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The thermal conductivity of a molecular gas consists of the translational and internal parts;8

although in continuum flows the total thermal conductivity itself is adequate to describe the heat9

transfer, in rarefied gas flows they need to be modeled separately, according to the relaxation10

rates of translational and internal heat fluxes in homogeneous system. This paper is dedicated to11

quantifying how these relaxation rates affect rarefied gas dynamics. The kinetic model of Wu et12

al. (J. Fluid Mech., vol. 763, 2015, pp. 24-50) is adapted to recover the relaxation of heat fluxes,13

which is validated by the direct simulation Monte Carlo method. Then the Wu et al. model,14

having the freedom to adjust the relaxation rates, is used to investigate the rate effects of thermal15

relaxation in problems such as the normal shock wave, creep flow driven by Maxwell’s demon,16

and thermal transpiration. It is found that the relaxation rates of heat flux affect rarefied gas flows17

significantly, even when the total thermal conductivity is fixed.18

1. Introduction19

When the ratio between themolecularmean free path and the characteristic flow length becomes20

appreciable, the Navier-Stokes-Fourier equations fail to describe the rarefied gas dynamics and21

the gas kinetic equation is used instead. For monatomic gas, the Boltzmann equation and the22

direct simulation Monte Carlo (DSMC) method provide equivalent and successful predictions23

of rarefied gas dynamics (Bird 1994; Wagner 1992). For molecular gas, however, the internal24

energy (due to the excitation of rotational, vibrational, or electronic degrees of freedom) other25

than translational energy exists, making the collision dynamics much more complicated than26

that of monatomic gas. Wang-Chang & Uhlenbeck (1951) extended the Boltzmann equation by27

treating the internal degree of freedom quantum mechanically and assigning each internal energy28

level an individual velocity distribution function. However, it is obvious that the analytical and29

numerical methods for Wang-Chang & Uhlenbeck equation become difficult and expensive. For30

example, Tcheremissine & Agarwal (2008) found that in hypersonic flow the computational cost31

for molecular gas are two orders of magnitude higher than that for monatomic gas.32

Compared to the dilute monatomic gas, a unique feature of the molecular gas is that it exchange33

the translational and internal energies during binary collisions. On an averaging sense, in spatial-34

homogeneous systems the relaxation of rotational temperature 𝑇𝑟𝑜𝑡 (for simplicity we assume35

the molecule has rotational mode excited only, and the rotational degree of freedom is 𝑑𝑟 = 236

for diatomic and linear molecule, and 3 for all other non-linear molecules) is described by the37

Jeans-Landau equation38

𝜕𝑇𝑟𝑜𝑡

𝜕𝑡
=
𝑝𝑡𝑟

`

𝑇 − 𝑇𝑟𝑜𝑡
𝑍

, (1.1)

where 𝑡 is the time, 𝑝𝑡𝑟 is the kinetic pressure, ` is the shear viscosity of the gas, 𝑇 is the total39
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temperature, and 𝑍 is the rotational collision number. On the other hand, the relaxation of the40

translational and rotational heat fluxes (𝒒𝑡𝑟 and 𝒒𝑟𝑜𝑡 , respectively) are found to satisfy (Mason &41

Monchick 1962; McCormack 1968):42

𝜕

𝜕𝑡

[
𝒒𝑡𝑟
𝒒𝑟𝑜𝑡

]
= − 𝑝𝑡𝑟

`

[
𝐴𝑡𝑡 𝐴𝑡𝑟
𝐴𝑟𝑡 𝐴𝑟𝑟

] [
𝒒𝑡𝑟
𝒒𝑟𝑜𝑡

]
, (1.2)

where the matrix of relaxation rates A = [𝐴𝑖 𝑗 ] with 𝑖, 𝑗 = 𝑡, 𝑟 determines the translational and43

internal thermal conductivities, see § 2.2 below. From the physical point of view, the matrix44

should have two positive eigenvalues.45

The DSMC has become the prevailing method to simulate the rarefied dynamics of molecular46

gases, by using the phenomenological Borgnakke & Larsen (1975) collision model. While the47

success of DSMC in modeling monatomic gas dynamics lies in its recovery of viscosity and48

thermal conductivity, and the accurate update of post-collision velocities as per Boltzmann49

collision operator, the simulation of molecular gas flow in DSMC is not perfect. That is, in DSMC50

the attention is only paid to realize the correct exchange rate between the translational and internal51

energies (1.1), which guarantees the exact recovery of bulk viscosity (Boyd 1991; Haas et al. 1994;52

Gimelshein et al. 2002). However, it cannot always recover the thermal conductivity (Wu et al.53

2020), either the total value or its translational and internal components. So far, the consequence54

of this overlooked problem remains unknown, as to our knowledge no one has considered (or55

there is no mechanism to recover) the relaxation of heat fluxes (1.2) in DSMC, which determines56

the thermal conductivity of gas.57

The relaxation rates play important roles in the gas dynamics (Candler 2018). Although in58

DSMC and other kinetic models (Morse 1964; Holway 1966; Rykov 1975; Gorji & Jenny 2013;59

Wu et al. 2015; ?), the effect of temperature relaxation (1.1), or equivalently the bulk viscosity,60

has been extensively studied, e.g. by Frezzotti & Ytrehus (2006), ?, and Kosuge & Aoki (2018),61

the role of thermal relaxation of heat fluxes (1.2) has seldom been investigated. In experiments,62

the total thermal conductivity can be measured straightforwardly, and sometimes its translational63

part (Mason 1963; Gupta & Storvick 1970; Porodnov et al. 1978; Wu et al. 2020) can also be64

measured; we will show in the following section that, there are still at least two elements in the65

thermal relaxation rates of heat fluxes A not determined. Therefore, it is the aim of the present66

work to quantify these uncertainties caused by the variation of A in rarefied gas flows, although67

they rarely affect the continuum flow described by the Navier-Stokes-Fourier equations when the68

shear viscosity, bulk viscosity and total thermal conductivity are fixed.69

To fulfill this goal, a kinetic model which is able to recover the relaxation rates in (1.1) and (1.2)70

is urgently needed. In this paper, the Wu et al. (2015) model is firstly introduced, which is then71

modified to include the general relaxations for both temperatures and heat fluxes. The modified72

model is validated by DSMC when both models have the same relaxation rates. Finally, the new73

kinetic model is used to study the influence of thermal relaxation rates in rarefied gas flows, by74

keeping other parameters unchanged. Note that here we do not use DSMC because when the shear75

viscosity, bulk viscosity and Schmidt number (i.e., Sc = `/𝜌𝐷, where 𝜌 is the mass density and76

𝐷 is the diffusion coefficient) are fixed, the matrix A in DSMC is fixed, but the resulting thermal77

conductivities may not be equal to the experimentally measured values (Wu et al. 2020), not to78

mention its translational and internal components.79

2. Thermal relaxation and transport coefficients80

The essential difference between monatomic and molecular gases is that molecules exhibit81

internal relaxation that exchanges the translational and internal energies, which lead to several82

new transport coefficients including the bulk viscosity and internal thermal conductivity. For83
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simplicity, we consider the case where only rotational modes are activated and treated in the way84

of classical mechanics.85

2.1. Bulk viscosity86

In dilute gas, the exchange of translational and internal energy through inelastic collisions leads87

to a resistance in the compression or expansion of gas, which is quantified by the bulk viscosity88

`𝑏 . According to the Chapman & Cowling (1970) expansion, when the relaxation time 𝑍`/𝑝𝑡𝑟89

between the translational and rotational energies is much shorter than the characteristic time of90

gas flow, the bulk viscosity is expressed as:91

`𝑏 =
2𝑑𝑟𝑍
3(𝑑𝑟 + 3)

`. (2.1)

Themost widely used phenomenological model for molecular gas in DSMC is the Borgnakke&92

Larsen (1975) model, in which the relaxation rate is controlled by making a fraction of collisions93

inelastic. And this fraction gives the inverse of rotational collision number in DSMC, denoted as94

𝑍DSMC. Note that when the variable-soft-sphere model is used in DSMC, 𝑍DSMC is related to the95

rotational collision number 𝑍 in (1.1) as96

𝑍 =
𝛼(5 − 2𝜔) (7 − 2𝜔)
5(𝛼 + 1) (𝛼 + 2) 𝑍DSMC, (2.2)

where 𝜔 is the viscosity index such that ` (𝑇) = ` (𝑇0) (𝑇/𝑇0)𝜔 , 𝑇0 is the reference temperature,97

and 𝛼 is the parameter that determines the scattering angle after binary collision; it can be chosen98

freely, but in the variable-soft-sphere model it is usually determined by the Schmidt number (in99

order to simulate the diffusion process) through the following equation (Bird 1994):100

Sc =
5(2 + 𝛼)
3(7 − 2𝜔)𝛼 . (2.3)

In other words, the bulk viscosity of the molecular gas can be exactly recovered by adjusting the101

value of 𝑍DSMC in DSMC simulations.102

2.2. Thermal conductivity103

Compared to the monatomic gas, the thermal relaxations not only reduce the value of104

translational thermal conductivity ^𝑡𝑟 , but also result in the rotational thermal conductivity ^𝑟𝑜𝑡 .105

According to the Chapman & Cowling (1970) expansion, the translational and rotational thermal106

conductivities satisfy (Mason & Monchick 1962)107 [
^𝑡𝑟
^𝑟𝑜𝑡

]
=
𝑘𝐵`

2𝑚

[
𝐴𝑡𝑡 𝐴𝑡𝑟
𝐴𝑟𝑡 𝐴𝑟𝑟

]−1 [ 5
𝑑𝑟

]
, (2.4)

where 𝑘𝐵 is the Boltzmann constant, and 𝑚 is the molecular mass.108

It will be convenient to express the thermal conductivity ^ of a molecular gas in terms of the109

dimensionless Eucken (1913) factors:110

^𝑚

`𝑘𝐵
=
3
2
𝑓𝑡𝑟 +

𝑑𝑟

2
𝑓𝑟𝑜𝑡 =

3 + 𝑑𝑟
2

𝑓𝑢 , (2.5)

where 𝑓𝑢 is the total Eucken factor, while 𝑓𝑡𝑟 and 𝑓𝑟𝑜𝑡 are the translational and internal Eucken111

factors, respectively:112

𝑓𝑡𝑟 =
2
3
𝑚^𝑡𝑟

𝑘𝐵`
, 𝑓𝑟𝑜𝑡 =

2
𝑑𝑟

𝑚^𝑟𝑜𝑡

𝑘𝐵`
. (2.6)

From (2.4) and (2.6), it is clear that the Eucken factors are determined by the four relaxation113
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rates in the matrix A. However, the values of these relaxation rates are difficult to be obtained114

experimentally. For monatomic gas, 𝐴𝑡𝑟 = 𝐴𝑟𝑡 = 𝐴𝑟𝑟 = 0 and 𝐴𝑡𝑡 = 2/3, so the translational115

Eucken factor is 2.5. In molecular gas, the energy exchange between translational and rotational116

energy makes the off-diagonal components 𝐴𝑡𝑟 and 𝐴𝑟𝑡 negative, which leads to a translational117

Eucken factor 𝑓𝑡𝑟 lower than 2.5.118

In DSMC, as the only parameter modifying the energy exchange between different energy119

modes, the collision number 𝑍 determines the values of relaxation rates A (and hence the120

thermal conductivities). Considering the discussion in § 2.1, both bulk viscosity and thermal121

conductivity of molecular gas are determined by 𝑍 , so that they cannot be adjusted independently122

in DSMC. Therefore, generally speaking, these two transport coefficients cannot bematched to the123

experimental values simultaneously in the conventional DSMC method with Borgnakke-Larsen124

model.125

2.3. Extraction of thermal relaxation rates in DSMC126

Since DSMC does not allow free adjustment of A but only the collision number 𝑍DSMC, here127

we extract the relaxation rates A by varying 𝑍DSMC. To this end, we consider both nitrogen and128

hydrogen chloride, which have only classical rotational motions excited (with 𝑑𝑟 = 2) at room129

temperature.130

We extract the thermal relaxation rates A in the spatial-homogeneous relaxation problem: 106131

simulation particles are generated over a cubic cell of the size (10 nm)3, where periodic condition132

is employed at all the boundaries. The gas density is 𝑛0 = 2.69 × 1025m−3 and the temperature is133

𝑇0 = 300 K. At the beginning of DSMC simulation, simulation particles with positive velocity134

in the 𝑥 direction are generated from the Maxwell velocity distribution of 𝑇 = 200 K, while the135

rest are generated fromMaxwell velocity distribution of 𝑇 = 400 K, see figure 1(a); similarly, the136

rotational energy assigned to the particles with 𝑣𝑥 > 0 is generated from the Maxwell distribution137

of 𝑇 = 200 K, while those moving to the opposite direction obey the Maxwell distribution of138

𝑇 = 400 K, see figure 1(b). In this manner we generate an initial velocity and energy distribution139

which leads to initial non-zero values of translational and rotational heat fluxes. Then, the system140

with prescribed initial heat fluxes evolves with respect to the time, and both the translational and141

rotational heat fluxes are monitored until the entire system reaches thermal equilibrium. Both142

nitrogen and hydrogen chloride are simulated to extract the relaxation rates A with the variable-143

soft-sphere molecular collision model and the corresponding parameters are listed in table 1. 100144

independent runs were conducted to get smooth results.145

Parameters N2 HCl

Molecular mass: 𝑚 (×1026kg) 4.65 6.14
Viscosity index: 𝜔 0.74 1.0
Diameter: 𝑑 (×1010m) 4.11 5.59
Schmidt number: Sc 1/1.34 1/1.33
Scattering parameter: 𝛼 1.36 1.59
Simulation time step (×1012s): 4.74 5.45

Table 1: Parameters in the variable-soft-sphere model of DSMC, for N2 and HCl, which are
collected from tables A1 and A3 in the book of Bird (1994). In this case and all the following
cases, the simulation time step is chosen to be one fifth of the minimum cell size divided by the
most probable speed

√︁
2𝑘𝐵𝑇0/𝑚.
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Figure 1: The initial distribution of (𝑎) molecular velocity and (𝑏) rotational energy of nitrogen
molecules in DSMC (the open-source code SPARTA is used), where the abscissas are normalized
by

√︁
2𝑘𝐵𝑇0/𝑚 and 𝑘𝐵𝑇0, respectively. (𝑐, 𝑑) The evolution of heat fluxes and their time derivatives,

circles in (𝑑) represent the numerical fitting used to extract the relaxation rates A from DSMC.
(𝑒 − ℎ) Extracted A from DSMC for nitrogen (squares) and hydrogen chloride (circles). DSMC
simulation parameters are summarized in table 1.

Figure 1(c, d) plots the evolution of the translational and rotational heat fluxes and their146

time derivatives for nitrogen with 𝑍DSMC = 4.0. It can be seen that the time derivative of the147

translational heat flux is significantly increased, due to its strong coupling with the rotational heat148

flux: from (1.2) it can be inferred that 𝐴𝑡𝑟 is negative. That the time derivative of rotational heat149

flux decreases monotonically with respect to the time implies that |𝐴𝑟𝑡 | is very small if 𝐴𝑟𝑡 is150

negative.151

We adopt the least square method to solve the linear regression problem (1.2) to extract152

the relaxation rates A, and the results in figure 1(e-h) show that these parameters exhibit linear153

dependence with 1/𝑍DSMC. When the collision number 𝑍𝐷𝑆𝑀𝐶 is increased, the energy exchange154

between translational and internal motions vanishes gradually, hence the relaxation rates 𝐴𝑡𝑟 and155

𝐴𝑟𝑡 approach zero, while 𝐴𝑡𝑡 and 𝐴𝑟𝑟 approach 2/3 and Sc, respectively. According to (2.4),156

that 𝐴𝑟𝑟 approaches Sc means that the translational thermal conductivity is proportional to the157

diffusion coefficient. This is comprehensible because the diffusion of gas molecules transports158

the heat.159

Given the thermal relaxation rate A, the Eucken factors can be calculated by (2.4) and (2.6).160

We find that in order to match the experimental thermal conductivity (or equivalently 𝑓𝑢 = 1.993)161

of nitrogen at 𝑇0 = 300 K, the collision number has to be chosen as 𝑍DSMC = 4.0, and the162

corresponding relaxation rates are 𝐴𝑡𝑡 = 0.786, 𝐴𝑡𝑟 = −0.201, 𝐴𝑟𝑡 = −0.059, 𝐴𝑟𝑟 = 0.842; hence163

we have 𝑓𝑡𝑟 = 2.365 and 𝑓𝑟𝑜𝑡 = 1.435. Note that this value of 𝑍DSMC may not lead to the correct164

value of bulk viscosity. However, for hydrogen chloride, no matter what the value of 𝑍DSMC is, the165

calculated total thermal conductivity from DSMC can never recover the experimental value (Wu166

et al. 2020). This is the problem of DSMC which, generally speaking, cannot recover the bulk167

viscosity and translational/internal thermal conductivity of molecular gas simultaneously in the168

phenomenological Larsen-Borgnakke collision model.169

3. The modified Wu model and its validation170

Due to the limitation of DSMCmethod, a kinetic model is desired and developed in this section,171

which allows free adjustment of relaxation rates (and hence free adjustment of bulk viscosity and172
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translational/internal thermal conductivities). To this end, we modify the Wu et al. (2015) model173

so that it can reflect the general relaxations for temperature and heat flux. Then, we validate the174

accuracy of the proposed model by comparing its solutions for the normal shock wave and creep175

flow driven byMaxwell’s demon with the DSMC results. In order to make consistent comparison,176

the relaxation rates in the modified Wu et al. (2020) should be the same as those in the DSMC177

simulations.178

3.1. The modified kinetic model179

Like the Wang-Chang & Uhlenbeck (1951) equation, all the kinetic models divide the binary180

collision into the elastic and inelastic collisions. The elastic collision conserves the translational181

energy, while the inelastic collision exchanges the translational and rotational energies. The182

linearized kinetic model for molecular gas is developed by Hanson & Morse (1967), while one183

of the practical models for nonlinear flows is proposed by Rykov (1975). As an extension of the184

Rykov model, the kinetic model equation developed by Wu et al. (2015) also treats the elastic185

and inelastic collision separately. While in order to improve the modeling accuracy, the Wu et al.186

model replaces the elastic collision operator in the Rykov model with the Boltzmann collision187

operator for monatomic gas, and thus introduces a more realistic elastic collision relaxation time188

that is dependent on the molecular velocity (i.e., in the limit without translational-internal energy189

exchange, it is reduced to the Boltzmann equation for monatomic gas).190

In the original Wu et al. (2015) model, two velocity distribution functions, 𝐺 (𝒙, 𝒗, 𝑡) and191

𝑅(𝒙, 𝒗, 𝑡), where 𝒙 and 𝒗 are respectively the spatial coordinates and molecular velocity, are used192

to describe the translational and rotational motions of gas molecules; their evolution are governed193

by the following kinetic equations:194

𝜕𝐺

𝜕𝑡
+ 𝒗 · 𝜕𝐺

𝜕𝒙
+ 𝒂 · 𝜕𝐺

𝜕𝒗
=𝑄(𝐺) + 𝐺𝑟𝑜𝑡 − 𝐺𝑡𝑟

𝑍𝜏
,

𝜕𝑅

𝜕𝑡
+ 𝒗 · 𝜕𝑅

𝜕𝒙
+ 𝒂 · 𝜕𝑅

𝜕𝒗
=
𝑅𝑡𝑟 − 𝑅
𝜏

+ 𝑅𝑟𝑜𝑡 − 𝑅𝑡𝑟

𝑍𝜏
,

(3.1)

where 𝒂 is the external acceleration, 𝜏 = `/𝑝𝑡𝑟 is the characteristic collision time related to195

the translational motion of gas molecules, and 𝑄 (𝐺) is the Boltzmann collision operator for196

monatomic gases (Wu et al. 2013, 2014). The four reference distribution functions 𝐺𝑡𝑟 , 𝐺𝑟𝑜𝑡 ,197

𝑅𝑡𝑟 and 𝑅𝑟𝑜𝑡 are modeled as198

𝐺𝑡𝑟 = 𝑛

(
𝑚

2𝜋𝑘𝐵𝑇𝑡𝑟

)3/2
exp

(
− 𝑚𝑐2

2𝑘𝐵𝑇𝑡𝑟

) [
1 + 2𝑚𝒒0 · 𝒄
15𝑘𝐵𝑇𝑡𝑟 𝑝𝑡𝑟

(
𝑚𝑐2

2𝑘𝐵𝑇𝑡𝑟
− 5
2

)]
,

𝐺𝑟𝑜𝑡 = 𝑛

(
𝑚

2𝜋𝑘𝐵𝑇

)3/2
exp

(
− 𝑚𝑐2

2𝑘𝐵𝑇

) [
1 +
2𝑚𝒒′0 · 𝒄
15𝑘𝐵𝑇 𝑝

(
𝑚𝑐2

2𝑘𝐵𝑇
− 5
2

)]
,

𝑅𝑡𝑟 =
𝑑𝑟 𝑘𝐵𝑇𝑟𝑜𝑡

2
𝐺𝑡𝑟 +

(
𝑚

2𝜋𝑘𝐵𝑇𝑡𝑟

)3/2
exp

(
− 𝑚𝑐2

2𝑘𝐵𝑇𝑡𝑟

)
𝑚𝒒1 · 𝒄
𝑘𝐵𝑇𝑡𝑟

,

𝑅𝑟𝑜𝑡 =
𝑑𝑟 𝑘𝐵𝑇

2
𝐺𝑟𝑜𝑡 +

(
𝑚

2𝜋𝑘𝐵𝑇

)3/2
exp

(
− 𝑚𝑐2

2𝑘𝐵𝑇

)
𝑚𝒒′1 · 𝒄
𝑘𝐵𝑇

,

(3.2)

where 𝒄 = 𝒗 −𝑼 is the peculiar velocity, and199

𝒒0 = 𝒒𝑡𝑟 , 𝒒′0 = 𝜔0𝒒𝑡𝑟 ,

𝒒1 = (1 − Sc)𝒒𝑟𝑜𝑡 , 𝒒′1 = (1 − Sc)𝜔1𝒒𝑟𝑜𝑡 ,
(3.3)

where 𝜔0 and 𝜔1 are the constants to recover both the translational and rotational thermal200

conductivity coefficients of molecular gases. Further, the macroscopic quantities, number density201

𝑛, flow velocity 𝑼, translational temperature 𝑇𝑡𝑟 , rotational temperature 𝑇𝑟𝑜𝑡 , translational heat202
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flux 𝒒𝑡𝑟 , the rotational heat flux 𝒒𝑟𝑜𝑡 , and pressure tensor 𝑝𝑖 𝑗 are calculated from the velocity203

moments of the two distribution functions 𝐺 and 𝑅:204

𝑛 =

∫
𝐺d𝒗, 𝑼 =

1
𝑛

∫
𝐺𝒗d𝒗,

𝑇𝑡𝑟 =
1
3𝑛𝑘𝐵

∫
𝑚𝐺𝑐2d𝒗, 𝑇𝑟𝑜𝑡 =

2
𝑑𝑟𝑛𝑘𝐵

∫
𝑅d𝒗,

𝒒𝑡𝑟 =
1
2

∫
𝑚𝐺𝑐2𝒄d𝒗, 𝒒𝑟𝑜𝑡 =

∫
𝑅𝒄d𝒗, 𝑝𝑖 𝑗 =

∫
𝑚𝐺𝑐𝑖𝑐 𝑗d𝒗.

(3.4)

The total temperature 𝑇 , total pressure 𝑝 and its translational counterpart are 𝑇 = (3𝑇𝑡𝑟 +205

𝑑𝑟𝑇𝑟𝑜𝑡 )/(3+ 𝑑𝑟 ), 𝑝 = 𝑛𝑘𝐵𝑇 and 𝑝𝑡𝑟 = 𝑛𝑘𝐵𝑇𝑡𝑟 , respectively. It can be verified that (1.1) and (1.2)206

are satisfied in the kinetic model.207

Considering the general expression of thermal conductivity coefficients (or Eucken factors208

equivalently) based on equations (2.4) and (2.6), there are still two unknown values in relaxation209

rates A even when both 𝑓𝑡𝑟 and 𝑓𝑟𝑜𝑡 have been fixed. It implies that the coefficients 𝜔0 and 𝜔1210

in the kinetic model above, which is determined by the thermal conductivities, may not able to211

give fully recovery of all the transport information in molecular gases. Therefore, we modify the212

kinetic model by incorporating the relaxation rates A into the reference distribution functions as:213

𝒒0 = 𝒒𝑡𝑟 , 𝒒′0 =

[
−3𝑍 (𝐴𝑡𝑡 −

2
3
) + 1

]
𝒒𝑡𝑟 − 3𝑍𝐴𝑡𝑟 𝒒𝑟𝑜𝑡 ,

𝒒1 = 0, 𝒒′1 = −𝑍 [𝐴𝑟𝑡𝒒𝑡𝑟 + (𝐴𝑟𝑟 − 1)𝒒𝑟𝑜𝑡 ] ,
(3.5)

so that (1.1) and (1.2) are exactly recovered.214

3.2. Numerical validation215

Now we assess the accuracy of the kinetic model (3.1) with (3.2) and (3.5), by comparing its216

numerical solutions of normal shock wave and thermal creep flow in nitrogen with the DSMC217

results. To make fair comparisons, the relaxation rates A are equal to those extracted from the218

DSMC. Therefore, the collision number and relaxation rates take the values determined in §2.3,219

and the rotational collision number in (3.1) is 𝑍 = 2.6671 according to (2.2).220

The obtainedmacroscopic flow quantities will be shown in non-dimensional values: the number221

density, temperature, spatial coordinate, velocity, pressure, and heat flux are normalized by222

𝑛0 = 2.69 × 1025 m−3, 𝑇0 = 300 K, the characteristic length 𝐿0, the most probable speed 𝑣𝑚 =223 √︁
2𝑘𝐵𝑇0/𝑚, 𝑛0𝑘𝐵𝑇0, and 𝑛0𝑘𝐵𝑇0𝑣𝑚, respectively. The Knudsen number is defined as224

𝐾𝑛 =
`(𝑇0)
𝑛0𝐿0

√︂
𝜋

2𝑚𝑘𝐵𝑇0
. (3.6)

3.2.1. Normal shock wave225

First, we consider the normal shock wave when the Mach number is Ma = 4 and the upstream226

mean free path (𝐿0 = 59.59 nm) is chosen as the characteristic length. The simulation domain227

used in both the kinetic model and DSMC are 30𝐿0 in 𝑥 direction with the wavefront in the228

center of it, so that the equilibrium states determined by the Rankine–Hugoniot relation can be229

applied at both ends of the domain. The kinetic model equation is solved by discretize velocity230

method with fast spectral method dealing with its Boltzmann collision term (Wu et al. 2015). The231

entire domain is divided into 150 non-uniform cells, with more cells located around the shock232

center. And 48 × 32 × 32 discrete velocities, which are uniformly distributed within the range233

[−7.5𝑣𝑚, 7.5𝑣𝑚], are used. In the DSMC simulation, 360 uniform spatial cells with size of 5234

nm are applied, and there are 7.2 × 105 simulation particles in the whole computational domain.235

When the steady state is reached, by doing time average over 2500 sampling steps, we get the236
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Figure 2: Comparison between the DSMC (circles) and the modifiedWumodel (lines) for normal
shock wave in nitrogen with Ma = 4. The macroscopic quantity 𝑄 = 𝜌, 𝑢, 𝑇 is normalized by
(𝑄 −𝑄𝑢)/(𝑄𝑑 −𝑄𝑢), where the subscripts 𝑢 and 𝑑 represent the upstream and downstream,
respectively. Note that the shock wave is shifted so that the density at 𝑥 = 0 is (𝜌𝑑 + 𝜌𝑢)/2; and
other profiles are shifted accordingly.

final results as the reference for comparison. The accuracy is guaranteed because the cell size is237

much smaller than the molecular mean free path and there are about 2000 simulation particles238

per cell.239

Figure 2 compares the structures of the normal shock wave obtained from the kinetic model240

and the DSMC simulation. Good agreement in macroscopic quantities demonstrates the accuracy241

of the proposed kinetic model.242

3.2.2. Creep flow driven by the Maxwell demon243

Second, we consider the microflow. In the thermal creep along an infinite channel, the gas flow244

is driven by a temperature gradient at the wall, which is equivalent to applying a small external245

acceleration. Here, as a thought test, we consider the creep flow driven by the Maxwell demon,246

where each molecule is subject to an external acceleration based on its kinetic energy:247

𝑎𝑦 = 𝑎0

(
𝑣2

𝑣2𝑚
− 3
2

)
(3.7)

see figure 3. It can be seen that the direction of the acceleration is determined by the magnitude248

of molecular velocity. We solve this creep flow in a one dimensional domain, which is bounded249

by two parallel walls with fully diffuse boundary condition at the same temperature. Here,250

the characteristic length 𝐿0 is the distance between the walls and 𝑎0 is a small value set by251

2𝑎0𝐿0/𝑣2𝑚 = 0.0718 to guarantee that the gas flow deviates slightly from the global equilibrium.252

The modified Wu model is solved by the general synthetic iterative scheme (Su et al. 2021;253

?). There are 100 spatial cells inside the computational domain, with more cells located in the254

vicinity of solid walls to capture the Knudsen layer structure. And 48 × 48 × 48 non-uniformly255

distributed discrete velocities within the range [−6𝑣𝑚, 6𝑣𝑚] are applied, with dense velocity grids256

around zero velocity to capture the discontinuity of velocity distribution function therein. In the257

DSMC simulations, there are 100 uniform cells and 2 × 104 simulation particles between two258

walls, and both time and ensemble averaging are used which include 10 independent runs with259

2.5 × 106 sampling times for each one.260

The results of kinetic model and DSMC are compared in figure 3, for typical Knudsen numbers.261

It is observed that the flow velocity and heat fluxes obtained from the kinetic model are in good262

agreement with those from the DSMC. Besides, the rotational heat flux is negligibly small, when263

compared to the translational heat flux. This implies that the translational thermal conductivity264

plays the dominated role in the flow velocity in this problem.265
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Figure 3: Comparison between the DSMC (markers) and the modified Wu model (lines) in the
creep flow driven by the Maxwell demon. The velocity and heat flux are further normalized by
the dimensionless acceleration 0.0718.

4. Uncertainty quantification: rate effect of thermal relaxation266

It can be learned from (2.4) that, even when the translational and rotational thermal conduc-267

tivities (i.e., ^𝑡𝑟 and ^𝑟𝑜𝑡 ) are determined, two elements in the matrix A remains unknown; and268

there will be three undetermined elements if only the total thermal conductivity is known as in269

many experiments. Here we investigate the effects of these uncertain values based on the modified270

Wu model, as the DSMC does not have the capability to adjust the thermal relaxation rates once271

the rotational collision number and Schmidt number are fixed. The uncertainties in rarefied gas272

flows will be quantified in the following two ways. First, we vary the values of 𝐴𝑖 𝑗 when the273

translational and rotational Eucken factors (i.e., 𝑓𝑡𝑟 and 𝑓𝑟𝑜𝑡 ) are given. Second, we fix the total274

Eucken factor 𝑓𝑢 , 𝐴𝑡𝑟 and 𝐴𝑟𝑡 , but vary the translational and rotational Eucken factors.275

4.1. Normal shock wave276

When 𝑓𝑡𝑟 and 𝑓𝑟𝑜𝑡 are fixed on top of the fixed shear viscosity and bulk viscosity, the gas277

dynamics is uniquely determined in the continuum flow. However, different values of 𝐴𝑖 𝑗 could278

lead to different results in rarefied gas flows. The normal shock wave of nitrogen is firstly studied279

to demonstrate this uncertainty. Specifically, 𝐴𝑡𝑟 and 𝐴𝑟𝑡 are selected to vary within [−5/6𝑍, 0]280

and [−1/3𝑍, 0], respectively, while 𝐴𝑡𝑡 and 𝐴𝑟𝑟 are determined according to (2.4) and (2.6) to281

recover the assigned values of 𝑓𝑡𝑟 = 2.365 and 𝑓𝑟𝑜𝑡 = 1.435. Given 𝑍 = 2.6671, the considered282

minimum values of 𝐴𝑟𝑡 and 𝐴𝑡𝑟 are −0.3124 and −0.1250, respectively, which are about 1 ∼ 2283

times larger, in magnitude, than those extracted from the DSMC simulation in §2.3.284
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Figure 4: Influence of the thermal relaxation rates in normal shock wave. The red solid lines are
the results of the modified Wu model with A extracted from DSMC, while the blue shade regions
show the results from the modified Wu model, with 𝐴𝑟𝑡 ∈ [−0.3124, 0.0], 𝐴𝑡𝑟 ∈ [−0.1250, 0.0],
𝑓𝑡𝑟 = 2.365 and 𝑓𝑟𝑜𝑡 = 1.435.
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Figure 5: Influence of the translational Eucken factors in normal shock waves. All cases have
the same total Eucken factor 𝑓𝑢 , but the translational Eucken factor 𝑓𝑡𝑟 for the green dash-dot,
blue dashed, and red solid lines are 1.5, 2, and 2.5, respectively; the rotational Eucken factor is
changed accordingly to make 𝑓𝑢 fixed. The modified Wu model is used.

Figure 4 shows the density, temperature, and heat flux in the normal shock wave of Mach285

number Ma = 4, where the red solid lines illustrate the reference solutions with A extracted286

from the DSMC, while blue shade regions show the divergences caused by the variations of A. It287

can be seen that the variation of thermal relaxation rates slightly shifts the profiles of rotational288

temperature and heat fluxes, mainly in the regions 𝑥 ∈ [−2,−1] and 𝑥 ∈ [0.5, 2]. However, the289

thermal relaxation rates has almost no influence on the profiles of density (hence velocity due to290

mass conservation) and normal pressure (not shown here). Therefore, there is also little change291

in the thickness of shock wave.292

Now we consider different values of 𝑓𝑡𝑟 and 𝑓𝑟𝑜𝑡 , but fixed value of total thermal conductivity.293

Figure 5 summaries the numerical results from the modified Wu model with 𝑓𝑡𝑟 = 1.5, 2.0, 2.5,294

while 𝐴𝑡𝑟 and 𝐴𝑟𝑡 take the values of −5/6𝑍 and −1/3𝑍 , respectively. Note that small values of 𝑓𝑡𝑟295

are possible, especially in polar gases where the translational Eucken factor can be much smaller296

than 2.5, e.g., 𝑓𝑡𝑟 = 1.78 for water and 𝑓𝑡𝑟 = 0.41 for CH3OH (Mason & Monchick 1962).297

Significant discrepancies in macroscopic quantities with different values of 𝑓𝑡𝑟 are observed,298

especially in the profiles of temperature. First, larger 𝑓𝑡𝑟 makes the translational temperature rise299

earlier to its maximum value, and then decrease faster to the equilibrium value in downstream;300

the same trend is also observed in the deviation pressure301

𝑃𝑥𝑥 =
𝑚

2

∫ (
𝑐2𝑥 −

𝑐2

3

)
𝐺𝑑𝒗, (4.1)
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Figure 6: Influence of the thermal relaxation rates in the creep flow driven by theMaxwell demon.
Red solid lines are the results with A obtained from the DSMC, the blue shade region shows the
results from the modified Wu model, with 𝐴𝑟𝑡 ∈ [−0.3124, 0.0] and 𝐴𝑡𝑟 ∈ [−0.1250, 0.0]. Other
parameters are 𝐾𝑛 = 0.2, 𝑓𝑡𝑟 = 2.365 and 𝑓𝑟𝑜𝑡 = 1.435.

Figure 7: Influence of the translational Eucken factor in the creep flow driven by the Maxwell
demon. All cases have the same total Eucken factor 𝑓𝑢 and 𝐾𝑛 = 0.2, while the translational
Eucken factor 𝑓𝑡𝑟 for the green dash-dot, blue dashed, and red solid lines are 1.5, 2.0, and 2.5,
respectively. The modified Wu model is used.

and the magnitude of total heat flux. Second, the influence of Eucken factors on the rotational302

temperature, however, concentrates around the center of shock structure: lower 𝑓𝑡𝑟 and hence303

higher 𝑓𝑟𝑜𝑡 results in larger rotational temperature. Third, larger 𝑓𝑡𝑟 results in faster rise of304

density.305

4.2. Creep flow driven by the Maxwell demon306

The same sets of values of A in normal shock wave cases are used here to study the influence307

on the velocity and heat flux in the creep flow driven by the Maxwell demon, and the results with308

𝐾𝑛 = 0.2 are shown in figure 6 when 𝑓𝑡𝑟 and 𝑓𝑟𝑜𝑡 are fixed. Contrary to the situations in normal309

shock wave, significant variation in the results with different relaxation rates A is observed: the310

maximum relative uncertainty is 16.7% and 17.6% for the velocity and translational heat flux,311

respectively. Meanwhile, it is seen that the uncertainty occurs in the middle part of the creep flow,312

while the velocity slip and heat flux in the vicinity of the wall rarely change.313

To further investigate the influence of the translational Eucken factor, 𝑓𝑡𝑟 = 1.5, 2.0, 2.5 are314

considered in the modified Wu model with 𝐾𝑛 = 0.2 and 𝑓𝑢 = 1.993, while 𝐴𝑡𝑟 and 𝐴𝑟𝑡 take the315

values of−5/6𝑍 and−1/3𝑍 , respectively. As shown in figure 7, both the velocity and translational316

heat flux vary significantly with 𝑓𝑡𝑟 : the values of velocity and translational heat flux of 𝑓𝑡𝑟 = 2.5317

are 68% larger than those of 𝑓𝑡𝑟 = 1.5. Contrast to the results in figure 6 where the velocity slip318
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(a)

×

(b)

(c)

Figure 8: Comparison between the DSMC and themodifiedWumodel in the thermal transpiration
inside a closed cavity. (a) Horizontal velocity. Solid lines are results from the kinetic model,
while dots are from the DSMC. (b) Normal pressure 𝑃𝑥𝑥 = 𝑚

2

∫
𝑐2𝑥𝐺𝑑𝒗 along 𝑦 = 0.5. (c) Flow

field in the lower half of the cavity; from top to bottom, the translational Eucken factors are
𝑓𝑡𝑟 = 2.37, 2.0, 1.75, respectively.

and heat flux around the solid wall do not change with fixed 𝑓𝑡𝑟 , figure 7 shows a significant319

dependence of the velocity and heat flux on 𝑓𝑡𝑟 , i.e., both velocity and heat flux on the walls320

increase with 𝑓𝑡𝑟 . Thus, it can be concluded that the translational Eucken factor 𝑓𝑡𝑟 plays a321

dominant role in this problem.322

The importance of the translational Eucken factor in this problem can be understood as follows.323

It can be seen from (1.2) that the elements 𝐴𝑡𝑟 and 𝐴𝑟𝑡 are related to the energy exchange between324

the translational and rotational motions. In other words, when 𝐴𝑡𝑟 (or 𝐴𝑟𝑡 ) is zero, the relaxation325

of translational (or rotational) heat flux will not be affected by the other one. For instance, by326

varying A, it is found that when 𝐴𝑟𝑡 = 0 the rotational heat flux is always zero. The reason is327

that in the creep flow driven by the Maxwell demon, only translational energy is changed directly328

by the external driving force, thus the rotational energy and flux are only affected via the energy329

exchange, which are determined by 𝐴𝑡𝑟 , 𝐴𝑟𝑡 and 𝑍 . Since 𝐴𝑟𝑡 is very small compared to the other330

three relaxation rates in the matrix A, 𝒒𝑟𝑜𝑡 ≈ 0 and 𝒒𝑡𝑟 (or 𝑓𝑡𝑟 ) is dominant.331

4.3. Thermal transpiration in a cavity332

Thermal transpiration is a classical phenomenon that has many applications, such as the333

Knudsen pump (Vargo et al. 1999), where the mass flow and pressure difference are the334

quantities of interest. To study this problem, a two-dimensional cavity with an aspect ratio335

of 5 is considered. The temperature of the left and right walls are 200◦C and 400◦C, respectively,336

while the temperature of the horizontal walls increases linearly from 200◦C to 400◦C. Due to337

symmetry, only the lower half of the cavity is simulated, and the results of 𝐾𝑛 = 0.5959 are338

shown in figure 8. At the initial stage, due to the thermal transpiration, the gas molecules move339
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Figure 9: Influence of the Knudsen number 𝐾𝑛 in the creep flow driven by Maxwell’s demon.
All cases have the same 𝑓𝑢 , while 𝑓𝑡𝑟 for green dash-dot, blue dashed, and red solid lines are 1.5,
2.0 and 2.5, respectively. And the Knudsen number are 0.001, 0.1 and 10 from the left column to
right column, respectively.

towards the hot ends by the temperature gradient along the solid surfaces, which increases the340

pressure there. As a consequence, the pressure driven flow is formed in the opposite direction and341

several vortices are eventually generated in the steady state. Comparisons in the flow velocity and342

normal pressure in figure 8(a, b) support that the modified Wu model can give good agreement343

with DSMC simulations.344

Similar to the one-dimensional creep flow, the flow fields are expected to be determined by 𝑓𝑡𝑟345

other than 𝑓𝑢 in thermal transpiration, where both the normal pressure and the velocity magnitude346

increases with 𝑓𝑡𝑟 , see figure 8(b, c). Therefore, the mass flow rate follows the same trend. For347

the situations with small 𝑓𝑡𝑟 which may happens for some polar molecular gases, the flow pattern348

and flow rate could be very different from those of non-polar molecular and monatomic gases.349

4.4. Uncertainty in different flow regimes350

In the above cases, the gas flows are in the transition regime, for example, 𝐾𝑛 = 0.2 in the351

creep flow driven by the Maxwell demon. In this section we investigate the uncertainties of352

thermal relaxation rates when the gas flow is in the near continuum and free molecular regimes.353

To this end, 𝐾𝑛 = 0.001, 0.1, 10 are considered for the case of creep flow driven by Maxwell’s354

demon, and the translational Eucken factors are 𝑓𝑡𝑟 = 1.5, 2.0, 2.5 with 𝑓𝑢 = 1.993. The thermal355

relaxation rates A are chosen in the same way as that in § 4.2.356

Both the velocity and heat flux distribution are examined in figure 9. In the near continuum357

regime with 𝐾𝑛 = 0.001, the thickness of Knudsen layers becomes negligible and the velocity358

and heat flux are uniformly distributed in the bulk regime. However, the difference caused by359

different values of 𝑓𝑡𝑟 are still significant. Specifically, the magnitude of velocity and translational360

heat flux increases 77.3% and 73.6% when 𝑓𝑡𝑟 is changed from 1.5 to 2.5. However, it should361

be noted that, although the relative error is large, the variation of thermal relaxation rates in A is362

not so important since the flow velocity and heat flux approaches zero along with the Knudsen363

number.364
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When𝐾𝑛 = 0.1, the variation of velocity and heat flux caused by different 𝑓𝑡𝑟 are approximately365

the same as those of 𝐾𝑛 = 0.001, which are 76.1% and 72.3% when 𝑓𝑡𝑟 changes from 1.5 to366

2.5. However, the magnitudes of these macroscopic quantities increase by 100 times, compared367

to those when 𝐾𝑛 = 0.001. This implies a roughly linear dependence of the Knudsen number.368

It can be concluded that, the rarefaction effects disappear gradually when the system approaches369

the continuum limit, while the relative uncertainty becomes even larger instead.370

On the other hand, at large Knudsen number (e.g. 𝐾𝑛 = 10), the magnitude of velocity and371

heat flux become even larger, but the relative uncertainty caused by the changing of 𝑓𝑡𝑟 reduces to372

7.4% and 7.3% for the velocity and translational heat flux, respectively. This is comprehensible,373

since the effect from collisions between gas molecules is weaken when 𝐾𝑛 approaches infinity.374

Therefore, the uncertainty caused by the thermal relaxation rates of collision becomes negligible375

at large 𝐾𝑛, though the rarefaction effect is more significant at this regime.376

Based on these results, we conclude that the uncertainties in thermal relation rates are only377

important in the transition flow regime, where, roughly speaking, 0.01 v 𝐾𝑛 v 10.378

5. Conclusions379

In summary, the relaxation rates of translational and rotational heat fluxes play an important380

role in rarefied flows of molecular gas. Since in experiment only the translational and rotational381

thermal conductivities are measured (in most cases only the total thermal conductivity is known),382

there are two (three) underdetermined coefficients. For the first time these uncertainties are383

properly quantified in this paper. First, a kinetic model which is able to describe the relaxations of384

energy and heat fluxes are designed. Second, the kinetic model is validated by the DSMCmethod385

with the Borgnakke-Larsen collision rule, which can only reflect some fixed values of relaxation.386

Finally, by varying the thermal relaxation rates in the modified Wu model, we have studied the387

influence of thermal relaxation rates on the normal shock wave structures, the creep flow driven388

by Maxwell’s demon, and the thermal transpiration in a cavity.389

This work demonstrates the importance to obtain exact values of thermal relaxation rates used390

in the kinetic model for rarefied gas flow simulations, and to develop a better collision model in391

DSMC that is able to recover realistic relaxation rates. Research in this direction will help to build392

correct models for thermal conductivity of molecular gas, especially for molecular gas mixtures393

and non-equilibrium chemical reactions. In the future work, we plan to investigate whether the394

molecular dynamics simulation can be used to reduce or remove the uncertainties or not.395

Declaration of interests396

The authors report no conflict of interest.397

Acknowledgements398

This work is supported in the UK by the Engineering and Physical Sciences Research Council399

under grant EP/R041938/1.400

REFERENCES
Bird, G. A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University401

Press Inc, New York: Oxford Science Publications.402

Borgnakke, C. & Larsen, P. 1975 Statistical collision model for Monte Carlo simulation of polyatomic403

gas mixture. J. Comput. Phys. 18 (4), 405–420.404

Boyd, I. D. 1991 Rotational-translational energy transfer in rarefied nonequilibrium flows. Phys. Fluids A405

2, 447.406



15

Candler, G. V. 2018 Rate effects in hypersonic flows. Ann. Rev. Fluid Mech. 51, 379–402.407

Chapman, S. & Cowling, T. G. 1970 The Mathematical Theory of Non-uniform Gases. Cambridge408

University Press.409

Eucken, A. 1913 Über das Wärmeleitvermögen, die spezifische Wärme und die innere Reibung der Gase.410

Phys. Z 14, 324.411

Frezzotti, A. & Ytrehus, T. 2006 Kinetic theory study of steady condensation of a polyatomic gas. Phys.412

Fluids 18, 027101.413

Gimelshein, N. E., Gimelshein, S. F. & Lavin, D. A. 2002 Vibrational relaxation rates in the direct414

simulation Monte Carlo method. Phys. Fluids 14, 4452.415

Gorji, M. H. & Jenny, P. 2013 A Fokker-Planck based kinetic model for diatomic rarefied gas flows. Phys.416

Fluids 25, 062002.417

Gupta, AD & Storvick, TS 1970 Analysis of the heat conductivity data for polar and nonpolar gases using418

thermal transpiration measurements. J. Chem. Phys. 52 (2), 742–749.419

Haas, B. L., Hash, D. B., Bird, G. A., Lumpkin III, F. E. & Hassan, H. A. 1994 Rates of thermal relaxation420

in direct simulation Monte Carlo methods. Phys. Fluids 6, 2191.421

Hanson, F. B. & Morse, T. F. 1967 Kinetic models for a gas with internal structure. Phys. Fluids 10, 345.422

Holway, L. H. 1966 New statistical models for kinetic theory: methods of construction. Phys. Fluids 9,423

1658–1673.424

Kosuge, S. & Aoki, K. 2018 Shock-wave structure for a polyatomic gas with large bulk viscosity. Phys. Rev.425

Fluids 3, 023401.426

Mason, E. A. 1963 Molecular relaxation times from thermal transpiration measurements. J. Chem. Phys.427

39, 522–526.428

Mason, E. A. & Monchick, L. 1962 Heat conductivity of polyatomic and polar gases. J. Chem. Phys. 36,429

1622.430

McCormack, F. J. 1968 Kinetic equations for polyatomic gases: The 17-moment approximation. Phys.431

Fluids 11, 2533.432

Morse, T. F. 1964 Kinetic model for gases with internal degrees of freedom. Phys. Fluids 7, 159–169.433

Porodnov, BT, Kulev, AN & Tuchvetov, FT 1978 Thermal transpiration in a circular capillary with a434

small temperature difference. J. Fluid Mech. 88 (4), 609–622.435

Rykov, V. 1975 A model kinetic equation for a gas with rotational degrees of freedom. Fluid Dyn. 10,436

959–966.437

Su, W., Zhang, Y. H. & Wu, L. 2021 Multiscale simulation of molecular gas flows by the general synthetic438

iterative scheme. Comput. Methods Appl. Mech. Engrg. 373, 113548.439

Tcheremissine, F. G. & Agarwal, R. K. 2008 Computations of hypersonic shock waves in diatomic gases440

using the generalized Boltzmann equation. 26th nternational Symposium on Rarefied Gas Dynamics,441

Kyoto, Japan, 21-25 July .442

Vargo, S. E., Muntz, E. P., Shiflett, G. R. & Tang, W. C. 1999 Knudsen compressor as a micro-and443

macroscale vacuum pump without moving parts or fluids. J. Vac. Sci. Technol. A: Vacuum, Surfaces,444

and Films 17, 2308–2313.445

Wagner, W. 1992 A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann446

equation. J. Stat. Phys. 66, 1011–1044.447

Wang-Chang, C. S. & Uhlenbeck, G. E. 1951 Transport Phenomena in Polyatomic Gases. University of448

Michigan Engineering Research Rept. No. CM-681.449

Wu, L., Li, Q., Liu, H. &Ubachs,W. 2020 Extraction of the translational Eucken factor from light scattering450

by molecular gas. J. Fluid Mech. 901, A23.451

Wu, L., Reese, J. M. & Zhang, Y. H. 2014 Solving the Boltzmann equation by the fast spectral method:452

application to microflows. J. Fluid Mech. 746, 53–84.453

Wu, L., White, C., Scanlon, T. J., Reese, J. M. & Zhang, Y. H. 2013 Deterministic numerical solutions454

of the Boltzmann equation using the fast spectral method. J. Comput. Phys. 250, 27–52.455

Wu, L., White, C., Scanlon, T. J., Reese, J. M. & Zhang, Y. H. 2015 A kinetic model of the Boltzmann456

equation for non-vibrating polyatomic gases. J. Fluid Mech. 763, 24–50.457


	Introduction
	Thermal relaxation and transport coefficients
	Bulk viscosity
	Thermal conductivity
	Extraction of thermal relaxation rates in DSMC

	The modified Wu model and its validation
	The modified kinetic model
	Numerical validation

	Uncertainty quantification: rate effect of thermal relaxation
	Normal shock wave
	Creep flow driven by the Maxwell demon
	Thermal transpiration in a cavity
	Uncertainty in different flow regimes

	Conclusions

