
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sparsity-Inducing Optimal Control via Differential Dynamic
Programming
Citation for published version:
Dinev, T, Merkt, W, Ivan, V, Havoutis, I & Vijayakumar, S 2021, Sparsity-Inducing Optimal Control via
Differential Dynamic Programming. in 2021 IEEE International Conference on Robotics and Automation
(ICRA) . Institute of Electrical and Electronics Engineers (IEEE), pp. 8216-8222, 2021 IEEE International
Conference on Robotics and Automation, Xi'an, China, 30/05/21.
https://doi.org/10.1109/ICRA48506.2021.9560961

Digital Object Identifier (DOI):
10.1109/ICRA48506.2021.9560961

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2021 IEEE International Conference on Robotics and Automation (ICRA)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 22. Dec. 2021

https://doi.org/10.1109/ICRA48506.2021.9560961
https://doi.org/10.1109/ICRA48506.2021.9560961
https://www.research.ed.ac.uk/en/publications/6c4b7abb-9c83-43b2-b741-0d4a3dc96aaf


Sparsity-Inducing Optimal Control via Differential Dynamic
Programming

Traiko Dinev∗, Wolfgang Merkt∗, Vladimir Ivan, Ioannis Havoutis, Sethu Vijayakumar

Abstract— Optimal control is a popular approach to syn-
thesize highly dynamic motion. Commonly, L2 regularization
is used on the control inputs in order to minimize energy
used and to ensure smoothness of the control inputs. However,
for some systems, such as satellites, the control needs to be
applied in sparse bursts due to how the propulsion system
operates. In this paper, we study approaches to induce sparsity
in optimal control solutions—namely via smooth L1 and Huber
regularization penalties. We apply these loss terms to state-of-
the-art Differential Dynamic Programming (DDP)-based solvers
to create a family of sparsity-inducing optimal control methods.
We analyze and compare the effect of the different losses on
inducing sparsity, their numerical conditioning, their impact on
convergence, and discuss hyperparameter settings. We demon-
strate our method in simulation and hardware experiments on
canonical dynamics systems, control of satellites, and the NASA
Valkyrie humanoid robot. We provide an implementation of our
method and all examples for reproducibility on GitHub.

I. INTRODUCTION

The propulsion systems of orbital satellites have a unique
control limitation. In many cases, they use impulsive cold
gas or bi-propellant thrusters incapable of or ineffective at
low rates of firing. The resulting control then relies on fewer
longer bursts of thrust to generate a constant amount of force
over time while keeping the thrusters off between the bursts.

The required control inputs are then a sequence of binary
on/off commands that are activated sparsely throughout the
motion [1]. We call this type of control sparsity-inducing,
referring to the sparse use of control inputs throughout
the trajectory. Such control will prefer zero control (off)
followed by a high control action (on) to continuous corrective
commands applied throughout the whole trajectory.

Selecting the required degrees of freedoms (DoFs) of
a redundant system such as a humanoid robot is another
application of sparsity-inducing control. Instead of deactivat-
ing the control inputs, the planner deactivates unnecessary
joints. Consider a reaching task for the 38-DoF Valkyrie
humanoid robot, where the goal is to extend the hand (end-
effector) forward to point at a target. Solving this via motion
planning involves finding suitable control inputs for the entire
humanoid such that it balances itself and extends the hand.
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Fig. 1: SSL-1300 satellite model and satellite maneuver.

With traditional control-penalty methods, the planner readily
discovers a motion where all the joints are simultaneously
moving (cf. Fig. 10). Such a motion is arguably unnecessary
and in fact undesirable as it requires more complex control to
coordinate the motion. This can result in trajectories that are
more difficult to execute and track by the low-level controller
and may require more energy.

To achieve sparsity in the controls as well as automatic joint
selection, we propose to use a sparsity-inducing penalty term
in the control cost. This serves to both switch off unnecessarily
small control inputs in the case of high-DoF robots and to
discover thruster-like behavior for satellites.

A. Related Work

Optimal control methods synthesize dynamically consistent
motion satisfying a set of task and dynamics constraints
while minimizing an optimality criterion. Shooting methods,
which optimize over the control inputs, and in particular
algorithms derived from Differential Dynamic Programming
(DDP) [2], have recently received renewed interest [3]–[5].
In contrast to simultaneous transcription methods [6], [7],
shooting methods have faster computation times by explicitly
exploiting the temporal structure and implicitly enforcing the
dynamic feasibility of the solution.

A common optimality criterion is energy optimization,
which is traditionally a squared cost on the control inputs
(L2 norm regularization). In practice, this leads to smooth
control profiles and has been widely applied to canonical
dynamic systems, computation of flight trajectories, as well
as to synthesize highly dynamic maneuvers for legged robots
[4], [5]. However, as no sparsity is introduced, on redundant
systems this frequently leads to moving many joints even if
not all joints are required to complete the task (cf. Fig. 10).

Sparsity in control inputs for planning was studied in
the context of satellite motion planning [8]. There the
authors used the L1 norm, also known as Lasso model.
Similarly, the authors in [9] applied an L1 penalty using



an Alternating Direction Method of Multipliers (ADMM)
approach separating the problem into an optimal control
update and a soft thresholding update. Whereas previous
work considered an L1 penalty applied to the force at the
center of mass of the satellite, here we model the thruster
behavior directly. Finally, the authors in [1] obtained thruster
controls by optimizing the timing of thruster pulses, which
are modeled as on-off controls. Here we use smooth L1 costs
to penalize the otherwise continuous thruster forces. As a
result, our approach is directly applicable in standard optimal
control frameworks.

Recently, the concept of sparsity has gained additional
attention in the trajectory optimization and control com-
munity for terrestrial/traditional robotics applications such
as manipulation. [10], for instance, investigated the use of
Mixed-Integer and Lasso regression to reduce joint motion on
humanoid robots in a hierarchical inverse dynamics control
scheme. Nonetheless, enforcing sparsity for planning over
longer horizons continues to be a challenge.

It is well known in the machine learning community
that L1 introduces a discontinuity at 0 that makes it non-
differentiable [11]. Several differentiable metrics have been
proposed to deal with this issue [9], [12]. In this paper, we
study two such costs when applied to DDP: the SmoothL1
[13] and Huber differentiable approximations [12] to L1.
Using such sparsity-inducing cost terms with DDP raises two
challenges requiring careful consideration: i) ensuring numeri-
cal stability/conditioning as efficient implementations assume
positive-definiteness of the control Hessian, and ii) trading
off achievements of desired tasks with sparsity of solutions
through control regularization. Note that these challenges do
not arise when using direct transcription/collocation where
tasks are enforced with hard constraints and solved using
off-the-shelf Non-linear Programming (NLP) solvers.

B. Contributions
We study approaches to induce sparsity in optimal control

solutions and make the following contributions:
1) Introduce sparsity-inducing regularization terms in DDP-

type solvers.
2) Compare different strategies for sparsity-inducing reg-

ularization, namely SmoothL1, Huber, and Pseudo-
Huber loss, in terms of their convergence and numerical
stability.

3) Demonstrate our approach for the swing-up of a cart-
pole and for satellite thruster control. Additionally, we
demonstrate hardware manipulation experiments using
the Valkyrie humanoid robot.

We provide our implementation and evaluations as open
source software for reproduction.1 A supplementary video is
available at https://youtu.be/YMXRZjFsqhc.

II. CONTROL REGULARIZATION

We begin by reviewing the use of L2 penalties in the
optimal control literature. The L2 loss is defined as:

L2(x) , x2.

1https://github.com/ipab-slmc/sparse_ddp
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Fig. 2: Comparison of the different regularization schemes
for the control cost using a range of hyper-parameters: L2,
L1, L1-smooth, LHuber, and Lpseudo-Huber.

The L2 loss is used to regularize solutions by penalizing
large positive or negative control inputs in the optimal control
setting or features in machine learning.

In contrast, the L1 loss is used to penalize solutions for
sparsity, and as such, it is commonly used for feature selection
in the machine learning community [14]. The L1 loss is
defined as the absolute value of its argument:

L1(x) , |x|
When L1 is used with gradient-based optimizers as a
regularization, it drives its argument to exactly 0 as opposed
to small values. This is explained by the condition that the
gradients of the regularization parameter and the task cost
must be parallel.

Using the L1 loss directly in gradient-based optimization is
difficult due to the discontinuity at x = 0 where the gradient
is undefined. Smooth approximations to the L1 function can
be used in place of the true L1 penalty. In this paper, we
consider a smooth L1 function from [13], which combines
L1 and L2 losses, defined as:

Lsmooth-l1(x) =

{
0.5x2/β if |x| ≤ β
|x| − 0.5β otherwise

(1)

where β defines where the function switches from an L1 to
an L2 cost. For small x ≤ β, SmoothL1 switches to L2, since
L2 has a gradient at 0.

We study another variant of combining L1 and L2 regu-
larization, namely the Huber loss [12]:

Lhuber(x) =

{
0.5x2 if |x| ≤ β
β(|x| − 0.5β) otherwise

(2)

where β is again a shape parameter. The Huber loss has a
variable slope, controlled by β in addition to mixing L1 and
L2. This can be seen in Fig. 2, where for β = 0.5 the Huber
cost has a lower slope than SmoothL1.

Finally, we consider a smooth approximation to the Huber
loss, the Pseudo-Huber loss, as defined in [15, Appendix 6]:

Lpseudo-huber(x) = β2

(√
(1 +

x

β

2
)− 1

)
. (3)

We illustrate the considered losses for different settings of
their hyper-parameters in Fig. 2. The shape parameters of

https://youtu.be/YMXRZjFsqhc
https://github.com/ipab-slmc/sparse_ddp


the smooth variants control how closely they approximate
the true L1 and Huber losses, respectively. The choice of the
control regularization and its parametrization has an impact
on convergence and sparsity of the output of the optimal
control formulation.

III. OPTIMAL CONTROL

We consider the robot as a dynamic system described
by state x composed of generalized coordinates q and
generalized velocities v. The system evolves under applied
control inputs u according to the state transition function
xt+1 = f(xt,ut) which incorporates the differential dynam-
ics as well as an integration scheme. Here, we use a geometric
representation of the configuration manifold of floating-base
systems (SE(3)) with its geometric integrators along with
an energy-conserving symplectic integration scheme of the
differential dynamics.

To describe a discrete optimal control problem with a fixed
horizon, we additionally specify the integration time step ∆t
and time horizon T and the number of discretization knots N .
This yields a state trajectory X = {x1, . . . ,xN} and control
trajectory U = {u1, . . . ,uN−1}. Tasks and constraints are
enforced by minimizing a cost function:

J(X,U) = h(xN ) +

N−1∑
t=1

l(xt,ut). (4)

Shooting methods in particular minimize J(·) with respect
to control inputs only:

U∗ = arg min
U

J(X,U)

where U∗ is the optimal open-loop control trajectory. The
corresponding state trajectory is obtained by performing a
forward roll-out using the state transition function.

A. Differential Dynamic Programming

Differential Dynamic Programming (DDP) [2], [16] is a
classical method to solve the above unconstrained optimal
control problem using Bellman’s principle of optimality.
DDP begins by making a quadratic approximation of the
action-value function Q around a reference trajectory X(0) =

{x(0)
1 , . . . ,x

(0)
N } and U (0) = {u(0)

1 , . . . ,u
(0)
N−1}. The Q-

function is defined as:

Q(x,u, t) = l(x,u) + V (f(x,u), t+ 1) (5)

where the value function computes the “goodness” of state
x, the Q-function gives the same quantity for a state and an
action. DDP minimizes the second-order Taylor expansion
of the Q-function:

Q(xt,ut) = Q(x
(0)
t ,u

(0)
t ) +Qxδxt +Quδut+

1

2
δxTt Qxxδxt +

1

2
δuTt Quuδut + δuTt Quxδxt

(6)

where δxt = xt − x
(0)
t and δut = ut − u

(0)
t and the

subscript notation is shorthand for the partial derivative of Q
evaluated at the reference trajectory point for t ∈ [1, N ]. In

the following, we drop the subscripts to denote way points
for readability. We then give the derivatives:

Qx = lx + fTx V
′
x

Qu = lu + fTu V
′
x

Qxx = lxx + fTx V
′
xxf

T
x + V ′x · fxx

Quu = luu + fTu V
′
xxf

T
u + V ′x · fuu

Qux = lux + fTu V
′
xxf

T
x + V ′x · fux

where V ′ is shorthand for V (·, t + 1). The last terms are
shorthand for tensor products.

DDP minimizes the quadratic approximation with respect
to the new coordinate system. Hence we obtain the local
feedback control law:

δu∗t = arg min
δut

Q(·) = −Q−1uu (Qu +Quxδxt)

with the feed-forward modification k = Q−1uuQu and state
feed-back term K = Q−1uuQux. Since δu∗t is the minimum
of the Q-function, DDP obtains a recursive set of equations
for the value function at every time-step:

V = Q(xt,u
∗
t ) = Q(x

(0)
t ,u

(0)
t )−QuQ−1uuQu

Vx = Qx −QxuQ−1uuQu
Vxx = Qxx −QxuQ−1uuQux

In order to evaluate these equations, Q and its derivatives
are evaluated at the reference trajectory state x

(0)
t and the

optimal control δu∗t as calculated above. This is performed
in a backward pass from knot t = N to t = 1. The backward
pass is followed by a forward pass in order to obtain the
new state sequence X̂ = {x̂1, . . . , x̂N} and controls Û =
{û1, . . . , ûN−1}:

x̂1 = x
(0)
1

ût = u
(0)
t − kt −Kt(x̂t − x

(0)
t )

x̂t+1 = f(x̂t, ût)

IV. ENFORCING SPARSITY WITH L1 AND HUBER COSTS

DDP minimizes a general cost function J(X,U) of the
form in (4). In this work, we propose adding an additional
cost term for each control input ut that induces sparsity. The
new cost function thus becomes:

J(X,U) = h(xN ) +

N−1∑
t=0

[
l(xt,ut) + λ ls(ut)

]
(7)

where ls(ut) is one of the sparsity-inducing losses described
in section II and λ is a strength parameter, which controls
the relative effects of the regularization loss and the objective
loss.

For the cartpole and satellite examples, we use quadratic
state costs of the following form:

h(xN ) = (xN − x∗)TQf (xN − x∗)

l(xt,ut) = (xt − x∗t )
TQ(xt − x∗t )

where Q is a diagonal weighting matrix for each of the NDX
dimensions of xt and the matrix Qf is a weighting term for
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(c) Pseudo Huber

Fig. 3: Comparison of different sparsity-inducing control cost terms on the cartpole system: Sparsity of solutions and final
costs for a grid-search over hyper-parameters β (shape) and λ (strength). Darker color indicates more sparsity and lower
final cost respectively.

xN , respectively. For the Valkyrie example, we demonstrate
the use of nonlinear task cost functions such as end-effector
position, stability cost, and joint limits from [17].

The parameters λ together with β are hyper-parameters and
their values define the interaction between the sparsity loss
and the optimization criterion (task). We study their effect on
the convergence of the solution in detail using the canonical
cartpole in the following section.

V. EFFECTS OF SPARSITY LOSS ON TOY PROBLEMS

We firstly study the effects of sparsity-inducing costs on a
one-dimensional problem—the swing-up of a cartpole, which
is a canonical optimal control problem where a pendulum is
attached to a cart moving on an infinite friction-less track.
The goal is to swing the pendulum upright and move the
cart to the origin. The problem is underactuated—the control
inputs are linear forces on the cart, whereas the pendulum
joint is not controlled. The time horizon is T = 200 with
∆t = 0.01s, resulting in a 2 s trajectory. The control limits
are ±30N and Qf = 100 I4, where I4 is the 4× 4 identity
matrix.

A. Effects of weight and shape parameters on sparsity

Firstly, we examined the effect of the weighting term λ and
shape parameter β on sparsity. β for all functions controls
where the switching between an L2 cost (for small x < β)
and an L1 cost (for x ≥ β) occurs. We consider controls to
be zero when they are within [−β, β].

The results of a grid search over β and λ are in Fig. 3a for
SmoothL1, Fig. 3b for Huber, and Fig. 3c for PseudoHuber.
We plotted both the number of zeros and the final task cost—
the latter tells us how close we are to the goal state.

A desired property of sparsity costs is that sparsity should
increase with the weight term λ. As expected, we see a trade-
off between sparsity and task cost—the more regularization,
the more sparsity, however at a higher task cost. This is in fact
what the grid search shows. Another important property we
observe is that for lower tolerances β, a much higher weight is
required to achieve sparsity. Thus we can extract a criterion for
choosing sparsity—1) pick the largest β parameter according
to how much noise tolerance the system has and 2) adjust
the control cost weight until the desired amount of sparsity is
achieved. The noise tolerance of the system is the maximum
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Fig. 4: Sparse control solutions for the cartpole system: Left
with control artifacts and right with smooth controls.

value of controls beyond which rapid fluctuations can not be
tolerated.

In the solutions for β = 10−3 in Fig. 4(left), all solutions
achieve a final task cost of less than 10−5 with 73, 58 and
86 zero controls for SmoothL1, Huber and PseudoHuber,
respectively, yet we observe artifacts showing rapid control
changes. Increasing the weight (from 7, 9, and 0.01 to
25, 25, and 0.023 for Huber, PseudoHuber and SmoothL1,
respectively) can reduce these artifacts, while also increasing
sparsity. In Fig. 4(right) the solutions have 101, 102 and 89
zero controls and produce smoother control profiles. However,
this comes with an increase of final state cost from less than
10−5 to less than 10−4.

In general, sparsity-inducing costs together with con-
trol/actuator limits produce so-called ”bang-bang” control.
On a real system, aggressive bang-bang control requires the
actuator to change the output torque rapidly at each time-step.
This is usually not possible due to actuator dynamics, for
example, when using electric motors on the cart pole in our
example. However, in some domains, namely satellite control,
the underlying physical system and actuators are only capable
of bang-bang control and this in fact is a desirable property.

VI. THRUSTER CONTROL FOR SATELLITES

We now consider a satellite as a floating rigid body in
SE(3) actuated through forces produced by two primary
propulsion thrusters on the front and back of the satellite
and four steering thrusters on each of its remaining four
sides (NX = 13, NU = 18). We generated a center of mass
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Fig. 5: Satellite thruster trajectory (SmoothL1) and corre-
sponding state trajectory.
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Fig. 6: Satellite control trajectories for weights 10−5 and
10−1 and a PseudoHuber loss.

tracking trajectory with 4 discrete stages solved in a single
optimization problem, as illustrated in Fig. 1. The problem
was discretized with ∆t = 0.1 with T = 1400 knots for a
140-second trajectory. Thruster forces were constrained in
[0, 200] N for the front and back and [0, 50] N for the side
thrusters, since there are four for each direction.

The resulting control (thrust) and state trajectories are
shown in Fig. 5. The different colors correspond to different
thrusters being activated at the corresponding times. We see
thruster peaks at the start and end of each of the stages and
reach the corresponding set output forces. The right side of
the figure shows the position and linear velocity trajectories
in state space.

A. Effects of weight parameters

We next examine the effects of the different weights
on the satellite problem. In Fig. 6 we plotted the control
trajectories for different weights—λ = 10−5 and λ = 10−1.
The plot for the correctly tuned λ = 10−3 is in Fig. 5.
We see a similar trend as in the cart-pole system—if the
control weight is too small, we observe artifacts in solution
space. Tuning the weight produces sparse solutions with no
artifacts and the desired bang-bang control profile. Finally,
we observe a different result when increasing the weight
on the satellite example—this leads to longer thruster bursts
on the thrusters with smaller limit, which in fact leads to
less sparsity—23649 zero controls compared to 24509 when
tuned. This can be explained by the reduction of peaks at
200 N, which are penalized more, which in turn leads to the
solver compensating by switching on the 50 N thrusters.

B. Effects on convergence

Finally, we examine the effects on convergence for L1

costs. A plot of the time to convergence for all considered
cost terms is shown in Fig. 7. We computed this over a grid
of weights λ ∈ [10−5, 10−1] for β = 1. Generally, time to
convergence is increased for all sparse costs with Huber being
slowest and Pseudo-Huber fastest to converge on average.
This is expected as sparsity-inducing cost terms have less
steep gradients further away from zero, where the gradient
for an L2 loss would be larger.
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Fig. 7: Timing analysis on the satellite example: Using sparse
costs leads to slower overall convergence.

VII. ACTIVE JOINT SELECTION FOR LOWER-DIMENSIONAL
TASKS ON REDUNDANT SYSTEMS

We next applied the sparse costs to a reaching task on a
38-DoF humanoid robot. We use acceleration-based linear
system dynamics and nonlinear general task costs. In this
case, the three-dimensional reaching task requires only two
joints to move (the shoulder and the hip). This is illustrated
in Fig. 10. The goal is to reach to x∗ = [0.5, 0.2, 0.9], a point
directly in front of the robot at hip-height. We discretized
into T = 20 knots with ∆ = 0.1 s for a 2 s trajectory.

The resulting state and control plots for L2 are in Fig. 8.
Solving the problem with L2 control regularization produces
a solution that moves more joints than necessary. This is
easily seen in the corresponding state plots (Fig. 8 and 9),
showing the positions and velocities of the joints that move.

Applying a sparsity cost (Pseudo-Huber) to the problem
leads to the solver choosing to move only the required joints.
The resulting trajectories in Fig. 9 show this clearly. However,
due to the approximation of the L1 costs, numerically the
robot is not moving 3 joints, as is apparent, but rather 7
have velocities greater than 10−3. Compared with L2, which
moves 26 joints, this is nonetheless a significant reduction.

Finally, we executed the motion plans on the physical robot.
The trajectories are tracked using an inverse dynamics based
whole-body controller. We compared a solution with an L2

cost and a Huber cost. We plot the tracking results (distance
of end-effector to target) in Fig. 11. For the Huber sparse
trajectory, tracking is better both during and at the end of the
trajectory.
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Fig. 8: Valkyrie reaching task. L2 uses 25 joints.
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Fig. 9: Valkyrie reaching task. Pseudo Huber uses 7 joints.

Fig. 10: Reaching to a position target: Using L2, the robot
reaches the target while moving a majority of the joints by
small amounts. A Huber loss induces sparsity improving
tracking and maintaining an equal contact force distribution.
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Fig. 11: Tracking results for the Valkyrie reaching task. The
red line highlights the end of the commanded trajectory. We
highlight the task-space error at the end of the trajectory
(T = 2s) and the end of the experiment. This illustrates that
the whole-body controller adds a delay to the motion execution,
and that the tracking error is lower for the sparsity-induced
trajectory.

VIII. DISCUSSION

We studied the effects of using an L1 cost for the control
of dynamic systems using optimal control. Since L1 is not
continuously differentiable, we studied three approximations:
the SmoothL1, Huber, and PseudoHuber losses.

On a simple cartpole problem, L1 costs lead to sparsity
in control space by making a subset of the controls 0 and
producing peaks that resemble square waves. We analyzed
the performance of L1 costs over a grid of values for the
shape parameter β, which thresholds switching between L1

and L2, and the control cost weight λ. For smaller values of
β a much larger control weight is required to achieve sparsity.
Larger control weights, however, lead to higher task costs. We
thus propose picking the largest value of β according to the
system’s noise tolerance and then fitting the weight λ until
the desired level of sparsity is achieved. We further motivate
this approach by showing that relying on sparsity and final
task cost alone can lead to non-smooth control trajectories
with visible artifacts.

Scaling L1 costs to real-world robots presents new chal-
lenges. We successfully applied L1 to a kino-dynamics
optimal control problem on the Valkyrie robot to select a
subset of active joints for a low-dimensional reaching task.
While L2 losses use more joints than necessary, L1 can
automatically reduce the number of joints by setting the
corresponding controls to 0. Sparse controls can be in practice
tracked better. However, sparse controls also result in bang-

bang control with higher commanded accelerations that can
damage the hardware.

On the other hand, this is a desired control profile for
thruster control for satellites. We were able to achieve thruster-
like behavior with L1 costs in order to track a multi-stage
center of mass trajectory. We further analyzed the timing
performance of L1 costs, showing that there is an increase in
convergence time when using L1 costs with Huber being the
slowest, followed by SmoothL1 and Pseudo-Huber. Finally,
we showed that the weight parameter λ has a similar effect
for satellite control as it does on the cartpole—low values of
λ lead to artifacts and high values of λ lead to high task costs.
In the satellite problem, however, high λ did not numerically
lead to more sparsity, as it produced longer thruster peaks
for the lower control-limit thrusters, instead penalizing the
high-limit thrusters more.

Finally, we note that it is important to enforce control
limits when using sparsity-inducing losses. For unconstrained
methods (DDP [2], FDDP [5]) clamping of applied controls
in the forward-pass works in practice but results in slower
convergence and often leads to getting stuck in local minima.
We tested the losses with active-set control-limited DDP [18],
and in particular BoxFDDP [19] in our experiments due to
its greater generalization without an initial guess.

Future directions for this research are in time optimization
of trajectories using DDP and to address the convergence and
control artifacts using regularization strategies.
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