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DOUBLE-DCCCAE: ESTIMATION OF BODY GESTURES FROM SPEECH WAVEFORM

JinHong Lu, TianHang Liu, ShuZhuang Xu, Hiroshi Shimodaira

Centre for Speech Technology Research
The University of Edinburgh

10 Crichton Street Edinburgh EH8 9AB United Kingdom

ABSTRACT

This paper presents an approach for body-motion estimation
from audio-speech waveform, where context information in
both input and output streams is taken in to account without
using recurrent models. Previous works commonly use mul-
tiple frames of input to estimate one frame of motion data,
where the temporal information of the generated motion is
little considered. To resolve the problems, we extend our
previous work and propose a system, double deep canonical-
correlation-constrained autoencoder (D-DCCCAE), which
encodes each of speech and motion segments into fixed-
length embedded features that are well correlated with the
segments of the other modality. The learnt motion embedded
feature is estimated from the learnt speech-embedded feature
through a simple neural network and further decoded back
to the sequential motion. The proposed pair of embedded
features showed higher correlation than spectral features with
motion data, and our model was more preferred than the base-
line model (BA) in terms of human-likeness and comparable
in terms of similar appropriateness.

Index Terms— neural networks, speech, body motion,
conversational virtual agent

1. INTRODUCTION

When we are in conversation, a large quantity of motions
(such as gesture, body, and head) are spontaneously emit-
ted [1, 2]. These motions are transmitted as non-verbal signals
to the listeners, and help the listeners to better understanding
what is being expressed [3, 4]. As such, human motion is
a key factor for the conversational agents or social robots to
interact with us, and act humans [5, 6].

To tackle the motion-learning challenge for the agents/robots,
researchers has explored in different approaches.
Kucherenko et al. [7] implemented a speech-to-motion map-
ping with encoder-decoder DNN. Yoon et al. [8] found that
the natural language was useful to predict a frame-by-frame
poses with a GRU-Auto-Encoder. Ghosh et al. [9] proposed
a system that generates body motion recursively with a deep
LSTM-RNN and a de-noising auto-encoders from a given
pose.

These previous studies show the potential of using differ-
ent types of input to predict body motion pose by pose, but
body motion is a continuous and temporal datatype. Gen-
erating motion in a frame-based system does not reflect the
temporal relationship between speech and body motion (or
seq2seq motion). Possible reasons of diminishing the inter-
ests of temporal-based system are 1) literature shows that the
complexity of the model increases as if we would like to gen-
erate multiple frames of motion movement [7, 10]. The hard-
ware limitation does not allow us to perform such experi-
ments; 2) the correlation between multiple frames of speech
information and a frame of body motion is not strong, not to
mention that the correlation becomes weaker after stacking
blocks of multiple speech information to generate multiple
frames of body motion. The result of the experiment con-
ducted in this study also shows that the correlation becomes
weaker.

To resolve the problems, we propose double deep canonical-
correlation-constrained autoencoder (D-DCCCAE), a frame-
based system, yet being able to estimate temporal sequence
in this paper. Our proposed system consists of three parts, a
double deep canonical correlation constrained auto-encoder,
a frame-based regression, a post-filter. The auto-encoders
are used to compress the information of the sequential data
(e.g, speech information or body motion), as well as main-
tain possible higher correlations with other sequential data.
The frame-based regression predicts the sequential motion
embedding in a frame-by-frame manner from the wave em-
bedding. The predicted frame-based motion embedding is
further decoded by the trained decoder and interpreted as
the sequential body motion movements. Lastly, we apply
an NN-based filter to smooth the generated movements. We
show that the features obtained with the proposed approach
are more highly correlated than raw wave-form and MFCC
to the motion data. We submit our model to the GENEA2020
challenge [11] and evaluate it with other participants’ models
and baseline models in a subjective test.

1.1. Relation To Prior Work

Chandar et al. [12] and Wang et al. [13] have proposed the
idea of Correlated Neural Network (CorrNN), where mod-



els the two data streams to be highly correlated in one com-
mon subspace through two autoencoders. In our previous
work [10], we proposed to use one autoencoder for the head
motion estimation; whereas in this present work, we employ
two autoencoders for the body motion estimation from speech
where context information in both input and output streams
is taken in to account. Kucherenko et al. [7] has proposed
the framework of predicting motion embedding from speech
stream and decoding back to the raw motion through a pre-
trained decoder, where you can expect high human pose vari-
ation of the generated motion. Our work here is different in
that we consider context information in the decoder module
and the motion is generated in a sequential manner.

Fig. 1: Overview of the proposed system comprised of
three modules: (A) embedding with Double-DCCCAE, (B)
DNN-based sequential motion embedding regression from
the wave-form embedded features, (C) post filter with an au-
toencoder.

2. PROPOSED MODEL

Our proposed system can be separated into three modules: 1)
double deep canonical-correlation-constrained autoencoders
(D-DCCCAE) for compressing the high-dimensional input
(e.g., wave-form, body motion) to the distributed embedding
of low dimensions, 2) a regression model for predicting the
sequential motion embedding from the wave embedding, and
3) a post-filtering autoencoder for reconstructing smooth head
motion. The overall framework of our proposed model is
shown in Figure 1.

2.1. Double DCCCAE

In our previous work, we compressed high-dimensional
wave-forms to low-dimensional and correlated embedding,

with head motion using a single autoencoder of CorrNN [10].
However, our work here is different from the aforemen-
tioned research studies, in which [12, 13] compressed the
two stream into one common and correlated space using two
autoencoders; on the other hand, we propose to compress the
streams into different spaces with different correlated objects.
We extend our work here to apply two CorrNN autoencoders
for the reason that the dimension of the body motion in this
work is much higher than the head motion in our previous
work. We compress the information into fixed-length embed-
dings. We thus employ two autoencoders in which hidden
layers are trained in such a way as to not only minimise the
reconstruction error but also maximise the canonical correla-
tion with body motion. Thus, instead of projecting the two
features to a common subspaces, we project the two features
to two separate subspaces to ensure the embedded features
are well correlated with the objective features.

We train each proposed DCCCAE with the following ob-
jective function:

ObjDCCCAE =
∑
t

‖Xt±3 − p(f(Xt±3))‖2

−CCA (f(Xt±3),Yt±3) (1)

In the above equation, Xt±3 represents the input feature vec-
tor at a time instance t to the encoder, f( ) represents the
projection with the encoder, p( ) represents the reconstruction
with the decoder, X and Y denote the whole sequences of
feature vectors and objective feature vectors, respectively.

2.2. Regression Model

The idea of predicting motion embedding from speech was
proposed by Kucherenko et al. [7]. This framework first ap-
plies representation learning to learn a motion representation
in a frame-based system. Further, it encodes speech to the
learnt motion representation and decodes the same through
the motion decoder. We extend this idea to a frame-based
model in a sequential manner with our highly correlated
features estimated by the proposed D-DCCCAE. We map a
frame of wave-form embedding to a frame of motion embed-
ding and decode through the motion decoder. The decoded
motion is in sequential of multiple frames.

A simple feed-forward deep neural network is applied
here for the regression from the wave-form embedded vector
to the motion embedded vector. We do not consider RNN
(e.g., LSTM, GRU) because the present study focuses on
decoding a sequential motion movement from a frame-based
embedding vector and the framed-based mapping between the
two embedded features does not have a temporal relationship.

2.3. Neural-Network-Based Filter

The generated trajectories are jerky due to the nature of the
speech, which can be viewed as the noisy data. It is common



to apply post-processing to smooth output [10, 7]. We fol-
lowed the procedure in our previous work [10] and trained a
neural-network-based post-filter to overcome these problems
in the present study.

3. EXPERIMENT

3.1. Dataset

We have been provided with the Trinity Speech-Gesture
Dataset [14] as the database for GENEA2020 challenge. A
male native English speaker was involved in the collection of
the dataset. For the audio, the actor produced spontaneous
and natural conversational speech without interruptions, that
is, without verbal cues from a conversation partner. More-
over, the actor chose the topic he would like to speak on in the
conversation with a happy disposition and included a large
quantity of gesture motions. Each recording take was ap-
proximately 10 minutes long. The author captured 23 takes,
totalling 244 minutes of data (provided for training in the
challenge). The author captured the actor’s motion with a
53 marker setup and 20 Vicon cameras at 59.95 frames per
second (FPS). The audio was recorded at 44 kHz.

Speech Feature: First, we down-sampled the audio rate
from 44 kHz to 4 kHz. Raw wave-form vectors were extracted
with a window of 125 ms and 67 ms shifting, which resulted
in 500 dimensions. Further we extracted the MFCC12 E D A
feature set from OpenSMILE toolkit. This configuration ex-
tracted Mel-frequency Cepstral Coefficients from 100 ms au-
dio frames (sampled at a rate of 50 ms) (Hamming window).
It computed 12 MFCC (1-12) from 26 Mel-frequency bands,
and applies a cepstral liftering filter with a weight parameter
of 22, and the log-energy was appended. 13 delta and 13 ac-
celeration coefficients were appended to the features as well.

Body Motion: The motion data was stored in the BioVi-
sion Hierarchy format (BVH). The BVH data describes mo-
tion as a time sequence of Euler rotations for each joint in the
defined skeleton hierarchy. In the present study, these Euler
angles were converted to a total of 64 global joint positions
in 3D. Some recordings had a different frame rate than oth-
ers; therefore, we down-sampled all recordings to a common
frame rate of to 20 FPS. We extracted the upper body only,
which included 45 out of 65 global joint positions. For the
purpose of fast convergence in training, we applied standard
normalisation (zero mean and unit variant) to the data at each
rotation of the joints.

Experiment Setup: We extracted 25 seconds of the
video-audio data in the middle of each provided training file,
totalling about 9.5 minutes as the validation data, and the rest
of data were used in training. For the testing data, another 10
audio files (with transcripts), totalling about 20 minutes, were
provided from the challenge without the motion data. Thus,
we could not do any objective evaluation for the test data.

We conducted preliminary experiments to decide the

Table 1: Local CCA of stacking multiple frame between
speech information and body motion

Feature Width CCA
Train Valid

Wave-form

1 0.624 0.631
3 0.483 0.490
5 0.418 0.426
7 0. 0.004

MFCC

1 0.481 0.481
3 0.588 0.591
5 0.602 0.609
7 0.566 0.574

DCCCAE 1 0.835 0.887
7 0.687 0.750

D-DCCCAE 7 0.792 0.861

Table 2: Comparison of different systems in terms of perfor-
mance of body motion prediction, where MSE and local CCA
are calculated between predicted body motion and ground
truth. ‘7to7’ refers to using 7 frames of the features to esti-
mate 7 frame of the body motion. MX refers to the regression
model is trained with feature X.

Model Width Train Valid
MSE CCA MSE CCA

MMFCC 7to7 0.984 0.545 1.202 0.332
MDCCCAE 7to7 0.974 0.563 1.203 0.330

MD−DCCCAE 7to7 0.989 0.510 1.203 0.334

depth and width of the Double-DCCCAE, regression models
and the post-filter AE, which are shown in Figure 1. Training
was conducted on a GPU machine and a multi-CPU machine
with Pytorch version 1.5 by mini-batch training using Adam
optimisation (learning rate 0.0002) [15], the batch size is
4096, and the epoch is 500. Lastly, the motion-decoder was
fine-tuned while training with the regression model.

In the evaluation, test data was fed to the trained re-
gression model, and motion embedding was predicted frame
by frame and converted to sequential through the motion-
decoder. After that, the output of the prediction model was
then joined to form distinct body motion with the overlap-add
method and concatenation of 30 time frames, which were
fed to the post-filtering autoencoder. The final output for
animation was generated with the overlap-add method again.

3.2. Objective Evaluation

To evaluate the performance of the models, we employed
mean square error (MSE) and local CCA to compare the
estimated and ground truth motion vectors [10, 16].

Feature Analysis: As mentioned in the introduction, we
conducted a basic correlation analysis between speech fea-
tures and body motion in local CCA. Looking at Table 1, it



Table 3: Summary statistics of user-study ratings for all con-
ditions in the two studies, with 0.01-level confidence inter-
vals. The human-likeness of M was not evaluated explicitly,
but is expected to be very close to N since it uses the same
motion clips. F:Input feature, A: Audio feature, T: Text Fea-
ture. Our proposed system is SB.

Human-likeness Appropriateness
ID F Median Mean Median Mean
N - 72 ∈ [70, 75] 67.6± 1.8 81 ∈ [79, 83] 73.8± 1.8
M - - - 56 ∈ [53, 59] 53.3± 2.0

BA A 46 ∈ [44, 49] 46.2± 1.7 40 ∈ [38, 41] 40.4± 1.8
BT T 55 ∈ [53, 58] 54.6± 1.8 38 ∈ [35, 40] 38.5± 1.9

SA A+T 38 ∈ [35, 41] 40.1± 1.9 35 ∈ [31, 37] 36.4± 1.9
SB
ours A 52 ∈ [50, 55] 52.8± 1.9 43 ∈ [40, 45] 43.3± 2.0

SC A 57 ∈ [55, 60] 55.8± 1.9 50 ∈ [48, 52] 50.6± 1.9
SD A+T 60 ∈ [57, 61] 58.8± 1.7 49 ∈ [46, 50] 48.1± 1.9
SE A+T 49 ∈ [47, 51] 49.6± 1.8 47 ∈ [44, 49] 45.9± 1.8

noted that the raw wave-form feature gets a weaker correla-
tion with body motion when stacking more frames. The corre-
lation of MFCC feature remains in the range between 0.4 and
0.5. Our proposed 2 embedded features achieved the highest
correlation, a clear and large improvement over the raw wave-
form and MFCC. Compared to our previous method [10], D-
DCCCAE shows improvement over DCCCAE for 7 frames,
but is comparable for 1 frame.

Model Comparison: After the analysis above, we con-
ducted the evaluation of the body motion estimation for
MFCC, DCCCAE and D-DCCCAE features. Table 2 shows
the result of different systems with different number of the
input and output frames, where were examined in MSE and
local CCA. MD−DCCCAE has the highest MSE and lowest
CCA in the train set, but achieves the highest CCA in the
valid set and MSE is similar among the three models for the
valid set. This indicates that our proposed model has the
potential to perform better if the generalisation of the model
is better.

4. SUBJECTIVE EVALUATION

We submitted our proposed model to the GENEA2020 chal-
lenge [11] and they conducted a perceptual test inspired
by the MUltiple Stimuli with Hidden Reference and An-
chor (MUSHRA) [17] through the crowd-sourcing platform
Prolific (formerly Prolific Academic) in two aspects, human-
likeness and appropriateness [18].

There were total of 9 models: 5 models from the partici-
pants (including us), 2 baseline models [7, 8], 1 ground truth
model and 1 anchor model. The following abbreviations are
used to represent each model in the evaluation:

• N : Ground truth.

• M : Anchor (mismatched) natural motion capture from
the actor, corresponding to a different speech segment
than that played together with the video. This ensures
the production of very high-quality motion (same as
N), but whose behaviour is completely unrelated to the
speech.

• BA : The baseline system [7], which only takes speech
audio into account when generating system output

• BT: The baseline system [8], which only takes text tran-
script information (including word timing information)
into account when generating system output

• S... : Participants’ submissions (ours is SB).

The evaluation was processed such that every participant was
assigned about 10 different speech segments and the cor-
responding generated motion videos of each segment from
different systems. Further, each participant was asked to
watch each video and give a score on a 0- to 100-point rat-
ing scale that was divided into successive 20-point intervals,
which were labelled (from best to worst) ‘Excellent’, ‘Good’,
‘Fair’, ‘Poor’, and ‘Bad’. A total of 125 participants in each
study were recruited and asked to follow the instructions to
rate each video.

The results of the human-likeness and appropriateness
evaluations are shown in Table 3. We are the one of the two
teams, who used audio feature only, in the submissions. Our
model (SB) was rated third in human-likeness and fourth in
appropriateness among the participants’ submissions. More-
over, the sample median score of our model was above BA
but below than BT in terms of human-likeness, and above
both baselines in appropriateness. These results suggests
that our proposed embedded features effectively improved
the model generalisation compared to BA, which had similar
model structure and ideas as us.

5. CONCLUSION

In this paper, we extended our previous work to propose a new
architecture. The proposed model not only creates a highly
correlated feature pair, but also generates sequential raw mo-
tion data in a frame-based manner. From the objective eval-
uation, we concluded that D-DCCCAE enables the creation
of a more correlated feature pair, diminishing the side-effect
of stacking multiple blocks of speech information and mo-
tion data. D-DCCCAE achieves the highest CCA in the valid
set in the model comparison. In the subjective evaluation, our
model achieved higher score than BA in both aspects (human-
likeness and appropriateness) according to the participants’
preference, suggesting that the high correlated feature pair
and the sequential estimation helped in improving the model
generalisation. In future, we could consider exploring higher
stacking to unearth the potential of D-DCCCAE.
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