capacity and EOL on
three data sets. For the Severson dataset they present results only for
the prediction of EOL. Like Severson et al., their model takes as input
features extracted from the first 100 cycles of data. With this model
they obtain a reported MAPE of 9%.

Shen et al. [30] predict the EOL using a Relevance Vector Machine
(RVM) to enhance the dataset by generating ‘artificial cells’ with long
cycle-lives. The enhanced dataset is used then to train a CNN. As input
the CNN takes the same gradients of Q(V) as Severson et al., thus we
consider it a ‘feature based’ CNN. Evaluating their model on a primary
and secondary test set, they report an average MAPE of 11.7%.

In contrast to the approaches described above we take a feature
extraction free approach, utilising a convolutional neural network to
learn the ‘optimal’ features. As input our model takes a single cycle of
voltage and current data, thus our model sees no gradient information.
The performance of our model to predict the EOL and RUL (when
restricted to batches 1, 2 and 3) is presented in Table 5.

Prediction of the IR rise curve
To the authors’ knowledge the only other work predicting the IR

rise curve for the Severson dataset is [2], where a RVM was used to

predict the elbow-onset and -point from the first 50 cycles of data. For



Energy and AI 5 (2021) 100097C. Strange and G. dos Reis
Table 4
Comparison of results from works using the Severson dataset. For comparison purposes, reported results
exclude data from batch 8. Ordered by number of cycles used and reported MAPE. Inputs listed are in-cycle
measurements of voltage (V), current (I), temperature (T), capacity as a function of voltage (Q(V)); and
cycle-to-cycle measurements of capacity (SOH), internal resistance (IR) and time to charge (ttc).
Paper Inputs Cycles used MAPE What is predicted

This work V, I 1 8.8 % EOL
9.6 % RUL

[23] V, I, T 4 10.6% RUL

[29] SOH, Q(V), IR, ttc 100 9.0%

EOL[10] SOH, Q(V), IR, ttc, T 100 9.1%
[30] Q(V) 100 11.7%
[31] SOH, Q(V), V, T 250 7.0%
Table 5
Performance of proposed model to predict EOL and RUL when restricted to batches 1, 2 and 3. We report performance both
in the initial setting (input cycle < 100 cycles) and the full setting.

RMSE (cycles) MAE (cycles) MAPE (%)

Train Test Train Test Train Test

EOL 55.0 ± 5.8 110 ± 24.4 33 ± 3.4 73 ± 12.4 3.5 ± 0.35 8.8 ± 1.43
RUL (initial) 55.0 ± 5.8 110 ± 24.4 33 ± 3.4 73 ± 12.4 3.7 ± 0.43 9.6 ± 1.47
RUL (full) 38 ± 2.7 99 ± 34.8 23 ± 2.5 59 ± 12.6 5.3 ± 0.47 12.8 ± 1.26
r
s

n

the prediction of elbow-onset they achieved a MAPE of 14.0% and a
MAE of 91.3, and for the elbow-point a MAPE of 11.5% and a MAE
of 83.4. We have improved on this previous work in terms of accuracy
and number of input cycles.

Prediction of the entire capacity fade curve
To the authors’ knowledge the only other work predicting the entire

capacity fade curve for the Severson dataset can be found in Herring
et al. [32]. Presenting a python library for the prognosis and cycle life
prediction of Li-ion cells. As an example of their libraries performance,
they predict the evolution of cell capacity for the Severson dataset.
They train a multi-task linear model to predict the number of cycles
until a cell reaches a range of SOH levels. This model takes as input the
features in [10] covering 100 cycles of data. No performance metrics
were provided.

5. Conclusions

The prediction of future capacity loss and IR rise is a problem
of great importance. Current capacity prediction algorithms demand
input data across many tens of full charge–discharge cycles to work
and IR rise prediction has received little attention in the literature.
In our framework, the remaining useful life and the entire capac-
ity/IR trajectory are accurately predicted from a single input data
cycle. This reduction entails a significant increase in prognostics proce-
dures’ affordability through reduced testing times, and stands to benefit
academics and industry.

Differentiating from existing methods, we use key quantities as a
dimension reduced description of the capacity fade and IR rise curve,
which combined with an empirical model describe the full curves.
Regarding model selection and simplification, we effectively demon-
strate that gradient information is not required for the prediction of
future capacity degradation. To the best of our knowledge this is in
stark contrast to all previous work in this domain, which explicitly or
implicitly require gradient information for prediction. Lastly, our model
shows competitive performance compared with prior art, demonstrat-
ing the power of deep learning unlocked by considering each data cycle
individually.

In terms of future work, the methodology we present could be
deployed to electrochemical impedance spectroscopy (EIS) data which,
a priori, is easier to gather.
7

Methods

Learning rate scheduler. Starting from the default Keras learning
ate, the learning rate scheduler updates the learning rate every ‘decay
tep’ number of epochs as described in Eq. (1)

ew learning rate = previous learning rate × decay rate. (1)

Machine learning performance scores. The mean absolute error
(MAE), mean absolute percentage error (MAPE) and root mean square
error (RMSE) are defined as follows: where 𝒚 the vector of true values
and �̂� is the vector of predicted values

MAE(𝒚, �̂�) = 1
𝑛samples

𝑛samples
∑

𝑖=1
|𝑦𝑖 − 𝑦𝑖|, (2)

MAPE(𝒚, �̂�) = 100%
𝑛samples

𝑛samples
∑

𝑖=1

|𝑦𝑖 − 𝑦𝑖|
𝑦𝑖

, (3)

RMSE(𝒚, �̂�) =

√

√

√

√
1

𝑛samples

𝑛samples
∑

𝑖=1
(�̂�𝑖 − 𝑦𝑖)2. (4)
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