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Abstract: This study reports for the first time the preparation of an electrospun microfibrous mat of
PIM-EA-TB. The electrospinning was carried out using a chloroform/n-Propyl-lactate (n-PL) binary
solvent system with different chloroform/nPL ratios, in order to control the morphology of the
microfibres. With pure chloroform, porous and dumbbell shape fibres were obtained whereas, with
the addition on n-PL, circular and thinner fibres have been produced due to the higher boiling point
and the higher conductivity of n-PL. The electrospinning process conditions were investigated to
evaluate their impact on the fibres’ morphology. These microfibrous mats presented potential to
be used as breathable/waterproof materials, with a pore diameter of 11 µm, an air resistance of
25.10−7 m−1 and water breakthrough pressure of 50 mBar.

Keywords: electrospinning; microfibres; PIMEATB; porosity; lactate; breathability; waterproof

1. Introduction

Electrospinning is a straightforward method to produce self-standing microfibre
membranes presenting high porosity and pore size ranging from ten nanometres to several
micrometres [1]. Microfibres are defined as a continuous filament with an average fibre
diameter of 25 microns or smaller and have been mainly used for wastewater treatment [2,3],
smart responsive surface [4,5], and bioengineering application [6]. They present larger
pores which can allow or facilitate cellular infiltration and/or diffusion of nutrients in vitro
culture [7]. The generation of fibres is based on the formation of a jet from a charged
polymeric system under an electrical field. The solvent evaporation and the stretching
of the jet, caused by the repulsive forces of the charged molecules within the jet, are
responsible for the formation of the polymer fibres [8–12]. Thus, the final mat fibrous
morphology depends on the polymer–solvent system (such as solvent nature, viscosity,
conductivity) and on the electrospinning process parameters (such as feed flow rate,
voltage, distance between the tip and the collector). Therefore, various nanostructures,
from beads to bead-free fibres with different fibre diameter can be produced by tuning
these parameters.

Polymers of Intrinsic Microporosity (PIMs) are a class of macromolecule which have
generated considerable interest in the field of gas separation [13–20], hydrogen stor-
age [21,22], sensors [23] or liquid separation [22,24] thanks to a high surface area (typically
300–1500 m2/g) and interconnected micropores (<2 nm) [15]. Another advantage of PIMs
is their solution processability in common organic solvents which allow the optimisation
of the macroscopic formation of the microporous polymer, for example as electrospun
fibres, coatings on woven fabrics, etc. Among others, research on electrospun PIMs fi-
bres, mainly on PIM-1 and on modified PIM-1, has been gaining momentum in recent
years [6,12,25–28]. Recently, a new type of PIM, derived from ethanoanthracene and
Tröger’s base (PIM-EA-TB), has been developed using a polymerisation reaction based
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on the formation of the bridged bicyclic diamine called Tröger’s base (TB: 6H,12H-5,11-
methanodibenzo[b,f][1,5]diazocine) [14,29]. PIM-EA-TB contains only benzene rings fused
together via rigid bridged bicyclic units composed of TB and ethanoanthracene EA and
demonstrates an apparent higher BET surface area than PIM-1 [14]. Its high rigidity results
in enhanced gas separation performance with a superior vapour sorption capability [15].
Moreover, thanks to its basicity with the Tröger’s base, PIM-EA-TB can act as an ion-
conducting material and can be used to construct ionic diodes [30]. To the best of our
knowledge, no research on the electrospinning of PIM-EA-TB has been published.

Here, we report for the first time the fabrication of PIM-EA-TB fibres with controlled
morphology by an electrospinning process using a binary solvent system. The aim of
this study is to investigate the impact of the different solvent systems properties and
the electrospinning process conditions (feed flow rate, voltage, distance between tip and
collector) on the surface morphology and diameter of electrospun PIM-EA-TB fibres. The
resulting fibres were further characterised to assess their potential for application in terms
of waterproof resistance, breathability and air permeability.

2. Materials and Methods
2.1. Materials

PIM-EA-TB (Figure 1a) was prepared and characterised using a previously reported
procedure [25].
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Figure 1. (a) Chemical structure of Polymer of Intrinsic Microporosity derived from ethanoanthracene and Tröger’s base
(PIM-EA-TB). (b) Electrospun fibrous mat of PIM-EA-TB.

Chloroform was purchased from VWR and used without purification. n-Propyl lactate
was kindly provided by Corbion and used without purification. The physical properties of
each solvent are shown in Table 1.

Table 1. Physical properties of the solvents (a) obtained from MSDS and (b) measured.

Solvent Chloroform n-Propyl Lactate

Boiling point (◦C) 61 (a) 170 (a)

Viscosity at 20 ◦C (10−3 Pa·s) 0.56 (a) 3.3 (a)

Electrical conductivity at 20 ◦C (S·cm−1) 1 × 10−11 (a) 2 × 10−6 (b)

2.2. Electrospinning Technology

Electrospinning of PIM-EA-TB was achieved by using the apparatus (IME Technolo-
gies, Waalre, Netherlands) with 20% wt/vol solutions created using a binary solvent system
with different chloroform/n-PL ratios and stirred for approximately 4 h prior to processing
to ensure thorough mixing. Electrospun mats (Figure 1b) were generated as described
previously [26] in the horizontal electrospinning setup shown, with various flow rates,
operating distances, and applied voltages.
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The physical properties of each solutions are presented in Tables S1 and S2 in the
Supplementary Materials.

2.3. Characterisation Methods
2.3.1. Scanning Electron Microscopy (SEM)

The fibrous mats were analysed with a JSM-IT100 (JEOL, Tokyo, Japan) operating at
10 kV after being treated by sputtering a 9 nm layer of gold to form a conductive surface.
The mean diameter (OD) of electrospun fibres was determined using the ImageJ software.
The mean fibre diameter was determined from a minimum of 30 measurements of the
random fibres in three SEM images taken from different areas of the mat.

2.3.2. Measurement of Pore Size Diameter (r), Hydrostatic Pressure (PH2O) and Air Flow
Resistance (Rair)

The pore size diameters (r), hydrostatic pressure (PH2O) and air flow resistance (Rair) of
the membranes were measured using Quantachrome Porometer3Gzh (Anton Paar GmbH,
St. Albans, UK). For the pore size diameters (r) and the hydrostatic pressure (PH2O), the
sample was initially wetted by a liquid with low surface tension (Porometer 3G—Porofil®

Wetting Solution) and water, respectively, and an increasing pressure of air was applied
(from 0.01 to 1.4 bar). PH2O corresponds to the pressure when the initial flow (i.e., the bubble
point; at which gas is first seen to pass through the specimen) is detected by the apparatus.

The airflow resistance (RAir) was measured with the dry flow method. In this mode,
the instrument measures the flow of air through a dry porous medium for a known pressure
drop. The air permeability, kair, is calculated from the Equation (1):

kair =
η× Q

A
× ∆x

∆P
(1)

where η is the dynamic viscosity of air (1.83 × 10−5 kg·m−1 s−1), Q is the airflow measured
through the sample, A is the sample area, ∆x is the sample thickness, and ∆P is the pressure
drop. However, on fibrous mats, thickness measurement is often problematic and can be a
large source of error. It is preferred to present the pressure drop/flow rate results in terms
of an apparent flow resistance defined by Equation (2) [31].

RAir =
A × ∆P
η× Q

(2)

where RAir is the apparent Darcy airflow resistance in m−1.

2.3.3. Conductivity Measurement

The conductivity of the samples was measured by means of a SciQuip conductivity
meter (SciQuip Inc., Manchester, UK).

3. Results
3.1. Effect of the Process Conditions

The aim of this study is to fabricate fibrous PIM-EA-TB with a regular diameter and
without defects, i.e., with no bead-like structure. As, the morphology and porosity of the
fibrous mat can be tuned by adjusting the process conditions, we investigate the influence
of solvent, flow rate, distance between the tip and the collector and voltage.

3.1.1. Effect of Solvent

The electrospinning of PIM-EA-TB microfibers was carried out using a chloroform/n-
PL binary solvent system with different chloroform/n-PL ratios, adjusted from 10:0, 9:1,
7:3, 5:5, 3:7 to 0:10 (v/v). The concentration of PIM-EA-TB was kept constant at 20% wt/vol.
At lower concentration, spraying was noticed whereas at higher concentration, the solution
was too viscous and induced a blockage of the syringe.
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• Morphology

The SEM images of the PIM-EA-TB fibres in different solvent systems are shown in
Figure 2. It was observed that the morphology of the electrospun PIM-EA-TB fibres greatly
depends on the chloroform/n-PL proportion.
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Figure 2. Scanning Electron Microscopy (SEM) micrographs of PIM-EA-TB fibres from solutions varying the proportion of
chloroform/n-PL. (a) = 10:0; (b): 9:1; (c): 7:3; (d): 5:5; (e): 3:7, (f):0:10. (Conditions: (a,b) Flow = 100 µL/min, Gap = 30 cm,
Voltage = 25 kV; (c–f) Flow = 100 µL/min, Gap = 20 cm, Voltage = 16 kV).

With pure chloroform, dumbbell-like fibres without beads were obtained (Figure 2a).
With the addition of n-PL into the binary solvent system, the electrospinning yielded
fibres with a cylindrical shape. For the sample 9:1, dumbbell-shaped fibres were still
obtained (Figure 2b), then increasing the proportion of n-PL in the binary solvent system,
the cross-section of the fibres became circular (Figure 2c,d). The formation of dumbbell-like
fibres is commonly observed when highly volatile solvent systems are used during the
electrospinning [5,32] due to the collapse of the fibre skin during the rapid vaporisation of
solvent. When n-PL is added, the mixture becomes less volatile and less prone to collapse.
However, as soon the content of n-PL exceeded chloroform content, the presence of n-PL
induced fused fibre formation due to insufficient vaporisation of the solvent molecules
from the jet. When pure n-PL is used, the electrospinning was not possible, only spraying
occurred (Figure 2f). It is also important to note that the dumbbell shape is not affected by
the process parameters, as this shape has been observed at several gap, flow and voltage
values. Only the presence of n-PL affected it.
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Another interesting feature was the porous surface. The SEM images of electrospun
PIM-EA-TB fibres with higher magnifications are given in Figure 3.
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It was observed that when pure chloroform was used as solvent for the electrospinning,
porosity appeared on the surface of the fibres, with a 150 nm pore diameter (Figure 3). On
the contrary, when n-PL was added, the porous surface disappeared. The pore formation is
due to a local phase separation on the surface [32]. The fast evaporation of solvent leads
to local phase separation, and the solvent-rich regions transform into pores during the
electrospinning process. With the addition of n-PL, the boiling point of the solvent system
is higher than chloroform alone. This induces a slowdown of the solvent evaporation, and
thus eliminates pore formation.

• Fibre diameter

The presence of n-PL induced a reduction in the fibre diameter as well. As reported in
Table 2, the fibre diameter decreased from 7.9 µm to 4.7 µm for the sample 10:0 and the
sample 5:5, respectively.

Table 2. Fibre diameter of PIM-EA-TB fibres from (10:0), (9:1), (7:3) and (5:5) chloroform/n-PL solutions.

Ratio Chloroform/n-PL 10:0 9:1 7:3 5:5

Fibre diameter (µm) ± 0.3 µm 7.9 7.2 5.3 4.7

This decrease is related to the electrical conductivity variation. As showed in Figure 4,
the diameter of the fibre decreased with an increase in the conductivity of the solution. The
increase in conductivity induces greater stretching of the electrospinning jet and favours a
reduction in fibre diameter [33].

3.1.2. Effect of the Electrospinning Process Conditions

The influence of the process conditions on the fibre diameter was further studied for
the solutions yielding to bead-free structures only, i.e., systems with 10:0, 7:3, and 5:5 as
CH3Cl/n-PL ratio.

• Effect of flow rate

Different feed flow rates, from 10 to 100 µL min−1, were studied for each of the solu-
tions. Figure 5a shows the impact of the flow rate on the fibre diameter. The mean diameters
of the microfibres increased from 3.2 ± 1, 1.8 ± 0.5 and 1.7 ± 0.5 µm to 7.9 ± 1, 5.3 ± 0.5
and 4.7 ± 0.5 µm to as a result of the increase in the flow rate from 10 to 100 µL min−1 for
10:0 sample, 7:3 sample and 5:5 sample, respectively. A higher flow rate results in thicker
fibres due to the higher mass flow through the tip.
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• Effect of gap

Three different distances between tip and collector were used to study their impact
on the fibre diameter (Figure 5b). The mean diameters of the microfibres decreased from
4.1 ± 1, 3.4 ± 0.5 and 3.7 ± 1 µm to 3.1 ± 1, 2.8 ± 0.5 and 2.4 ± 0.5 µm to as a result of
the increase in the gap from 10 to 30 cm for the 10:0 sample, 7:3 sample and 5:5 sample,
respectively. By increasing the gap, thinner fibres were formed for the three systems since
a higher distance between the tip and the collector provides a larger stretching distance.

• Effect of voltage

Finally, the effect of the applied voltage was studied for each solutions and shown in
Figure 5c. A minimum voltage was required in order to form fibres. Below 16 kV, fewer
fibres were obtained. By increasing the voltage, the electrospinning yield was enhanced
with the formation of microfibres. The mean diameters of the microfibres decreased from
4.9 ± 1, 3.9 ± 1 and 3.6 ± 1 µm to 2.7 ± 1, 3 ± 0.5 and 3.3 ± 0.5 µm to as a result of
the increase in the applied voltage from 16 to 25 kV for 10:0 sample, 7:3 sample and 5:5
sample, respectively. Actually, increasing voltage induced a larger stretching of the solution
resulting in the formation of thinner fibres [12,26,34,35].

The influence of applied voltage is decreasing with the addition of n-PL. For the system
10:0, the fibre diameter is divided by 45%, whereas for the 5:5 system the fibre diameter is
only reduced by 11%. The diameter reduction is determined by the strength of the electric
field [11]. As n-PL is more conductive than chloroform (Table 1), the strength of the electric
field is lower with the n-PL solutions inducing a smaller reduction in fibre diameter.

3.2. Characterisation
3.2.1. Thermal Analysis

Figure 6 shows the Thermogravimetric Analysis (TGA) graphs of PIM-EA-TB fibres
obtained from the solution (10/0), (9/1), (7/3) and (5/5).
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Figure 6. Thermogravimetric Analysis (TGA) of PIM-EA-TB electrospun fibres from solutions (10/0),
(9/1), (7/3) and (5/5).

The TGA curves show a different behaviour for the fibres obtained with pure chloro-
form and the ones with the mixture of n-PL/chloroform. The fibres obtained from (10/0)
solution present a slight first degradation at Td1 = 40 ◦C due to the presence of residual
chloroform. Then, a second degradation temperature, Td2, is observed around 325 ◦C
corresponding to the Td of PIM-EA-TB [29].

As soon n-PL is added in the solution, a larger degradation is observed at Td1, which
is shifted to higher value, 120 ◦C, due to the higher boiling point of n-PL compared to
chloroform (Table 1). The second degradation is also observed at the same temperature of
325 ◦C.
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3.2.2. Pore Size

The fibrous mats were also characterised in terms of porosity (Figure 7a).
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The fibrous mats had a pore diameter varying from 11 µm to 51 µm depending on the
binary solvent mixture. The fibres obtained from pure chloroform solution gave the larger
pore diameter. The solutions with n-PL, 7:3 and 5:5 had similar smaller pore diameters,
from 11 µm to 28 µm.

Regardless of the binary system used as solvent, the electrospun fibres exhibit a similar
correlation between fibre diameter and pore diameter, with an increase in fibre diameter
inducing an increase in pore diameter (Figure 7a).

3.2.3. Air Resistance

As indicated above (Section 2.3.2), it is preferred to use the airflow resistance than the
air permeability, meaning that a high value of RAir represents a low permeable material,
whereas a low value of RAir is representative of a highly permeable material. The PIM-EA-
TB fibrous mats exhibited RAir from 25 × 107 m−1 to 5 × 107 m−1, which are similar to
standard values of RAir for commercial facemasks [12]. As expected, the air flow resistance
decreased as the pore diameter increased (Figure 7b). The sample from pure chloroform
was the sample with the lowest RAir due to the fact it had the larger pore diameter. Similar
to the pore size variation, the airflow resistance presents the same trend for the three binary
mixtures regardless the solvent used during electrospinning.

For a same pore size diameter, the fibres obtained from the chloroform solution
present a higher RAir than the ones from binary solutions. The dumbbell shape might add
a supplementary resistance to the air transport though the fibrous mat.

3.2.4. Water Resistance

The water contact angle of the electrospun fibres was characterised (Figure S1). The
fibrous mats present a high hydrophobic character, with a water contact angle around 126◦.
The hydrophobic character is related to the high surface roughness of the fibrous surface.

The water resistance property was also investigated by hydrostatic pressure tests. The
hydrostatic pressure of liquid water corresponds to the pressure required to penetrate
the sample and form water droplets on its opposite surface. A larger value means higher
resistance to liquid water penetration. As suggested by Figure 7c, the hydrostatic pressure
followed the same trend as RAir, it decreased with increasing pore size diameter. Actually,
a large pore diameter induces a lower resistance to water penetration. The fibres from
chloroform solutions appear to be more resistant to water than the ones from the solutions
with n-PL.

Waterproofness, i.e., water resistance and sweat water breathability was also tested
for the electrospun fibres. A fibrous mat was put over a beaker filled with boiling water
with silica particles and a droplet of water on the surface (Figure 8).
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Figure 8. (a) Schematic mechanism and (b) experimental test for waterproofness and breathability
performance (Sample 5:5).

The silica particles were used to demonstrate the water vapour transmission and so
the ability of the sample to release the moisture vapour, whereas the water droplets were
used to demonstrate waterproofness. For all the samples, the water droplets were still
present on the surface after more than 1 h, indicating the water resistance of the fibrous
mat. After 30 min, water vapour appeared on the top surface of the sample (Figure 7b), and
the silica particles started to change colour meaning that water vapour was transported
through the mat confirming the breathability of the mat. This simple experiment coupled
with RAir data demonstrates the potential of PIM-EA-TB fibres to be used as facemasks.

4. Conclusions

This paper reports for the first time the fabrication of PIM-EA-TB fibres with controlled
morphology using a chloroform/n-Propyl lactate solvent solution with different volume
ratios. Different surface morphologies (porous surface), shapes (cross-sectional dumbbell
shape) and diameter were obtained according to the solvent system due to their physical
properties (conductivity, boiling point). Firstly, the use of a volatile solvent, such as
chloroform, induced the formation of a dumbbell shape and a surface porosity. With the
addition of n-PL, which presents a higher boiling point, circular fibres were obtained.
Secondly, formation of thick fibre was observed with low conductive solvent systems, with
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diameter up to 7.9 µm. With the addition of a more conductive solvent, a decrease in the
diameter fibres was noticed, with diameter down to 4.7 µm. In terms of performances, the
fibrous mats obtained with pure chloroform presented smaller pore size, higher air and
water resistance than with n-PL due to the dumbbell shape.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/membranes11060422/s1, Table S1: Surface tension of solvent systems. Table S2: Characteri-
sations of electrospinning solutions and corresponding electrospun mats. Figure S1: Water contact
angle on PIM-EA-TB fibres from solution (9/1).
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