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Abstract
Robust learning in expressive languages with real-
world data continues to be a challenging task. Nu-
merous conventional methods appeal to heuristics
without any assurances of robustness. While prob-
ably approximately correct (PAC) Semantics offers
strong guarantees, learning explicit representations
is not tractable, even in propositional logic. How-
ever, recent work on so-called “implicit” learning
has shown tremendous promise in terms of obtain-
ing polynomial-time results for fragments of first-
order logic. In this work, we extend implicit learn-
ing in PAC-Semantics to handle noisy data in the
form of intervals and threshold uncertainty in the
language of linear arithmetic. We prove that our ex-
tended framework keeps the existing polynomial-
time complexity guarantees. Furthermore, we pro-
vide the first empirical investigation of this hith-
erto purely theoretical framework. Using bench-
mark problems, we show that our implicit approach
to learning optimal linear programming objective
constraints significantly outperforms an explicit ap-
proach in practice.

1 Introduction
Data in the real world can be incomplete, noisy and impre-
cise. Approaches from the knowledge representation com-
munities take great care to represent expert knowledge; how-
ever, this knowledge can be hard to come by, challenging
to formalize for non-experts, and brittle, especially in the
presence of noisy measurements. In contrast, connection-
ist approaches, such as neural networks, have been partic-
ularly successful in learning from real-world data. How-
ever, they represent knowledge as distributed networks of
nodes, rendering it difficult to incorporate knowledge from
other sources. Moreover, such methods usually do not
come with any guarantees of soundness, and are also quite
brittle to small shifts in the domain [Recht et al., 2019;
Koh et al., 2020].

In this work, we are concerned with learning in expres-
sive languages, such as fragments of first-order logic, where
knowledge and queries are represented as logical formulas.
In that regard, Valiant [2000] recognized that the challenge of

learning should be integrated with deduction. In particular,
he proposed a semantics to capture the quality possessed by
the output of PAC-learning algorithms when formulated in a
logic.

Unfortunately, many results on learning logical languages
have been discouraging. For example, in agnostic learning,
[Kearns et al., 1994], where one does not require examples
to be fully consistent with learned sentences, efficient algo-
rithms for learning conjunctions of formulas would yield an
efficient algorithm for PAC-learning disjunctive normal forms
(DNF), which current evidence suggests to be intractable
[Daniely and Shalev-Shwartz, 2016].

Interestingly, Khardon and Roth [1997] and Juba [2013]
observed that, by circumventing the need to produce an ex-
plicit representation, learning to reason can be effectively
reduced to classical reasoning, leading to a notion of “im-
plicit learning’.’ Since reasoning in propositional logic is
NP-complete, implicit learning in full propositional logic also
cannot be done in polynomial time (unless P=NP), but when
limited to tractable fragments of propositional logic, learning
inherits the tractability guarantee. Very recently, the learn-
ability results have been extended to first-order clauses in
[Belle and Juba, 2019], and then to certain fragments of sat-
isfiability modulo theories (SMT) in [Mocanu et al., 2020].

In this work, we extend the implicit learning approach to
handle partial information given by bounds (e.g., intervals),
thus capturing an even larger class of problem settings, and
develop an implementation strategy for a hitherto purely the-
oretical framework.
Theoretical contributions

1. Extending the PAC-Semantics framework to be able to
handle noisy data.

2. Proving polynomial running time guarantees.
To model noisy and imprecise data, such as sensor read-
ings, we represent data as sets of intervals. Previous results
[Mocanu et al., 2020] only allowed for sets of assignments.
We prove polynomial-time guarantees for implicitly learning
any fragments of SMT with polynomial-time decision proce-
dures, such as linear arithmetic. Since we are extending the
PAC-Semantics framework, we are inheriting all of its use-
ful features: e.g., these examples could be drawn an arbitrary
distribution and are not required to be fully consistent with
the learned example; nonetheless, we are able to give approx-
imately correct answers with a tight guarantee.



Empirical contributions
1. Realising the first implementation of the PAC-Semantics

framework.
2. Showing that implicit reasoning can be much faster and

more noise-resistant than explicit methods for linear pro-
grams (LPs).

We test our implementation on benchmark LP problems,
where the task is to find the optimum objective value subject
to the constraints of the problem. We compare the running
times with an alternative approach of first creating an explicit
model using IncaLP [Schede et al., 2019] and then finding
the optimum objective value based on the model. Our results
show significantly lower running times using the implicit ap-
proach, and this advantage becomes more pronounced as the
models grow. We also demonstrate that, in the presence of
noisy data, implicit learning returns a feasible, approximate
solution to the true linear program, whereas IncaLP often fails
to find any model at all.

2 Preliminaries
We will now briefly review concepts from logic, satisfiability,
PAC-Semantics and the formal setup used in our work.

2.1 Logic
Satisfiability (SAT) is the problem of deciding whether there
exists an assignment of truth values (i.e., model) to variables
(propositional symbols) such that a propositional logical for-
mula is true. SMT is a generalization to SAT for deciding
satisfiability for fragments and extensions of first-order logic
with equality, for which specialized decision procedures have
been developed. Deciding satisfiability for these logics is
done with respect to some decidable background theory [Bar-
rett et al., 2009]. In this work, we are especially interested
in the background theories of quantifier-free linear real arith-
metic (QFLRA). The following formal exposition is adapted
from [Barrett et al., 2009]:

Syntax: We assume a logical signature consisting of a set
of predicate symbols, and a set of functions, logical variables,
and standard connectives (∧,∨,¬). An atomic formula is one
of the form: b (a propositional symbol), pred(t1, ..., tk), t1 =
t2, ⊥ (false), > (true), where t1, ..., tk are the terms of the
signature, in the standard logical interpretation. A literal l is
an atomic formula or its negation ¬l. A ground expression is
one where all the variables are replaced by constants and in
general terms of the domain of discourse.

Semantics: Formulas are given a truth value from the set
{⊥,>} by means of first-order models. A model ρρρ can be
seen simply as an element of Σn, which is the universe of the
model in n dimensions. Throughout the paper we work with
the signature of linear real arithmetic, with function symbols
of the form {0, 1,+,−,≤, <,≥, >,=, 6=}, interpreted in the
usual way over the reals.

2.2 PAC-Semantics
PAC-Semantics was introduced by Valiant [2000] to capture
the quality possessed by knowledge learned from indepen-
dently drawn examples from some unknown distribution D.

The output produced using this approach does not express va-
lidity in the traditional (Tarskian) sense. Instead, the notion
of validity is then defined as follows:

Definition 1: [(1 − ε)-validity [Valiant, 2000]] Given a joint
distribution D over Σn, we say that a Boolean function f is
(1 − ε)-valid if Prρρρ∈D[f(ρρρ) = 1] ≥ 1 − ε. If ε = 0, we say
that f is perfectly valid.

The reasoning problem of interest is deciding whether a
query formula α is (1 − ε)-valid. Knowledge about the dis-
tribution D comes from the set of examples ρρρ, independently
drawn from this distribution. Additional knowledge can come
from a collection of axioms ∆, known as the knowledge base
(KB).

In implicit learning, the query α is answered from exam-
ples directly, without creating an explicit model. This is
done by means of entailment: we repeatedly ask whether
∆ ∧ ρρρ(k) |= α for examples ρρρ(k) ∈ D. If at least (1 − ε)
of the examples entail α, we accept. The more examples we
use, the more accurate our estimate is and the more confident
we can be in it. The concepts of accuracy and confidence are
captured by the hyper-parameters γ, δ ∈ (0, 1), where γ rep-
resents the accuracy of the examples used and δ captures the
confidence of the example received. The number of examples
needed will be determined from δ and γ; cf. Section 4 for a
precise formulation.

Reasoning from complete examples is trivial: Hoeffding’s
inequality [Hoeffding, 1963] guarantees that with high proba-
bility, the proportion of times that the query formula evaluates
to ‘true’ is a good estimate of the degree of validity of that
formula. To capture the more interesting problem of learning
from incomplete examples, previous works used the notion of
a masking process developed by Michael [2010]. A masking
process randomly replaces some of the values of variables in
a formula with * before passing the examples to the learning
algorithm.

Definition 2: [Masking process [Michael, 2010]] A mask is
a function M : Σn → {Σ ∪ {∗}}n, with the property that
for any ρρρ ∈ Σn, M(ρρρ) is consistent with ρρρ, i.e., whenever
M(ρρρ)i 6= ∗ then M(ρρρ)i = ρρρi. We refer to elements of the
set (Σ∪{∗})n as partial assignments. A masking processMMM
is a mask-valued random variable. We denote the distribu-
tion over partial examples obtained by applying the masking
process asMMM(D).

Example 3: Assume a language with two real-valued vari-
ables x and y. Given a full assignment ρρρ : {x = 4, y = 5},
after applying a masking process on this assignment, we may
obtain the partial assignment ρ : {x = 4, y = ∗}.

In the above example, x is not masked, and thus remains
consistent with ρρρ, while y gets masked. A partial model will
be written using the regular font as ρ vs the bold font for a
full model as ρρρ.

Work by [Mocanu et al., 2020] showed that implicitly
learning to reason can be done efficiently with partial assign-
ments for standard fragments of arithmetic theories, which
integrates a decision procedure to solve SMT formulas. They
proposed a reduction from the learning to reason problem for
a logic to any sound and complete solver for that fragment



Figure 1: High-level example of the framework

of logic. They showed that, as long as there is a sound and
complete solver for a fragment of arithmetic, then reasoning
under partial evaluation (denoted as |ρ) can be obtained.

Theorem 4:[[Mocanu et al., 2020]] Let L be a logical lan-
guage such that for any α ∈ L and any partial assignment ρ
for L, α|ρ ∈ L also. Let A be a sound and complete proce-
dure for deciding entailment for L. Suppose ∆, α ∈ L, and ρ
is a partial assignment for L. If ∆ |= α, then ∆|ρ |= α|ρ.

They provide an algorithm (a less general version of De-
cidePAC as we discuss later) that enables implicit learning of
fragments of SMT under partial assignments. We continue
this line of work and present an extension of the assignments
used in DecidePAC to sets of intervals.

3 Use case example
Let us demonstrate the functionality of the extended PAC
framework with a small example: Consider a smart fitness
watch, which monitors the heart rate and blood oxygen levels
of the wearer. It calculates the wearer’s stress level using a
formula: stress = hr− 5× (ox− 90), where hr is the heart
rate in beats per minute and ox is the percentage of oxygen
saturation in the blood.

As illustrated in Figure 1, this formula is encoded in the
knowledge base of the system, ∆, along with two chosen
bounds for hr and ox. The bound for ox is set between 90%
and 100%, as anything lower is unnatural and a sign of hypox-
emia [Mayo Clinic, 2020]. Similarly, hr can be bounded by
the values 40 and 200 [American Heart Association, 2020].

The watch alerts the user if the stress level exceeds 50,
which is encoded with the query α : (stress > 50). De-
pending on the values of the heart rate and oxygen within
the boundaries set in ∆, the stress value might be below or
above 50. Therefore, the explicit knowledge base alone can-
not answer the query. However, the watch gets regular sensor
readings in the form of intervals φ(k), which it can use to an-
swer the query. Since the watch might not be tight enough
on the wrist, no guarantees can be made about all the sensor

Input: Procedure A, query α, validity ε ∈ (0, 1), list
of partial intervals {φ(1), ..., φ(m)}, knowledge
base ∆

Output: Accept/Reject

begin
B ← bε×mc, FAILED ← 0.
foreach k in 1..m do

if A(α, φ(k),∆) returns UNSAT then
Increment FAILED.
if FAILED > B then return Reject;

return Accept

Algorithm 1: DecidePAC

readings being complete. In this example, some values for
oxygen are missing.

Using DecidePAC (cf. Algorithm 1), the watch answers
the query by means of entailment for each of the readings
received and the knowledge base: ∆ ∧ φ(m) |= α. It re-
ceives the readings φ(1), φ(2), φ(3), out of which the first and
third yield entailment, whereas the second does not (because
{hr = 92, ox = 99} leads to stress = 47 < 50). The third
set of intervals, φ(3), triggers validity despite missing data,
as the stress level is above 50 for any possible values of ox.
Our validity parameter ε = 0.4 allows the algorithm to return
acceptance with (1− ε) validity of the query after seeing two
out of three positive readings.

4 Extending the learning model
In this section, we extend the framework to deal with intervals
as opposed to assignments and prove that polynomial-time
guarantees are preserved. We refer to a masking process in
the context of intervals φ as a blurring process, as introduced
below1:

Definition 5 : [Blurring process] Given a full assignment
ρρρ(k) = {ρ1ρ1ρ1, . . . , ρnρnρn}, a blurring function is defined as B :
Σn → {Σ ∪ {−∞,+∞}}2n, which produces a set of inter-
vals φ(k) consistent with the assignment ρρρ(k), i.e., with the
property that for each ρρρi, B(ρρρ)2i−1 ≤ ρρρi ≤ B(ρρρ)2i, where
B(ρρρ)2i−1 is a random value from (−∞, ρρρi] marking the lower
bound of the interval and B(ρρρ)2i is a random value from
[ρρρi,∞) marking the upper bound. We refer to elements of
the resulting set as partial intervals, where a full assignment
is bound by the lower and upper bound. A blurring process B
is a blur-valued random variable (i.e. a random function). We
denote the distribution over intervals obtained by applying the
blurring process as B(D).

The blurring function essentially offers a generalization of
the masking process in order to model uncertainty about com-
plete assignments. For each interval, we draw one lower and
one upper bound, hence the endpoints of the nth interval oc-
cupy indices 2n − 1 and 2n. Using the blurring process, we
allow observations to be not only (i) unknown (masked) but

1We use superscript to represent the index of the assignment, and
subscript to represent the index of the variable in each assignment.



also (ii) uncertain, and this degree of uncertainty is given by
the width of the interval in which the real value lies.

Example 6: Given a full assignment ρρρ : {x = 4, y = 5}, af-
ter applying a blurring process on this assignment, we may
obtain the intervals set φ : {(1 ≤ x), (x ≤ 6), (−∞ ≤
y), (y ≤ ∞)}.

In the above example, the value of x has increased in un-
certainty, in the sense that we have a small range of possible
values. The value of y has been extended on both sides to∞
and denotes complete uncertainty (equivalent to the effect of
a masking process). In other words, the relaxation of a fixed
value/assignment to the interval directly corresponds to the
uncertainty about the value.

The output of a blurring process is a list of partial inter-
vals. In order to integrate these observations in a decision
procedure, i.e., entailment, they require an additional trans-
formation into logical formulas:

Definition 7: [Grounding ↓] Given a partial interval φ(k) =
{φ1, ..., φ2n}, we define φ(k) ↓ as the ground formula cor-
responding to the set of intervals and represented as a set of
constraints, i.e., φ(k) ↓= φ1 ∧ ... ∧ φ2n.

In the evaluation procedure, we define a formula to be wit-
nessed to evaluate to true given partial intervals as follows:

Definition 8: [Witnessed formulas] A formula ϕ is witnessed
true under partial intervals φ if (φ ↓) |= ϕ , i.e. ϕ is true
under every assignment possible under φ.

In [Mocanu et al., 2020], it was shown that, if ∆ |= α, then
∆|ρ |= α|ρ, where ρ is a partial assignment. The key differ-
ence in our work is that instead of partial assignments, we
use partial intervals. However, since partial intervals are well
defined formulas of QFLRA, this property directly extends to
our case and the proof is analogous to [Mocanu et al., 2020].

Proposition 9: For the language of QFLRA, letA be a sound
and complete decision procedure. If ∆ |= α, then ∆|φ |=
α|φ. Equivalently, if A(∆, α), then A(∆|φ, α|φ) iff A(∆ ∧
φ ↓, α).

We can now prove that implicit learning remains possible
with our extended framework and that existing polynomial-
time guarantees from the assignment setting are preserved:

Theorem 10: [Implicit learning] Let ∆ be a conjunction of
constraints representing the knowledge base and α an input
query. We draw at random m = 1

2γ2 ln
1
δ sets of intervals

{φ(1), φ(2), ..., φ(m)} from BBB(D) for the distribution D and
a blurring process BBB. Suppose that we have a decision pro-
cedure A. Then with probability 1− δ:
• If (∆⇒ α) is not (1− ε− γ) - valid with respect to the

distributionD, the DecidePAC algorithm returns Reject;
and
• If there exists some KB I such that ∆ ∧ I |= α and I is

witnessed true with probability at least (1 − ε + γ) on
BBB(D), then DecidePAC returns Accept.

Moreover, if A runs in polynomial-time (in the number of
variables, size of the query, and size of the knowledge base),
so does DecidePAC.

Proof Consider a sound and complete decision procedure A
for the language domain aforementioned and the reasoning
problem of deciding ∆ |= α. By definition of soundness and
completeness, ∆ |= α if and only if A(∆ ∧ ¬α) = UNSAT.
Suppose we receive observations about the world as sets of
blurred intervals φ and we wish to decide entailment of the
aforementioned problem with respect to these blurred obser-
vations, hence calculateA(∆|φ∧¬α|φ) = UNSAT. This holds
iff A(∆ ∧ φ ↓ ∧¬α) = UNSAT, iff A(∆ ∧ I ∧ φ ↓ ∧¬α) =
UNSAT for any KB I that is witnessed true under φ. Now the
argument becomes analogous to Juba [2013]: if ∆ ⇒ α is
unsatisfied on a point drawn from D, it is not entailed by the
blurred example from B(D) either, so FAILED increments
when such points are drawn, and does not increment when a
suitable I is witnessed true. By Hoeffding’s inequality, the
returned value satisfies the given conditions with probabil-
ity 1− δ for m examples. The decision procedure will return
UNSAT in polynomial time T (n) depending on the size of the
knowledge base and query. Every iteration costs the time for
checking feasibility which is bounded by the time complexity
of the decision procedure used for deciding satisfiability. The
total number of iterations is m = 1

2γ2 log 1
δ , corresponding to

the number of samples drawn, which gives us the total time
bound of O(T (n) · 1

γ2 log 1
δ ).

With this theorem, we have extended the previous result
to deal with the more complex setting of threshold uncer-
tainty, which is a much more realistic learning model. In
QFLRA, the decision procedure is polynomial-time [Barrett
et al., 2009] and blurred examples have the natural interpre-
tation of being imprecise measurements. However, Theorem
10 is in principle applicable to any decidable fragment of
SMT. Interpreting blurred examples for other domains (e.g.,
as noisy observations in the form of disjunctions of partial
models) is certainly interesting, but will be left as a direction
for the future.

Like the previous PAC-Semantics results, implicit learn-
ing is geared for answering queries, and has been primarily
a theoretical framework. In contrast, conventional methods,
although not always offering learnability guarantees, provide
an explicit model, making it harder to compare with the above
framework and study the trade-offs. The next section shows
how this is now possible.

5 Applying PAC-Semantics to optimisation
The goal in optimisation problems is to find an optimal objec-
tive value given constraints. We propose Algorithm 2, Opti-
misePAC, which solves optimisation problems using Decide-
PAC. This allows us to compare our framework to other more
traditional methods, since optimisation problems are widely
studied. In particular, we will use OptimisePAC in our empir-
ical analysis for the case of LPs. The correctness and running
time are as follows:

Theorem 11: Let ∆ be a conjunction of constraints repre-
senting the knowledge base and as input preference function
f . We draw at random m = O( 1

γ2 log 1
δ ) partial intervals

φ(1), ..., φ(m) fromBBB(D) for a distribution D and a blurring



Input: Procedure A, preference function f , validity
ε ∈ (0, 1), accuracy a ∈ Z+, list of intervals
φ = {φ(1), φ(2), ..., φ(m)}, goal ∈ {”max”,
”min”}

Output: estimated optimal value w.r.t. f
begin

if goal = ”min” then f ← −f ;
if DecidePAC(A, 0 ≥ f, ε, φ) accepts then

if DecidePAC(A, −1 ≥ f, ε, φ) rejects then
l← −1, u← 0

else
b← −2
while DecidePAC(A, b ≥ f, ε, φ) accepts
do
b← b× 2

l← b, u← b/2
else

if DecidePAC(A, 1 ≥ f, ε, φ) accepts then
l← 0, u← 1

else
b← 2
while DecidePAC(A, b ≥ f, ε, φ) rejects do

b← b× 2
l← b/2, u← b

for a iterations do
if DecidePAC(A, (l + u)/2 ≥ f, ε, φ) accepts
then
u← (l + u)/2

else
l← (l + u)/2

if goal = ”min” then return −l else return l ;

Algorithm 2: OptimisePAC

processBBB. Suppose that we have a decision procedure A run-
ning in time T (n). Then, the OptimisePAC algorithm will re-
turn a significant bits of a value v∗ that is attainable on I∧∆
for all KBs I that are witnessed with probability 1−ε+γ, and
such that for the value u∗ obtained by incrementing the ath
bit, ∆ ⇒ (f ≤ u∗) is (1 − ε − γ)-valid (resp., f ≥ u∗ with
the ath bit decreased if minimising) in time O(T (n) ·m · a).

Proof OptimisePAC first finds the approximate bounds of
the optimal value by doubling the bound each iteration and
running DecidePAC. If a lower bound b/2 and an upper bound
b are found, it runs binary search to find the optimal value to
the desired precision. If the decision procedure runs in time
T (n), the total running time stated in the theorem follows.

To prove correctness, we will use a theorem due to Tala-
grand [1994] (Theorem 4.9 of [Anthony and Bartlett, 1999]):

Theorem 12: [[Anthony and Bartlett, 1999, Theorem 4.9]]
There are positive constants c1, c2, c3 such that the following
holds. Suppose that F is a set of functions defined on the
domain X and that F has a finite VC dimension d. Let γ ∈
(0, 1) and m ∈ Z+. Then the probability that the empirical
mean of any f ∈ F onm examples differs from its expectation
by more than γ is at most c1cd2e

−c3γ2m.

Thus, for m ≥ c3
γ2 (d ln c2 + ln c1

δ ), the bound is at most δ.

Recall, the VC dimension is the size of the largest set
of points that can be given all labels by a class (“shat-
tered”). Consider a fixed class of Boolean functions on the
blurred samples, which is parameterized by the objective
value bounds b. This function outputs the value 1 whenever
∆ ∧ φ ∧ (f(x) ≤ b) returns UNSAT, and 0 otherwise. We
will show that this class has VC-dimension at most 1.

We will show that for any two blurred examples φ1
and φ2, it is not possible to get all the labellings
{(1, 1), (1, 0), (0, 1), (0, 0)} by varying b. Suppose there is
some b∗ for which φ1 gives the label 1 and φ2 gives 0, mean-
ing that for φ1 the bound f ≤ b∗ does not hold and for φ2 it
does. Since f ≤ b∗ holds for φ2, then for any b > b∗, the
decision procedure will return 0 for φ2. On the other hand,
the bound f ≤ b∗ will not hold for φ1 for all values b < b∗.
Thus, in either direction, one of the labels for one of the two
remains the same. So, it is not possible to get all possible
labellings of φ1 and φ2 and so the VC-dimension is ≤ 1.

Therefore, by Talagrand’s bound, given m examples, with
probability 1−δ, DecidePAC answers correctly for all queries
made by OptimisePAC. In particular, we note that the algo-
rithm maintains the invariant that l is the largest value for
which l ≥ f was rejected by DecidePAC. Since it was not ac-
cepted, we see that for any I that is witnessed with probability
≥ 1 − ε + γ, there must exist some x satisfying I ∧∆ with
f(x) > l (resp., f(x) < l if minimising). Since DecidePAC
does not reject with u, ∆ ⇒ f(x) ≤ u is (1 − ε − γ)-valid,
where u and l only differ by the value of the ath most signif-
icant bit. Thus l is as needed.

6 Empirical analysis
Implicit learning in PAC-Semantics has been described rig-
orously on a theoretical level. However, to the best of our
knowledge, the framework has never been analysed in prac-
tice. In this section, we present the first implementation of
the PAC-Semantics framework.2 We will use it to empiri-
cally study the differences between an implicit and explicit
approach for LP problems. LP is an optimisation technique
for a linear objective function. The problem consists of an
optimisation function f(~x), where ~x ∈ Rn, and feasibility
region expressed as the set of constraints A ·~x ≤ b. We chose
LPs as the domain, as they can be represented in QFLRA,
and are thus polynomial-time. It also allows us to directly
evaluate our framework using existing benchmarks. We will
analyse the following four points: running time, accuracy of
objective value estimates, noise and outlier resistance.

6.1 Implementation setup
The implementation is written in Python and uses the Z3 The-
orem Solver [de Moura and Bjørner, 2008] for SMT queries.
The explicit solver we compare it to is IncaLP(SMT), an al-
gorithm that learns linear arithmetic SMT formulas from data
[Schede et al., 2019]. In this paper, we refer to IncaLP(SMT)
simply as IncaLP.

2The code can be found at
https://github.com/APRader/pac-smt-arithmetic

https://github.com/APRader/pac-smt-arithmetic
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Figure 2: Comparing running times and objective value estimates for simplexn. Here, n is the number of dimensions, distance from true f is
the absolute difference between the true and the estimated objective value.

We use the following benchmark LP problems for our anal-
ysis: simplexn, cuben, pollution and police [Hillier and
Lieberman, 1995]. All these problems consist of a set of hard
constraints, which define the feasible region or the bound-
aries of the shape and a set of soft constraints in the form of
a linear objective function, which can be either maximised or
minimised. The goal is to find the optimum objective value
within the hard constraints. For example, the feasible region
in simplexn is an intersection of 1

2n(n−1) uniform triangular
prisms and the objective function for pollution represents the
amount of pollution and has to be minimised.

The implicit PAC approach and the explicit IncaLP ap-
proach differ in how they reach this goal: in the PAC model,
we directly compute the optimal objective value from pos-
itive examples using OptimisePAC. In contrast, the IncaLP
approach first creates an SMT model from positive and nega-
tive examples. Using standard MaxSMT techniques, we can
then find the optimal objective value within the model.

We ran tests on all four problems. For each test, we had
20 independent runs on increasing sample sizes from 50 to
500 and increasing dimensions from 2 to 4, if applicable. We
used 50% positive and 50% negative samples. A timeout of
30 minutes was set for each run. To ensure reproducibility,
we ran each test with the seed 1613 (a numerical encoding
of “PAC”). The hardware we used was an Intel Core i7-6700
3.40GHz, with 16 GB of RAM running Ubuntu 20.04.

As for parameter settings, we chose the SelectDT heuristic
for the IncaLP approach, as it is the most appropriate accord-
ing to their paper. We also ran our experiments using the same

initial configurations as their released code. We set the accu-
racy for OptimisePAC to 60, which is the number of times
our intervals are divided by 2. The reason being that we can
match the accuracy of double precision floating-point values,
which is about 2−53.

6.2 Results
On the theoretical front, one of the advantages of implicit
learning is argued to be efficiency, since you can skip the step
of creating an explicit model. As shown in Figure 2, this ef-
fect is significant in practice for linear programs. PAC is able
to get similarly good objective value estimates at significantly
lower running times for simplexn. The larger the sample size
and the higher the dimensionality, the bigger the gap between
running times. (For all of our graphs, the sample standard
deviation is shown.)

With the extension we introduced in this paper, PAC can
now handle noisy data using intervals. If we add Gaussian
noise with a standard deviation σ to each data point, we can
represent it using intervals of width 4 log d · σ, where d is the
dimensionality. This interval covers about 95% of the density,
which is why we set a validity of 95% for DecidePAC. The
noise and intervals were capped at the domain boundaries.
We adjusted the noise to the dimensionality, meaning that for
a noise value of n, the std of the Gaussian σ = n√

d
. We also

tested robustness against outliers. For our purposes, an outlier
is a point within the domain with a wrong label.

Figure 3 shows how PAC compares to IncaLP. In cases
where IncaLP does find a model, it gives an estimate that is
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Figure 3: Objective values for pollution. True minimum: 32.15. IncaLP failed to find a model 30, 71 and 82 out of 120 times respectively.

closer to the true objective value in noisy cases. However, it
failed to find a model 25%, 59% and 68% of the time for a
noise of 0.1, 0.25 and outliers of 0.01, respectively. More-
over, the PAC estimate is pessimistic on purpose. This results
in values farther away from the optimum but ensures that they
are reachable. PAC always finds feasible objective values,
while IncaLP undershoots the minimum for pollution almost
always.3

It is also worth noting these results do not mean that In-
caLP, on the whole, is inferior to our PAC implementation.
IncaLP creates a model, while PAC answers queries implic-
itly. For some problems, such as objective value optimisa-
tion, it is possible to skip the model making process. As we
have shown, doing that comes with advantages in speed and
noise resistance. However, in some contexts, having an ex-
plicit model is desirable, in which case the implicit learning
paradigm might be harder to work with. Put simply, Opti-
misePAC is not a replacement for IncaLP.

7 Related work
We identify two threads of related research. On the theoreti-
cal side, the problem of dealing with missing information in
learning settings was recognized early on in the literature. For
example, to analyze how incomplete data affects predictions,
[Schuurmans and Greiner, 1994] look at various ways of al-
tering the input data, according to a product distribution or
via masking. In [Kearns and Schapire, 2001], a framework is
proposed that uses incomplete observations to predict a hy-
pothesis function and never output a “don’t know” answer.
These and related approaches, however, focus on a discrete
model and do not cover continuous-valued domains. There
is, of course, also a large body of work on techniques like
imputation, but these are far afield from our goals.

Conceptually, it is perhaps also interesting to contrast this
line of work with inductive logic programming (ILP) [Mug-
gleton and de Raedt, 1994]: the latter searches for a hypoth-
esis H that is consistent with the examples by appealing to
entailment. Like IncaLP, it does not, however, seek to an-
alyze the degree to which the resulting formulas capture an
unknown, ground-truth process that produced the examples.

3The empirical behavior is similar across the four problems. All
graphs are included in the extended report [Rader et al., 2020].

For more discussions on how implicit learning via the PAC-
Semantics differs from such hypothesis generation method-
ologies, including probabilistic structure learning schemes,
see [Juba, 2013; Belle and Juba, 2019].

On the empirical side, many methods for inducing lin-
ear constraints from data use greedy or approximate learning
schemes, e.g., [Kantchelian et al., 2014]. To overcome the
problems of overfitting, local optima or noise-robustness, ap-
proaches like syntax-guided learning [Alur et al., 2013] have
been proposed, in which the learning problem is reduced to an
optimisation problem. See [Schede et al., 2019] for a com-
prehensive discussion. Similar to IncaLP, work by [Pawlak
and Krawiec, 2017] proposes an approach of approximating
the set of constraints from feasible and infeasible examples,
which focuses on mixed integer linear programs, but without
any theoretical guarantees.

8 Conclusion
In this work, we proposed a general framework for learn-
ing implicitly in linear arithmetic from noisy examples. By
then considering a novel optimisation variant, we were able
to empirically compare and outperform an explicit approach
in terms of running time and resistance to noise and outliers
for LP problems. A natural direction for the future is to con-
sider whether this implementation strategy extends to other
classes of formulas in first-order logic and/or SMT. In par-
ticular, it is worth conducting empirical investigations into
polynomial-time fragments of SMT other than LPs.
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