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Abstract 249 

Long and short sleep duration are associated with elevated blood pressure (BP), possibly through 250 

effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new 251 

insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene by 252 

short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, 253 

mean arterial pressure, and pulse pressure) across five ancestry groups in two stages using 2 254 

degree of freedom (df) joint test followed by 1df test of interaction effects. Primary multi-255 

ancestry analyses in 62,969 individuals in stage 1 identified 3 novel gene by sleep interactions 256 

that were replicated in an additional 59,296 individuals in stage 2 (stage 1+2 Pjoint<5×10-8), 257 

including rs7955964 (FIGNL2/ANKRD33) that increases BP among long sleepers, and 258 

rs73493041 (SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A) that increase BP among 259 

short sleepers (Pint < 5×10-8). Secondary ancestry-specific analyses identified another novel gene 260 

by long sleep interaction at rs111887471 (TRPC3/KIAA1109) in individuals of African ancestry 261 

(Pint=2×10-6). Combined stage 1 and 2 analyses additionally identified significant gene by long 262 

sleep interactions at 10 loci including MKLN1 and RGL3/ELAVL3 previously associated with 263 

BP, and significant gene by short sleep interactions at 10 loci including C2orf43 previously 264 

associated with BP (Pint < 10-3). 2df test also identified novel loci for BP after modeling sleep 265 

that have known functions in sleep-wake regulation, nervous and cardiometabolic systems. This 266 

study indicates that sleep and primary mechanisms regulating BP may interact to elevate BP 267 

level, suggesting novel insights into sleep-related BP regulation. 268 

  269 
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Introduction 270 

Hypertension (HTN), including elevations in systolic blood pressure (SBP) and/or diastolic 271 

blood pressure (DBP), is a major risk factor for cardiovascular diseases, stroke, renal failure and 272 

heart failure 1. The heritability of HTN is estimated to be 30-60% in family studies 2, 3. Recent 273 

well-powered large genome-wide association studies (GWAS) of blood pressure (BP) have 274 

identified over 1,000 loci; however, in total these explain less than 3.5% of BP variation 4-16. As 275 

complex traits are the likely result of an interplay between genes and the environment, gene-276 

environment (G×E) interaction analyses have been proposed as a promising approach to explain 277 

additional heritability and identified novel loci for traits associated with cardiometabolic 278 

diseases17, 18. 279 

 Long and short sleep durations are associated with elevated BP, possibly through effects 280 

on molecular pathways that influence neuroendocrine and vascular systems 19. Recent multi-281 

ancestry interaction analyses between genetic variants and sleep duration (gene-sleep for short) 282 

on blood lipid traits have identified novel loci and potentially distinct mechanisms for short- and 283 

long-sleep associated dyslipidemia, and suggest a modification effect of sleep-wake exposures 284 

on lipid biology 18. We hypothesize that differences in sleep duration may also modify the effect 285 

of genetic factors on BP. Genome-wide interaction study (GWIS) accounting for potential gene-286 

sleep interactions may help identify novel BP loci and reveal new biological mechanisms that 287 

can be explored for treatment or prevention of HTN. 288 

 Within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) 289 

Gene-Lifestyle Interactions Working Group 20, we investigate gene-sleep interactions on BP 290 

traits in 122,265 individuals from five ancestry groups. We perform GWIS using 2df joint test of 291 

main and interaction effects 21 followed by 1df test of interaction effect to identify novel gene-292 
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sleep interactions and gene-BP associations accounting for sleep duration.   293 

 294 

Materials and methods 295 

We performed genome-wide meta-analysis of gene-sleep interactions on four BP traits (SBP, 296 

DBP, mean arterial pressure [MAP], and pulse pressure [PP]) in 30 cohorts of five ancestry 297 

groups in two stages (Supplementary Notes). Stage 1 discovery analyses included 62,969 298 

individuals of European (EUR), African (AFR), Asian (ASN), Hispanic (HIS), and Brazilian 299 

(BRZ) ancestries from 16 studies (Supplementary Tables 1-3). Stage 2 replication analyses 300 

included 59,296 individuals of EUR, AFR, ASN and HIS ancestries from 14 additional studies 301 

(Supplementary Tables 4-6). We examined long total sleep time (LTST) and short total sleep 302 

time (STST) separately as lifestyle exposures. Given the heterogeneity of age, sleep duration and 303 

BP levels across cohorts and ancestry groups, as well as differences in how sleep duration was 304 

assessed (Supplementary Tables 2 and 5), we followed procedures used in prior research 18 to 305 

categorize 20% of each sample as long sleepers and 20% as short sleepers based on responses to 306 

questionnaires, accounting for age and sex variability within each cohort (Supplementary 307 

Methods).  308 

The overall study design is described in Fig. 1. To screen for both gene-sleep interactions 309 

and genetic main effect on BP accounting for sleep duration, we performed GWIS using 2df joint 310 

test of main and interaction effects adjusting for age, sex, population structure, and other cohort-311 

specific covariates in each ancestry of each cohort using various software such as ProbABEL22, 312 

MMAP and R package sandwich23 (Supplementary Table 3). Since BMI is associated with both 313 

sleep and BP 24, 25, we performed another GWIS additionally adjusted for BMI to identify genetic 314 

loci through biological pathways independent of obesity. We then conducted 2 df joint fixed-315 
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effects meta-analysis of the combined main and interaction effects (Pjoint) using Manning et al’s 316 

method implemented in the METAL software21 across multi-ancestry in stage 1 and stage 2 317 

separately. Secondary ancestry-specific meta-analyses were performed restricted to EUR and 318 

AFR groups. We performed extensive study-level and meta-level quality controls (QCs) using 319 

the R package EasyQC26 as described in Supplementary Methods. 320 

Genetic variants with Pjoint <10-6 in stage 1 were followed up in stage 2 replication 321 

analyses and subsequently meta-analyzed with stage 1 summary statistics. The replication 322 

significance threshold was defined as stage 2 Pjoint<0.05 and stage 1 + 2 Pjoint<5×10-8, with 323 

consistent directions of association effects. To maximize the statistical power, we also performed 324 

genome-wide combined stage 1 and 2 meta-analyses in multi-ancestry and EUR groups using a 325 

stricter significant threshold (Pjoint <3.125×10-9), after Bonferroni correction for two independent 326 

BP traits, two exposures, with and without BMI adjustment, in two groups.  327 

We then investigate the interaction effect with sleep for the significant novel (r2<0.1 328 

and >1Mb from any previously identified BP locus) and known BP loci (≤1Mb) using 1df test 329 

(Pint). Novel gene-sleep interactions were identified with stage 1+2 Pint <10-3 accounting for the 330 

number of independent loci. We compared the risk effects on BP of loci significantly interact 331 

with sleep in individuals with LTST, STST, and normal sleep duration (60% of the sample; 332 

Supplementary Methods). The variance of four BP traits explained by the SNP main and 333 

interaction effects were estimated using summary statistics in combined analyses using the R 334 

package VarExp27.  335 

Significant novel loci were followed up for bioinformatics analyses. We annotated 336 

functional effects for the novel loci using HaploReg28, Regulome29, and GTex (v8)30 database. 337 

Genes under the association regions were mapped using PLINK 2.031 and SNPsea32 software and 338 
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were interrogated for associated phenotypes, Mendelian diseases, and druggable targets using 339 

PheGeni33, OMIM34, and DGIdb35 database. Tissue and pathway enrichment analyses were 340 

performed using online software FUMA36. 341 

This work was approved by the Institutional Review Board of Washington University 342 

in St. Louis and complies with all relevant ethical regulations. For each of the participating 343 

cohorts, the appropriate ethics review board approved the data collection and all participants 344 

provided informed consent. All summary results are available in dbGaP (phs000930.v1.p1). 345 

Code availability 346 

The URLs of genetic software and database used in this study are provided as follows: 347 

ProbABEL, https://github.com/GenABEL-Project/ProbABEL; MMAP, https://mmap.github.io; 348 

sandwich, https://github.com/cran/sandwich; METAL, http://csg.sph.umich.edu/abecasis/metal/; 349 

EasyQC, http://www.genepi-regensburg.de/easyqc; varExp, https://github.com/vincela/VarExp; 350 

HaploReg, https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php; RegulomeDB, 351 

http://www.regulomedb.org/; GTEx, https://gtexportal.org/home/; PLINK 2.0, https://www.cog-352 

genomics.org/plink/2.0/; SNPsea, http://pubs.broadinstitute.org/mpg/snpsea/; PheGeni, 353 

https://www.ncbi.nlm.nih.gov/gap/phegeni; OMIM, https://www.omim.org; DGIdb, 354 

https://www.dgidb.org; FUMA, https://fuma.ctglab.nl. The detailed settings are described in 355 

Supplementary Methods. 356 

 357 

Results 358 

GWIS 359 

The Miami and QQ plots of stage 1 2df GWIS in multi-ancestry, EUR and AFR groups 360 

are provided in Supplementary Figs 1-6. 1,976 genetic variants with Pjoint <10-6 were followed up 361 

https://github.com/GenABEL-Project/ProbABEL
https://mmap.github.io/
https://github.com/cran/sandwich
http://csg.sph.umich.edu/abecasis/metal/
http://www.genepi-regensburg.de/easyqc
https://github.com/vincela/VarExp
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
http://www.regulomedb.org/
https://gtexportal.org/home/
https://www.cog-genomics.org/plink/2.0/
https://www.cog-genomics.org/plink/2.0/
http://pubs.broadinstitute.org/mpg/snpsea/
https://www.ncbi.nlm.nih.gov/gap/phegeni
https://www.omim.org/
https://www.dgidb.org/
https://fuma.ctglab.nl/
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for replication analyses. Of these, 1,081 variants were available in stage 2 cohorts and passed 362 

quality control, of which 268 (24.8%) variants showed Pjoint <0.05.  363 

Our primary two-stage analyses in the multi-ancestry group formally replicated one novel 364 

locus (FIGNL2/ANKRD33; Table 1) and eight known loci (ULK4, CHIC2, PRDM8/FGF5, 365 

IGFBP1/IGFBP3, PIK3CG, PDP1/CDH17, GPR20 and ADAMTS8; Supplementary Table 7) in 366 

2df gene-LTST interaction analyses, and two novel loci (SNORA26/C9orf170 and 367 

KCTD15/LSM14A; Table 1) and eight known loci (ULK4, CHIC2, PRDM8/FGF5, 368 

IGFBP1/IGFBP3, PIK3CG, PDP1/CDH17, ADAMTS8 and SH2B3, Supplementary Table 7) in 369 

2df gene-STST interaction analyses (stage 2 Pjoint <0.05 and stage 1 + 2 Pjoint <5×10-8). The 370 

regional association plots are shown in Supplementary Fig. 7. 371 

In secondary ancestry-specific two-stage analyses, we formally replicated one known BP 372 

locus (INSR) in 2df gene-STST interaction analyses restricted to EUR individuals (stage 2 Pjoint 373 

<0.05 and stage 1 + 2 Pjoint <5×10-8; Supplementary Table 7). We additionally identified three 374 

novel loci (TRPC3/KIAA1109, ANK, and RP11-322L20.1/RP11-736P16.1) in 2df gene-LTST 375 

interaction analyses restricted to AFR individuals (stage 1 Pjoint <5×10-8 and stage 2 Pjoint<0.05, 376 

with consistent directions of main effects; Supplementary Table 8). The regional association 377 

plots are shown in Supplementary Fig. 8. However, these three variants did not survive our 378 

formal replication criteria of stage 1+2 Pjoint<5×10-8, possibly reflecting heterogeneity between 379 

discovery and replication cohorts.   380 

Genome-wide combined stage 1 and stage 2 meta-analyses (Miami and QQ plots in 381 

Supplementary Figs 9-12) additionally identified 9 novel and 4 known BP loci in 2df gene-LTST 382 

interaction analyses; and 11 novel and 3 known BP loci in 2df gene-STST interaction analysis 383 

(Pjoint <3.125×10-9; Supplementary Tables 9 and 10). The regional association plots of the 20 384 
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novel loci are shown in Supplementary Fig. 13. Replication in independent datasets is needed to 385 

validate these unreported loci. Additional loci that were genome-wide significant (3.125×10-386 

9<Pjoint<5×10-8) are also summarized in Supplementary Tables 11 and 12. 387 

 388 

Interactions with sleep 389 

We then investigated the 1df gene-sleep interaction effects of the 26 novel and 18 known 390 

loci identified in the two-stage or combined analyses. Among the formally replicated loci in 391 

multi-ancestry two-stage analyses, one novel locus rs7955964 (FIGNL2/ANKRD33) showed a 392 

genome-wide significant 1df SNP × LTST interaction (stage 1+2 Pint<5×10-8; Table 1) with risk 393 

effect on BP only present in long sleepers (Fig. 2A). Two novel loci, rs73493041 394 

(SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A), showed genome-wide significant 395 

1df SNP × STST interactions (stage 1+2 Pint<5×10-8; Table 1) with risk effects on BP only 396 

present in short sleepers (Fig 2B and C). Those effects were largely consistent across cohorts. In 397 

the EUR population, the aggregate main effects of these three loci explained up to 0.016% of the 398 

variation of four BP traits, while the gene-LTST and -STST interaction effects additionally 399 

explained 0.002-0.01% and 0.005-0.027% of the variation (Supplementary Table 13). In the 400 

AFR population, the aggregate main effect of these three loci explained 0.116-0.188% of the 401 

variation of four BP traits, while the gene-LTST and -STST interaction effects additionally 402 

explained 0.375-0.784% and 0.162-0.254% of the variation (Supplementary Table 13). Given the 403 

limited sample sizes in the AFR group, the estimation of BP variation in AFR is likely inflated. 404 

In the two-stage analyses restricted to AFR individuals, one novel loci rs111887471 405 

(TRPC3/KIAA1109) showed significant 1df SNP × LTST interaction with risk effect on BP only 406 
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present in long sleepers (stage 1+2 Pint=2×10-6; Supplementary Table 8 and Supplementary Fig 407 

14A).  408 

Among the loci identified in combined stage 1 and stage 2 analyses, eight novel loci 409 

(LINC01720/AL138927.1, RYR2, SEMA4F/HK2, DPP10/DDX18, PDZRN3/CNTN3, 410 

LEKR1/LINC00880, FSTL5, AC008558.1/HTR1A, and ZFPM2; Supplementary Table 9) and two 411 

previously reported BP loci (MKLN1 and RGL3/ELAVL3; Supplementary Table 10) showed 412 

significant 1df interactions with LTST (Pint < 1×10-3). The risk effects on BP in long sleepers 413 

differed from the effects in normal or short sleepers (Supplementary Fig 14A). Nine novel loci 414 

(GJA4, PSRC1/MYBPHL, AL033381.3/FOXQ1, PTPRN2, ERICH1, AL162384.1/IL33, 415 

FRMD4A, RP11-408B11.2, and TTC6; Supplementary Table 9) and one previously reported BP 416 

locus (C2orf43; Supplementary Table 10) showed significant 1df interactions with STST 417 

(Pint<10-3; Supplementary Table 9-10). The risk effects on BP in short sleepers differed from the 418 

effects in normal or long sleepers (Supplementary Fig 14B). 419 

We also looked up the previously validated 362 BP loci 4-15 and 113 sleep duration loci 37 420 

in the combined analyses, but none of these showed significant 1df interactions after accounting 421 

for multiple comparisons (Pint>10-4; Supplementary Tables 14-17).  422 

 423 
Associations with other relevant traits 424 

2df two-stage and combined analyses total identified 26 novel loci for BP with or without 425 

significant 1df interactions (3 formally replicated in multi-ancestry two-stage analyses, 3 in AFR 426 

two-stage analyses, and 20 in combined analyses). We looked up the associations between those 427 

loci with cardiovascular diseases, stroke, chronic kidney disease, and self-reported and objective 428 

(derived from 7-day accelerometry) sleep traits using publicly available genome-wide summary 429 

statistics from large GWAS (Supplementary Tables 18-23). One of the replicated loci 430 



 15 

rs73493041 (SNORA26/C9orf170) was associated with self-reported chronotype (morningness vs 431 

eveningness) (P=9.1×10-6; Supplementary Table 22). Among the other novel loci, rs17036094 432 

(PSRC1/MYBPHL) was associated with coronary artery disease and myocardial infarction 433 

(P≤0.005; Supplementary Table 19), and rs140526840 (FSTL5) was associated with chronic 434 

kidney disease (P=0.006; Supplementary Table 21),  435 

 436 

Bioinformatics analyses 437 

All of the 26 novel variants were mapped to intergenic or intronic regions using 438 

HaploReg 28, including 4 in promoter histone marks, 11 in enhancer histone marks, 10 in 439 

DNAse, 3 altered the binding sites of regulatory proteins and 2 conserved elements 440 

(Supplementary Table 24).  441 

Among the 3 replicated novel loci, rs73493041 (SNORA26/C9orf170) was an eQTL for 442 

GAS1 in suprapubic skin using GTEx (v8) 30 (Supplementary Table 25). Using PLINK pruning 443 

and SNPsea 32, rs7955964 (SNORA26/C9orf170) was mapped to a region of 10 genes 444 

(Supplementary Table 26), including ANKRD33 and NR4A1, implicated in sleep-wake control 445 

regulation and the neurovascular system 38, 39.  Rs10406644 (KCTD15/LSM14A) was mapped to 446 

a region overlapping with 9 genes (Supplementary Table 27), including KCTD15 and CHST8, 447 

previously associated with adiposity traits and involved in neurodevelopmental and 448 

neuropsychiatric diseases 40-42 (see Discussion). 449 

Among the other 23 novel loci, 4 variants showed strong eQTL evidence across various 450 

tissues such as blood and adipose tissue (Supplementary Table 25). 14 loci were mapped to 451 

genes with known functions in cardiac and nervous systems (e.g., TRPC3 43, RYR2 44, ANK2 45, 452 

GJA4 46 and SORT147) and associated with other cardiometabolic (e.g., HTR1A 48, PSRC1 49, 453 
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PSKH1 50), inflammatory (e.g., IL33 51), cognition (e.g., FRMD4A 52) and psychiatric traits (e.g., 454 

NFATC3 53) (Supplementary Tables 26 and 27). 455 

In total, 11 novel loci harbored genes implicated in Mendelian syndromes such as 456 

ventricular tachycardia and cryptogenic cirrhosis. 13 loci harbored one or more genes with 457 

potential drug targets (Supplementary Tables 26 and 27). 458 

We performed tissue and pathway enrichment analyses using annotated genes under 459 

novel association regions using FUMA 36 (Supplementary Tables 28 and 29). Genes under the 460 

association regions in gene-LTST interaction analyses were enriched in multiple artery and 461 

cardiac muscle related pathways (Supplementary Table 30). 462 

 463 

Discussion 464 

We performed genome-wide gene-sleep interaction analyses on BP using 122,265 individuals 465 

from 5 ancestry groups in 30 studies in two stages, using a 2df joint test of main and interaction 466 

effects followed 1df test investigation of interaction effects. Primary 2df GWIS in multi-ancestry 467 

group identified 3 novel loci that were replicated in additional samples (stage 1+2 Pjoint<5×10-8). 468 

Secondary ancestry specific 2df GWIS additionally identified 3 novel loci with weak replication 469 

evidence in AFR. Combined stage 1 and 2 analyses identified another 20 novel loci after 470 

accounting for multiple comparisons (Pjoint<3.125×10-9), which require external replication. The 471 

associations were largely unchanged after additionally adjusting for BMI.  472 

The emergence of novel loci after considering gene-sleep interactions suggests an 473 

important modifying role of sleep on BP regulation, which involves both central and peripheral 474 

regulation (including the brain, adrenal glands, kidneys, and vasculature). Insufficient or short 475 

sleep can increase BP through effects on elevating sympathetic nervous system activity and 476 
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altering hypothalamic-pituitary-adrenal (HPA) axis activities, leading to hormonal changes, 477 

endothelial dysfunction, insulin resistance, and systemic inflammation 19, 54. The mechanisms 478 

underlying the association between long sleep duration and BP are less well understood, and may 479 

reflect circadian misalignment in a 24-hour period, including disrupted sleep-wake cycle, a 480 

misalignment of internal biological clocks with the external environment, and desynchronized 481 

central and peripheral clocks in tissues relevant for BP control 55. The importance of circadian 482 

control of BP is evident by the normal nocturnal decline (“dipping”) in BP. Non-dipping of BP, 483 

associated with increased mortality, is observed with both sleep disturbances and abnormalities 484 

of sodium transport in the kidney 56, 57. Our data suggest that sleep and renal and neuro-endocrine 485 

control of BP may interact to influence susceptibility to HTN. The novel loci found by gene-486 

LTST and gene-STST interaction analyses were distinct, supporting the different mechanisms of 487 

short and long sleep modifying BP. Similarly, in prior gene-sleep interaction analyses for blood 488 

lipids, LTST and STST each also modified gene effects in a non-overlapping pattern 18. 489 

Using the 1df test, we identified three novel gene-sleep interactions that were formally 490 

replicated in primary multi-ancestry analyses (stage 1+2 Pint<5×10-8). Among those, rs7955964 491 

(FIGNL2/ANKRD33) only increased MAP in long sleepers (Fig 2A). In the association region 492 

under this locus, ANKRD33 is expressed in retinal photoreceptors and the pineal gland and acts 493 

as a transcriptional repressor for CRX-activated photoreceptor gene regulation 38. Given the 494 

importance of light in the central regulation of circadian rhythms, long sleep- a circadian 495 

disruptor- may interact with this gene to influence BP 56. Additionally, NR4A1 (that also maps to 496 

this locus) is a member of the nuclear hormone receptor family, which regulate neurohormonal 497 

systems including dopamine and norepinephrine and cardiac stress responses 39, 58. Its expression 498 

is influenced by an array of stimuli, including those influence nutrient sensing. Our findings 499 
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suggest that perturbed sleep and circadian rhythms may also alter the effects of this gene, 500 

increasing BP.  501 

Rs10406644 (KCTD15/LSM14A) only increased PP in short sleepers. KCTD15 is 502 

implicated in both renal (nephron) development and adiposity, possibly through effects on Wnt 503 

signaling and neural crest development. Short sleep can lead to hypothalamic-adrenal-cortisol 504 

dysfunction, and potentially may amplify the effects of this gene on metabolism and kidney 505 

function to increase BP 59, 60. This locus also maps to CHST8 that is associated with adiposity 506 

traits 40, 41 as well as to GPI that functions in glucose metabolism and immune system pathways 507 

61, 62.  508 

Rs73493041 (SNORA26/C9orf170) only increased DBP in short sleepers. Rs73493041 509 

was an eQTL for GAS1, a pleiotropic regulator of cellular homeostasis and widely expressed in 510 

the central nervous system 63, 64. The risk allele was also significantly associated with self-511 

reported eveningness chronotype (P=9.1×10-6; Supplementary Table 22), a circadian phenotype 512 

associated with increased cardiometabolic and neuropsychiatric disorders 65. Short sleep may 513 

magnify cardiometabolic dysfunction associated with delayed sleep timing. 514 

Given the high prevalence of HTN in African Americans, there is a critical need to 515 

identify modifiable risk factors. Notably, African Americans have poorly controlled HTN as well 516 

as circadian abnormalities in BP regulation 66. They also have a higher prevalence of short and 517 

long sleep duration compared to individuals of European ancestry 67, 68, likely due to 518 

combinations of social-environmental exposures and genetic and epigenetic susceptibility 69. In 519 

AFR specific gene-LTST analyses, we identified a novel SNP-LTST interaction at rs111887471 520 

(TRPC3/KIAA1109) with risk effect on SBP only present in long sleepers (Pint=2×10-6; 521 

Supplementary Fig. 14). TRPC3 has been shown to play an important role in cardiac ion (Na+ 522 
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and Ca2+) homeostasis 43.  The association observed in in AFR may reflect differences in BP 523 

control with individuals of African ancestry having greater sodium sensitivity70, with BP effects 524 

amplified by disrupted circadian rhythm regulation due to long sleep 57.   525 

Combined stage 1 and 2 analyses additionally identified significant gene-LTST 526 

interactions at MKLN1, RGL3/ELAVL3, LINC01720/AL138927.1, RYR2, SEMA4F/HK2, 527 

DPP10/DDX18, PDZRN3/CNTN3, LEKR1/LINC00880, FSTL5, AC008558.1/HTR1A, ZFPM2 528 

and significant gene-STST interactions at C2orf43, GJA4, PSRC1/MYBPHL, 529 

AL033381.3/FOXQ1, PTPRN2, ERICH1, AL162384.1/IL33, FRMD4A, RP11-408B11.2, and 530 

TTC6 (Pint < 10-3), which require external replication. MKLN1, RGL3/ELAVL3, and C2orf43 has 531 

been reported associated with BP previously. Among those, MKLN1 regulates the internalization 532 

and transport of the GABAA receptor 71, 72 and ELAVL3 encodes a neural-specific RNA-binding 533 

protein involved in neuronal differentiation and maintenance 73. We did not observe marginal 534 

main effects for those loci among normal sleepers (Supplementary Fig. 14), perhaps because of 535 

the small sample size of those variants (N≤10,038; Supplementary Table 10). Our findings 536 

suggest that their effects on BP may be amplified in the setting of long sleep due to disrupted 537 

circadian rhythm regulation when these effects were not detectable in small samples. 538 

In this study we defined short and long sleep duration using self-reported questionnaires, 539 

which can result in misclassification 74, potentially reducing statistical power. Although we used 540 

a within cohort approach for harmonizing sleep duration that accounted for age and sex 541 

differences across cohorts, there may be systematic residual differences in sleep assessments that 542 

resulted in heterogeneity across our samples. Future work using objective measurements (e.g., 543 

polysomnography and actigraphy data) may provide further insight into sleep-related BP 544 

mechanisms.  545 
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Some of our most interesting findings - and ones with high potential public health impact 546 

due to the burden of extreme sleep duration and HTN in AFR group. Unfortunately, limited 547 

samples of AFR were available for replication. We identified 1,976 variants with significant 548 

association effect in gene-sleep interaction analyses in stage 1. However, only 1,081 of those 549 

variants were available in stage 2 analyses. Most of the unavailable variants in stage 2 had been 550 

identified in non-EUR cohorts and were rare in EUR populations (MAF<1%). Future studies 551 

following-up these “missing” variants in diverse groups and additional studies of minority 552 

populations are needed to further understand mechanisms for BP regulation that are modulated 553 

by sleep.  In addition, some of our findings were mapped to large genomic regions covering 554 

many genes. Further fine-mapping analyses using sequencing data or biochemistry experiments 555 

may further clarify the causal variants.  556 

In summary, we performed a large-scale gene-sleep interaction meta-analyses in multi-557 

ancestry groups. This study advances our knowledge on the interactions between genetic risk 558 

factors, sleep duration and blood pressure. This work extends prior research that has reported that 559 

extreme sleep durations (short or long) are associated with increased blood pressure as well as 560 

cardiovascular morbidity19, and provides evidence that sleep duration may modify genetic risk 561 

for hypertension through pathways that influence photoreception, metabolism, adiposity, renal 562 

function, and chronotype. These findings also suggest that sleep duration may modify the effects 563 

of antihypertensives that target certain genes or pathways—an area that should be further 564 

investigated using pharmacogenetics and pathway-level approaches. Finally, the observation of 565 

multiple genetic effects only in individuals with extreme sleep duration supports the general 566 

guidance for the public to follow published sleep duration recommendations (7-9 hours) 75 – 567 
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potentially reducing cardiovascular diseases in the population, especially for individuals with 568 

genetic predispositions. 569 

  570 
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Figure legends 873 
Fig. 1. Study overview. 874 
Fig. 2. Forest plots of effects on BP in long, normal, and short sleepers at 3 replicated novel loci 875 

in the multi-ancestry population. 876 
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Table 1. Replicated novel BP loci significantly associated with sleep duration. 
Exposure rsID Gene(s) Chr: position 

(Build 37) 
Alleles 
(E/A) EAF Trait Stage BMI adjustment N βSNP SESNP βInt SEInt PJoint PInt 

LTST rs7955964 FIGNL2, ANKRD33 12:52281279 A/T 0.896 MAP 1 Without BMI 18583 -0.400 0.290 2.711 0.582 1.75×10-6 1.34×10-6 
        with BMI 18583 -0.462 0.279 2.768 0.546 2.48×10-7 2.10×10-7 
       2 Without BMI 12335 -0.621 0.289 2.163 0.632 2.52×10-3 5.49×10-4 
        with BMI 12327 -0.519 0.281 2.210 0.613 1.72×10-3 2.66×10-4 
       1+2 Without BMI 29985 -0.517 0.208 2.505 0.433 1.11×10-7 4.40×10-9 
        with BMI 29957 -0.500 0.201 2.577 0.413 6.74×10-9 2.94×10-10 

STST rs73493041 SNORA26, C9orf170 9:89849304 T/C 0.959 DBP 1 Without BMI 36858 -0.725 0.229 2.336 0.471 4.65×10-7 3.6×10-7 
        with BMI 36858 -0.723 0.219 2.235 0.456 5.16×10-7 5.18×10-7 
       2 Without BMI 24413 -0.763 0.321 1.888 0.705 5.44×10-3 9.43×10-3 
        with BMI 24385 -0.704 0.335 1.875 0.704 1.09×10-2 1.27×10-2 
       1+2 Without BMI 61271 -0.724 0.185 2.213 0.387 3.62×10-8 1.30×10-8 
        with BMI 61243 -0.709 0.182 2.132 0.381 7.15×10-8 2.58×10-8 
 rs10406644 KCTD15, LSM14A 19:34595645 A/G 0.095 PP 1 Without BMI 15021 0.542 0.275 -3.194 0.605 1.26×10-7 1.35×10-7 
        with BMI 12921 0.565 0.306 -3.382 0.677 5.23×10-7 4.81×10-7 
       2 Without BMI 11401 1.142 0.587 -2.702 1.163 4.59×10-2 2.02×10-2 
        with BMI 11373 1.102 0.582 -2.533 1.155 6.08×10-2 2.83×10-2 
       1+2 Without BMI 26422 0.648 0.249 -3.067 0.536 1.39×10-8 7.59×10-9 
        with BMI 24294 0.678 0.271 -3.135 0.584 8.56×10-8 4.35×10-8 

 
 


