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Abstract

Automatic speech recognition (ASR) is increasingly used
to evaluate the intelligibility of text-to-speech synthesis (TTS).
ASR is less costly than traditional listening tests, but ques-
tions remain about its reliability. We re-evaluate the Bliz-
zard Challenge’s intelligibility tasks in English since 2011 us-
ing ASR. Re-analysing transcriptions collected by paid in-lab
participants, online volunteers and Amazon Mechanical Turk-
ers (the latter used only in 2011), we compare their word er-
ror rates (WERs) and statistically-significant system-groupings
with those generated by an open-source, Transformer-based
ASR model. This ASR model consistently decodes test stimuli
with more reliable WERs than the Blizzard Challenge’s (mostly
non-native) speech experts and online volunteers. The model
also groups systems according to statistical significance simi-
larly to the paid in-lab participants. Using surplus semantically
unpredictable sentences (SUS) submitted every year to the chal-
lenge, we investigate how confidence intervals in ASR WERs
change as the number of transcribed stimuli increases. We plot
the Frobenius norm of pairwise significance matrices with in-
creasing stimuli. We find that finer groupings of systems are
detected as confidence intervals narrow. The number of stimuli
where p-values start to converge ranges from 400-800 stimuli.
We conclude that, with enough stimuli, ASR can be more reli-
able than humans.

Index Terms: Text-to-Speech, Objective Evaluation, Auto-
matic Speech Recognition, Statistical Analysis

1. Introduction

The development of objective evaluation metrics is crucial to
the field of text-to-speech synthesis (TTS). Traditional listening
tests conducted under controlled conditions are expensive, and
the data collected may require extensive quality control [1, 2].
The drive for simpler and less expensive means for evaluation
have resulted in use of metrics such as PESQ [3], MCD [4] and
ViSQOL [5]. Recent work has also focused on the prediction
of Mean Opinion Scores (MOS) for TTS [6, 7, 8] and voice
conversion [9, 10] systems using neural networks.

While MOS measures speech naturalness, another key fac-
tor in the perception of system quality is intelligibility [11].
Some of the previous work on objective intelligibility measure-
ment has focused on speech in noise to evaluate speech en-
hancement algorithms [12]. This was the subject of the Hur-
ricane Challenge [13]. Recent progress in Automatic Speech
Recognition (ASR) has enabled the use of ASR transcription as
a more interpretable metric for intelligibility. A phone-based
ASR system outperformed other objective intelligibility mea-
sures for evaluating speech enhancement in [14].

The use of large, open vocabulary continuous speech recog-
nition (LVCSR) to substitute human listening evaluations is a
recent innovation. For instance, an open source LVCSR system
available from [15] was also used to evaluate TTS intelligibility

in [16]. Previously, only closed vocabulary ASR had been used
for transcription tasks, as in [17]. Recently, ASR has also been
used for other tasks in TTS such as the automatic selection of
“clean” training utterances and speakers [18], and for transcrip-
tion of training recordings in [19].

Little work has so far sought to establish the reliability of
ASR for measuring TTS intelligibility. [20] found strong corre-
lations between human word error rate (WER) collected from
Amazon Mechanical Turk (MTurk) to the WER of 3 differ-
ent ASR systems (IBM Watson, Google API and wit.ai). [21]
also found correlations between MTurk, these ASR systems and
MCD when building DNN-based TTS voices in Merlin. How-
ever, it remains unknown whether explicit ASR-derived rank-
ings of multiple TTS systems correlate with those derived from
paid, in-lab human transcribers.

The Blizzard Challenge [22] provides evaluation data for
the development of objective metrics [23, 24, 25, 26, 27]. This
annual challenge conducts human transcription evaluation with
semantically unpredictable sentences (SUS). We use this re-
source here to compare WERs computed using in-lab and on-
line human transcriptions with objective ASR transcriptions.
Specifically, we compare rankings of systems submitted to the
Blizzard Challenge in 2011, 2012, 2013, 2016, 2017 and 2018.

We find ASR gives similar transcription WERs and statisti-
cally significant pairings of systems as the paid human listeners.
ASR is more reliable than the Online Volunteers and Speech Ex-
perts (the majority of whom are non-native English speakers)
used in the Blizzard Challenge.

A key advantage of using ASR is that more stimuli may be
transcribed without the considerable cost of recruiting human
listeners. Obtaining human transcriptions for a large number
of stimuli is expensive and [28] has shown participant retention
drops after 20 stimuli, as participants struggle to stay engaged
in speech quality evaluations. We analyse the confidence in-
tervals relating to the WERs obtained as the number of stimuli
increases using a bootstrap method [29]. With more stimuli, we
find confidence intervals narrow and p-values decrease between
systems.

2. Methods
2.1. Research Questions

Our following research questions aim to determine the extent to
which ASR provides a reliable intelligibility metric for TTS:

1. How does ASR compare to paid listeners when transcrib-
ing synthetic speech in the Blizzard Challenge?

2. How do the confidence intervals over ASR WERs
change as the number of TTS test stimuli is increased?

3. Do ASR transcriptions identify the same significant dif-
ferences between system pairs as the paid listeners?

4. Are there any benefits to increasing the number of stim-
uli for ASR transcription?



2.2. ASR Model

We use a pretrained LibriSpeech Transformer model available
from EspNet [15]. This has the advantages of being open-
sourced, accessible and trained end-to-end (E2E) on a large
(1,000 hours [30]) multi-speaker corpus. It performs with a
WER of 4.9% on the LibriSpeech clean test set. As an E2E
model, it does have the disadvantage though that extracting
recognised phone strings to measure phone error rate (PER) is
not possible, which may otherwise potentially offer insights into
the reliability of ASR for TTS intelligibility. For example, [31]
found ASR PER to be a superior means of TTS model selection
than common loss functions.

2.3. Data
2.3.1. Blizzard Challenge

The Blizzard Challenge is an annual event where participants
are provided with a speech dataset for voice building and are
asked to submit a defined set of synthetic samples for evalu-
ation. The focus of the challenge changes from year to year;
for example, samples were evaluated at varying noise levels
in 2010, while the challenge was focused on Mandarin TTS
in 2019. Each year, a large-scale human listening evaluation
is conducted. See the Blizzard Challenge summary papers
[32, 33, 34, 35, 36, 37] for more detail. We exclude years 2014,
2015, 2019 and 2020 as these used languages other than En-
glish.

2.3.2. Listener Types

Each year a section of the evaluation focuses on measuring the
intelligibility of submitted systems. Paid listeners are recruited
who type-in transcriptions in purpose-built sound booths under
controlled conditions. These listeners are known as EP or EE
depending on the year of the challenge. Participating teams also
recruit their own speech experts and online volunteers to con-
duct an evaluation. Known as ES and ER respectively, these are
mainly composed of non-native speakers of English. In 2011,
Amazon Mechanical Turk (AMT) was also used for evaluation.

2.3.3. TTS Test Stimuli and Systems

Each year a new test set of SUS stimuli is submitted as well as
the test sets of the previous two years. For each challenge we
analyse here there were 3 test sets used in the ASR maximum
stimuli sets (henceforth Extra ASR): 2011 (700 stimuli), 2012
(800), 2013 (900), 2016 (600), 2017 (600), 2018 (600). We in-
clude data from two challenges in 2013 (EH1 and EH2). The
test stimuli were created using a SUS generator and do not ap-
pear in the LibriSpeech training dataset for the ASR system we
use for evaluation.

Systems are randomly allocated a different anonymized let-
ter each year. Some systems did not submit the 3 SUS test
sets in a given year (such as system N in 2017) and we ex-
clude those systems from analysis. System A is always natural
speech but since recordings of the SUS sentences do not exist
we do not include them in our analysis. Years 2017 and 2018
included systems based on neural text encoders and WaveNet-
based vocoders, with earlier years including previous Unit Se-
lection and SPSS-based TTS. We computed statistics using the
Scikit-learn Python package.
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Figure 1: Aggregate Difference in WER from Paid Participants.
Each bar shows the mean and 2 standard deviations for each lis-
tener type: Speech Experts (ES), Online Volunteers (ER), Ama-
zon Mechanical Turkers (MTurk), the same stimuli ranked by
ASR (ASR) and the maximum number of test SUS synthesised
each year (Extra ASR)

2.4. Results
2.4.1. WER by listener type

Figure 1 shows the differences in WER from the paid listeners.
For each year analysed, the cross represents the mean difference
in WER and the bars 2 standard deviations. Each listener type
is denoted by colour and the scores are offset around a year
label to aid visualisation. The ASR bars in blue are the same
stimuli as transcribed in the formal human evaluations, ranging
between 25-40 stimuli depending on the year. As noted above,
the Extra ASR bars in orange correspond to 3 SUS test sets (600-
900 stimuli per year)

ASR performance is close to the paid listener WERs for ev-
ery year except 2011, where the MTurk participants achieved
lower WERs. ASR gives consistently lower WERs than the
speech experts and online volunteers. The latter groups have
high WERs as their evaluations are conducted more informally
than for the paid listeners and non-natives are consistently
above 60% of listeners each year. Similar WER averages and
spreads are achieved by the ASR and Extra ASR sets. This was
as expected since the genre of text was similar. The Extra ASR
bar for 2013 EH2 outperformed the paid listeners.

2.4.2. Bootstrapping ASR Confidence Intervals

We wanted to know how statistically valid ASR transcriptions
were to rank TTS systems. During our analysis, we noticed
ASR WERs fluctuate considerably across the SUS stimuli.
Measuring confidence in the WER metric is thus important.
[29] aims to make the WER metric more reliable by bootstrap-
ping [38] the WER of a system. A bootstrap of ASR WER
involves sampling WERs from a bag of stimuli to remove any
possible effects of ordering.

In our approach, the bootstrap was run successively in steps
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Figure 2: Bootstrapped WER confidence interval averaged
across ASR stimuli. The bootstraps were conducted in steps of
20 stimuli. At each step, the mean and variance confidence in-
terval in WER of all systems in a year are computed. A solid line
represents the mean confidence interval for a year as stimuli are
increased. The shaded bands represent 2 standard deviations in
the confidence intervals of all systems in a year.

of 20 stimuli up to the size of the Extra ASR test sets for each
year. For each step we re-sampled individual WER scores with
replacement. We computed 1000 model simulations of WER
in each step. To compute confidence intervals next we sorted
the simulated WERs at 95% confidence by plotting the 25th
and 975th scores at each step (2.5% either side of the distribu-
tion). These upper and lower bounds formed the bootstrapped
confidence interval around the WER given a certain number of
stimuli. The confidence intervals allowed visualisation of sta-
tistically valid differences between TTS systems and datasets as
the number of stimuli under test increased.

Figure 2 shows the average WER confidence interval after
bootstrapping. The confidence interval for each year is an aver-
age of the confidence interval of all systems at each step.

The lines are the mean interval at each step of 25 stimuli, the
shaded area shows 2 standard deviations around the mean. We
see the means begin to stabilise around 500 stimuli to around
4%. In 2016, the range of confidence intervals was more diverse
than other years, but its mean score was similar to other years.

Narrower confidence intervals show systems may be more
reliably scored with Extra ASR stimuli. Below we analyse the
effect extra stimuli have on identifying significant differences.

2.4.3. Rankings by pairwise wilcoxon p-values

The Blizzard Challenge tests significance using pairwise
Wilcoxon signed-rank tests. Initially, we compared rankings
from each listener type using the Kendall-Tau rank correlation
statistic [39]. However, since many systems exhibited no sig-
nificant differences between one another, the statistic was mis-
leading. It would have been indicative if every system had a
significant difference between itself and its neighbouring ranked
systems.

We therefore computed aggregate statistics using the pair-

D

C G M L

P

F Q B K H

(0]

bLM™MG ] I CPHKDBQFO

J M D L

G

F Q P K B CH

0]

L bM J G I H CB K P Q F O

Figure 3: Heatmap of pairwise p-values for systems ranked by
Paid Listeners with 25 stimuli (Top) and Extra ASR (600 to-
tal - bottom) for the Blizzard Challenge 2017. Blue indicates
a p-value below 0.005 between the pair. Red indicates no-
significance. With extra stimuli p-values are lower.

wise Wilcoxon signed-rank matrices for each listener type. In
a matrix, each cell is a p-value between a pair of systems. Fig-
ure 3 simplifies two such matrices using a p-value threshold of
0.005, where blue indicates a significant pair, while red rep-
resents pairs above the threshold. The top heatmap shows the
rankings and p-values for paid listeners in 2017. The bottom
one shows the ranking and p-values according to Extra ASR.

The heatmaps display overlap of no-significance between
systems with partial rows of red cells. We extracted each of the
unique partial rows of no-significance for every listener type in
each challenge in Figure 4. The first partial row in the heatmaps
above spans systems D to P (the top line in Figure 3), the sec-
ond partial row spans systems D to H. Hence these are the first
two lines in the 2017 Paid Listeners cell in Figure 4. For each
challenge we show 3 rankings (EP, ASR and Extra ASR). Con-
sistently, the rows of no-significance are similar for EP and ASR
but longer than in Extra ASR. Figure 4 consistently shows that
ASR indeed finds similar significance groups to EP and also
more significant differences when extra stimuli are used.

Figure 4 also shows that some systems which are further
than 1 step away in a rank may be in a similar group of no-
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Figure 4: Groups of no-significance for Paid Listeners, ASR and
Extra ASR. Each line represents a unique grouping of systems
as found in the p-value heatmaps. For the pairwise Wilcoxon
signed-rank test, the significance level was set at a p-value of
0.005. When stimuli only used in the formal evaluation were in-
cluded (Paid Listeners and ASR), the groups of no-significance
encompass more systems than with extra stimuli (Extra ASR).
We omit the the Online Volunteers, Speech Experts and Mechan-
ical Turk groupings in this Figure due to space considerations
and ease of visualisation - these also had long groups of no-
significance such as the Paid Listeners and ASR. Note that sys-
tems which did not have 3 SUS test sets available were excluded
from our analysis.

significance. For example, system Q in the top line of ASR
2017. Although the mean performance of a system gives a par-
ticular ranking, the spread in its performance might result in no
statistical significance when tested. The mean score of system
Q was skewed by 2 low quality outlier stimuli. Such stimuli
may be very important to examine for systems in deployment,
and wide variance is observed even when using more stimuli
with higher confidence such as in system I in Extra ASR 2018
and systems C and E in Extra ASR 2011. The problems result-
ing from smoothing out the effects of certain individual stimuli
was the focus of [40] where the authors proposed evaluating
systems based on test sets that target differences in the output
of systems.

2.4.4. Frobenius norm of p-value matrices

We next sought to find out how significance levels improved
as we increased the number of stimuli under consideration,
potentially to find an optimum where significance was max-
imised with as few stimuli as possible. To visualise how sig-
nificance varied we calculated the Frobenius norm of each pair-
wise Wilcoxon p-value matrix as we increased the number of
ASR stimuli. The Frobenius norm is the square root of the sum
of all the squared values of a matrix. In Figure 5 we plot the
Frobenius norm as we increased the stimuli for each challenge.

The falling curves reflect falling p-values overall. There is
a fall for all challenges, but to a differing degree for each. The
absolute value of the norm is dependent upon the total number
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Figure 5: Frobenius norm of pairwise Wilcoxon rankings vary-
ing according to number of stimuli included in significance test.
We wish to find the convergence level for each curve. This level
demonstrates the number of stimuli where the amount of signifi-
cance discoverable is optimised with as few stimuli as possible.

of systems (e.g. 2013 EH1 contained the fewest systems and has
the lowest Frobenius norm curve). More noteworthy is the rel-
ative gradient change for each and finding where they converge
- this level indicates where we find optimal significant differ-
ences between systems in a challenge. We see the curves fall
the most in the first 200 stimuli. 2013 EHI1 falls further after
400 stimuli when reaching a subset of the Extra ASR stimuli.
Each curve has its own relative convergence level arising from
the performance on the Extra ASR stimuli, the number of sys-
tems, and the relative quality of each in a challenge. Levelling
can be observed from between 400-800 stimuli, although this
is less clear for 2013 EH2 where the curve increases after 400
stimuli until it drops further around 700 stimuli. Thus, in addi-
tion, the test stimuli included can have an effect on whether a
convergence level is found.

3. Conclusion

We used ASR to re-evaluate the Blizzard Challenge SUS tasks
in 2011, 2012, 2013, 2016, 2017 and 2018. We found ASR
performed reliably for evaluating intelligibility of TTS systems
in the Blizzard Challenge, indeed on a comparable level to the
challenge’s paid listeners. Using extra stimuli, ASR also de-
tected more statistically significant differences between pairs of
systems, which would have been expensive to find in the hu-
man evaluations. We conclude that our analysis of the large and
varied Blizzard Challenge data sets confirms that ASR can be a
reliable and convenient metric to measure intelligibility, as long
as a sufficiently large number of stimuli are used.
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