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ABSTRACT

We constrain the redshift dependence of gas pressure bias
〈
byPe

〉
(bias-weighted average electron pressure), which

characterises the thermodynamics of intergalactic gas, through a combination of cross-correlations between galaxy
positions and the thermal Sunyaev-Zeldovich (tSZ) effect, as well as galaxy positions and the gravitational lensing of
the cosmic microwave background (CMB). The galaxy sample is from the fourth data release of the Kilo-Degree Survey
(KiDS). The tSZ y map and the CMB lensing map are from the Planck 2015 and 2018 data releases, respectively. The
measurements are performed in five redshift bins with z . 1. With these measurements, combining galaxy-tSZ and
galaxy-CMB lensing cross-correlations allows us to break the degeneracy between galaxy bias and gas pressure bias,

and hence constrain them simultaneously. In all redshift bins, the best-fit values of
〈
byPe

〉
are at a level of ∼ 0.3 meV/cm3

and increase slightly with redshift. The galaxy bias is consistent with unity in all the redshift bins. Our results are
not sensitive to the non-linear details of the cross-correlation, which are smoothed out by the Planck beam. Our
measurements are in agreement with previous measurements as well as with theoretical predictions. We also show that
our conclusions are not changed when CMB lensing is replaced by galaxy lensing, which shows the consistency of the
two lensing signals despite their radically different redshift ranges. This study demonstrates the feasibility of using
CMB lensing to calibrate the galaxy distribution such that the galaxy distribution can be used as a mass proxy without
relying on the precise knowledge of the matter distribution.

Key words. LSS of Universe– Sunyaev-Zeldovich effect–intergalactic gas– cross-correlation

1. Introduction

The study of large-scale structure (LSS) is a major topic
in modern cosmology. The theoretical framework of LSS
in the linear regime is well established and has been con-
strained by multiple observations (see, for example, Do-
delson & Schmidt (2020) for a detailed description). On
small scales (∼ 1 Mpc), the growth of structure is driven
by the combination of the non-linear gravitational collapse
and baryonic processes in the intergalactic gas (van Daalen
et al. 2011; Semboloni et al. 2011; Fedelia 2014; Mead et al.
2015). Although the latter is challenging to model, an in-
creasing number of multi-wavelength sky surveys reach high

? E-mail:yanza15@phas.ubc.ca
?? E-mail:waerbeke@phas.ubc.ca

redshifts and high angular resolution (Catinella et al. 2010;
Heymans et al. 2012; de Jong et al. 2013; Abbott et al. 2016;
Aihara et al. 2018, for example), which extend our under-
standing of the late-time history of the Universe and make
us sensitive to subtle and complicated small-scale physics.
In addition, observations of different ‘tracers’ make it pos-
sible to study different aspects of LSS. In summary, it is
a golden age dominated by surveys that shed light on the
role of small-scale physics in LSS formation and evolution.

For many years, cross-correlations between different LSS
tracers have been an important tool for helping us under-
stand relations between underlying physics (Hill & Spergel
2014; Van Waerbeke et al. 2014; Kirk et al. 2016; Hojjati
et al. 2017; Singh et al. 2017; Ammazzalorso et al. 2020).
Compared to other LSS tracers, the galaxy distribution is
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easier to measure with high precision. Cross-correlations
between galaxy positions and LSS has proved to be a pow-
erful tool for studying different properties of LSS. For ex-
ample, the cross-correlation between galaxy positions and
cosmic infrared background (CIB) has been used to probe
the properties of dust in star-forming galaxies (Serra et al.
2014); the cross-correlation between galaxy position and
21 cm emission is useful for studying the cosmic reionisa-
tion history (Lidz et al. 2008); Kuntz (2015) probes the
cross-correlation between galaxy positions and cosmic mi-
crowave background (CMB) lensing to study the galaxy
bias and lensing amplitude. In this study, we focus on the
cross-correlation between the galaxy distribution and the
thermal Sunyaev-Zeldovich (tSZ) effect (denoted as the ‘gy’
cross-correlation hereafter) to probe the ‘gas pressure bias’,
defined as the multiplication of the mean electron pressure
and gas bias, the ratio of the gas overdensity to the mass
overdensity, as a proxy of intergalactic gas properties.

The tSZ effect (Zeldovich & Sunyaev 1969; Sunyaev &
Zeldovich 1972) is the distortion of the CMB energy spec-
trum due to inverse Compton scattering by high-energy
electrons; tSZ effect is therefore a tracer of the projected in-
tergalactic gas pressure. Since warm to hot intergalactic gas
is typically concentrated in galaxy clusters, one can use the
tSZ effect to detect galaxy clusters (Planck Collaboration
2011; Hincks et al. 2010). In addition, cross-correlations be-
tween tSZ, galaxy clustering, and weak lensing are useful for
studying the properties of the diffuse gas as well as the mass
distribution of galaxy clusters (Hojjati et al. 2017; Makiya
et al. 2018; Koukoufilippas et al. 2020). In order to probe
intergalactic hot gas, the tSZ effect has several advantages
over the X-ray emission originating from Bremsstrahlung.
Firstly, its amplitude, characterized by the Compton y pa-
rameter, does not depend on the cluster redshift, while X-
ray surface brightness scales with (1 + z)−4, which makes
tSZ sensitive to higher redshifts. Secondly, the y parame-
ter depends linearly on the density of gas particles, while
X-ray brightness has a quadratic dependence. The X-ray
emission is thus more affected by the clumpiness of gas.
In addition, the characteristic frequency dependence of tSZ
makes it possible to be fully extracted against other sources
of radiation such as CMB, Galactic dust thermal emission,
and synchrotron emission (Remazeilles et al. 2011a), while
X-ray spectra highly depend on the temperature and com-
position of sources.

Makiya et al. (2018), Pandey et al. (2019), and Kouk-
oufilippas et al. (2020) report measurements of gy with
galaxy data from the 2MASS photometric redshift survey
and WISE×SuperCOSMOS, the Dark Energy Survey red-
MaGiC sample, and the 2MASS redshift survey, respec-
tively. In our study, we use the galaxy sample from the
fourth data release of the Kilo-Degree Survey (KiDS) (Kui-
jken et al. 2019) and the Compton y map from the 2015
data release of the Planck mission (Planck Collaboration
2016a). The previous studies have larger sky coverage but
lower survey depth, while KiDS covers only about 2% of
the sky but goes as deep as z ∼ 1. Chiang et al. (2020)
has also measured the tSZ signal up to z ∼ 1, but uses a
quasar catalogue at high redshift. Quasars might have a
strong feedback effect in the cross-correlation, which is dif-
ficult to model. In contrast, our measurement uses a pure
galaxy sample that goes to the highest redshift to date.

The galaxy distribution is a biased tracer of the mass
distribution, and when used in cross-correlation studies,

the galaxy bias is degenerate with the bias of the other
tracer. For example, in the gy measurements, the galaxy
bias and the gas pressure bias are degenerate. In Kouk-
oufilippas et al. (2020), Pandey et al. (2019), and Makiya
et al. (2018), this problem was addressed by measuring
the galaxy bias from the galaxy auto-correlation function,
which requires careful modelling of the auto-correlation
noise. For KiDS, the field-to-field depth variation is large,
which makes galaxy auto-correlations challenging to model
with precision. We therefore adopt an alternative approach,
which consists of measuring the galaxy bias using the CMB
lensing convergence as the mass proxy, via the ‘gκ’ cross-
correlation, which is also adopted in studies such as Ferraro
et al. (2015). The gravitational lensing effect of CMB pho-
tons (Lewis & Challinor 2006) is an unbiased mass tracer of
LSS that has been used to cross-correlate with other tracers
to study mass clustering and galaxy bias (Bianchini et al.
2015; Singh et al. 2017; Hurier et al. 2019). In this work, we
measure the cross-correlation between galaxy positions and
the Planck CMB lensing map (Planck Collaboration 2020b)
to independently constrain the galaxy bias and to eliminate
the need for modelling the galaxy auto-correlation function.
It should be noted that the noise modelling of the galaxy
distribution also affects the cross-correlations, but only at
the covariance level. In this study, we focus on the linear
scale properties of the gas and galaxy position while mod-
elling the cross-correlations on non-linear scales with simple
one-parameter models. We do not attempt to extract any
cosmological information from them. However, with future
improvements in data quality, this approach could in prin-
ciple be generalised to probe non-linear scales.

We note that the galaxy bias could also be constrained
from the cross-correlation between foreground galaxy posi-
tions and background galaxy shear, known as galaxy-galaxy
lensing. However, at high precision, the interpretation of
galaxy lensing requires the modelling of non-lensing effects
such as the source-lens clustering and the intrinsic align-
ments (Hamana et al. 2002; Hall & Taylor 2014; Valageas
2013) and shape measurement residual systematics. These
are extensively studied in their own right, but in this work
we intend to highlight the feasibility of using the galaxy
distribution as a proxy for the mass distribution with CMB
lensing as the galaxy-mass calibration tool. Although CMB
lensing has a much lower signal-to-noise than galaxy lens-
ing for a given sky area, it extends to much higher redshift
and is immune to most of the non-lensing effects that can
contaminate galaxy lensing.

This paper is structured as follows: In Sect. 2 we
describe the theoretical model we use for the cross-
correlations; Section 3 introduces the dataset that we are
using; Section 4 presents the method to measure cross-
correlations, as well as our estimation of covariance ma-
trix, likelihood, and systematics; Section 5 presents the
results; Section 6 discusses the results and summarises
our conclusion. Throughout this study, we assume a flat
ΛCDM cosmology with fixed cosmological parameters from
Planck Collaboration (2020a) as our fiducial cosmology:
(h,Ωch2,Ωbh2, σ8, ns) = (0.676, 0.119, 0.022, 0.81, 0.967). The
impacts of fixing cosmological parameters are discussed in
Section. 6.
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2. Models

We measure the angular cross-correlation in harmonic
space. In general, the angular cross-correlation between two
projected tracers, u and v, at scales ` & 10 are well com-
puted by the Limber approximation (Limber 1953; Kaiser
1992):

Cuv
` =

∫ χH

0

dχ
χ2 Wu(χ)Wv(χ)PUV

(
k =

` + 1/2
χ

, z(χ)
)
, (1)

where χ denotes the comoving distance; χH is the comoving
distance to the horizon; Wu(χ) is the radial kernel of tracer
u; PUV (k, z) is the three-dimensional (3D) cross-power spec-
trum of associated 3D fluctuating tracers U and V:

〈
δU(k)δV (k′)

〉
= (2π)3δ(k + k′)PUV (k). (2)

In this work, the fluctuating physical quantity for tSZ is
the 3D electron pressure fluctuation ∆Pe; for galaxy num-
ber counts it is the 3D galaxy overdensity δG; for CMB
lensing it is the 3D mass overdensity δM. We note that,
throughout this paper, the two-dimensional (2D) projected
tracers (projected galaxy number, Compton y and lensing
convergence κ) are labelled as lower case letters g, y, and κ;
while the corresponding 3D tracer (galaxy number distribu-
tion, electron pressure, and mass distribution) are labelled
as capital letters G, P, and M.

In this work we measure Cgy
`

and Cgκ
`

. The angular fluc-
tuation of galaxy number density ∆g is the 2D projection
of 3D number-density fluctuations:

∆g(θ̂) =

∫ χH

0
dχ

H(z)
c

ng(z)δG(χ(z)θ̂, z), (3)

where c is the speed of light; H(z) is the Hubble constant at
redshift z; δG(χ(z)θ̂, z) is the 3D galaxy number density fluc-
tuation, and ng(z) is the normalised redshift distribution of
galaxies, which depends on the sky survey. At large scales,
we model the number density fluctuations so that it is pro-

portional to the underlying mass fluctuation: δG =
〈
bg

〉
δM

where
〈
bg

〉
is the mean galaxy bias of the galaxy population

and δM is the total mass overdensity. The galaxy kernel is
given as

Wg(χ) =
H(χ)

c
ng[z(χ)]. (4)

The tSZ signal is parametrised by the Compton-y pa-
rameter, given by:

y(θ̂) =
σT

mec2

∫ χH

0

dχ
1 + z

Pe(χθ̂), (5)

where σT is the Thomson scattering cross-section; and me
is the electron mass; Pe is the gas electron pressure. Like
the galaxy number density fluctuation, we also model the
intergalactic gas overdensity as a linearly biased tracer of
the underlying mass fluctuation at large scales (Goldberg
& Spergel 1999; Van Waerbeke et al. 2014), so the pres-

sure fluctuation ∆Pe ≡ Pe − 〈Pe〉 = 〈Pe〉 δgas =
〈
byPe

〉
δm,

where δgas denotes the gas overdensity; by is the gas bias;
and 〈Pe〉 ≡ 〈nekBTe〉 is the mean electron pressure in gas ha-

los. The combination ‘gas pressure bias’
〈
byPe

〉
is the mean

pressure weighted by gas bias, which is related to the ther-
modynamics of gas inside halos. The tSZ kernel is given by

Wy(χ) =
σT

mec2

1
1 + z(χ)

. (6)

The CMB lensing kernel is the mass fluctuation con-
volved with the lensing kernel:

Wκ(χ) =
3H2

0Ωm

2ac2 χ
χCMB − χ

χCMB
, (7)

where χCMB is the comoving distance to the last-scattering
surface at z ∼ 1100; a denotes the scale factor. Therefore, in
the linear regime, all three tracers are modelled as linearly
biased mass fluctuation convolved with respective kernels,
so the linear cross-power spectrum PUV (k) is the linearly
biased matter power spectrum:

Plin
GP(k) =

〈
bg

〉 〈
byPe

〉
Plin(k)

Plin
GM(k) =

〈
bg

〉
Plin(k),

(8)

where Plin(k) is the linear matter power spectrum. For sim-
plicity, hereafter we omit the redshift dependence in the

notation of
〈
bg

〉
and

〈
byPe

〉
.

Following the method given in Hang et al. (2021), to
account for non-linear effects at small scales, we model the
non-linear portion of our power spectra as an unknown am-
plitude multiplied by a physical model template:

Pnl
GP(k) =

〈
cgy

〉
T nl

GP(k),

Pnl
GM(k) =

〈
cgκ

〉
T nl

GM(k),
(9)

where T nl(k) is the additional non-linear templates.
〈
cgy

〉
and

〈
cgκ

〉
are two re-scaling parameters that account for

differences between the amplitudes of non-linear gy, gκ, and
dark matter cross-correlations. The total power spectrum is
then modelled as:

PGP(k) =
〈
bg

〉 〈
byPe

〉
Plin(k) +

〈
cgy

〉
T nl

GP(k),

PGM(k) =
〈
bg

〉
Plin(k) +

〈
cgκ

〉
T nl

GM(k).
(10)

In the standard halo model for non-linear matter power
spectrum, the two-halo (linear part) and one-halo (non-
linear part) terms both depend on profile amplitudes, so
their amplitudes should be correlated. However, there might
be some uncertainties in the modelling that might break
this correlation, for example, the uncertainty in halo mass
function. In addition, Koukoufilippas et al. (2020) points
out that the profiles of tracers in Fourier space may not be
independent, so the authors introduce a free parameter ρyg
for the 1-halo term to account for it. In our study, cgy and
cgκ account for combinations of such uncertainties to the
first order.

To ensure that our constraints on linear bias are robust
to the exact non-linear models, we try three well-used mod-
els for the non-linear power spectrum templates as well as
trying a purely linear model:
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1) The first is the halo model: the non-linear power
spectrum is given by the one-halo term of the halo model
(Cooray & Sheth 2002; Seljak 2000):

T nl
UV (k) = P1h

UV (k) ≡
∫ ∞

0
dM

dn
dM

pU(k | M)pV (k | M), (11)

where dn/dM is the halo mass function and pU(k | M) is the
profile of the tracer U with mass M in Fourier space:

pU(k | M) ≡ 4π
∫ ∞

0
drr2 sin(kr)

kr
pU(r | M) . (12)

For CMB lensing, we take the profile that enters the
halo model as the dark matter halo profile, which is typi-
cally modelled via the Navarro-Frenk-White profile (NFW;
Navarro et al. 1996):

pM(r | M) = ρNFW(r | M) ∝
1

r/rs (1 + r/rs)2 , (13)

where rs is the characteristic radius of a dark matter halo,
which relates to the halo mass that we take from the mass-
concentration relation.

The galaxy population in a halo is divided into cen-
trals and satellites, the abundances of which we relate to
halo mass via a Halo Occupation Distribution (HOD) model
(Zheng et al. 2005; Peacock & Smith 2000):

Nc(M) =
1
2

[
1 + erf

(
log (M/Mmin)

σln M

)]
Ns(M) = Nc(M)Θ (M − M0)

(
M − M0

M1

)αs

,

(14)

where Nc(M) and Ns(M) are the mean number of central
and satellite galaxies respectively. M1,M0,Mmin, σM, αs are
free parameters in principle. The galaxy density profile is
then:

pg(k | M) = n̄−1
g

[
Nc(M) + Ns(M)ps(k | M)

]
, (15)

where n̄g is the mean galaxy number density. We assume
that central galaxies exist at the halo centre while satel-
lites follow the underlying matter distribution, so the satel-
lite profile ps is the NFW profile. In this work, we fix
HOD parameters to {σM, αs, log10 M1, log10 M0, log10 Mmin} =
{0.15, 1, 13, 11.86, 11.68} as constrained from Zheng et al.
(2005). Here masses are in the unit of h−1M�. While this
may not be a correct description of our galaxy population,
we see later that our conclusions are unaffected by the de-
tails of our non-linear model.

The y signal derives via the electron pressure profile
pe(r,M, z), which we take from Arnaud et al. (2010):

pe(r,M, z) = 1.65(h/0.7)2 eVcm−3

× E8/3(z)
[

M
3 × 1014(0.7/h)M�

]2/3+αp

p(x),
(16)

where x ≡ r/r500 and E(z) ≡ H(z)/H0. r500 is the radius that
encloses a region with average density equal to 500 times the
critical density of the Universe. The parameter αp = 0.12 as

given by Arnaud et al. (2010). The self-similar part of the
pressure profile p(x) is given by (Nagai et al. 2007):

p(x) ≡
P0(0.7/h)3/2

(c500x)γ
[
1 + (c500x)α

](β−γ)/α . (17)

The parameters in p(x) are taken as the best-fitted val-
ues from Planck Collaboration (2013): {P0, c500, α, β, γ} =
{6.41, 1.81, 1.33, 4.13, 0.31}.

We note that, in halo model, the gas pressure bias can
be expressed as:

〈
byPe

〉
(z) =

∫ ∞

0
dM

dn
dM

(z)bh(M, z)
∫ ∞

0
dr4πr2 pe(r,M, z),

(18)

where∫ ∞

0
dr4πr2 pe(r,M, z) ≡ ET(M, z), (19)

which means that〈
byPe

〉
(z) =

∫ ∞

0
dM

dn
dM

(z)bh(M, z)ET(M, z). (20)

Therefore, the gas pressure bias directly links to the thermal
energy of dark matter halos.

We took the halo mass function and halo bias needed
in the halo model from the fitting formulae of Tinker et al.
(2008) and Tinker et al. (2010), respectively. We chose this
halo model as our fiducial model.

2) halofit non-linear model: we isolate the purely non-
linear part of the halofit model (Smith et al. 2003; Taka-
hashi et al. 2012) by taking the full model and subtracting
linear theory:

T nl(k) = PHF(k) − Plin(k), (21)

where PHF(k) is the halofit matter power spectrum. While
the halofit model was calibrated to the matter power
spectrum only, we hope that the non-linear shape is gen-
eral enough to capture the correct shape of the galaxy–
Pressure and galaxy–matter power spectra that are relevant
to our cross-correlations. Any amplitude differences will be
absorbed by our multiplicative non-linear coefficients. This
non-linear template is also used in Hang et al. (2021).

3) Constant non-linear model: The non-linear power
spectra are constants:

T nl
UV (k) = P1h

UV (0), (22)

where P1h
UV (0) is the one-halo term of the halo-model power

spectrum at k = 0 Mpc−1.This model should only work on
large scales where the one-halo region can be treated as a
point source.

To make sure that our non-linear models are not sensi-
tive to the precise shape of the non-linear power spectrum,
we only fit C`’s in each tomographic bin within an angular
scale corresponding to k < 0.7 Mpc−1 via the Limber ap-
proximation. In addition, Mead & Verde (2020) points out
that the halo model is not accurate in the transition be-
tween the one- and two-halo regions. To attempt to correct
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for this, we follow Koukoufilippas et al. (2020) and multiply
the power spectra given by 1) and 3) with a scale-dependent
quantity:

R(k) ≡
PHF(k)
Phm

MM(k)
, (23)

where PHF(k) is from halofit and Phm
MM(k) is the matter–

matter power evaluated via the halo model (with NFW pro-
files). Although Mead & Verde (2020) showed that the cor-
rection required to the halo model in the transition region
is not universal, and instead depends on the tracers being
modelled, it was shown that attempting some correction is
better than no correction at all.

Previous studies on galaxy or gas cross-correlations such
as Van Waerbeke et al. (2014); Bianchini et al. (2015);
Kuntz (2015) treat the galaxy or gas distribution to be
proportional to mass distribution on all scales, which means

they only have two free parameters:
〈
bg

〉
or

〈
byPe

〉
. However,

it should be noted that this model is not physically accurate
because the galaxy and gas distributions have significantly
different non-linear details compared to the matter distri-
bution. Pandey et al. (2019) use a linear bias model for the
galaxy distribution over the scales R & 10 Mpc, to which our
measurements are not sensitive. However, as is indicated in
Sugiyama et al. (2020), to apply a fully linear model, one
needs a scale cut of at least 12 Mpc. The free prefactors
for our three models account for different non-linear ampli-
tudes, but our models are probably still not accurate for the
details of the non-linear shape. To model the shapes more
accurately, one would need to constrain HOD and pressure
profile parameters as well as to significantly improve the
treatment of the transition region, which is not feasible in
this analysis given the noise level of current data. We leave
this to future study. In summary, with fixed cosmological
parameters, by measuring Cgy

`
and Cgκ

`
we can independently

constrain and compare
〈
bg

〉
,
〈
byPe

〉
,
〈
cgy

〉
and

〈
cgκ

〉
with the

three non-linear models introduced above.

3. Data

3.1. KiDS Data

We use the lensing catalogue provided by the fourth data
release of the KiDS (Kuijken et al. 2019) as our galaxy
sample. KiDS is a sky-survey project, which measures the
positions and shapes of galaxies using the VLT Survey
Telescope (VST) at the European Southern Observatory
(ESO). It is primarily designed for weak-lensing applica-
tions. The footprint of KiDS DR4 (also called KiDS-1000)
is divided into a northern and southern patch, with to-
tal coverage of 1006 deg2 of the sky (corresponding to a
fraction of fsky = 2.2%.) The footprint is shown in the up-
per panel of Fig. 2. High-quality images are produced with
VST-OmegaCAM. Combining with the VISTA Kilo-degree
INfrared Galaxy survey (VIKING; Edge et al. 2013), the
observed galaxies are photometrically measured in nine op-
tical and near-infrared bands ugriZY JHKs. The KiDS sur-
vey covers redshifts z . 1.5, which makes it a useful dataset
to trace the history of different components of the LSS into
the early Universe. For each galaxy in the lensing cata-
logue, the ellipticities are measured with the lensfit algo-
rithm (Miller et al. 2013). We only use the ‘gold subsample’

Fig. 1: Redshift distributions of the five tomographic bins
of the KiDS gold galaxy sample.

Bin zB range Mean redshift n̄

1 (0.1, 0.3] 0.23 5.73
2 (0.3, 0.5] 0.38 11.87
3 (0.5, 0.7] 0.54 20.18
4 (0.7, 0.9] 0.77 14.81
5 (0.9, 1.2] 0.96 17.20

Table 1: Information on the KiDS galaxy sample in each
tomographic bin. n̄ stands for mean galaxy number in a
healpix pixel with nside = 1024.

(Wright et al. 2020) of the lensing catalogue since the red-
shift distribution is more accurately calibrated in this sub-
sample. We present the information of the galaxy sample
that we use in Table. 1. Note, however, that we do not use
the shape information in our fiducial analysis. In Appendix
A we use the shape information to replace CMB lensing as
an alternative measurement and sanity check.

We perform a tomographic measurement of cross-
correlations by dividing the galaxy catalogue into five red-
shift bins according to the best-fit photometric redshift zB
of each galaxy. These are the same redshift bins used in the
KiDS-1000 cosmology papers (Asgari et al. 2021a; Heymans
et al. 2020; Tröster et al. 2020). The redshift distribution of
each bin is calibrated using Self-Organising Maps (SOM) as
described in Wright et al. (2020); Hildebrandt et al. (2020).
We note that the SOM-calibrated redshift distributions in
this study are not exactly the same as Hildebrandt et al.
(2020) in which the redshift distributions are calibrated
with a galaxy sample weighted by the lensfit weight, while
in this work the redshift distributions are calibrated with
the raw, unweighted sample. The redshift distributions of
the 5 tomographic bins are shown in Fig. 1. Galaxy over-
density maps are produced for each tomographic bin in the
healpix (Gorski et al. 2005) format with nside = 1024,
corresponding to a pixel size of 3.4 arcmin. For each tomo-
graphic bin, the galaxy overdensity in each pixel is given as

∆g,i =
ni − n̄

n̄
, (24)

where i denotes the pixel index, ni is the number of galaxies
in the i-th pixel and n̄ is the average galaxy number of all
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Fig. 2: KiDS-1000 footprint and masks for the Planck y
map and CMB lensing map. Regions in purple are masked
out.

the pixels in the footprint and the given redshift bin. The
galaxy mask for the cross-correlation measurement is just
the KiDS footprint, which is presented in the upper panel
of Fig. 2.

3.2. tSZ data

We use the all-sky Compton-y map presented in Planck
Collaboration (2016a) for the tSZ signal. The y map that
we used is constructed with the Modified Internal Lin-
ear Combination Algorithm (MILCA; Hurier et al. 2013),
which properly suppresses scale-dependent contamination,
and projects out the CMB signal. Planck has also released
another y map constructed with the Needlet Internal Linear
Combination (NILC; Basak & Delabrouille 2012) method.
Although the MILCA and NILC y maps agree with each
other in most of the relevant studies, the NILC map turns
out to be noisier (Planck Collaboration 2016a). Therefore,
we apply the Planck MILCA map in this study and take
the NILC y map as a consistency check. Both y maps have
a beam full width at half Maximum (FWHM) of 10 arcmin.

Before calculating the gy cross-correlation, we mask out
the Milky Way and point sources with a joint mask of
the Planck 60% Galactic mask and point source mask.
The combined mask is shown in the middle panel of Fig.
2. The mask and y map are originally provided in the
healpix format with nside = 2048 and we degrade them
into nside = 1024 to match the resolution of the KiDS
galaxy overdensity map.

To evaluate the CIB contamination in the galaxy-tSZ
cross-correlation, we also introduced the Planck 545 GHz
CIB intensity map as a CIB template (Planck Collabora-
tion 2016b). The CIB intensity map was generated with
the generalised-NILC (Remazeilles et al. 2011b, GNILC)
method and has an angular resolution of 5 arcmin. We first

convolved the CIB map with a
√

102 − 52 = 8.66 arcmin
Gaussian filter to match its resolution to the 10 arcmin of
the y map before degrading the map to nside = 1024.

3.3. CMB lensing data

We used the tSZ-deprojected Planck CMB lensing map
from the 2018 Data Release (Planck Collaboration 2020b)
to measure the galaxy-CMB Lensing cross-correlation. The
map is provided in the format of the spherical harmonic
transformation of the lensing convergence κ`m, which is re-
lated to the lensing potential φ via

κ`m =
`(` + 1)

2
φ`m. (25)

There might be reconstruction bias in the CMB lensing
map, which is typically descriped by a lensing amplitude pa-
rameter, AL. Planck Collaboration (2020b) reports a value
of AL that is slightly greater than 1, with a significance of
∼ 2σ. Efstathiou & Gratton (2020) points out that this
might be due to the fluctuations in the temperature power
spectrum at high `. In gκ cross-correlation, AL degenerates
with galaxy bias. This analysis cannot break the degener-
acy, so we take the prior information, AL = 1.

We first transformed κ`m back into a healpix κ map
with nside = 1024. The corresponding mask is provided
along with the CMB lensing data. It is shown in the lower
panel of Fig. 2.

4. Measurements

4.1. Cross-correlation measurements

The cross-correlation between two sky maps, that are
smoothed with the beam window function bbeam(`), is re-
lated to the real C` with

Ĉuv
` = Cuv

` bu
beam(`)bv

beam(`)bu
pix(`)bv

pix(`), (26)

where Ĉuv
`

denotes the smoothed C` between sky map u and
v; and bpix(`) is the pixelisation window function. In our
analysis we take the Gaussian window function which is
given by

bbeam(`) = exp
(
−`(` + 1)σ2/2

)
, (27)

where σ = FWHM/
√

8 ln 2. The pixelisation window func-
tion corresponding to nside = 1024 is provided by the
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Fig. 3: Standard deviation calculated from the diagonal
of CovJK(Cgy

`
,Cgy

`
) and CovANA(Cgy

`
,Cgy

`
) in the third tomo-

graphic bin. We also plot the standard deviation from the
jackknife covariance matrix with Nside = 16 as a consistency
check.

healpix package. We note that for the KiDS galaxy map,
FWHM = 0.

We use polspice to estimate the angular cross-power
spectra. Mode-coupling due to mask and beam smooth-
ing are corrected during this process. Fourier ringings are
reduced by setting the internal parameters of polspice
apodizesigma=60 and thetamax=60 deg. The measured
angular power spectra are binned into 10 linear bins from
` = 100 to ` = 1100. The high limit of ` corresponds to the
Planck beam, which has a size of 10 arcmin.

4.2. Covariance matrix

We combined two methods to estimate the covariance ma-
trix in our C` measurement: One is jackknife resampling,
the other is an analytical Gaussian covariance matrix. For
jackknife resampling, we generated 415 jackknife samples
by masking out pixels corresponding to nside = 32 (which
has a size of 1.83 degree) in turn from the KiDS galaxy over-
density map. Smaller jackknife pixels would fail to estimate
the variance at large scales, while with larger jackknife pix-
els we would not have enough realisations. So we chose this
intermediate jackknife pixel size to balance the pixel size
with the sample size. However, as shown in Fig. 3, the jack-
knife pixel with nside = 16 (corresponding to an angular
size of 3.66 degree) gives a consistent standard deviation.
The cross-correlations Cgy

`
and Cgκ

`
are measured with each

of these jackknife samples and the covariance matrix is cal-
culated with

CovJK
(
Cuv
` ,C

wz
`′

)
=

NJK − 1
NJK

NJK∑
n=1

∆Cuv,(n)
`

∆Cwz,(n)
`′

, (28)

where NJK = 415 denotes the number of jackknife samples;
uv,wz ∈ {gy, gκ}; ∆Cuv,(n)

`
is the difference between the cross-

correlation of the n-th jackknife sample and the mean cross-
correlation over all samples.

Since the KiDS footprint is only ∼ 2% of the sky, it
is hard to generate enough jackknife samples to fully re-
cover the true covariance matrix; as such, the off-diagonal
components of the jackknife covariance matrix are noisy.
In addition, since different jackknife regions have slightly
different shapes, we could not recover the mode-coupling
in the covariance matrix associated with the whole map ge-
ometry. To better estimate the off-diagonal components and
account for mode-coupling accurately, we also estimated the
covariance matrix using an analytical method.

The main contribution to the covariance matrix is from
a Gaussian random field:

CovG
(
Cuv
` ,C

wz
`′

)
= δ``′

Cuw
`

Cvz
`′

+ Cuz
`

Cvw
`′

fsky(2` + 1)
, (29)

where fsky=2.2% is the sky fraction. Sky masks introduce
non-zero coupling between different `. To account for this,
we used the method given by Efstathiou (2004) and Garćıa-
Garćıa et al. (2019) and implemented in the namaster
package (Alonso et al. 2019) 1. The auto-power spectra in
(29) are directly measured from maps so that noise auto-
spectra can also be included; the cross-power spectra are
instead calculated from the theoretical model described in
Section 2, since their measurements are significantly noisier.

The non-Gaussian term includes a connected contri-
bution resulting from the small-scale non-linear clustering
of the tracers, related to the trispectrum of the tracers.
According to Koukoufilippas et al. (2020), Barreira et al.
(2018), and Nicola et al. (2020), this contribution is only sig-
nificant for low redshifts z . 0.2; therefore, we neglect it in
our covariance matrix. Another non-Gaussian contribution
is the super-sample covariance (Takada & Hu 2013, SSC)
resulting from mode mixing between observed in-survey and
the unobserved out-of-survey modes, we also ignore this in
this work.

To calculate the analytical covariance matrices, we need
to use model parameters that we do not know a priori.
So we follow Koukoufilippas et al. (2020) and take a two-
step fitting: we first take an assumed value for the model
parameters to calculate these covariance matrices and then
use these to find the best-fit parameters. We then update
the covariance matrix, using these best-fit parameters, and
fit for the parameters again. The best-fit parameters from
this second round of fitting are taken to be our fiducial
results.

The diagonal components of the jackknife and analyti-
cal covariance matrices generally agree with each other (see
Fig. 3 as an example), this justifies that we can ignore the
non-Gaussian contribution in the covariance matrix. To en-
sure that we recover realistic error bar sizes, we combine
the variance estimated from the jackknife covariance matrix
with the analytical covariance matrix, as in Koukoufilippas
et al. (2020), to account for the coupling between different
modes caused by masks and non-Gaussianities while avoid-

1 We note that namaster can also measure C` and their re-
sults agree with polspice, but namaster is significantly slower
than polspice when calculating more than 1000 jackknife cross-
correlations. So we only use it to calculate the analytical covari-
ance matrix, which polspice cannot do.
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Fig. 4: Full correlation coefficient matrices of covariance matrices (defined in Eq.(30)) of the gy and the gκ cross-
correlations in each tomographic bin. Each covariance matrix consists of four sub-matrices, corresponding to the co-
variances of Cgy

`
and Cgκ

`
(block diagonals), as well as their cross-covariance. For each sub-matrix, the pixels show the

cross coefficient between binned C`’s, where ` bins are defined in subsection 4.1.

ing the statistical noise in the jackknife estimator. Therefore
our final covariance matrix is:

Covi j = CovANA
i j

√√
CovJK

ii CovJK
j j

CovANA
ii CovANA

j j

. (30)

The correlation coefficient matrices of all the tomographic
bins are shown in Fig. 4.

4.3. Likelihood

Since we are working with a wide ` range, there are many
degrees of freedom in each ` bin. According to the central
limit theorem, the bin-averaged C`’s obey a Gaussian dis-
tribution around their true values. Thus we assume that
the measured power spectra follow a Gaussian likelihood:

−2 ln L(D | q) = χ2 ≡ (D − M(q))T Cov−1(D − M(q)), (31)

where q ≡
{〈

bg

〉
×

〈
byPe

〉
,
〈
bg

〉
,
〈
cgy

〉
,
〈
cgκ

〉}
stands for our

model parameters (for the ‘linear model’ we only have

two parameters q ≡
{〈

bg

〉
×

〈
byPe

〉
,
〈
bg

〉}
); the data vector

D ≡ (Cgy
`
,Cgκ

`
) is a concatenation of measured gy and gκ

cross-correlations; M(q) is the cross-correlation predicted
by model described in Section 2 with parameter q. The

likelihoods are calculated separately in each tomographic

bin. We note that the gas pressure bias
〈
byPe

〉
, which we

are primarily interested in, is the ratio between the first two
model parameters.

We sample the posterior distribution of model parame-
ters using the Markov chain Monte Carlo method (MCMC)
using the emcee package (Foreman-Mackey et al. 2013). We
take flat priors for all four model parameters:

0 ≤
〈
bg

〉
≤ 3,

0 ≤
〈
bg

〉
×

〈
byPe

〉
≤ 9,

0 ≤
〈
cgκ

〉
≤ 10,

0 ≤
〈
cgy

〉
≤ 10.

(32)

The lower boundaries of the prior is a physical constrain, in-
dicating that the parameters cannot be negative; the upper
boundaries are set so that at least 5σ of the marginalised
posterior distribution falls in these ranges.

We are not doing a joint analysis of all the tomographic
bins, so the correlations between different redshift bins are
not relevant to our analysis. Following Crocce et al. (2015),
Koukoufilippas et al. (2020), and Hang et al. (2021), our
model parameters are fit independently for each of the to-
mographic bins. The theoretical model is calculated using
the Core Cosmology Library package (Chisari et al. 2019).
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4.4. Systematics

4.4.1. CIB contamination

The CIB radiation is the accumulated emission from early
galaxy populations spanning a large range of redshifts,
mostly generated from dust thermal radiation around ex-
tragalactic star-formation regions (Hauser & Dwek 2001).
The tSZ map is contaminated by residual CIB (Hurier 2015;
Yan et al. 2019), which dominates extragalactic signals at
high frequency and high redshifts. This residual might con-
taminate our galaxy-tSZ cross-correlation. We follow the
method in Koukoufilippas et al. (2020) to model the CIB
contamination in the y map as a factor αCIB times a CIB
template map, which is taken to be the Planck CIB inten-
sity map at 545 GHz (Planck Collaboration 2016b):

ŷ(θ) = y(θ) + αCIBICIB(θ), (33)

where ŷ denotes the contaminated y map and ICIB denotes
the CIB intensity in 545 GHz. So the measured galaxy-tSZ
cross-correlation is given by:

Cgŷ
`

= Cgy
`

+ αCIBCgICIB
`

, (34)

where the galaxy-CIB cross-correlation CgICIB
`

can be di-
rectly measured with the Planck CIB map. For αCIB, we
take the value αCIB = (2.3 ± 6.6) × 10−7(MJy/sr)−1 reported
in Alonso et al. (2018).

4.4.2. Cosmic magnification

The measured galaxy overdensity depends not only on the
real galaxy distribution but also on lensing magnification
induced by the line-of-sight mass distribution (Schneider
1989; Narayan 1989). This magnification, or so-called cos-
mic magnification, has two effects on the measured galaxy
overdensity: i) overdensities along the line-of-sight cause
the local angular separation between source galaxies to in-
crease, so the galaxy spatial distributions are diluted and
cross-correlation is suppressed; ii) lenses along line-of-sight
magnify the flux of source galaxies such that fainter galax-
ies enter the observed sample, so the overdensity increases.
These effects bias galaxy-related cross-correlations, espe-
cially for high-redshift galaxies (Hui et al. 2007; Ziour &
Hui 2008; Hilbert et al. 2009). To take these two effects
into account, we modify the expression for the galaxy over-
density (Hui et al. 2007):

δ̂g(z) =
〈
bg

〉
δm(z) + 2(2.5s − 1)κ(z), (35)

where the second term on the right-hand side of the equa-
tion is the cosmic magnification contribution. Here κ(z) is
the line-of-sight integral of the lensing convergence to the
galaxy redshift z; s is the slope of the logarithmic cumu-
lative number counts of our galaxy sample at magnitude
limit mlim

s ≡
∂ log10 N(< m)

∂m

∣∣∣∣∣
m=mlim

. (36)

The KiDS gold galaxy sample has an r−band magnitude
limit of 25, but the completeness limit is around 24 (Wright
et al. 2018). To properly estimate s, one needs a galaxy sam-
ple from a deeper survey that has a completeness magnitude

of at least 25, as well as the same redshift distribution in
each tomographic bin as the KiDS gold galaxy sample. In
addition, the slopes for different tomographic bins should be
different, but we do not have a good way to estimate them,
so we take a simple method to estimate s. Given that the
logarithmic cumulative number counts of the galaxy sam-
ple is nearly linear with respect to m (see Fig. 6 of Wright
et al. 2018)2, we estimate s by extrapolating the slope at
the completeness magnitude (which is 24) to the magnitude
limit, which is 25 (Hildebrandt 2016). The resulting slope
is 0.29. We also estimate the error of s by assigning Pois-
son error in the count bins and measure an error on the
slope. This yields an error of 0.001, which is subdominant.
We also try other magnitudes to extrapolate from and find
that our best-fitting parameters only change marginally. We
note that the 2 × 2.5sκ(z) term accounts for flux magnifica-
tion and 2×κ(z) term accounts for angular dilution, so when
s = 0.4 both effects cancel out.

4.4.3. Uncertainty of the redshift distribution

Uncertainties in the galaxy redshift distributions could af-
fect galaxy cross-correlations. We estimate the uncertainties
of the SOM redshift distributions using the same method
as described in Hildebrandt et al. (2020), which gives un-
certainties of the mean redshift at a level of ∼ 0.02 in all
5 tomographic bins. To evaluate the impact of this uncer-
tainty, we shift the fiducial redshift distribution ng(z) in (4)
by δz = {−0.02,−0.01, 0, 0.01, 0.02}. We fit the model param-
eters with these shifted redshift distributions to see if this
changes our results.

5. Results

We estimate the galaxy-tSZ and the galaxy-CMB lensing
cross-correlations of KiDS galaxies as well as correspond-
ing covariance matrices in each of the 5 tomographic bins
with the methods described in Sect. 4. Figure 5 shows our
measurements of Cgκ

`
(left column) and Cgy

`
(right column)

bandpowers with red dots. The bandpowers are calculated
as the mean C` in each ` bin and the error bars are given
by the square root of the diagonals of covariance matri-
ces. Each row corresponds to one of the tomographic bins.
The measured cross-correlations are over-plotted with the
best-fit fiducial model (with the halo model non-linear mat-
ter power spectrum) with green lines. Shaded regions are
angular scales corresponding to kcut > 0.7 Mpc−1, which
are not included in the model-fit. 3 We set this thresh-
old because we do not think our simple models will cap-
ture the details of the non-linear regime. We note that the
red dots show our fiducial results with both CIB contam-
ination and cosmic magnification corrected. In all the to-
mographic bins, CIB contributions are at a level of ∼ 1%
even with the most conservative level of αCIB (with αCIB =
(2.3 + 6.6) × 10−7(MJy/sr)−1), and can be neglected. We val-
idate this claim by also fitting the raw, CIB contaminated
gy cross-correlation with our model and find no significant

2 The paper cited here is a KV-450 paper, but this consideration
applies equally to KiDS-1000 since the data depth is the same.
3 For each redshift bin, the k threshold translates into the `
threshold via `cut ≡ kcutχ(zmean), where zmean denotes the mean red-
shift of each redshift bin. We note that this threshold is beyond
the upper bound of ` for the last three redshift bins.
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Fig. 5: Measurements of Cgκ
`

and Cgy
`

(red dots with error bars) over-plotted with best-fit models(green lines). The non-
linear model shown here is the halo model non-linear template. We also plot the linear part with dashed lines. Each
row shows results in each tomographic bin. Shaded regions are scales corresponding to ` scales within the threshold
kcut > 0.7 Mpc−1, which are not included the model-fit.

difference between the best-fit
〈
byPe

〉
values and the fiducial

fitting. In order to evaluate the impact of cosmic magnifi-
cation, we also fit a model without cosmic magnification
correction given by Eq. (35). Comparing with our fiducial
results, we find that if the cosmic magnification is neglected,〈
bg

〉
in all the redshift bins will be slightly under-estimated

at a level of ∼ 1%. We also show the best-fit parameters
from shifted redshift distributions in Fig. 6. Points with er-
ror bars in different colours correspond to different shifts
of redshift distributions δz. Our fiducial results have δz = 0.
From the plot, we conclude that a redshift bias of δz ∼ 0.02

would only have a marginal effect on our results. It should
be noted that the constraint in the first redshift bin gets
mostly affected. This might be due to the fact that the red-
shift distribution of this bin is the narrowest, which makes
it more sensitive to a redshift error.

An example of the fiducial MCMC posterior (that corre-
sponds to the halo model non-linear power spectrum) dis-

tribution of {
〈
byPe

〉
,
〈
bg

〉
,
〈
cgy

〉
,
〈
cgκ

〉
} is shown in Fig. 7.

We note that the linear biases that we are fitting are the
normalisation of the two linear cross-correlations, namely

{
〈
bg

〉
×

〈
byPe

〉
,
〈
bg

〉
}. Their posteriors are Gaussian in the
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Fig. 6: Best fit
〈
byPe

〉
with varying redshift distribution

shifts. The non-linear model is the halo model non-linear
template. The best-fit parameter values and errors are cal-
culated as the modes and standard deviations of the Gaus-
sian kernel density estimation (KDE) fits of marginalised
posterior distribution.

Fig. 7: 68% and 95% contours of the posterior distribution

of
{〈

byPe

〉
,
〈
bg

〉
,
〈
cgy

〉
,
〈
cgκ

〉}
in the third redshift bin with

the halo model non-linear template in the third redshift
bin. The contours and 1-D posteriors have been smoothed
for the purpose of presentation.

linear region because they both linearly depend on the lin-

ear cross-correlations. The gas pressure bias
〈
byPe

〉
is then

the ratio of two Gaussian parameters, so its posterior distri-
bution is asymmetric, as shown in Fig. 7. A summary of the

fiducial fitting results of
〈
bg

〉
and

〈
byPe

〉
is given in Table

2. The best-fit parameter values and errors are calculated
as the modes and standard deviations of the Gaussian ker-
nel density estimation (KDE) fittings of the marginalised
posterior distributions. We evaluate the constraining power
of both linear bias parameters with the method given by

Asgari et al. (2021b). That is, we calculate the values of
the marginalised posterior at both extremes of the prior
distribution, and compare them with 0.135, the ratio be-
tween the peak of a Gaussian distribution and the height
of the 2σ confidence level. If the posterior at the extreme is
higher than 0.135, then the parameter boundary is not well

constrained. We find that the lower bound of
〈
byPe

〉
of the

fifth redshift bin does not meet this criterion (this can also

be seen from the fact that the 2σ lower bound of
〈
byPe

〉
in the fifth redshift bin is below zero). However, it should
be noted that the lower extremes of the bias parameters
are physical limits, which could not be extended. For the
parameters that are not bounded, KDE might give inaccu-

rate results. To test that, we calculate the best-fit
〈
byPe

〉
in

the fifth redshift bin without smoothing the marginalised
posterior with a KDE kernel. This changes the value from
0.16 to 0.134. The difference is well below the constraining
error.

In order to evaluate the goodness-of-fit, we calculate the
χ2 in each tomographic bin, and then calculate the cor-
responding probability-to-exceed (PTE) given the degree-
of-freedom. Heymans et al. (2020) adopts the criterion
PTE>0.001 (corresponding to a ∼ 3σ deviation) to be ac-
ceptable. We find our fittings of all the tomographic bins
with all the three non-linear models meet this criterion. The
pure linear model does not fit well, especially in low redshift
bins. Thus we conclude that all of our non-linear models fit
well with our data.

We show the redshift dependence of
〈
bg

〉
and

〈
byPe

〉
in Fig. 8. The dots with different colours are the con-
straints from our results with three non-linear power spec-
trum models, marginalised over the non-linear parameters〈
cgy

〉
and

〈
cgκ

〉
. The plots show that the constraints on

〈
bg

〉
and

〈
byPe

〉
are consistent with different non-linear power

spectrum models, indicating that our measurements are in-
sensitive to the details of the non-linear cross-correlations.
To further verify this argument, we repeat the model fit-
ting with different scale cuts kcut (modes of C` with a scale
smaller than kcut are removed from the model fitting pro-

cedure) and plot the best-fit values of
〈
bg

〉
and

〈
byPe

〉
as

a function of kcut in Fig. 9. The plot shows that the con-
straints do not change significantly as different scales are
removed, so we conclude that our constraints are robust to
non-linear details. To highlight the importance of transition
region error, we also fit the halo model and the constant
non-linear model without correction with R(k) defined in
Eq. (23). We find that this correction changes the best-fit
parameter value by a few percent, worst in the lower red-
shift bin (about 10%), but the differences are below the 1σ
level. This is because the Planck beam size ensures that the
data are noisy at these scales. However, future studies with
higher resolution should be sensitive to these systematics.
We also acknowledge that different non-linear models affect〈
byPe

〉
in the lowest redshift at a level of 0.5 − 1σ because

Planck beam does not smooth out the non-linear details as
completely as high redshift bins. In Fig. 9, we also plot the

fitting of
〈
bg

〉
and

〈
byPe

〉
with a pure linear model in purple

(i.e.
〈
cgκ

〉
and

〈
cgy

〉
are both fixed to be zero). We find that

the pure linear model gives
〈
bg

〉
values that are higher than

non-linear models on all scales, and have the tendency to
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Fig. 8: Constraints of
〈
bg

〉
and

〈
byPe

〉
in each tomographic bin. The best-fitting parameter values and errors are calculated

as the modes and standard deviations of the Gaussian KDE fittings of marginalised posterior distributions. Dots with
different colours are correspond to the different non-linear power spectrum models. The grey line shows the best-fit model
from Chiang et al. (2020).

Fig. 9: Constraints of
〈
bg

〉
and

〈
byPe

〉
for different non-linear matter power spectrum models with different scale cuts kcut.

We also plot the fitting of
〈
bg

〉
and

〈
byPe

〉
with a pure linear model in purple (i.e.

〈
cgκ

〉
and

〈
cgy

〉
are both fixed to be

zero). We note that for low redshifts and low kcut, we do not have enough degrees-of-freedom so
〈
bg

〉
and

〈
byPe

〉
are not

presented. In addition, for high redshift bins, large-scale cuts are beyond the high limit of `, so with these kcut values, the
constraints do not change.
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Fig. 10: Constraints of
〈
byPe

〉
with Planck MILCA and

NILC y map.

merge with the fiducial fitting with low kcut. The gas pres-

sure bias
〈
byPe

〉
is the ratio between linear amplitudes of

gκ and gy cross-correlations, so it could be close to the real
value even if the linear model gives biased amplitudes. This
result highlights the necessity to include some form of non-
linear model in the fitting.

In our analysis, we use the whole KiDS gold lensing
galaxy sample, in which there are many blue galaxies that
are distributed out to a large distance from cluster centres

(Croton et al. 2007). The best-fit
〈
bg

〉
values in all the red-

shift bins are consistent with one, which suggests that our
galaxy sample is a good tracer of the dark matter distri-
bution. This should be contrasted with, for example, lumi-
nous red galaxies (LRG), which are strongly biased tracers
of mass (Zehavi et al. 2005) because LRGs are known to be
clustered around halo centres.

We test the robustness of our model fitting to different
Compton y reconstruction method by replacing the Planck
MILCA y map with the NILC y map. The constraints on〈
byPe

〉
is shown in Fig. 10, which indicates a consistency be-

tween two y maps. Thus we conclude that our measurement
is not sensitive to different y reconstruction methods.

Fig. 11 compares our constraints on
〈
byPe

〉
to previous

studies. These studies relied on the cross-correlation of data
from different surveys with Planck tSZ data. Van Waerbeke
et al. (2014) (orange dot) uses the lensing data from the RC-
SLenS sample; Koukoufilippas et al. (2020) (purple dots)
uses the 2MPZ and WISE×SuperCosmos samples; Pandey
et al. (2019) (red dots) uses the DES sample; Chiang et al.
(2020) uses the galaxy samples from SDSS, BOSS for low
redshifts, and QSO samples from SDSS, BOSS and eBOSS
for high redshifts. All these studies used the galaxy auto-

correlation to measure
〈
bg

〉
, except Van Waerbeke et al.

(2014) who used the mass distribution measured from weak
gravitational lensing. In our approach, we use the galaxy-

CMB lensing cross-correlation to constrain
〈
bg

〉
. It is re-

markable that these measurements, from very different sur-
veys and with very different estimators give consistent re-

sults for
〈
byPe

〉
. However, it should be noted that although

our measurement goes to higher redshift, our constraining
power is significantly weaker than previous studies in the

Fig. 11: Constraints of
〈
byPe

〉
in each tomographic bin. Our

results with the halo model non-linear matter power spec-
trum is presented as black dots with error bars. The best-
fit parameter values and errors are calculated as the modes
and standard deviations of the Gaussian KDE fittings of
marginalised posterior distributions. Results from previous

studies are also plotted as well as the best-fit
〈
byPe

〉
model

given by Chiang et al. (2020).

same redshift range. This is because 1) the limitation of the
KiDS footprint makes it less sensitive to linear scales; 2) the
CMB lensing map is noisy. With future sky surveys having
wider sky coverage and CMB surveys having lower noise
levels, these two drawbacks can be improved. The grey line
in Fig. 11 is the best-fit redshift dependence of the tSZ halo
model given by Chiang et al. (2020). Although this work
does not constrain that model, it is introduced and dis-
cussed in Appendix B for forecasting future studies. With
an agreement with these previous results as well as the halo
model prediction, our tomographic measurement provides
insights into the thermal history of the LSS.

The linear bias assumption might break down on small
scales where baryonic effects become significant. However,
in our analysis, the Planck beam makes our measurements
insensitive to these effects. We leave as a future work the
generalisation of our results to the small scales when data
with higher resolution are available. Such a situation can
be handled with a more sophisticated model, for example
that from Mead et al. (2020).

In our study, our approach consists of using CMB lens-

ing as a way to constrain
〈
bg

〉
of a galaxy sample. One can

independently measure
〈
bg

〉
using weak gravitational lens-

ing as a replacement for CMB lensing. Appendix A shows
the results when CMB lensing is replaced by the KiDS weak

lensing signal. We find that the constraints on
〈
byPe

〉
are

consistent with CMB lensing. This result validates our ap-
proach and highlights the fact the CMB lensing and galaxy
lensing can be used independently to calibrate the mass of
a galaxy distribution using a very different source redshift
screen. Fig. A.2 also shows that the highest redshift bin is
significantly noisier when galaxy lensing is used compared
to CMB lensing, while galaxy lensing provides higher signal-
to-noise for lower redshifts. This is a direct consequence of
the very different source redshift between CMB and galaxy
lensing, and it illustrates the fact that lensing signal-to-
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Zbin zmean bg 〈bPe〉[meV/cm3] χ2/d.o. f PTE

0.1< ZB ≤0.3 0.23 1.26+0.34
−0.36 0.12+0.05

−0.03 1.15 0.22
0.3< ZB ≤0.5 0.38 0.78+0.36

−0.38 0.21+0.22
−0.08 1.15 0.39

0.5< ZB ≤0.7 0.54 0.54+0.24
−0.26 0.35+0.38

−0.16 0.96 0.53
0.7< ZB ≤0.9 0.77 0.59+0.26

−0.28 0.38+0.44
−0.21 1.06 0.4

0.9< ZB ≤1.2 0.96 1.05+0.38
−0.45 0.16+0.2

−0.1 1.46 0.09

Table 2: Best-fitting linear bias parameters from each tomographic bin. The results correspond to the non-linear power
spectrum model being the default halo model. The best-fit parameter values and errors are calculated as the modes and
standard deviations of the Gaussian KDE fit of marginalised posterior distributions. PTE stands for the probability-to-
exceed of the corresponding reduced χ2 value.

noise decreases dramatically when the lenses are close to
the sources, as expected.

6. Discussion and conclusion

In this work we use the galaxy sample from the fourth KiDS
Data Release, the Planck y map and Planck CMB lensing
map to probe the redshift dependence of galaxy bias of
KiDS galaxies and gas pressure bias from the galaxy×tSZ
and the galaxy×κCMB cross-correlations. We assume that,
in the linear region, both tSZ y parameter and galaxy over-
density are proportional to the underlying mass fluctua-
tion, with the proportionality parametrised by galaxy bias〈
bg

〉
and gas pressure bias

〈
byPe

〉
, which is consistent with

our measurement being restricted to large angular scales.
To account for the non-linear effects, we also model the
non-linear power spectra of gy and gκ cross-correlations as
rescaled non-linear templates. We tried three kinds of non-
linear templates: halo model, halofit, and constant, all of

which yield consistent constraints of
〈
bg

〉
and

〈
byPe

〉
, indi-

cating that our measurements are not yet sensitive to the
non-linear details. However, with an additional inconsistent
constraint with a purely linear model, we emphasise the

necessity to consider non-linear cross-correlations.
〈
bg

〉
and〈

byPe

〉
are constrained for galaxies from five tomographic

bins within z . 1, which counts amongst the furthest dis-
tance probed from this kind of analysis. The reduced χ2 of
the best-fit parameter values indicate that our model fits
the data well.

The best-fitting galaxy bias is close to 1, which indicates
that the KiDS galaxy sample is an unbiased tracer of the
underlying mass distribution. In previous works (for exam-
ple Koukoufilippas et al. 2020; Chiang et al. 2020; Pandey
et al. 2019) the authors used galaxy auto spectra to con-
strain galaxy bias, which is subject to modelling uncertain-
ties and auto-correlated noise. Our approach avoids this
problem by using the CMB lensing to calibrate the mass
from the galaxy distribution. In Appendix A, we will show
that our results are unchanged when we replace CMB lens-
ing by galaxy lensing from KiDS.

Fig. 11 shows our constraints on
〈
byPe

〉
in each of the

tomographic bins as well as the measurements from previ-
ous studies (Van Waerbeke et al. 2014; Pandey et al. 2019;
Koukoufilippas et al. 2020; Chiang et al. 2020). Our result
agrees well with them. We also compare our result with
predictions of the halo model (Chiang et al. 2020) and find

good agreement. Our tomographic measurement of
〈
byPe

〉
confirms the evolution of biased thermal energy in halos

into the high redshift regime. In addition, the gas bias by,
estimated to be ∼ 3.5 (Chiang et al. 2020), parametrises
the link between gas and dark matter halo; the mean elec-
tron pressure 〈Pe〉 = 〈ne〉 kBT e is associated with the thermal
dynamic property of electrons. Based on CMB constraints,
the average electron number density is 〈ne〉 ∼ 0.25 m−3 (Hin-
shaw et al. 2013). Taking these values into account, the

mean electron temperature T e is at a level of T e ∼ 106

K, which is consistent with the estimated temperature of
‘missing baryons’(Cen & Ostriker 1999). This means that if
the tSZ signal were entirely from intergalactic gas, it could
account for all the missing baryons within the tempera-
ture range 105 − 107 K (Bregman 2007). To confirm this,
we need a halo model for diffuse baryons that can properly
describe the spatial distribution of gas within dark matter
halos, which we leave to future work. Our study consoli-
dates our understanding of intergalactic gas at high red-
shift, which, combined with future tomographic measure-

ments on
〈
byPe

〉
, will improve our understanding on the

thermal history of the Universe, as well as the evolution of
links between gas and dark matter halos.

The uncertainty we find for
〈
byPe

〉
is larger than pre-

vious studies because KiDS has a smaller sky coverage
compared with those surveys, which makes it less sensi-
tive to the linear regime where the majority of constraining

power lies. Uncertainties of
〈
bg

〉
and

〈
byPe

〉
are both dom-

inated by sample variance on the linear scales. Future sky
surveys such as the Rubin Observatory Legacy Survey of
Space and Time (LSST) (Abell et al. 2009) and the Eu-
clid survey (Laureijs et al. 2010) will cover a larger frac-
tion of the sky, making it possible to yield tighter constrain
on linear biases. In addition, future CMB-S4 and Simons
Observatory-like experiments will provide CMB lensing and
y maps with lower noise levels (Hadzhiyska et al. 2019) and
with higher angular resolution, which will improve both
the constraining capacity of galaxy bias and sensitivity to
small-scale physics. With these improvements, one could
model the non-linear cross-correlation with a more sophis-
ticated model, such as the full halo model with a GNFW
profile (Arnaud et al. 2010) for the tSZ and the HOD model
for the galaxy distribution. We make a forecast on gκ and
gy cross-correlations with such a model with hypothetical
LSST, Euclid , and CMB-S4 surveys in Appendix B, which

yields a tight constraint on
〈
byPe

〉
. Our forecast highlights

the validity of multi-tracer analysis for future sky surveys.

We carefully evaluate the systematics in our data that
could cause bias in our model fitting. The main systemat-
ics considered in this study are the cosmic magnification
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in galaxy overdensity measurements, CIB contamination
in tSZ map and uncertainties in the redshift distributions.
Though all of these systematics are not significant in our
measurement due to low signal-to-noise in our data, they
will become significant for future surveys with large sky cov-
erage. In principle, the first two systematics affect high red-
shifts more significantly, so future studies with a deeper red-
shift reach must carefully take these into account. It should
also be noted that the parameter constraints in this study
are quoted under the assumption of fixed cosmological pa-
rameters from Planck (Planck Collaboration 2020b). The
amplitude of angular cross-correlations is closely related to
galaxy and gas biases as well as σ8 and possible reconstruc-
tion bias in the CMB lensing map. So these parameters
are strongly degenerate, and this is the fundamental limit
of this analysis. We could robustly constrain cosmological
parameters as well as galaxy and gas biases by combining
more cross-correlation measurements, like galaxy cluster-
ing and cosmic shear. Once again, we leave this to future
studies.

This work shows the potential to study LSS by com-
bining different cross-correlations measurements. cross-
correlation is known to be immune to auto-correlated noise.
A combination of different cross-correlations can break the
degeneracies between model parameters. Specifically, in our
fiducial measurements, we do not use cosmic shear, which is
affected by intrinsic alignments and shape miscalibration.
Instead, we use CMB lensing as a non-biased tracer of LSS

to independently constrain
〈
bg

〉
. We provide a sanity check

in Appendix A by replacing the CMB lensing map with the
KiDS shear map and perform the same analysis, which gives
consistent results for all tomographic redshift bins; this vali-
dates our fiducial method. However, the results from galaxy
lensing at high redshift are noisier than our fiducial results,
which indicates the advantage of using CMB lensing as a
proxy for the mass distribution, especially at high redshift.
Future work could combine CMB lensing and galaxy lensing
as independent mass tracers, which could yield tighter con-
straints on LSS properties. Future surveys will also provide
denser galaxy samples in wider ranges and deeper reaches in
the sky, as well as cleaner CMB lensing and y maps, which
will make this method more promising for multi-tracer cos-
mology.
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Appendix A: Alternative method: Galaxy-galaxy
lensing cross-correlations

In this appendix, we measure the cross-correlation between
galaxy overdensity and lensing-induced galaxy shear caused
by as an alternate to CMB lensing. This measurement
serves as a sanity check of our fiducial result. We replace
the CMB lensing map with the galaxy shear map gener-
ated with all the galaxies in the fifth tomographic bin of the
gold KiDS lensing shear catalogue and measure the cross-
correlation between galaxy overdensity in each tomographic
bin and galaxy lensing convergence κgl. The kernel of κgl is
given by:

Wκgl (χ) =
3ΩmH2

0

2ac2 g(χ), (A.1)

with

g(χ) =

∫ χH

χ

dχ′ng
(
z(χ′)

)
χ
χ′ − χ

χ′
, (A.2)

where χH is the comoving distance to the horizon. For the
non-linear region, we take the rescaled halo model described
in Sect. 2.

The KiDS lensing shear catalogue (Giblin et al. 2020)
provides ellipticities (e1, e2) of each galaxy. From them we
construct a map triplet of ellipticities (0, −e1, e2) (Harnois-
Déraps et al. 2017) as an analogue to CMB temperature-
polarisation map triplet (T, Q, U). The minus sign on e1
is due to the different convention of positive x direction
between lensing experiments and CMB polarisation experi-
ments. We measure the cross-correlation between the KiDS
galaxy overdensity maps and shear map triplet with pol-
spice. The output ‘∆gE’ mode (similar to the ‘TE’ mode of
CMB) is the cross-correlation between galaxy overdensity
and galaxy-galaxy lensing convergence gκgl cross-correlation
that we want. The ‘∆gB’ mode (similar to the ‘TB’ mode of
CMB) should be zero, and we take it as a null test.

The covariance matrices are calculated the same way as
our fiducial measurement. The cosmic magnification is also
corrected. For scales with k > 0.3 hMpc−1, non-linear galaxy
bias becomes significant (Heymans et al. 2020). Besides, we
want to match the physical scale of the cross-correlations
between gκgl and gκCMB. Intrinsic alignment is negligible in
galaxy-galaxy lensing measurements (Blazek et al. 2012).
Take these factors into account; we only use angular scales
100 < ` < 200 for the lowest redshift bin and 100 < ` < 300
for the rest. The measurements and best-fit models are plot-
ted in Fig. A.1. The ‘∆gB’ mode is consistent with zero in
all redshift bins. The gκgl cross-correlation measured at high
redshift are very noisy because for those bins the shear maps
contain many galaxies that are in front of lenses, which only
contributes to random noise from their intrinsic alignments
as well as their cosmic shear from the foreground.

We present the constraints of our model parameters
with the galaxy-galaxy lensing cross-correlation in Fig. A.2.

The constraints on both
〈
bg

〉
and

〈
byPe

〉
are consistent. The

errors of CMB lensing and galaxy lensing are comparable
in the low redshift bins, which is expected if both mass
proxies are cut at a comparable scale where the elliptic-
ity noise is subdominant, and the error is mainly driven
by sampling variance. This is a proof that CMB lensing
and galaxy lensing are not only consistent (which is im-
pressive given ∼12 billion years of separation between the

two source populations), but also have comparable signal-
to-noise in the sampling variance dominated regime. The

uncertainty of the
〈
bg

〉
in the last two redshift bins is very

high due to low signal-to-noise in these bins because in these
bins most of the source galaxies are actually in front of lens
galaxies. Thus they only contribute noise. This indicates
that CMB lensing out-performs galaxy lensing when cross-
correlated with high-redshift galaxies. This sanity check not
only proves the reliability of our fiducial results but also
shows the advantages of CMB lensing experiments over
galaxy lensing with the KiDS data. For future studies, a
combination of these measurements will yield even better
constraint on models of interest.

Appendix B: Forecasting the constraining power of
full halo model for future sky surveys

In this section, we forecast the constraining power on the
full halo model (Cooray & Sheth 2002; Seljak 2000) pa-
rameters from gκ and gy cross-correlations measured from
future sky surveys. The galaxy catalogue is assumed to be
taken from a LSST/Euclid-like survey; the CMB lensing
and tSZ data are from the CMB-S4 (Abazajian et al. 2016)
experiment. LSST and Euclid will cover a much wider area
of the sky than KiDS, which makes them sensitive to the
linear region as well as improves the signal-to-noise. CMB-
S4 will achieve a higher angular resolution than Planck,
which makes it possible to reveal the details of non-linear
cross-correlations.

With such improvements, it is possible to use data from
these future surveys to probe the full halo model for galax-
ies and the tSZ effect. The general halo model divides the
power spectrum into the two-halo term, which accounts for
the correlation between different halos, and the one-halo
term, which accounts for correlations within the same halo,
so that

PUV (k) = PUV,1h(k) + PUV,2h(k). (B.1)

Both terms are related to the profiles of U and V in Fourier
space:

PUV,1h(k) =

∫ ∞

0
dM

dn
dM
〈pU(k | M)pV (k | M)〉

PUV,2h(k) = 〈bU〉(k)〈bV〉(k)Plin(k)

〈bU〉(k) ≡
∫ ∞

0
dM

dn
dM

bh(M)〈pU(k | M)〉,

(B.2)

where Plin(k) is the linear power spectrum; dn/dM is the
halo mass function; bh is the halo bias and pU(k | M) is the
profile of the tracer U with mass M in Fourier space:

pU(k | M) ≡ 4π
∫ ∞

0
drr2 sin(kr)

kr
pU(r | M). (B.3)

For the one-halo term, one needs to calculate the corre-
lation between different profiles. We take the one-parameter
model from Koukoufilippas et al. (2020) to account for the
cross-correlation between abundances of u and v:

〈pU(k | M)pV (k | M)〉 = (1 + ρUV ) 〈pU(k | M)〉 〈pV (k | M)〉 .
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Fig. A.1: Galaxy-shear cross-correlation. The left column shows the ‘∆gE’ mode, which corresponds to gκgl cross-correlation
and the right column shows the ‘∆gB’ mode as a null test. Green lines are the best-fit models. We find that the ‘∆gB’
mode is consistent with zero.

(B.4)

The details of profiles have been introduced in Sect. 2.
For the HOD profile we still fix σM = 0.15 and αs = 1, and
let {M0,M1,Mmin} vary.

For the tSZ profile, we must note that the mass term in
this formula is calibrated with X-ray observations and are
possibly biased (Planck Collaboration 2014). A ‘hydrostatic
bias’ bH is introduced, so that the mass term in (16) is
replaced by (1 − bH)M. In the modelling, we also multiply
the power spectra with correction factor R(k, z) defined in

(23). Now we can see that the non-linear bias
〈
cgκ

〉
and

〈
cgy

〉
are directly related to ρGM, ρGP, and bH.

We construct the Fisher matrix:

Fαβ =
∂MT

∂qα
Cov−1 ∂M

∂qβ
, (B.5)

where M(q) is the cross-correlations given by full halo model
described above. We also assume that the covariance matrix
does not depend on parameters. The free parameters are
q ∈ {log10 M1, log10 M0, log10 Mmin, bH, ρGP, ρGM}. The Fisher
matrix is calculated at the best-fit parameter values, which
are assumed to be {13, 11.68, 11.86, 0.16,−0.5, 0}.

The hypothetical measurement should be extended to
non-linear region, so we set the ` region to be 50 < ` < 3000.

The Gaussian covariance matrix is calculated the same way
as Eq. (29), with Cuv

`
the real angular power spectra signal

calculated from best-fit model plus noise spectrum:

Cuv
` = Cuv,signal

`
+ Nuv

` . (B.6)

For cross-correlations, Nuv
`

= 0. The galaxy count noise is
taken as the shot noise:

Ngg
`

= 1/N, (B.7)

where N is the mean number of galaxies per steradian on the
survey. In this section, we present the forecast for the tomo-
graphic bin of a LSST/Euclid-like survey corresponding to
the last tomographic bin of KiDS (0.9<ZB ≤1.2). The red-
shift distribution and galaxy numbers are from LSST Sci-
ence Collaboration (2009). The information of LSST and
Euclid surveys are summarised in Table. B.1. Since both
has similar survey coverage and galaxy number density, we
only show the forecast for LSST for clarity. We take the
noise power spectra of CMB lensing and the tSZ effect for
CMB-S4 presented in Shirasaki et al. (2019) and Schaan
et al. (2017), respectively.

Since the hypothetical measurement extends into non-
linear region, we include the non-Gaussian covariance ma-
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Fig. A.2: Constraints of model parameters with the galaxy-
galaxy lensing and the galaxy-tSZ cross-correlations. Up-

per panel shows the constraints on
〈
bg

〉
and the lower panel

shows
〈
byPe

〉
overplotted with halo model results from Chi-

ang et al. (2020).

trix, which is given by:

CovNG
(
Cuv
` ,C

wz
`′

)
=

∫ ∞

0
dχ

Wu(χ)Wv(χ)Ww(χ)Wz(χ)
4π fskyχ6

× TUVWZ

(
k =

` + 1/2
χ

, k′ =
`′ + 1/2

χ

)
,

(B.8)

where TUVWZ(k) is the trispectrum. Using the halo model,
the trispectrum is decomposed into one- to four- halo terms.
Here we only take the one-halo term into account since it
dominates the scales we are interested in (Pielorz et al.
2010):

T 1h
UVWZ(k, k′) ≡

∫ ∞

0
dM

dn
dM

× 〈pU(k | M)pV (k | M)pW (k′ | M)pZ(k′ | M)〉.
(B.9)

With these pieces of information, we calculate the co-
variance matrix as Cov = CovG + CovNG. The confidence
contours from the Fisher matrix is calculated and presented
in Fig. B.1.

The parameter that we are interested in is bH, which is
constrained as 0.16±0.04 for such LSST/Euclid-like surveys.

Survey Sky coverage [deg2] fsky [%] N [arcmin−2]

LSST 20000 48.5 55.5
Euclid 15000 36.4 37.0

Table B.1: Information of LSST and Euclid surveys needed
for forecasting. We note that the sky coverage is the full sky
coverage multiplied by the estimated overlapping fraction
with CMB-S4.

The gas pressure bias
〈
byPe

〉
can then be calculated accord-

ing to (20), yielding a constraint (0.37 ± 0.02) [meV/cm3].
Although the constraining power for galaxy parameters
{M1,M0,Mmin} is weak, the constraining power for gas
pressure bias is relatively strong, indicating that galaxy-
CMB lensing cross-correlation is a valid method to break
the degeneracy between parameters of galaxy distribution
and other large-scale tracers when measuring galaxy cross-
correlations. Our forecast indicates that future sky surveys
like LSST and Euclid as well as CMB-S4 will obtain data
that can be used to conduct such measurements.
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Fig. B.1: The 95% and 68% confidence contours of model parameters of the full halo model. The confidence contours are
calculated from the Fisher matrix for LSST/Euclid-like galaxy surveys and CMB-S4.
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