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Abstract
Forecasts of tropical ecosystem C cycling diverge among models due to differ-
ences in simulation of internal processes such as turnover, or transit times, of
carbon pools. Estimates of these processes for the recent past are needed to test
model representations, and so build confidence in model forecasts within and
across biomes. Here, we evaluate carbon cycle process representation in two
land surface models [Joint UK Land Environment Simulator (JULES) and Inte-
gratedModel of Land Surface Processes (INLAND)] for the period 2001–10 across
Brazilian biomes. Model outputs are evaluated using the ILAMB system. Prob-
abilistic benchmarking data were created using the carbon data model frame-
work that assimilates observational times series of leaf area index and maps of
woody biomass and soil C. New custom uncertainty metrics assess if models are
within benchmark uncertainties. Simulations are better in homogeneous areas
of vegetation type, and are less robust at ecotones between biomes, likely due
to disturbance effects and parameter errors. Gross biosphere-atmosphere fluxes
are robustlymodelled across Brazil. However, benchmark uncertainty is too high
on net ecosystem exchange to provide an accurate evaluation of the models. The
LSMs have significant differences in internal carbon allocation and the dynamics
of the differentCpools. JULESmodels deadC stocksmore accuratelywhile living
C stocks are best resolved for INLAND. JULES’ over-estimate of the C wood pool
results from over-estimation of both inputs to wood and the transit time of wood.
INLAND’s under-estimate of dead C stocks arises from an under-estimate of the
transit time of dead organic matter. The models are better at simulating annual
averages than seasonal variation of fluxes. Analyses of monthly net C exchanges
show that INLAND correctly simulates seasonality, but over-estimates ampli-
tudes, whereas JULES correctly simulates the annual amplitudes, but is out of
phase with the benchmark.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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1 INTRODUCTION

Tropical ecosystems, which cover 90% of Brazil, are major
stores of carbon (C) and drivers of C exchanges between
land and atmosphere. The response of these tropical
ecosystems to increasing atmospheric CO2 concentrations
and climate changes will have important feedbacks on the
Earth system. Understanding and predicting the future
of tropical C cycling is thus critical for managing efforts
to meet international political agreements, such as the
Paris Agreement related to the United Nations Framework
Convention on Climate Change. Land surface models
(LSMs) are used to predict future C cycling based on theo-
rized carbon cycle climate feedbacks (Bonan, 2018). How-
ever, these models are complex, with multiple parameter-
ized representations of interacting processes. Model inter-
comparison studies show important and poorly under-
stood differences in model forecasts (Jones et al., 2016).
Much of the model-to-model variation in projected land
sink during the 21st century is linked to biases existing dur-
ing the observational era. The primary driver of this vari-
ability has been linked to model differences in the repre-
sentation of slowly changing carbon cycle processes linked
to transit times of C through the ecosystem (Hoffman et al.,
2014).
LSMs, such as Joint UK Land Environment Simulator

(JULES) and Integrated Model of Land Surface Processes
(INLAND), have been developed to determine global ter-
restrial C cycling responses to past and future climate
change (Koven et al., 2011; Sitch et al., 2003; Woodward
et al., 1995). LSMs represent and link vegetation processes
(i.e. growth, turnover and competition) and biogeochem-
istry (i.e. water and nutrient cycling, soil decomposition).
LSMs can characterize C dynamics in response to var-
ied forcing, such as weather or human disturbance, and
therefore forecast C cycle responses to future environmen-
tal conditions. However, C cycle modelling in LSMs typi-
cally relies on parameters derived from literature. Param-
eters are linked to a limited number of prescribed plant
functional types (PFTs) which describe process variability
between biomes. Also, LSMs tend to use a spin-up process
to ensure that the large C pools [biomass and dead organic
matter (DOM)] reach steady state. Further, inherent dif-
ferences of LSM structure contribute strongly to forecast
uncertainties (Nishina et al., 2014; Exbrayat et al., 2018),
more than do differences in climate projections (Ahlström

et al., 2012). Many model inter-comparison projects have
demonstrated a lack of coherence in future projections of
terrestrial C cycling (Ahlström et al., 2012; Friedlingstein
et al., 2014). Recent studies have used simulations from
the first phase of the Inter-Sectoral Impact Model Inter-
comparison Project (ISI-MIP) (Warszawski et al., 2014) to
evaluate the importance of key elements regulating vegeta-
tion C dynamics, but also the estimatedmagnitude of their
associated uncertainties (Friend et al., 2014; Nishina et al.,
2015; Thurner et al., 2017; Nishina et al., 2014; Exbrayat
et al., 2018).
An important insight is that transit times (or residence

times) of C in LSMs are a key uncertain feature of the
global C cycle simulation. Further, uncertainties in LSM
estimates of stocks and fluxes are unknown, which weak-
ens their analytical value. LSM inter-comparison has high-
lighted the need to evaluate terrestrial C cycle process rep-
resentation against independent data. The goal of such an
evaluation should be to highlight particularly the valid-
ity of cycling of large slow pools such as wood and DOM
C, changes to which ultimately determine C sources and
sinks. Poorly understood processes include phenological
variability, allocation of photosynthate to wood and resi-
dence time of wood. Rigorously assessing models during
an observation period provides a way to advance under-
standing and predictability of terrestrial biogeochemical
processes, inform model development and identify rele-
vant measurements from field campaigns and satellites for
further improved testing.
Over the past decade, data from field networks and

satellite observations have improved understanding of
global terrestrial C stocks and phenology at finer res-
olutions. These products range from machine-learning-
based upscaling of FLUXNET data (Jung et al., 2017),
remotely sensed biomass products (Thurner et al., 2014;
Carvalhais et al., 2014) and the creation of global soil
databases (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) (Hengl
et al., 2017). Due to a reliance on interpolation and upscal-
ing with other spatial data, it is challenging to evaluate
these products for inherent biases and so to link these for a
consistent model evaluation. Also, spatial reporting of key
internal variables such as allocation of C to wood, or wood
residence time has been sparse and lacking clear uncer-
tainty estimates. It is important that these data sets have
robust error assessments so that they can be appropriately
weighted in model evaluation.
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To produce a benchmark of key C cycle variables, exist-
ing spatial observational products can be combined into
a consistent, error characterized, description of the C
cycle through assimilation with an intermediate complex-
ity (IC) model. Such model-data fusion draws information
from varied data sources, taking account of the supplied
errors, to calibrate an ICmodel using Bayesian approaches
(Williams et al., 2005; Luo et al., 2009; Fox et al., 2009;
Bloom and Williams, 2015). The outcome is a probabilis-
tic assessment of the full C cycle at the resolution of the
analysis, fromC uptake to allocation, transit times and res-
piration. The C budget is provided by the IC model with
parameters adjusted at the analysis resolution to be con-
sistent with the multiple data sources assimilated for that
location, weighted by their errors. The model output is
generated by local climate forcing and any other endoge-
nous forcing such as burning or land-use change products.
Using Bayesian approaches means that error is propagated
throughout the data assimilation, to produce ensembles
of model parameters, stocks and fluxes. So, fluxes such as
allocation towood are estimatedwith errors that are linked
to related observational products, such as wood biomass
maps. The analysis output provides a means to test pro-
cesses and dynamics of LSMs, and particularly to investi-
gate those model components implicated in divergent pre-
dictions that differ significantly from the benchmark.
Here, we use the carbon data model framework (CAR-

DAMOM) (Bloom and Williams, 2015; Bloom et al., 2016;
Smallman et al.) to benchmark historical modelling by
INLAND and JULES of the Brazilian terrestrial carbon
cycle at 1◦ resolution for the 2001–2010 period. CAR-
DAMOM assimilates gridded observations of leaf area
index (LAI) times series, and maps of woody biomass and
soil organic carbon (SOC) stocks at these spatial scales
into DALEC, an IC C model (i.e. less complex than JULES
and INLAND). CARDAMOMfinds distributions of param-
eters and initial conditions for DALEC that are consis-
tent with local atmospheric forcing, observations and a
series of ecological and dynamical constraints (EDCs).
These EDCs ensure that common sense rules are applied
to restrict Monte Carlo searching of the parameter hyper-
volume of DALEC to realistic regions (i.e. sensible val-
ues for root:shoot ratios and relative lifespans for differ-
ent plant tissues; quasi-steady-state behaviour for C pools).
CARDAMOM therefore avoids the use of PTF concepts –
instead CARDAMOM produces a continuum of spatially
varying parameters, at 1 degree resolution across Brazilian
biomes. CARDAMOM avoids steady-state assumptions,
instead allowing a large ensemble of parameters for each
1 degree pixel that span a range of quasi-steady-states con-
sistent with observations and forcing.
This paper targets a series of questions to diagnose the

models’ capabilities to reproduce the benchmark’s outputs

in space and time across Brazilian biomes. The analysis
focuses on key biogenic stocks and fluxes to develop under-
standing of ecological process variation in time and space
across Brazil. Key questions addressed are: (i) For both
LSMs which biomes have the greatest and least consis-
tency with the benchmark? (ii) How do the models com-
pare with the benchmark in terms of internal C process-
ing and the major biosphere-atmosphere C fluxes? (iii)
What is the mean transit time for C in each model and
how robust are these estimates against the benchmark?
(iv) How reliable are the representations of seasonality
in the models? The main challenge for this study lies in
the complexity of models, which include multiple out-
put rates and pools of C, and the variability of the Brazil-
ian landscape. Within Brazil are found diverse ecosys-
tems, including a large part of the Amazon biome, and
the varied seasonal tropical biomes of Cerrado, Caatinga
and the Atlantic Forest. Quantitative measures compare
the model variables with the benchmark, including scores
based on spatial or temporal matching, with a break-
down of results for each biome. The comparison high-
lights the general matching between each model and the
benchmark, and identifies which biomes and which pro-
cesses have the highest and lowest consistencies. To iden-
tify the causes of disagreement between models and the
benchmark, a further analysis compares the models in
terms of inputs, outputs and internal processing, and iso-
lates the main variables on which total C dynamics are
dependent. Knowing these dependent variables provides
qualitative targeting for future modelling efforts, with a
focus on the transit time of the main pools contributing
to carbon storage. Finally, this aggregated analysis helps
identify and understand source and sink behaviours of
the system, including its variability over seasonal cycles.
The study includes metrics for model evaluation against
a benchmark that incorporates confidence intervals (CIs).
As far as we know, this is the first published evaluation of
this kind.

2 METHODS

The evaluation of the two LSMs, JULES and INLAND,
across themajor Brazilian biomes (Figure 1) was facilitated
by the ILAMB (International Land Model Bench-marking
(https://www.ilamb.org/, (Collier et al., 2018)) evaluation
package. ILAMB uses metrics to inter-compare land mod-
els and make evaluations against benchmarks. Here, the
benchmarking datasetwas generated bymodel-data fusion
using the CARDAMOM approach, which describes a full
C cycle and its error characteristics (Figure 2). To exploit
the uncertainty estimates on the benchmark analysis, we
updated ILAMB to test whether model variables lie within

https://www.ilamb.org/
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F IGURE 1 The Brazilian biomes used in the benchmarking.
The Amazon (Amazônia) and Atlantic forest (Mata Atlântica)
correspond to moist tropical forests. The Pantanal biome
corresponds to wetlands, and the Cerrado and Caatinga biomes
correspond to open woodland and grass savanna vegetation. Map
source: Brazilian Institute of Geography and Statistics (IBGE),
Biomes and Coastal-Marine System of Brazil map,
https://www.ibge.gov.br/, accessed 17/11/2020

the benchmark CIs, so that models are not penalized for
bias if the benchmark is uncertain.
The analysis focused on the period 2001–2010,when out-

puts from JULES, INLAND and CARDAMOM were all
available across Brazil. Comparison was undertaken at 1ž
spatial resolution and monthly or annual temporal reso-
lution, depending on the variable analysed. The TRENDY
protocol (Sitch et al., 2015) was used to ensure a common
climate forcing for models and CARDAMOM reanalyses.
Fire was imposed in CARDAMOM using MODIS burned
area, whereas the LSMs did not include explicit fire mod-
elling. Forest disturbance in CARDAMOM was imposed
using GFW (Hansen et al., 2013), whereas the LSMs used
the LUH2 database (Hurtt et al., 2020, 2019a, 2019b). How-
ever, the focus of this paper is on evaluating the ecophysi-
ological processes and fluxes, rather than fluxes connected
to fire and disturbance.

2.1 ILAMB – A benchmarking system

The standard metrics for ILAMB are described in Online
Appendix C, and summarized in Table 1. Here, new met-
rics for evaluation of uncertainty and bias are described.

The calibration of the benchmark provides an estimate of
statistical uncertainty in terms of a CI with high and low
percentiles. ILAMB determines whether amodel output in
any grid cell (vmod) lies within a given CI of the benchmark
(vref), a pass/fail test:

𝜖𝐶𝐼(𝑥) = 1 if 𝑣2.5𝑝𝑐

𝑟𝑒𝑓
(𝑥) ≤ 𝑣𝑚𝑜𝑑(𝑥) ≤ 𝑣

97.5𝑝𝑐

𝑟𝑒𝑓

= 0 else. (1)

We define the 95% CI uncertainty score for a biome or
region (sCI) by accumulating the tests for all grid cells
within the biome to generate a score which varies between
0 and 1:

𝑠𝐶𝐼 =
1

𝑎𝑟𝑒𝑎 ∫
𝑥∈area

𝜖𝐶𝐼(𝑥). (2)

A value of 1 means 100% of the model spatial points
within the defined area (e.g. biome) fit within the CI of the
benchmark, whereas 0 indicates that none of the values of
the model are within the CI of the benchmark anywhere
within the area or region. As far as we know, this is the first
evaluation system capable of comparing model outputs to
benchmarks with uncertainties.
The standard suite of ILAMB model-benchmark com-

parisonmetrics allows the evaluation of different aspects of
the system. For an overall temporal comparison, rootmean
square error (RMSE) provides the most robust metric as
it evaluates misfit for each time step. For the spatial com-
parison (i.e. averaged over time), the bias scores are more
informative, because theses scores identify the distance
between the model values and the benchmark values aver-
aged over time. Indeed, contrary to the RMSE score, the
bias score is not impacted by the time step of the data.How-
ever, the bias score does not indicate if the model results
are over- or under-estimated given the benchmark values.
Thus, we created a modified bias score, called signed bias
score, to estimate this over- or under-estimation, given its
sign:

𝑠𝑏𝑖𝑎𝑠(𝑥) = 𝑠𝑔𝑛𝑏𝑖𝑎𝑠(𝑥) − 𝑠𝑔𝑛𝑏𝑖𝑎𝑠(𝑥)𝑒−|𝑏𝑖𝑎𝑠(𝑥)|

with

𝑠𝑔𝑛𝑏𝑖𝑎𝑠(𝑥) = 1 if 𝑏𝑖𝑎𝑠(𝑥) > 0

= −1 if 𝑏𝑖𝑎𝑠(𝑥) < 0

= 0 if 𝑏𝑖𝑎𝑠(𝑥) = 0. (3)

That is, this signed bias score is negative if the studied vari-
able is under-estimated by themodel relative to the bench-
mark, and positive if it over-estimated. Finally, the bias

https://www.ibge.gov.br/
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F IGURE 2 The C cycle system as represented in the DALEC model structure, and used in the benchmarking process. The system
consists of one incoming rate (photosynthesis, 𝐺𝑃𝑃) and two outgoing rates (𝑅𝑎 and 𝑅ℎ). 𝑅 is respiration (𝑎 is autotrophic and ℎ is
heterotrophic). 𝑁𝑃𝑃 is net primary production. Within the system, there are three live carbon pools (𝐶𝑓𝑜𝑙+𝑙𝑎𝑏 , 𝐶𝑤𝑜𝑜𝑑 and 𝐶𝑟𝑜𝑜𝑡), and one dead
carbon pool (which corresponds to the sum of 𝐶𝑙𝑖𝑡 and 𝐶𝑠𝑜𝑖𝑙 of the DALEC model), whose outgoing and incoming flows correspond to the
internal carbon flows of the system

TABLE 1 Summary of the different ILAMB metrics, including the behaviour each metric is designed to evaluate, an explanation of the
scoring, and the time steps on which metrics are generated

Scores Measured behaviour Values
Compatible
time steps

Bias score Temporal average 1 ⟺ same temporal average
0 ⟺ mismatching

Month
Annual

Signed bias score Temporal average 1 ⟺ over-estimate
0 ⟺ same temporal average

−1 ⟺ under-estimate

Month
Annual

CI score % of spatial points within
the benchmark CI

1 ⟺ 100% of matching points
0 ⟺ 0% of matching points

Month
Annual

Root mean square error Temporal and spatial
matching

1 ⟺ same temporal and spatial values
0 ⟺ mismatching

Month
Annual

Seasonal cycle score Seasonal matching 1 ⟺ maximum reached in the same
month

0 ⟺ opposite seasonality

Month

Spatial distribution score Spatial standard deviation 1 ⟺ same spatial distribution
0 ⟺ mismatching

Month
Annual

Inter-annual variability score Spatial and inter-annual
matching

1 ⟺ same inter-annual dynamics
0 ⟺ mismatching

Month
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score can be directly derived from the signed bias score,
from the following formula:

𝑠𝑏𝑖𝑎𝑠(𝑥) = 1 − |𝑠𝑏𝑖𝑎𝑠(𝑥)|. (4)

2.2 The land surface models

2.2.1 JULES

JULES is a UK-based community LSM (Clark et al., 2012)
and here we assess the JULES earth system (ES) configu-
ration, which is used for carbon cycle science and as part
of the UKESM1.0 earth system model. JULES-ES includes
nine natural PFTs and four grass-like agricultural PFTs,
the configuration is designed for global simulations and in
practice only the tropical broadleaf tree, C3 and C4 grasses
have substantial cover in Brazil. The distribution of PFTs
is predicted by JULES, using a height-based competition
equation, which for Brazil means that grasses can only
grow where trees are not viable or where trees are actively
prevented from growing by the presence of agriculture.
Vegetation carbon is allocated between three plant com-
ponents: leaf, wood and fine root pools, and each of these
pools has a fixed turnover rate and associated litter flux.
There are also litter fluxes caused by large-scale distur-
bance (a constant mortality term representing processes
not explicitly modelled, for example, fire, wind-throw, dis-
ease, etc.), inter-PFT competition and land-use change.
There are four soil carbon pools and these are summed to
represent total DOM C.
Following the TRENDY protocol (Sitch et al., 2015),

JULES is spun-up to a near steady state under pre-
industrial forcing, after which 300 years of transient sim-
ulation are performed before the start of the period of
study. Fire is not directly simulated in this implementation.
During the period of study, JULES will not necessarily be
close to a steady state having been perturbed by changes
in climate, land-use, nitrogen deposition and atmospheric
CO2 concentration. In particular, changes in land-use can
instantaneously push the model far from steady state. Tree
cover and soil carbon can take hundreds of years to reach
a new equilibrium.

2.2.2 INLAND

INLAND is the Brazilian Dynamic Global Vegetation
Model and represents water, energy and carbon fluxes,
together with the vegetation dynamics and carbon stocks.
The model builds on earlier work(Foley et al., 1996;
Kucharik et al., 2000) and represents 12 natural PFTs,
including eight upper and four lower canopy PFTs, which
includes shrubs (evergreen and deciduous) and grasses

(C3 and C4). The PFT is defined according to the climate
restrictions. Competition between species is determined by
access to water and light, with shorter stature PFTs more
easily accessing water, but being shaded by the higher veg-
etation (Kucharik et al., 2000). The carbon stocks in the
vegetation are calculated as a function of 𝑁𝑃𝑃 and alloca-
tion coefficients and residence times for each component,
and also considering losses due to land-use changes and
fire disturbance. The C transit time (MTT) and allocation
coefficients are user-definedmodel parameters, which can
be different for each plant component (leaf, wood and root)
and PFT. The dead organic carbon is allocated in four pools
with different residence times, from hours in the micro-
bial to thousands of years in the stabilized organic matter.
Temperature and soil water content controls the microbial
activity and soil texture controls its growth. INLAND has a
400 year spin-up to the pre-industrial state and the follows
the TRENDY protocol to produce data for analysis here.

2.3 CARDAMOM as a C cycle
benchmark

CARDAMOM, a model-data fusion framework, provides
an error-characterized, complete analysis of the C cycle
(Figure 2). CARDAMOM includes a C cycle model,
DALEC; this has the advantage of evaluating the obser-
vational data for internal consistency (e.g. with mass bal-
ance), propagating error across the C cycle and generat-
ing internal model variables such as transit time. CAR-
DAMOM/DALEC is independent of the benchmarked
models, INLAND and JULES. A full description of the
CARDADMOM process and the DALEC model are pro-
vided in Online Appendix B. CARDAMOM meteorolog-
ical drivers are extracted from the CRU-JRAv1.1 dataset,
a 6-hourly 0.5 × 0.5 degree reanalysis (Harris, 2019). Fire
is imposed using the MODIS burned area product (500
× 500 m) (Giglio et al., 2018). Forest biomass loss is
imposed using the global forest watch (GFW) database
(30 × 30 m) (Hansen et al., 2013). Time series informa-
tion on 𝐿𝐴𝐼 is drawnfrom 1 × 1 km satellite based Earth
Observation (EO) estimates (Copernicus Service Informa-
tion 2020); this directly corresponds to the DALEC LAI
state variable, which is proportional to its foliar C pool.
Prior information on soil carbon stocks is drawn from the
SoilGrids database(Hengl et al., 2017), a data-driven inter-
polation of field inventories (250 × 250 m), and we assume
that this corresponds to the DALEC SOM pool. Woody
biomass information is drawn from two data sources: (i)
across the Brazilian Amazon a map representative of 2014
generated from airborne lidar (50 × 50 m)(Longo et al.,
2016) and (ii) for all other areas a 1 × 1 km resolution
(Avitabile et al., 2016) map assumed to be nominally
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TABLE 2 Studied variables and parameters

Symbol Definition Units Step time
Fluxes
𝐺𝑃𝑃 Gross primary production g.m−2.d−1 month
𝑁𝑃𝑃 Net primary production g.m−2.d−1 month
𝑁𝑃𝑃𝑙𝑒𝑎𝑓+𝑙𝑎𝑏𝑖𝑙𝑒 Net primary production for foliage and labile pools g.m−2.d−1 year
𝑁𝑃𝑃𝑤𝑜𝑜𝑑 Net primary production for wood g.m−2.d−1 year
𝑁𝑃𝑃𝑟𝑜𝑜𝑡 Net primary production for fine root g.m−2.d−1 year
𝑂𝑢𝑝𝑢𝑡𝑙𝑒𝑎𝑓+𝑙𝑎𝑏𝑖𝑙𝑒 C losses from foliage and labile pools pools g.m−2.d−1 year
𝑂𝑢𝑡𝑝𝑢𝑡𝑤𝑜𝑜𝑑 C losses from wood g.m−2.d−1 year
𝑂𝑢𝑡𝑝𝑢𝑡𝑟𝑜𝑜𝑡 C losses from fine roots g.m−2.d−1 year
𝑅ℎ Heterotrophic respiration g.m−2.d−1 month
𝑅𝑎 Autotrophic respiration g.m−2.d−1 month
𝑅𝐸𝐶𝑂 Ecosystem respiration g.m−2.d−1 month
𝑁𝐸𝐸 Net ecosystem exchange g.m−2.d−1 month
C pools
𝐶𝑙𝑒𝑎𝑓+𝑙𝑎𝑏𝑖𝑙𝑒 Carbon biomass in foliage and labile g.m−2 year
𝐶𝑤𝑜𝑜𝑑 Carbon biomass in wood g.m−2 year
𝐶𝑟𝑜𝑜𝑡 Carbon biomass in fine roots g.m−2 year
𝐶𝑑𝑒𝑎𝑑 Dead carbon mass g.m−2 year
Parameters
𝑀𝑇𝑇𝑙𝑒𝑎𝑓 Mean transit time in foliar C year year
𝑀𝑇𝑇𝑤𝑜𝑜𝑑 Mean transit time in wood C year year
𝑀𝑇𝑇𝑟𝑜𝑜𝑡 Mean transit time in fine root C year year
𝑀𝑇𝑇𝑑𝑒𝑎𝑑 Mean transit time in dead C year year
𝐶𝑈𝐸 Carbon use efficiency: 𝐶𝑈𝐸 =

𝑁𝑃𝑃

𝐺𝑃𝑃
dimensionless year

representative of 2007. Both maps provide estimates of
aboveground biomass from which is derived total woody
biomass, using an allometric relationship (Saatchi et al.,
2011), and this is assumed to directly correspond to the
DALECwoody C pool. Each data source was aggregated to
1 × 1 degree spatial resolution. 𝐿𝐴𝐼 and biomass estimates
were providedwith uncertainty estimateswhichwere used
as part of the assimilation process. The SoilGrids database
currently lacks an associated estimate of uncertainty and
its time period is also poorly defined due to the variation
in sampling time of the component studies. For simplicity,
we assumed the uncertainty as represented by the standard
deviation of the aggregation process.
The quality of DALEC-CARDAMOM outputs over

Brazil has been evaluated elsewhere against independent
data (Smallman et al., 2021). DALEC-simulated NEE was
statistically consistent with the CarbonTracker-Europe
ensemble (van der Laan-Luijkx et al., 2015) at the 90% CI
across>99% of Brazil (2009–2017). The DALECmodels are
consistentwith FLUXCOMGPP () at the 90%CI across 94%
of Brazil. The DALEC outputs match the calibration infor-
mation with a high degree of skill: the RMSE is small for
LAI and the initial soil carbon stock (<5%). RMSEbetween
simulated wood stocks and calibration observations was

16% and is dominated by model-observation mismatch at
smaller wood stocks (<50 MgC/ha; 20-28%) with smaller
errors (<1%) otherwise.
JULES and INLANDC cycling outputs were matched to

the DALEC model structure (Figure 2), including produc-
tion (𝐺𝑃𝑃,𝑁𝑃𝑃 and their ratio𝐶𝑈𝐸), allocation of𝑁𝑃𝑃 to
foliage, wood and fine roots: the biomass in these plant tis-
sues; their annual losses; the C mass in DOM (the sum of
all dead C pools); and both autotrophic and heterotrophic
respiration, and the mean transit time (𝑀𝑇𝑇) of wood and
DOM pools. Each C pool has dynamics corresponding to a
C mass balance:

𝑑𝐶𝑝𝑜𝑜𝑙

𝑑𝑡
= 𝐼𝑛𝑝𝑢𝑡𝑝𝑜𝑜𝑙 −

𝐶𝑝𝑜𝑜𝑙

𝑀𝑇𝑇𝑝𝑜𝑜𝑙
,

𝑀𝑇𝑇𝑝𝑜𝑜𝑙 =
𝐶𝑝𝑜𝑜𝑙

𝑜𝑢𝑡𝑝𝑢𝑡𝑝𝑜𝑜𝑙
, (5)

where 𝑀𝑇𝑇𝑝𝑜𝑜𝑙 is the mean transit time of each pool, cal-
culated for each model and each pool based on the mean
value of the pool and its mean output flux. The state vari-
ables and parameters used in the ILAMB evaluation are
presented in Table 2.
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2.4 Addressing the research questions

Regional evaluation of C cycling metrics across Brazil for
both models against the benchmark (Section 3.1.13.1.2)
determines model quality for each biome to address ques-
tion (i). For question (ii), detailedmaps are produced show-
ing the spatial variation in signed bias and CI score at pixel
scale for all major fluxes and C pools across Brazil. Wemap
the transit times of the large C pools for both LSMs and
evaluate their consistency with the benchmark to address
question (iii), using the samenewmetrics. Finally,we anal-
yse time series of mean annual cycles for major C fluxes
to evaluate question (iv), taking advantage of the uncer-
tainty on the benchmark to identify where andwhen LSMs
deviate significantly. For brevity, we focus discussion most
on the major biomes of the Amazon, Cerrado, Caatinga
and Atlantic Forest, although full data are provided for the
other biomes.

3 RESULTS

Overall scores generated by ILAMB for both models at
the scale of Brazil provide a starting point for benchmark-
ing (Table 3). The full suite of metrics indicates that some
produce clearer indicators of strengths and weaknesses of
the models than others. For instance, across Brazil, both
models and all variables have similar, low RMSE scores.
Thus, direct comparison of RMSE scores provides limited
insights. Meanwhile, spatial scores, CI scores and signed
bias scores show clearer variation between models and
among variables. We therefore focus more on these scores
to provide information to differentiate themodels and their
process representation.

3.1 Spatial evaluations of C processing
and stocks

3.1.1 Overall evaluation of INLAND

The spatial matching of INLAND with the benchmark
identifies clear patterns in bias for fluxes and pools of C
(Figure 3). In this figure, the stippling indicates a pixel
where INLAND estimates are within the benchmark CI.
So, significant biases are in those areas without stipples.
The importance of these biases varies by C cycle compo-
nent. There are some cases where bias scores are large
but still the model estimates sit within the 95% CI of
the benchmark, such as for 𝑁𝐸𝐸. There are other cases
where bias scores are low, but the model lies outside the
benchmark CI, for example, 𝐺𝑃𝑃 in central Cerrado. This

divergence reflects the variation in uncertainty on bench-
mark data. For instance, INLAND’s estimates of 𝐶𝑈𝐸 are
significantly different from the benchmark across Brazil,
whereas annual 𝑅ℎ estimates are not. These results show
the value of the newCImetric, which evaluatesmodel bias
in the context of benchmark uncertainty.

Biosphere–atmosphere exchanges
INLAND model estimates of 𝐺𝑃𝑃 have a strong match
across most of Brazil, fitting within the benchmark CI over
67% of the country (Table 3). The exception is for parts
of Cerrado, Pampas and Caatinga where 𝐺𝑃𝑃 values are
over-estimated and outside the bounds of CARDAMOM
CI (Figure 3). Thus, at the national scale, simulated 𝐺𝑃𝑃

tends to over-predict compared to the benchmark, with
a signed bias score of 0.24 (Table 3). Simulated 𝑁𝑃𝑃 is
within the benchmark CI across nearly all of Brazil and
is generally under-estimated (𝑁𝑃𝑃 signed bias = −0.15).
The 𝑁𝑃𝑃 − 𝐺𝑃𝑃 difference is linked to under-estimation
of 𝐶𝑈𝐸 across Brazil and over-estimation of 𝑅𝑎, whose
signed bias score is equal to 0.63. 𝑅ℎ is slightly under-
estimated (signed bias score = −0.12) by INLAND across
Brazil, but is within benchmark CI for 96% of the spa-
tial points.𝑁𝐸𝐸 predictions perfectly fit within the bench-
mark CI (100% of the spatial points) across all of Brazil.
However, the 𝑁𝐸𝐸 values do have spatial variability, with
some heterogeneous signed bias scores. 𝑁𝐸𝐸 is slightly
over-estimated for the Amazon region and over or under-
estimated around the borders of Cerrado.

Internal dynamics
Signed bias scores indicate that INLAND tends to
over-estimate stocks of 𝐶𝑙𝑒𝑎𝑓+𝑙𝑎𝑏𝑖𝑙𝑒 and 𝐶𝑟𝑜𝑜𝑡 pools, but
under-estimate 𝐶𝑤𝑜𝑜𝑑 and 𝐶𝑑𝑒𝑎𝑑 pools along with their
input/output flows (Table 3). Based on CI uncertainty
scores INLAND estimates of 𝐶𝑙𝑒𝑎𝑓+𝑙𝑎𝑏𝑖𝑙𝑒 lie outside the
benchmark CI in around 50% of Brazil, whereas for 𝐶𝑟𝑜𝑜𝑡,
most estimates fit within the benchmark CI. 𝐶𝑤𝑜𝑜𝑑 is
significantly underestimated by INLAND particularly in
Cerrado, Caatinga and Atlantic Forest, and matches with
the benchmark CI and has good bias score in the cen-
tral Amazon and central Cerrado areas (Figure 3). Wood
output flows are under-estimated particularly in Cerrado,
Caatinga and Atlantic Forest. The 𝐶𝑑𝑒𝑎𝑑 pool is also sig-
nificantly under-estimated across the whole of Brazil –
as shown by the mismatch with the benchmark CI (4%)
and a signed bias score equal to −0.50 (Table 3). For each
living C pool, the corresponding input and output flow
have very similar benchmark matching, as shown by sim-
ilar signed bias scores distributions (Figure 3). Despite the
under-estimation of the dead C pool, the heterotrophic res-
piration flux closely matches the benchmark.
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F IGURE 3 Benchmarking for INLAND: Signed bias score (colours) and uncertainty matching (stipples) between CARDAMOM and
INLAND. The stipples show if INLAND estimates lie within the benchmark 2.5th and 97.5th percentiles. A negative signed bias score
indicates that the model under-estimates the benchmark

F IGURE 4 Benchmarking for JULES: Signed bias score (colours) and uncertainty matching (stipples) between CARDAMOM and
JULES. The stipples show if JULES estimates lie within the benchmark 2.5th and 97.5th percentiles

3.1.2 Overall evaluation of JULES

Biosphere-atmosphere exchanges
JULES effectively estimates 𝐺𝑃𝑃, 𝑁𝑃𝑃 and 𝑅ℎ flows over
the Amazon with relatively low magnitude of signed bias
scores and estimateswithin benchmarkCI for> 67% for all

simulated pixels (Figure 4). However, these flows are over-
estimated in the Pampas and Cerrado biomes, both in term
of larger signed bias and lower CI scores. The 𝑅𝑎 flux is
over-estimated across Brazil (signed bias score= 0.45) and
significantly outside the Amazon based on CI scores.𝑁𝐸𝐸

is broadly over-estimated, except in Cerrado and Pantanal
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where it is under-estimated. But JULES𝑁𝐸𝐸 does not dif-
fer significantly from the benchmark, as it still fits with the
broad benchmark NEE CI across Brazil.

Internal dynamics
JULES estimates of live C pools show varying consisten-
cies with the benchmark. 𝐶𝑙𝑒𝑎𝑓+𝑙𝑎𝑏𝑖𝑙𝑒 are consistent with
the benchmark (signed bias close to zero, and a CI score
of 98%).𝐶𝑤𝑜𝑜𝑑 is significantly over-estimated across Brazil,
except in the Amazon. 𝐶𝑟𝑜𝑜𝑡 is also over-estimated right
across Brazil, but is not significantly different from the
benchmark based on CI score. Input flow bias and CI
score are very similar to output flows for living carbon
pools. According to both scores, input and output flows are
well modelled, though the Amazonian region tends to be
slightly under-estimated, and the Cerrado area is generally
over-estimated, especially at its frontier with Pampas and
Caatinga biomes. Estimation of 𝐶𝑙𝑒𝑎𝑓+𝑙𝑎𝑏𝑖𝑙𝑒 is very similar
to the estimation of its input and output flows, for both
bias and CI scores. The 𝐶𝑑𝑒𝑎𝑑 pool is only slightly under-
estimated (with a signed bias score equal to −0.11), and
falls within the benchmark percentiles across 75% of Brazil
– there are significant underestimates in the western Ama-
zon and the border of Cerrado and Caatinga.

3.2 The dynamics of the major C pools

JULES and INLAND have similar behaviours regarding
the main flows (𝐺𝑃𝑃, 𝑁𝑃𝑃, 𝑅𝑎 and 𝑅ℎ), but show differ-
ent internal distribution of the carbon among the pools. In
this section, we study the impact of this difference in car-
bon distribution on the modelling of total carbon dynam-
ics. For evaluation of JULES and INLAND, we track total
C:

𝐶𝑡𝑜𝑡 = 𝐶𝑟𝑜𝑜𝑡 + 𝐶𝑤𝑜𝑜𝑑 + 𝐶𝑙𝑒𝑎𝑓+𝑙𝑎𝑏𝑖𝑙𝑒 + 𝐶𝑑𝑒𝑎𝑑, (6)

and then total live C (𝐶𝑟𝑜𝑜𝑡, 𝐶𝑤𝑜𝑜𝑑, 𝐶𝑙𝑒𝑎𝑓+𝑙𝑎𝑏𝑖𝑙𝑒) and dead C
against the benchmark values. The input (𝐺𝑃𝑃) and out-
put (RECO = Ra + Rh) fluxes for JULES (Figure 5a) and
INLAND (Figure 5b) have very similar spatial distribution
of signed bias scores (Figure 5c). Indeed, both models pro-
vide an accurate estimation of these fluxes in the Ama-
zon region (shown by stippling), but both over-estimate
the flows in the border areas of the Cerrado region and
the Pampas. For both models, predictions of 𝐺𝑃𝑃 are sig-
nificantly different for much of the Cerrado biome. 𝑅𝑒𝑐𝑜

estimates also differ in similar areas of the Cerrado for
bothmodels, but these biases are less significant than those
of GPP.
The important difference between JULES and INLAND

lies in their estimates of the total C stock and its partition-

ing in live and dead components. JULES over-estimates
total C stocks in some areas and INLAND under-estimates
total C across most of Brazil. JULES robustly simulates
dead C stocks, except for significant deviations in the
western Amazon and the Cerrado-Caatinga boundary.
JULES significantly over-estimates live C stocks over most
of Brazil, with the exception of the western Amazon
where live C is well estimated (simulations are within
the benchmark CI). INLAND makes robust estimates of
live C within the CI of the benchmark over most of
Brazil, so its total C bias is attributed largely to its sig-
nificant underestimate of dead C across nearly all of
Brazil. However, INLAND and JULES make robust esti-
mate of the C input into 𝐶𝑑𝑒𝑎𝑑 (𝐼𝑛𝑝𝑢𝑡𝑑𝑒𝑎𝑑 = 𝑂𝑢𝑝𝑢𝑡𝑤𝑜𝑜𝑑 +

𝑂𝑢𝑝𝑢𝑡𝑙𝑒𝑎𝑓+𝑙𝑎𝑏𝑖𝑙𝑒 + 𝑂𝑢𝑡𝑝𝑢𝑡𝑟𝑜𝑜𝑡), in particular, in terms of
CI scores (96% for both models). The patterns of bias
in 𝐼𝑛𝑝𝑢𝑡𝑑𝑒𝑎𝑑 are not correlated with the patterns of bias
in 𝐶𝑑𝑒𝑎𝑑

𝑡𝑜𝑡 , suggesting compensating errors in 𝑀𝑇𝑇𝑑𝑒𝑎𝑑

exist.
For both the models and the benchmark, the 𝐶𝑤𝑜𝑜𝑑 pool

is the main contributor to the living C pool – it accounts
for 90% of the living C for CARDAMOM, 57% for INLAND
and 97% for JULES (Online Appendix Figure A.2). Rela-
tive to the benchmark, INLAND under-estimates the con-
tribution of the 𝐶𝑤𝑜𝑜𝑑 pool to live C in the Cerrado region
and its surroundings. Thus, the dynamics of total C depend
on the dynamics of the 𝐶𝑤𝑜𝑜𝑑 and 𝐶𝑑𝑒𝑎𝑑 pools. How-
ever, the dynamics of the pools depend on their inflows
𝐼𝑛𝑝𝑢𝑡𝑝𝑜𝑜𝑙 and mean transit times 𝑀𝑇𝑇𝑝𝑜𝑜𝑙 (Equation 5).
Analysis of transit times of the large C pools indicates
that both models under-estimates 𝑀𝑇𝑇𝑑𝑒𝑎𝑑 compared to
the benchmark (Figure 6). Overall JULES presents better
results on 𝑀𝑇𝑇𝑑𝑒𝑎𝑑 than INLAND (smaller signed bias
scores), especially in the Cerrado and its surroundings.
𝑀𝑇𝑇𝑤𝑜𝑜𝑑 is over-estimated by JULES and INLAND, but
JULES has smaller signed biases than INLAND, especially
on the Amazon region (Online Appendix Figure A.3). For
C inputs to pools (i.e. 𝑁𝑃𝑃 to wood, and total litter inputs
to dead C), JULES over-estimates fluxes both into wood
and dead pools. INLAND, however, more strongly under-
estimates inputs to wood, and slightly under-estimates
fluxes into dead C.

3.3 Analysis of seasonal cycles

For the Amazon, the benchmark estimates a very small
seasonality and broad CIs for𝐺𝑃𝑃,𝑁𝐸𝐸 andRECO, which
contain the estimates of JULES and INLAND (Figure 7).
Overall, the models are consistent with, and not signifi-
cantly different from, CARDAMOM across the Amazon.
Close examination shows that JULES and CARDAMOM
have very similar seasonality in 𝐺𝑃𝑃, whereas INLAND
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F IGURE 5 Evaluation of 𝐺𝑃𝑃, 𝑅𝐸𝐶𝑂 and internal C cycling pools and flux for JULES and INLAND against the benchmark (a and b),
and their comparison (c). Panels a and b show signed bias scores (coloured) and uncertainty matching (stippling, black dots) between
CARDAMOM and JULES (a) and between CARDAMOM and INLAND (b). The differences in signed bias scores between the two models are
shown in (c)
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F IGURE 6 Evaluation of the models’ mean transit times for wood and dead C pools. The INLAND and JULES columns show the signed
bias scores corresponding to𝑀𝑇𝑇𝑤𝑜𝑜𝑑 and𝑀𝑇𝑇𝑑𝑒𝑎𝑑 for each model; the stipples show that the predictions are within the 2.5th and 97.5th
percentiles of the benchmark. The column INLAND versus JULES shows the difference between the bias scores of INLAND and JULES for
𝑀𝑇𝑇𝑤𝑜𝑜𝑑 and𝑀𝑇𝑇𝑑𝑒𝑎𝑑

has almost an opposite cycle, but the differences are small
and insignificant.
In Cerrado, INLAND 𝐺𝑃𝑃 amplitude is more than

twice the magnitude of the benchmark. INLAND and
CARDAMOM peaks and troughs are largely synchro-
nized although INLAND has a slightly earlier trough. Dur-
ing October–May, INLAND estimates of 𝐺𝑃𝑃 are signif-
icantly larger than CARDAMOM, whereas during June–
September (dry season), they are similar. JULES𝐺𝑃𝑃 has a
similar seasonal cycle to CARDAMOM, but is consistently
biased larger. This bias is largest in the dry season, so it is
during May–October that JULES 𝐺𝑃𝑃 is significantly dif-
ferent from the benchmark 𝐺𝑃𝑃. Cerrado RECO for both
models is similar in amplitude, magnitude and timing.
Both models have RECO estimate always greater than the
benchmark. Cerrado𝑁𝐸𝐸 seasonality for the LSMs is very
different, with a dry season peak source for INLAND (and
the benchmark) and a dry season sink for JULES, which is
significantly different from the benchmark, during June–
September.
In the Caatinga, the patterns are broadly similar to Cer-

rado. Models and benchmark have similar 𝐺𝑃𝑃 cycles, but
themodels tend to over-estimate fluxes, with INLAND dif-
fering significantly during October–November. For RECO,
themodels have similar patterns and tend to over-estimate
seasonality compared to the benchmark median, but
are not significantly different. For 𝑁𝐸𝐸, INLAND and
the benchmark have similar seasonality and although
INLAND has greater amplitude it rarely differs sig-
nificantly from CARDAMOM. JULES has the opposite

behaviour to INLAND and the benchmark, indicating a
dry season sink, although there is only a significant differ-
ence to the benchmark in August.
For the Atlantic Forest, 𝐺𝑃𝑃 seasonality is similar

for LSMs and benchmark, although the models are
biased high and INLAND is therefore significantly over-
estimating duringOctober–November.RECO shows a sim-
ilar seasonal cycle for models and CARDAMOM, but the
models have greater amplitude and are biased high, but
not significantly so. The NEE produces conflicting results
due to differences in 𝐺𝑃𝑃 and 𝑅𝑒𝑐𝑜 seasonality; INLAND
andCARDAMOMbenchmarks have similar seasonality in
𝑁𝐸𝐸 but JULES has a dry season sink and differs signifi-
cantly from CARDAMOM during August.

4 DISCUSSION

This study evaluates two LSMs (INLAND and JULES) by
comparing them to a probabilistic benchmarking dataset at
different spatial scales (Brazil and its key biomes), tempo-
ral scales (inter- and intra-annual) and conceptual scales
– biosphere–atmosphere exchanges and internal carbon
dynamics. The ILAMB framework has allowed clear iden-
tification of both strengths and weaknesses of each model,
thus identifying targets for improvement. However, it was
newmetrics (a CI score and a signed bias score) added here
to ILAMB that provided the most useful information for
the model evaluations. The CI score takes advantage of the
CIs (CI) provided at 1ž resolution in the benchmark. The
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F IGURE 7 Annual cycle by region for daily C fluxes of 𝐺𝑃𝑃, 𝑁𝐸𝐸 and 𝑅𝐸𝐶𝑂: CARDAMOM ( ) and its 2.5 and 97.5 percentiles ( ),
JULES ( ), INLAND ( )

score determines the percentage of pixels within a domain
for which the model component is within the CI, allow-
ing a significance test of model-benchmark difference in
ILAMB for the first time. The signed bias score allows
effective mapping of the degree of model over- or under-
estimation, generating deeper insights into how process
interactions generate model mismatches.

4.1 Which biomes have the most
consistency with the benchmark?

Independently of the variables and models considered,
there was a consistency between models in the geo-
graphical variation in their predictive quality. Focusing
here on the largest biomes, the Amazon had the most
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robust and spatially homogeneous scores for both mod-
els (Online Appendix Table A.1). Pools and flux estimates
were within the benchmark CI for > 90% of pixels in most
cases (Figure 3, Figure 4). The clear exception was an
under-estimation of the DOM pool in both INLAND and
JULES (the latter for the western Amazon). DOM dynam-
ics in the Amazon had quite different processing between
the two LSMs; JULES over-estimated DOM inputs from
wood, whereas INLANDunder-estimated DOM input. For
Atlantic Forest, Cerrado and Caatinga, both LSMs over-
estimated 𝐺𝑃𝑃 in all cases. There were also very differ-
ent dynamics of thewoody pool betweenmodels. INLAND
under-estimated allocation to wood, wood litter outputs
and the size of the woody pool, whereas JULES over-
estimated all these. INLAND consistently under-estimated
the size of the DOM pool.
Weak scores were often localized around the borders of

the regions – especially around the Cerrado and the Pam-
pas. These spatial similarities between both models were
confirmed by the INLAND-JULES comparison (Online
Appendix Figure A.1). The Brazilian biomes correspond
to broadly homogeneous areas in terms of vegetation type
and climate. Therefore, the weaker results at biome bor-
ders suggest that the models are less effective at simulat-
ing ecotones. For the smaller biomes (Pampas, Pantanal),
their larger modelling errors likely arise due a greater pro-
portion of ecotone (edges) relative to total biome area. The
ecotone inaccuracy for Cerrado may arise for a number of
reasons. Both LSMs use a PTF approach, which may have
biases. PFTs are likely calibrated to match the dominant
vegetation for each biome, rather than functional varia-
tions at ecotones. LSMs could be improved by develop-
ing alternate PFTs that describe ecotone vegetation. Alter-
natively, ecotones may be areas of increased disturbance,
with disruptions to ecosystem processes challenging the
steady-state approach in LSMs. For example, the Amazon–
Cerrado boundary is an area where land-use change and
fires are stimulated by ongoing human activity, leading
to more dynamic C cycling. The CARDAMOM bench-
mark includes fire disturbance imposed through burned
area data driving combustion losses. The two LSMs do not
included specific fire disturbance in these simulations. So,
the difference with the benchmark at the Cerrado bound-
ary likely reflects the explicit role of fire disturbance in
C cycling in the benchmark analysis. The biomass map
assimilated into the benchmark will also reflect this zone
of disturbance and influence the C cycling of this ecotone
in CARDAMOM.An LSM improvement in this casewould
be to include spatially variable disturbance information in
the forcing, for example, from fire. This approach might
require finer resolution modelling at ecotones to manage
the heterogeneity of these disturbed landscapes. JULES

does not use observed vegetation cover; instead, the dis-
tribution of PFTs is estimated by the model. Errors in the
PFT distribution will cause errors in the sizes of C pools
and fluxes. For example, an overestimation of tree cover in
the Cerradomay be responsible for the positive 𝐶𝑤𝑜𝑜𝑑 bias.
Evaluating the PFT composition in the LSMs at the ecotone
would be useful in this regard. Improving the PFT distribu-
tion scheme may improve the scores for the JULES model.

4.2 Evaluation of
biosphere–atmosphere flows and internal
carbon dynamics

The CIs on the benchmark estimate of 𝑁𝐸𝐸 are large
across Brazil, so that even with large bias scores, the LSM
estimates are not significantly different from the bench-
mark. For this reason, the CI score was 100% across Brazil
for 𝑁𝐸𝐸 for both models (Table 3). However, the evalua-
tion of fluxes driving NEE showed clear patterns in errors.
Both LSMs tended to over-estimate𝐺𝑃𝑃, 𝑅𝑎 and 𝑅ℎ across
Brazil, significantly so in Cerrado and some other biomes
(Figure 34). These over-estimates tend to cancel out, lead-
ing to a small signed bias in 𝑁𝐸𝐸, but clear differences in
the rates of the processeswhich drive𝑁𝐸𝐸. Over-estimates
of𝑅𝑎were high, particularly in INLAND, and correlated to
a poorly evaluated 𝐶𝑈𝐸.
The exchanges between the biosphere and the atmo-

sphere are spatially similar for both models (Online
Appendix Figure A.1) but the internal flows of C to live and
dead C pools are different between the two models. Across
Brazil, there is a large disparity in the estimates of live and
deadC pools, with divergent behaviour between LSMs. For
wood C, INLAND has significant under-estimates in 48%

of Brazil, whereas JULES has significant over-estimates
across 65% of Brazil, and a poorer bias score. For DOM,
INLAND under-estimates for nearly all (98%) of Brazil,
whereas JULES is consistent across 74% of the country
and has a better bias score. Overall, INLAND is better
at modelling the dynamics of wood C, whereas JULES
models the leaf and root with greater accuracy (Table 3).
Although JULES is more robust at estimating DOM C,
there is little difference between the two models in the
quality of their heterotrophic respiration estimates, that is,
turnover of DOM. In JULES, the spatial distribution of 𝑅ℎ

and 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑒𝑎𝑓 biases are very similar, suggesting that the
over-estimation of leaf litter is causing an over-estimation
in 𝑅ℎ. For JULES, there is no spatial coherence between
biases in 𝑂𝑢𝑡𝑝𝑢𝑡𝑤𝑜𝑜𝑑, 𝐶𝑑𝑒𝑎𝑑 and 𝑅ℎ, suggesting a bias in
the turnover of wood litter that compensates for the large
over-estimation of𝑂𝑢𝑡𝑝𝑢𝑡𝑤𝑜𝑜𝑑, particularly in the Cerrado
(Figure 4).
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4.3 How reliable are representations of
seasonality in the LSMs?

Our analysis highlights that both models have similar sea-
sonal behaviours for gross input (𝐺𝑃𝑃) and output (RECO)
flows, and these broadly match the benchmark (Figure 7).
Seasonality of LAI, however, differs, with JULES showing
little of no LAI variation, and INLANDand the benchmark
having similar periods (Online Appendix Figure A.4). The
benchmark has consistently lower LAI than either LSM.
With its lack of LAI seasonality, JULES seasonality in GPP
must be driven by physiological rather than phenologi-
cal factors.
However, for the balance of these flows (𝑁𝐸𝐸), JULES

has an inverted seasonality for several biomes, but a sim-
ilar amplitude to the benchmark. INLAND 𝑁𝐸𝐸 displays
stronger seasonal variations (amplitude) than the bench-
mark, but with a similar seasonality (Figure 7). These
results underline the phenomena of compensation or
accumulation of errors that may occur when one vari-
able is deduced from other variables. For net ecosystem
exchanges in both LSMs, there is a clear phenomenon
of error compensation in the integration over time with
respect to uncertainties. The over-large amplitudes of
INLAND’s𝐺𝑃𝑃 andRECO compensate each other, and the
inverse seasonalities of JULES’s gross fluxes compensate
each other.
The benchmark CIs generally include the seasonal

curves of both LSMs. However, seasonally, INLAND is
more consistent with the benchmark, because the growth
and decay properties of its simulation of 𝑁𝐸𝐸 match
those of the median value and the benchmark CIs. It
is interesting that the seasonality of JULES’s 𝐺𝑃𝑃 and
RECO across biomes both broadly match the benchmark,
but slight differences in their seasonality and amplitudes
means that JULES net exchange (NEE) is strongly out
of phase with the benchmark, particularly in more sea-
sonal biomes, like Caatinga. JULES’ behaviour is likely due
to different couplings between input and output process
rates from its simulation of internal C cycling compared
to INLAND and the benchmark. Both the benchmark and
INLAND peak sink strength (minimum 𝑁𝐸𝐸) estimate
for Caatinga are during April , consistent with indepen-
dent flux data, whereas JULES peak uptake in June is not
(Mendes et al., 2020). However, the CI score shows that
INLAND overestimates the strength of the peak sink in
Caatinga. Benchmarking against independent estimates of
net biome exchange from atmospheric inversions will pro-
vide an opportunity to further evaluate model seasonality.
A complexity in such evaluations is that 𝐶𝑂2 emissions
from fire and land-use change will have to be controlled
for also.

TABLE 4 Summary of the impacts of inputs and mean transit
times on wood and DOM Carbon pools. In the column impact on
𝐶𝑝𝑜𝑜𝑙

𝑑𝑡
, a +means that the variable in the corresponding row has an

increasing impact on the dynamics of the concerned Carbon pool,
and −means a negative impact. These influences come from the
qualitative analysis of carbon pool dynamics, Equation 5, and are
not specific to a particular model. The columns JULES and INLAND
summarize the signed bias scores for each variable corresponding to
the different rows

Signed bias scores
Variables impact on 𝒅𝑪𝒑𝒐𝒐𝒍

𝒅𝒕
JULES INLAND

𝐼𝑛𝑝𝑢𝑡𝑤𝑜𝑜𝑑 + 0.28 −0.48
𝑀𝑇𝑇𝑤𝑜𝑜𝑑 + 0.37 0.79
𝐶𝑤𝑜𝑜𝑑 − 0.68 −0.32
𝐼𝑛𝑝𝑢𝑡𝑑𝑒𝑎𝑑 + 0.22 −0.08
𝑀𝑇𝑇𝑑𝑒𝑎𝑑 + −0.35 −0.54
𝐶𝑑𝑒𝑎𝑑 − −0.10 −0.50

4.4 Transit times

This analytical analysis at the system level provides
insights into the model results. Indeed, the analysis of C
dynamics highlights the dependencies between net fluxes
(𝑁𝐸𝐸) and aggregated variables (total C) and their under-
lying variables (component fluxes or pools). Thus, in order
to explain the simulation quality of aggregated variables,
we must consider the accumulation and compensation of
errors of the underlying variables. In that respect, the over-
estimation of the total C by JULES is due to the over-
estimation of the living C and the correct estimation of the
DOM C; conversely, the under-estimation of the total C by
INLAND is due to the correct estimation of the living C
and the under-estimation of the dead C. At a finer scale,
we show the same phenomenon of compensation or accu-
mulation between the inflows and retention times of the
wood C and the dead C (Section 3.2).
Our analysis explains why JULES better models dead

C stocks, while INLAND better models the living C
stocks (Table 4). The basic equation for C pools (Equa-
tion 5) highlights that C dynamics is an increasing
function of inflows and retention times. Thus, the over-
estimation of 𝐼𝑁𝑃𝑈𝑇𝑤𝑜𝑜𝑑 and 𝑀𝑇𝑇𝑤𝑜𝑜𝑑 leads JULES to
strongly over-estimate the 𝐶𝑤𝑜𝑜𝑑 pool. For INLAND, the
under-estimation of 𝐼𝑁𝑃𝑈𝑇𝑤𝑜𝑜𝑑 is compensated by the
over-estimation of 𝑀𝑇𝑇𝑤𝑜𝑜𝑑, so INLAND only slightly
under-estimates the 𝐶𝑤𝑜𝑜𝑑 pool. For the 𝐶𝑑𝑒𝑎𝑑 pool,
the behaviour of JULES and INLAND is reversed: JULES
under-estimates𝑀𝑇𝑇𝑑𝑒𝑎𝑑, but over-estimates 𝐼𝑁𝑃𝑈𝑇𝑑𝑒𝑎𝑑,
and thus by compensation of the errors, only slightly
under-estimates 𝐶𝑑𝑒𝑎𝑑. On the other hand, INLAND
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under-estimates 𝑀𝑇𝑇𝑑𝑒𝑎𝑑 and correctly estimates
𝐼𝑁𝑃𝑈𝑇𝑑𝑒𝑎𝑑, and thus strongly under-estimates 𝐶𝑑𝑒𝑎𝑑.

4.5 Implications for model forecasts
and development priorities

The over-estimation of 𝐶𝑤𝑜𝑜𝑑 in JULES outside the Ama-
zon will lead to the model overestimating the carbon bud-
get implications of future land-use change and climate
change in these regions. The underestimation of 𝐶𝑑𝑒𝑎𝑑

by INLAND will lead to the model underestimating the
carbon budget implications of increased temperatures,
through decomposition feedbacks.
For JULES,model development should focus on improv-

ing (i) GPP simulations for the Cerrado, currently over-
productive; (ii) simulation of vegetation C dynamics out-
side the Amazon, which currently over-estimating live C
pools; (iii) seasonality of NEE predictions, which are cur-
rently out of phase. For INLAND, model development
areas are (i) seasonal variability of biosphere–atmosphere
fluxes, which have a larger magnitude of seasonal varia-
tion than indicated by the benchmark, perhaps linked to a
high sensitivity to soil moisture stress; (ii) adjusting inputs
to andmean transit times of dead C stocks to increase their
magnitude and (iii) calibration of carbon use efficiency, as
currently INLAND allocates too much photosynthate to
autotrophic respiration. The photosynthesis and respira-
tion schemes for INLANDneed to be evaluated at site scale
to test its process representation.
This study highlights the link between the different con-

ceptual scales. Indeed, a strong matching of a variable
between a model and a benchmark may be due to the fact
that its dependencies are themselves correctly simulated,
but alternatively to the fact that the errors of its dependen-
cies compensate each other. Thus, the accuracy of a model
can vary according to the considered conceptual scales:
JULES and INLAND correctly model the aggregated sys-
tem, but they fail to model internal pools with the same
accuracy. Therefore, improving the quality of the simula-
tion of a variable requires an analytical study of its depen-
dencies, in order to focus on the key processes.

4.6 Caveats and challenges for model
benchmarking

The benchmark itself will be biased as it is based on
a single-model structure. Future benchmarks could be
developed from range of different model structures linked
to observations via model-data fusion to describe struc-
tural error (Famiglietti et al., 2021). The focus of this paper
was on benchmarking the ecological C cycle, its physiolog-

ical and intrinsic factors. However, both the benchmark
and the LSMs included disparate human factors, such as
land-use and land-use change forcing, and different fire
regimes. Standardized approaches to including manage-
ment and other extrinsic factors would improve the bench-
marking process. The errors and biases within the assim-
ilated information (e.g. soil C maps) remain poorly deter-
mined. We use a recent fusion of various biomass maps,
but recognize that this has a poor determination of error
particularly outside the Amazon. Biomassmaps were from
particular time periods, and could include biases due to
conditions during themeasurement periods. Further work
should involve using the next generation of biomass prod-
ucts, including time series, andworkingwith data teams to
understand the error properties of these products. There
is also evidence of changes in leaf traits associated with
ageing (Wu et al., 2016) that influence seasonal patterns
in GPP and therefore C cycling. The benchmark does not
include these ageing properties, and further work should
ascertain the uncertainty related to these trait dynamics for
both benchmark and models.

5 CONCLUSIONS

This study has used a benchmark and a comparison frame-
work (ILAMB) to evaluate two land surfacemodels (LSMs)
for C dynamics across Brazilian ecosystem. The complex-
ity of such an analysis resides in these models’ large num-
ber of variables and their spatial and temporal dimen-
sions. ILAMB provides an effective means to summarize
and compare the models at biome scale and varied time
scales. The benchmark is probabilistic, based on assimila-
tion of multiple independent C cycle observations into an
intermediate complexity mass balance model. The bench-
mark allows LSM evaluation against key pools and fluxes,
including internal cycling. For the first time, biases in the
LSMs are tested for significance using benchmark confi-
dence intervals. New metrics within ILAMB map signif-
icant biases in space and time, and whether the models
over- or under-estimate key components of the C cycle.
Spatial analysis indicates that the models give better

simulations in homogeneous areas of vegetation type, and
are less efficient at ecotones between biomes. Although
both models have net ecosystem exchanges between the
biosphere and the atmosphere that do not differ signifi-
cantly from the benchmark, they do have significant dif-
ferences in internal carbon allocation and the dynamics
of the different C pools. JULES models the dead C stocks
more accurately, whereas INLAND better resolves living C
stocks. Themodels aremore efficient in simulating annual
averages than seasonal variations. For some variables,
benchmark uncertainty is too high to provide an accurate
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evaluation of the models, so it is important to improve the
benchmark precision on these specific variables. Finally,
while the benchmark takes into account uncertainties of
variables, the models, on the other hand, return determin-
istic evaluations of these variables. A more realistic mod-
elling approach would thus consider and report this para-
metric uncertainty, through developing probabilistic mod-
els.
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