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Organization of high-level visual cortex
in human infants
Ben Deen1, Hilary Richardson1, Daniel D. Dilks1,2, Atsushi Takahashi1, Boris Keil3,4, Lawrence L. Wald3,5,

Nancy Kanwisher1 & Rebecca Saxe1

How much of the structure of the human mind and brain is already specified at birth, and how

much arises from experience? In this article, we consider the test case of extrastriate visual

cortex, where a highly systematic functional organization is present in virtually every normal

adult, including regions preferring behaviourally significant stimulus categories, such as faces,

bodies, and scenes. Novel methods were developed to scan awake infants with fMRI, while

they viewed multiple categories of visual stimuli. Here we report that the visual cortex of

4–6-month-old infants contains regions that respond preferentially to abstract categories

(faces and scenes), with a spatial organization similar to adults. However, precise response

profiles and patterns of activity across multiple visual categories differ between infants and

adults. These results demonstrate that the large-scale organization of category preferences in

visual cortex is adult-like within a few months after birth, but is subsequently refined through

development.
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I
n human adults, the cortex shows a systematic spatial
and functional organization. Responses in visual cortex are
driven by high-level, behaviourally relevant categories, includ-

ing human faces, bodies, objects and natural scenes, both within
circumscribed, highly selective regions1–4, and in graded response
patterns across larger swaths of cortex5–7. The origins of
these responses have been the topic of intense debate: are they
learned, reflecting a gradual accrual of expertise, or do they reflect
innate predispositions?

A key constraint on theories of cortical development would be
evidence of when these responses emerge in cortex. However, the
functional organization of high-level responses in visual cortex
has never been tested in infants, and existing indirect evidence
makes contradictory predictions. Slow, hierarchical development
of visual functions over years is suggested by late developmental
change in children aged 4–10 years8,9, slow and staggered time
courses of myelination10 and cortical thinning11, and late
developmental change in juvenile macaques12,13. By contrast,
early functional maturation of cortex in infancy is consistent with
high-level responses measured by electroencephalography
(EEG)14,15 and near-infrared spectroscopy (NIRS)16,17, rare
electrophysiological recordings from infant macaques18, and
the sophisticated cognition of pre-verbal infants revealed by
the modern developmental psychology19.

The main obstacle to resolving this debate is the difficulty
of neuroimaging awake infants. The imaging techniques most
commonly used in human infants (EEG and fNIRS) lack
the coverage and resolution needed to measure the spatial
organization of cortex. Only two prior studies have collected
functional magnetic resonance imaging (fMRI) data from awake
infants, and because of infants’ limited tolerance, it has been
difficult to collect sufficient data to test replicability or functional
profiles of response20,21. Here we implement novel methods
for awake infant fMRI to study the early development of high-
level visual responses in cortex. We employ a number of technical
advances to increase participant comfort, optimize signal strength
and minimize head motion artefacts: (1) infant-sized MR head
coils; (2) quiet pulse sequences; (3) dynamic and engaging visual
stimuli; and (4) a combination of extant and novel data analysis
techniques for minimizing motion artefacts.

Our data demonstrate that by 4–6 months of age, human
infants have category-sensitive visual responses to faces
and scenes, with a spatial organization mimicking that observed
in adults. However, we also observe differences: both in response
profiles across multiple categories (which were less selective in
infants), and in patterns of response across cortex. Thus,
the overall functional organization of high-level visual cortex
develops very early, and is subsequently refined.

Results
fMRI findings. We obtained low-motion fMRI data from
9 infants (of 17 tested; age 3–8 months; Supplementary Table 1),
while they viewed engaging, brightly coloured, infant-friendly
movies of faces, natural scenes, scrambled scenes, human bodies
and objects (Supplementary Fig. 1). We first compared responses
to faces versus scenes, because in adults this comparison yields
the most robust differential responses, and delineates a large-scale
spatial organization of extrastriate cortex22,23. Face- or scene-
preferring regions in occipitotemporal cortex were observed in
eight of nine infants, with a similar spatial organization as in
adults (Fig. 1; Supplementary Figs 2 and 3). In individual infants,
face-preferring regions were observed in the fusiform gyrus,
lateral occipital cortex, superior temporal sulcus (STS) and medial
prefrontal cortex; scene-preferring regions were observed in
the parahippocampal gyrus and lateral occipital cortex. Many of

these regions showed reliable responses in a group analysis,
demonstrating generalization across infants (Fig. 1). Region-of-
interest (ROI) analyses corroborated whole-brain results,
demonstrating reliable face and scene preferences in data
independent from those used to define ROIs, in all regions
tested (Fig. 2; Supplementary Figs 4–7; Expt. 1, n¼ 9,
permutation test; ventral face region, z¼ 2.85, P¼ 2.2� 10� 3

lateral face region, z¼ 3.27, P¼ 5.4� 10� 4; STS face region,
z¼ 4.74, P¼ 1.1� 10� 6; ventral scene region, z¼ 6.41,
P¼ 7.3� 10� 11; and lateral scene region, z¼ 3.43,
P¼ 3.0� 10� 4). In six infants who participated in more
than one experiment, these preferences were also replicated
using distinct face and scene movies (Expts. 2–8, n¼ 6,
permutation test; ventral face region, z¼ 2.22, P¼ 0.013; lateral
face region, z¼ 2.51, P¼ 6.0� 10� 3; STS face region, z¼ 4.19,
P¼ 1.4� 10� 5; ventral scene region, z¼ 5.64, P¼ 8.5� 10� 9;
and lateral scene region, z¼ 5.00, P¼ 2.9� 10� 7).

These results demonstrate that the spatial organization
of preferential responses to faces versus scenes is similar in
4–6-month-old infants and in adults, extending throughout the
ventral visual stream and even into prefrontal cortex.
In subsequent analyses, we sought to constrain the functional
interpretation of these responses. Are cortical regions in infants
responding to highly specific visual categories1,2,4, to broader
visual or semantic dimensions5,6, or to lower-level visual features
that co-vary with high-level categories24–27? Do large-scale
patterns of response to categories other than faces and scenes
change over development? Measuring responses to multiple
visual categories enabled us to ask these questions.

Do preferential responses to faces and scenes in infants reflect
a high-level category preference, or a bias toward lower-level
visual features, such as eccentricity, spatial frequency or
rectilinearity (the presence of 90� angles)24–27? We tested
whether cortical responses in infants were better predicted by
these lower-level visual features than by high-level categories.
In Experiment 2, scenes and scrambled scenes were reduced to
80% the size of face and body movies, but category preferences
were unaffected, suggesting that these responses were not driven
by eccentricity (Supplementary Fig. 7B). Across all experiments,
rectilinearity and spatial frequency content of the movies
predicted responses no better, and in scene regions significantly
worse than modulation by visual category (Fig. 3). The visual
category model was particularly better for scene-preferring
regions because the control condition in most experiments
(scrambled scenes) had high spatial frequency and
high rectilinearity, most clearly differentiating the predictions
of the lower-level features from the visual category model. For
face-preferring regions, category and low-level feature models
made similar predictions for these stimuli; future experiments
including a low-spatial-frequency, highly-curvilinear control
condition will clarify the responses of these regions. Overall,
however, our data suggest that by 4–6 months, category-sensitive
cortical responses are not primarily driven by lower-level visual
features.

Another outstanding question is whether responses to faces
and scenes in infants reflect regions with highly selective
responses to specific categories, or weaker-graded preferences
across multiple categories. In adults, for example, the fusiform
face area and parahippocampal place area have highly selective
response profiles, preferring faces or scenes to any other visual
category (for example, objects, bodies, animals, foods and
so on)2,4, whereas broad areas around these regions have
graded preferences predicted by coarser semantic dimensions5,6.
We searched for highly selective regions by contrasting faces
(or scenes) to objects. In adults, these contrasts revealed the
predicted spatially focal, strongly selective regions: each region
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showed a higher response to its preferred category than to all
three other categories (Fig. 4; Supplementary Fig. 3; permutation
test comparing faces or scenes to objects, n¼ 3; ventral face
region, z¼ 5.54, P¼ 1.5� 10� 8; lateral face region, z¼ 4.35,
P¼ 6.8� 10� 6; STS face region, z¼ 7.13, P¼ 5.0� 10� 13;
ventral scene region, z¼ 6.10, P¼ 5.3� 10� 10; and lateral
scene region, z¼ 5.12, P¼ 1.5� 10� 7). In infants, however, no
region showed a higher response to faces or scenes over objects
(permutation test, n¼ 6; ventral face region, z¼ � 0.75, P¼ 0.77;
lateral face region, z¼ 0.91, P¼ 0.18; STS face region, z¼ 1.40,
P¼ 0.08; ventral scene region, z¼ � 1.36, P¼ 0.91; and lateral
scene region, z¼ 0.81, P¼ 0.21). Similar results were obtained
for a range of ROI sizes (Fig. 4): adults showed a significant
response to faces (or scenes) over objects for all regions and
ROI sizes (permutation test, n¼ 3, all P’so0.05), while infants
did not show a significant response for any region or ROI size,
including ROIs as small as 0.8 cm3 (permutation test, n¼ 6, all
P’s40.05). Thus, within the spatial resolution of our methods, we
find no evidence that the difference between groups reflects a
change in the size of selective regions.

Could these null findings result simply from poor data quality
in infants? Several observations argue against this interpretation.
First, standard errors did not differ substantially across infants
and adults, and when a reduced subset of adult data was analysed
to inflate standard errors, the same results were obtained
(Supplementary Fig. 8). Second, although no region preferred
faces (or scenes) to objects in infants, the reverse contrast in
exactly the same data revealed robust responses to objects,
compared with either faces or scenes, with adult-like spatial
organization in temporal and parietal cortex (Supplementary
Fig. 9). Thus, while the large-scale spatial organization of
responses to faces versus scenes is present in infants and remains
a principal dimension of cortical organization into adulthood,
highly selective regions for particular categories apparently
emerge later in development, perhaps requiring more extensive
visual experience.

In addition to the absence of category-selective regions,
we found evidence for developmental change in the large-scale
patterns of functional response across multiple categories.
To summarize and quantify the spatial structure of responses

Infant 1 (6 mo, 59 mins data)

Infant 2 (6 mo, 45 mins)

Group (N=9)

Scenes Faces

2.35 2.3 5

z

Figure 1 | Category-sensitive responses to faces and scenes in infants show adult-like spatial organization. Regions preferring faces over scenes are

reported in red/yellow, and regions preferring scenes over faces in blue. The top two rows of whole-brain activation maps show results from the two

individual infants with the largest amount of usable data, while the third shows a group map with statistics across infants. Maps are thresholded at Po0.01

voxelwise, and corrected for multiple comparisons using a clusterwise threshold of Po0.05.
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to multiple categories, we computed representational similarity
matrices, capturing the similarity of spatial patterns of response
across categories28. While face and scene responses were
dissimilar in both groups, consistent with the results above,
the pattern of similarity across all categories differed between
infants and adults (Fig. 5; Supplementary Fig. 10).
Representational similarity matrices across the four categories
were highly similar within adults (n¼ 3, mean Kendall’s
tau¼ 0.91), and moderately similar within infants (n¼ 6, mean
Kendall’s tau¼ 0.41), but dissimilar between groups

(mean Kendall’s tau¼ 0.14; significantly lower than within
group similarity for both infants, P¼ 0.024, and adults,
P¼ 0.012, permutation test). Thus visual responses to multiple
categories differ in infants and adults, as measured both
by response profiles of focal regions, and distributed patterns of
response across cortex.

Discussion
Using novel methods to acquire and analyse fMRI data from
awake human infants, this study demonstrates that the cortex of
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Figure 2 | The location and reliability of responses to faces and scenes is consistent across infants and adults. Brain images show heat maps of region-

of-interest (ROI) locations across participants (% of ROIs that included a given voxel), with ROIs defined as the top 5% of voxels responding to faces over

scenes (or vice versa) within an anatomical region. Bar plots show each ROI’s response (per cent signal change, PSC) to faces and scenes in independent

data, separately for Expts. 1, 2–8. Error bars show the standard deviation of a permutation-based null distribution for the corresponding value. Baseline

corresponds to the response to scrambled scenes (Expts. 1–3, 7–8) or scrambled objects (Expts. 4–6). Statistics for infant data are presented in the main

text; as expected, face and scene preferences were highly significant in adults for all regions (permutation test, n¼ 3; all P’so10� 15).
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4–6-month-old human infants is already spatially organized,
with distinct regions responding preferentially to human faces
versus natural scenes. The spatial structure of these responses is
very similar to that observed in adults, and extends throughout
cortex, including occipital, temporal, parietal and frontal regions.
Thus, while the anatomical maturation of human cortex is
slow and asynchronous, basic aspects of functional organization
are present across cortex from a very early age.

Prior fMRI studies have observed category-sensitive responses
in high-level visual cortex in children as young as 4 years8.
By demonstrating that these responses exist by 4–6 months of
age, the current study provides a stronger constraint on theories
of cortical development: this functional organization must either
be determined innately, without any need for visual experience,
or develop within the first few months of life. A limited role for
visual experience in the development of category-sensitive
responses is consistent with evidence that in congenitally blind
adults, category-sensitive responses in visual cortex develop in
the absence of any visual input29,30.

The observation of face-sensitive functional responses
in human infants is also consistent with prior evidence from
EEG and NIRS14–17. Using fMRI, our results go beyond those
prior studies because we are able to assess the precise spatial
organization of category-sensitive responses, and to measure

responses in non-superficial regions, such as ventral temporal
cortex. This novel evidence of the functional organization
of cortex in infancy can be directly related to the extensive
fMRI literature on visual responses in adults. In addition to
providing spatial resolution, the current data provide better
functional characterization of cortical responses in infants.
By acquiring a large amount of high-quality data within
individual infants, we are able to measure responses to multiple
categories, and to internally replicate our finding of face and
scene responses, across experiments that used different specific
movie stimuli. We also provide initial evidence that infants’
responses to high-level, behaviourally significant categories
cannot be explained in terms of responses to simple lower-level
visual features.

While our data indicate that the spatial organization
of responses to faces and scenes is remarkably adult-like, we
additionally observed that both the fine-grained selectivity
and spatial pattern of activity across multiple categories change
with age. In particular, and in contrast to adults, infants did
not have strongly category-selective regions, that is, circum-
scribed regions showing a robustly stronger response to one
category than to any other. Differences between infants and
adults must be interpreted with caution, given the marked
differences in brain size and general visual and cognitive function.
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visual feature model (ventral face region, t(54)¼ �0.48, P¼0.64; lateral face region, t(54)¼0.25, P¼0.80; STS face region, t(54)¼ 1.55, P¼0.13). In

these regions, the category model (including a high response to faces) and the rectinilinearity model (a low response to rectilinearity) made very similar

predictions; other types of stimuli (such as curve-scrambled faces) may be needed to distinguish these hypotheses. In contrast, for scene regions, the

category model and low-level feature models made distinct predictions due to the inclusion of a highly rectilinear non-scene condition (grid-scrambled

movies). For the two scene-preferring regions, the category model significantly outperformed all visual feature models. For brevity, we report statistics only

for the comparison with the best-performing model (ventral scene region, t(54)¼ 3.56, P¼ 7.8� 10�4; lateral scene region, t(54)¼ 2.56, P¼0.013). HF,

high-frequency content; LþHþR¼ low-frequency content, high-frequency content and rectilinearity; LF, low-frequency content; Recti, rectilinearity.
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For instance, one possibility is that in adults, category-selective
responses are enhanced by top-down feedback and selective
attention, which are not yet mature in infants. Nevertheless, these
data are consistent with the hypothesis that the early-developing
large-scale functional organization of category preferences in
cortex provides a scaffolding for subsequent refinement of
responses, leading ultimately to the strongly category-selective
regions observed in adults31. The process of refinement likely
depends on both physiological maturation (for example,
myelination of long-range connections between brain regions)
and visual experience. For example, the visual word form area
develops as a result of experience with a specific orthography32,
but is guided by pre-existing patterns of anatomical

connectivity33. Similarly, extensive training with novel symbols
can generate selective responses in a cortical region in macaques;
the location of this region is consistent across animals, suggesting
refinement based on a pre-existing scaffold12,13.

These results point to myriad future questions, including:
what is the time course of the development of category-selective
visual regions during and after the first year of life? How
do maturation and visual experience interact to drive this
development? And does a similar principle (an initial preference
that is subsequently refined) apply to the development of
functionally specific regions in other perceptual and cognitive
domains? We hope that the methods introduced here will aid in
future investigations of these questions.
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Methods
Participants. We scanned 17 infants (age 2.3–8.6 months, three female) and
acquired useable (low-motion) data from nine infants (age 3.0–8.0 months, one
female). We also scanned three adults (age 27–34 years, one female) for compar-
ison (Supplementary Table 1). Because low-motion data from infants was relatively
rare, whenever possible we scanned infants in multiple sessions (between 1 and 16
scan sessions per infant, for a total of 63 sessions). Sessions occurring within a
month were analysed together as a single data set; sessions separated by more than
a month were analysed as separate data sets (this occurred for five infants; only one
data set per infant was used for group analyses). Adult participants and parents of
infant participants provided written, informed consent, as approved by the Com-
mittee on the Use of Humans as Experimental Subjects at MIT.

Paradigm. Stimuli were infant-friendly dynamic movie clips depicting faces,
objects, bodies, and scenes (Supplementary Fig. 1). Participants initially
viewed Experiment 1 (Expt. 1), a two-condition (face, scene) experiment, with
grid-scrambled scenes included as a baseline (pilot testing indicated that infants
would not tolerate a baseline with less visual structure). When time permitted, we
additionally ran Experiment 2 (Expt. 2), a four-condition (face, object, body and
scene) version, with distinct face and scene movies, a scrambled scene baseline, and
both scene and scrambled scene movies presented at 80% size, to minimize the
possibility of a retinotopic confound in the scene versus face comparison. In certain
cases, experiments (Expts. 3–8) using different movies of the same categories
were used, to further test generalization of responses across specific movies; these
experiments, as well as more detail on stimuli, are further described below
(Further paradigm details). Stimuli were presented in 18 s-long blocks, typically
comprising six 3 s-long movie clips. Baseline blocks occurred every seven blocks
(Expt. 1) or five blocks (Expt. 2); experimental blocks were ordered pseudor-
andomly between baseline blocks. During infant functional scans, an experimenter
or parent lay in the scanner bore to monitor the infant, and told the experimenters
if the infant closed his or her eyes, fell asleep or fussed out. For infants, individual
runs were not fixed in duration, but instead ended whenever the infant fussed
out or fell asleep. For adults, runs lasted 22 blocks (Expt. 1) or 21 blocks (Expt. 2),
with a baseline block at the start and end of each run. Adults received five runs
each of Expt. 1 and Expt. 2. Parents of actors in stimulus videos provided written,
informed consent for the publication of images in Figure 3 and Supplementary
Figure 1.

Data acquisition. MRI data were acquired using a Siemens 3T MAGNETOM
Tim Trio scanner (Siemens AG, Healthcare, Erlangen, Germany). We used a
standard 32-channel head coil for adult participants, and a custom-built
infant-sized 32-channel head coil for infants34. The latter was shaped like a reclined
car seat to increase comfort, and had coil elements close to the infant’s head, to
reduce head motion and increase signal-to-noise ratio. For infants whose heads did
not fit in this coil, a 32-channel head coil designed for 5 year olds was used instead.
To further increase infant comfort, we acquired data using a quiet (70–72 dB sound
pressure level) T2*-weighted pulse sequence35, sensitive to blood-oxygen-level-
dependent contrast (repetition time (TR)¼ 3 s, echo time (TE)¼ 43ms, a¼ 90�,
field of view (FOV)¼ 192mm, matrix¼ 64� 64, slice thickness¼ 3mm, slice
gap¼ 0.6mm). For infants, we used 18–24 near-axial slices, using the minimum
number of slices required to cover occipitotemporal cortex for a given head size,
because pulse sequence audio volume scaled with number of slices; for adults, we
used 36 near-axial slices for whole-brain coverage. Infants were swaddled during all
scans to reduce body movement.

Anatomical images were only collected in certain cases, because our focus
was normally to collect as much awake functional data as possible, and because

collecting a high-quality anatomical typically required the infant to be asleep to
reduce motion. When anatomicals were collected, we used one of three
T1-weighted pulse sequences of varying length, using briefer, lower-quality
sequences when an infant would only stay still for a short duration. These
included a 24 s sequence (TR¼ 283ms, TE¼ 1.8ms, flip angle a¼ 9�,
FOV¼ 159mm, matrix¼ 106� 106, slice thickness¼ 1.5mm, 96 sagittal slices),
a 2.2-min sequence (TR¼ 800ms, TE¼ 3.43ms, flip angle a¼ 9�, FOV¼ 160mm,
matrix¼ 160� 160, slice thickness¼ 1mm, 144 sagittal slices), and a 6.5-min
sequence (TR¼ 2530ms, TE¼ 1.64ms, flip angle a¼ 7�, FOV¼ 256mm,
matrix¼ 256� 256, slice thickness¼ 1mm, 176 sagittal slices, acceleration
factor¼ 2, 24 reference lines). In adults anatomicals were acquired using the
6.5-min sequence.

Data selection. Data were processed primarily using custom scripts, with tools
from the FMRIB Software Library (FSL) version 4.1.8 and Freesurfer additionally
used for registration and motion correction. Because some of our infant data
contained a substantial amount of head movement, and because head motion
causes highly deleterious artefacts in fMRI data36, we first aimed to discard
high-motion data that could corrupt our results and lead to false negatives. Each
run was first motion corrected by registering each volume to the middle volume,
using rigid transformations determined by FSL’s MCFLIRT. Using the motion
parameters estimated by this correction, we applied a technique known as
scrubbing37,38, removing pairs of adjacent volumes with 40.5mm of total
translation or 0.5� of total rotation between them. We also removed volumes
where the participant’s eyes were closed, and the first three volumes of each run
(to allow the MR system to equilibrate).

While this technique is effective in removing artefactual spikes of response that
occur at high-motion time points, it can still leave large baseline shifts in voxels’
time courses that occur when a participant’s head moves substantially and remains
in a new location relative to the head coil and external magnetic field. We thus
instituted a second cutoff on scrubbed data, at pairs of adjacent volumes with
42mm of total translation or 2� of total rotation between them. At these cutoff
points, we temporally split runs to form ‘pseudoruns’ of scrubbed data, where the
head was in a relatively consistent position. These pseudoruns were subsequently
analysed as one would normally analyse a full run. Pseudoruns were kept for
analysis if they contained at least 24 time points, as well as six time points per
condition for all conditions (where condition timing was lagged by 6 s to account
for hemodynamic delay), such that responses to each condition could be estimated.
Last, participants were included in analyses if they had at least 5min of data saved
after this procedure, across experiments.

Supplementary Table 1 shows the amount of data acquired and saved,
across participants. We initially acquired 23.06 h of data across 17 infants, and were
left with 4.26 h of data across 9 infants after motion screening. Resulting pseudoruns
in infants ranged in length from 1.2–17.5min (mean 4.3min). While this procedure
led to a substantial reduction in data quantity, it drastically reduced the amount
of head motion present in the resulting data, reducing mean volume-to-volume
translation from 1.11 to 0.13mm, and mean rotation from 1.69� to 0.17�. In adults,
neither scrubbing nor pseudorun selection resulted in any volumes being removed,
such that pseudoruns were equivalent to the original runs. Adult data had mean
volume-to-volume translation of 0.04mm, and mean rotation of 0.02�.

Data preprocessing. Pseudoruns were first motion-corrected by registering
each volume to the middle volume, using rigid transformations determined by
FSL’s MCFLIRT. Data were skull-stripped using FSL’s Brain Extraction Tool,
and spatially smoothed using a 3mm-full-width at half-maximum Gaussian
kernel.
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Data registration. To combine data across pseudoruns, middle volumes
from each pseudorun for a given participant were all registered to a common target
middle volume, chosen to have minimal distortion. All registration was performed
using FSL’s FLIRT, unless otherwise noted. In infant data, head motion across
pseudoruns posed challenges for this registration: different volumes could have
different positions within the bounding box, and different types of nonrigid
distortion. To optimize registration, we thus adopted the following procedure:
(1) middle volumes were algorithmically registered to target volumes using both a
rigid transformation and a general affine transformation; (2) translation and
rotation parameters for both of these transformations were hand-tuned to improve
registration quality; and (3) we selected whichever resulting transformation
(hand-tuned rigid or hand-tuned affine) provided a more accurate registration
based on visual inspection of anatomical landmarks. For adult data, middle
volumes were registered to the target using a rigid transformation.

For infant data, in cases where anatomicals were collected, target functional
volumes were registered to anatomical images using a rigid transformation, with
translation and rotation parameters subsequently hand-tuned. For adult data,
because surface reconstructions could be obtained, target functionals were
registered to anatomicals with a rigid transformation determined by Freesurfer’s
bbregister. Anatomical images in adults were in turn registered to the Montreal
Neurological Institute (MNI) 152 template brain using a nonlinear transformation
determined by FSL’s FNIRT.

Last, we aimed to register data across infants, for the purposes of registering
search spaces for ROI analyses (described below), and to compute group-level
whole-brain statistical maps. To this end, target functional volumes from each
infant were registered to the target functional of infant 1, data set 3 (the infant
and data set with the most useable data) using an affine transformation, with
translation and rotation parameters subsequently hand-tuned. While these
transformations were not perfect, insofar as linear registration cannot perfectly
align different brains, they were primarily used for the registration of large search
spaces, which should be tolerant to minor inaccuracies in registration. Lastly, to
transform search spaces across infants and adults, this target functional volume was
registered to the MNI brain using an affine transformation, with translation and
rotation parameters subsequently hand-tuned.

Data modelling. For each pseudorun, whole-brain voxelwise linear models were
performed to estimate the blood-oxygen-level-dependent response to visual
stimuli. Regressors for each condition (excluding the baseline) were defined as
boxcar functions with value 1 during blocks of that condition, convolved with a
canonical double-gamma hemodynamic response function. Twelve nuisance
regressors were additionally included to reduce the influence of potential artefacts.
A linear trend regressor was included to account for signal drift. Motion parameter
regressors (three translation parameters and three rotation parameters determined
by motion correction) were used to minimize effects of head motion. Last,
five principal component analysis (PCA)-based noise regressors were used to
account for other noise sources (a method similar to GLMDenoise39). PCA-based
regressors were defined by: (1) choosing a ‘noise pool’ of voxels with o1% of
variance explained by the task regressors; (2) running PCA on time series from
these voxels; and (3) choosing the top five principal components as regressors.
For both task and nuisance regressors, time points that were scrubbed in data
selection were removed after the regressors were defined (with the exception of
PCA-based regressors, which were defined using scrubbed data).

This analysis provided beta values for task regressors corresponding to the
magnitude of response to each condition, and contrast values corresponding to
differences across conditions. To combine the resulting contrast values across
pseudoruns for a given participant and data set, we computed a weighted average of
contrast maps registered to a common functional space, using weights
corresponding to the amount of data contributed by each pseudorun. Weights
were proportional to (cT(XTX)� 1c)� 1, where c is the contrast vector and X is the
design matrix for a given pseudorun. For a given contrast (for example, faces versus
scenes), we combined data across all experiments containing that contrast.

We next statistically assessed these average contrast values for each participant.
Because fMRI time series are temporally autocorrelated, within-participant
statistics are typically computed using feasible generalized least squares, with
an empirical estimate of the autocorrelation structure. However, the validity of
extant methods for estimating the autocorrelation of fMRI data is not well
established40, and these methods have not been validated in infant data. To obviate
the need for any assumptions about the autocorrelation structure in our data, we
instead used a nonparametric permutation test41. Specifically, on each of 5,000
iterations, we randomly permuted the block order for each pseudorun, and
computed a contrast value for each voxel. This procedure provided a null
distribution that was used to threshold voxelwise contrast values at Po0.01, one-
tailed. Estimated null distributions were fit with a Gaussian distribution, allowing
us to estimate small P values that wouldn’t be possible to estimate from the fraction
of samples from the null distribution exceeding the observed statistic; for statistics
with larger P values, the Gaussian fit gave very similar P values to those computed
using the raw null distribution. For visualization and reporting purposes, voxelwise
statistics were converted to z-values based on their computed P value. To correct
for multiple comparisons across voxels, we additionally used a permutation test to

build a null distribution for sizes of contiguous clusters of activation, and
thresholded cluster sizes at Po0.05.

We additionally computed a group-level statistical map to perform inference
across infants. Average contrast maps for each infant were registered to the target
functional space of infant 1, data set 3, and voxelwise t-tests were performed across
infants, comparing contrast values to zero, thresholded at Po0.01. For infants with
multiple data sets acquired at different ages, we only used the data set with the
largest amount of saved data. As above, voxelwise t-statistics were converted to
z-values based on their computed P value for visualization purposes. To correct
for multiple comparisons across voxels, a permutation test was used to build a null
distribution for sizes of contiguous clusters of activation (where on each iteration,
signs of contrast values for each infant were randomly flipped), and thresholded
cluster sizes at Po0.05.

ROI analysis. To assess response profiles of brain regions identified in the
whole-brain analysis, we performed ROI analyses. ROIs were defined as the set
of voxels within a broad anatomical search space with the top N% of statistical
values for a specific contrast, such as comparing faces to scenes or faces to objects.
The value N was typically 5%, but was also varied from 2 to 30% to measure
selectivity as a function of ROI size. Search spaces were hand-drawn on the ana-
tomical image of one participant (infant 1, data set 3), and registered to other
participants’ functional images as described above (Data registration). They
included (Supplementary Fig. 4): (1) lateral occipitotemporal cortex, covering the
expected locations of the occipital face area and occipital place area (mean size
39.2 cm3 in infants; 54.3 cm3 in adults); (2) ventral temporal cortex, covering the
expected locations of the fusiform face area and parahippocampal place area
(38.4 cm3 in infants; 54.0 cm3 in adults); (3) STS, covering the expected location
of the posterior STS face region (40.2 cm3 in infants; 53.0 cm3 in adults); and
(4) medial prefrontal cortex (65.5 cm3 in infants; 97.0 cm3 in adults). To maximize
the amount of data used to define regions, but still extract responses from data
independent of those used to define the ROI42, we used a leave-one-pseudorun-out
analysis: ROIs were defined using data from all but one pseudorun, responses were
extracted from the remaining pseudorun, and after iterating this process across all
pseudoruns and participants, the resulting beta values and contrasts were
combined using the weighted average described above (Data modelling). Beta
values and contrasts were converted to per cent signal change values by
dividing by mean signal strength within the ROI.

For most analyses, differences between conditions were statistically
assessed using a permutation test, analogous to the procedure described above
(Data modelling); these tests assess the significance of the observed effects within
our sample. In addition, we tested whether the effects observed can be expected to
generalize to the population. We compared responses to faces and scenes,
because these conditions were observed by all infants, and combined data across
all experiments to increase power within each participant. For each ROI
(defined as described above, using the face versus scene contrast), mean per
cent signal change values were computed for each participant, and the difference
between responses to faces and scenes was statistically compared to zero using a
one-tailed t-test across infants. As with the whole-brain group-level analysis, when
infants yielded multiple data sets acquired at different ages, we only used the data
set with the largest amount of usable data.

Visual feature analysis. We next asked whether responses in category-sensitive
visual regions could be explained in terms of lower-level visual features. In
particular, we focused on high- and low-frequency content and rectilinearity
(the presence of 90� angles in an image), which have been argued previously to
modulate responses in category-sensitive visual regions24–26. Frequency content
and rectilinearity measures were computed on individual frames from each movie
clip, and averaged across frames for a given clip. Frames were first converted to
grayscale and normalized to have zero mean and unit standard deviation, to
remove effects of overall luminance and contrast. We then computed the discrete
Fourier transform of each frame, and defined low-frequency content as total power
at frequencies less than one cycle per degree of visual angle, and high-frequency
content as total power at frequencies greater than five cycles per degree of visual
angle, following the cutoffs used by Razimehr et al.25 Rectilinearity was computed
using a procedure described by Nasr et al.24: frames were convolved with a bank of
90� angle Gabor filters at different scales and orientations, and magnitudes of
convolved images were averaged across spatial position and filter to yield a single
measure (Fig. 3).

We then assessed whether responses in category-sensitive ROIs were better
predicted by category identity or by visual features. Regressors for visual features
were defined by constructing time series of feature values for each individual
movie in a given pseudorun, convolved with a canonical double-gamma
hemodynamic response function. Categorical regressors were defined as described
above (Data modelling). We compared five models: category (containing regressors
for each visual category in an experiment), low-frequency content, high-frequency
content, rectilinearity, and a model containing low-frequency, high-frequency and
rectilinearity regressors. To eliminate the possibility that differences in model fit
resulted from different degrees of freedom across models, model fit was assessed
using leave-one-pseudorun-out cross-validation. For a given pseudorun, models
were fit using data from all other pseudoruns with the same set of conditions from
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that participant and data set (ROIs were also defined using data independent from
the left-out pseudorun, as described in the ROI analysis section above). This
provided a set of beta values that was used to define a predicted response for
the left-out pseudorun, for each model. Model fit was assessed by computing the
Fisher-transformed correlation (z0-value) between the time series in the left-out
pseudorun and the predicted response. Linear trend and motion parameter
nuisance regressors were included in all models. Model fit estimates were compared
across models using paired, two-tailed t-tests across pseudoruns.

Representational similarity analysis. As an alternative method of comparing
visual responses across infants and adults, we assessed the similarity structure
of spatial patterns of response to different categories of stimuli28. Specifically, we
computed correlations between spatial patterns of response (beta values comparing
each condition to baseline) to the four conditions of Expts. 2–6, in infants and
adults. Patterns were computed across voxels within extrastriate cortex, defined
as the union of the three anatomical search spaces described above
(ventral temporal cortex, lateral occipital cortex and the STS), with data
combined across runs as described above (Data modelling). Correlation matrices
(or representational similarity matrices, RSMs) were Fisher-transformed, averaged
across participants and then inverse-Fisher-transformed for reporting.

To compare RSMs across groups, we next asked whether the ordering of
correlation magnitudes across pairs or conditions (for example, face-object,
face-body and so on) differed across infants and adults. We computed rank
correlations (Kendall’s tau) between correlation values from each pair of
participants, either within infants, within adults, or between infants and adults,
and asked whether orderings were more consistent (higher rank correlation) within
group than between. To test whether the difference between within- and between-
group rank correlations was significantly greater than zero, we performed an exact
permutation test, building a null distribution for these values by computing them
based on all possible group assignments of the six infants and three adults.

Further paradigm details. Across infants, eight slightly different experiments
were run. Experiment 1 contained two categories (face and scene) and was run in
every infant. Experiment 2 contained four categories (face, body, object and scene)
and was run in a subset of n¼ 4 infants. Experiments 3–8 contained 3–4 categories
and were each only run in a single infant. Experiments 3–7 used stimuli that are
very similar to those used in Experiment 2, and were used in early scanning
sessions before switching to Experiment 2. Experiment 8 contained distinct stimuli
and was intended to provide additional evidence for generalization of category
preferences across different specific videos. Because we did not acquire enough
usable data with Experiments 3–8 to analyse them in isolation, they were ultimately
only used in combination with other experiments, to increase power for various
analyses. In particular, because all experiments contained face and scene categories,
all were used for whole-brain face versus scene comparisons, and to define
ROIs based on this contrast. Because Experiments 3–6 contained four categories,
they additionally contributed to four-condition ROI responses.

Experiment 1 consisted of Filmed Faces and Baby Einstein Scenes conditions,
as well as a baseline condition of spatially scrambled scenes (using 15� 15 grid
scrambling, as is the case for all scrambled stimuli). The Filmed Faces were
60 3 s-long close-up videos of children’s faces on a black background, filmed by the
experimenters, as used in a previous experiment in adults43. These videos did
not contain parts of the body below the neck. The Baby Einstein Scenes were
36 3 s-long videos of scenes taken from the Baby Einstein video collection, which all
depicted a three-dimensional (3D) spatial layout, and did not contain humans or
animals.

Experiment 2 consisted of Filmed Front Faces, Filmed Objects*, Filmed Bodies,
Filmed Scenes (presented at 80% size) and a baseline condition of spatially
scrambled scenes (also presented at 80% size). The Filmed Front Faces were
30 3 s-long videos of front-view faces, similar to the Filmed Faces condition,
but containing distinct specific videos. The Filmed Objects* were a set of
20 3 s-long close-up videos of children’s toys on a black background (for example,
rolling balls and moving gear toys), filmed by the experimenters. These 20 clips
were selected from a larger set of 60 clips used in a previous experiment43

(where the *denotes the subset), which were chosen to have virtually no
information about 3D scene layout (for example, corners between walls or between
a wall and a floor). The Filmed Bodies were a set of 60 3 s-long close-up videos of
children’s bodies or body parts (not showing faces) on a black background, as used
in a previous experiment43. The Filmed Scenes were a set of 60 3 s-long videos
filmed by the experimenters from a camera moving through an outdoor scene
(for example, a road and a field), as used in a previous experiment43. These all
depicted a 3D spatial layout, and did not contain humans or animals.

Experiment 3 consisted of Filmed Faces, Filmed Objects*, Filmed Bodies, Baby
Einstein Scenes and a baseline condition of spatially scrambled scenes.

Experiment 4 consisted of Filmed Front Faces, Filmed Objects, Filmed Bodies,
Filmed Scenes and a baseline condition of spatially scrambled objects. Filmed
Objects were the full set of 60 filmed object videos from which the Filmed Objects*
videos were selected.

Experiment 5 consisted of Filmed Faces, Filmed Objects, Filmed Bodies,
Filmed Scenes and a baseline condition of spatially scrambled objects.

Experiment 6 consisted of Filmed Faces, Filmed Objects, Filmed Bodies,
Baby Einstein Scenes and a baseline condition of spatially scrambled objects.

Experiment 7 consisted of Filmed Front Faces, Filmed Side Faces, Filmed
Objects*, Baby Einstein Scenes (presented at 80% size) and a baseline condition
of spatially scrambled scenes. The Filmed Side Faces were 35 3 s-long videos of
side-view faces, similar to the Filmed Faces and Filmed Front Faces conditions
but containing distinct specific videos.

Experiment 8 consisted of Baby Einstein Faces, Baby Einstein Objects,
Animated Scenes and a baseline condition of spatially scrambled scenes. Baby
Einstein Faces were three 18 s-long videos (containing multiple clips) of children’s
faces, taken from the Baby Einstein video collection. While these videos typically
only contained faces, hands were occasionally presented in the vicinity of the face.
Baby Einstein Objects were three 18 s-long videos (containing multiple clips) of
children’s toys and other objects in motion, taken from the Baby Einstein video
collection. Animated Scenes were 18 6 s-long videos designed by having a camera
move through an animated scene created using Blender 3D animation software.
These all depicted a 3D spatial layout, and did not contain humans or animals.

Data availability. The stimuli, data and analysis code that support the findings of
this study are available from the corresponding author on request.
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