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CoSPARSE: A Software and Hardware Reconfigurable SpMV
Framework for Graph Analytics

Abstract—Sparse matrix-vector multiplication (SpMV) is a critical
building block for iterative graph analytics algorithms. Typically, such al-
gorithms have a varying active vertex set across iterations. This variablity
has been used to improve performance by either dynamically switching
algorithms between iterations (software) or designing custom accelerators
(hardware) for graph analytics algorithms. In this work, we propose
a novel framework, CoSPARSE, that employs hardware and software
reconfiguration as a synergistic solution to accelerate SpMV-based graph
analytics algorithms. Building on previously proposed general-purpose
reconfigurable hardware, we implement CoSPARSE as a software layer,
abstracting the hardware as a specialized SpMV accelerator. CoSPARSE
dynamically selects software and hardware configurations for each
iteration and achieves a maximum speedup of 2.0× compared to the
naı̈ve implementation with no reconfiguration. Across a suite of graph
algorithms, CoSPARSE outperforms a state-of-the-art shared memory
framework, Ligra, on a Xeon CPU with up to 3.51× better performance
and 877× better energy efficiency.

I. INTRODUCTION

Sparse matrix-vector multiplication (SpMV) is an essential lin-
ear algebraic operation which has been widely adopted in many
irregular workloads, such as machine learning and data mining [6].
Recent studies have shown that large-scale iterative graph analytics
can achieve promising performance on a high-performance backend
optimized for SpMV [10]. However, guaranteeing high performance
consistently across different input graphs, graph algorithms, or algo-
rithm iterations, is challenging. First, real-world graphs have distinct
sizes and distributions. The adjacency matrices used to represent
graphs have sizes scaling from hundreds to billions and densities
ranging from 10−7 to 10−1 [4], leading to dramatically different
memory footprints. Second, the active vertex set, i.e. the frontier
vector, varies from iteration to iteration, causing highly optimized
solutions for certain use cases to encounter significant performance
loss for the other cases. Therefore, it is hard to arrive at a “one-size-
fits-all” design for the efficient execution of graph algorithms [1].

To adapt to different scenarios, prior work has followed two distinct
routes: (i) software-level optimizations, e.g. deciding a suitable sparse
storage format based on the density and size of the input matrix
and vector, selecting either a dense or sparse dataflow [1], [9],
[11]–[14], [16], and (ii) hardware-level optimizations that focus on
the efficient use of on-chip memory [3], [15]. Merely relying on
software optimizations could fail to fully explore on-chip data reuse
due to limitations in hardware. On the other hand, hardware-only
optimizations are also likely to achieve suboptimal performance
for certain graph algorithms and inputs. For example, a hardware
accelerator optimized for graph algorithms based on sparse matrix
dense vector computations will consume unnecessary compute cycles
for those involving sparse vector computations. The ideal design for
SpMV-based graph analytics should run the desired algorithm on
hardware that is most efficient for the data access pattern based
on the input characteristics. This complex and high-dimensional
design space therefore calls for a reconfigurable SpMV framework
which provides both flexibility to adapt to different inputs and
algorithms and a faithful strategy to speedily traverse the available
reconfiguration points to achieve the highest achievable performance.

Our proposed solution, CoSPARSE, explores reconfiguration op-
portunities in both software and hardware, as shown in Figure 1.
In software, it considers two SpMV algorithms based on inner and
outer product. The choice of the algorithm directly affects the access
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Hardware Reconfiguration
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Optimized Code

Reconfigurable 
Hardware

Fig. 1: Overview of the proposed CoSPARSE framework.

pattern of the input/output data, and the load-balancing strategy.
In hardware, reconfigurability is manifested in the on-chip memory
hierarchy of the underlying hardware, since SpMV is known to be
memory-intensive and is bottlenecked by irregular memory accesses.
CoSPARSE uses a hardware substrate that supports reconfigurations
in both the on-chip memory sharing pattern (shared/private) and on-
chip memory type (cache/scratchpad). The software and hardware
reconfiguration decisions are made in an integrated dynamic frame-
work, guided by knowledge from extensive experiments and in-depth
analysis. In addition, CoSPARSE provides a workload-balancing
strategy to harness maximum parallelism for irregular sparse matrices.
All of these synergistic benefits are showcased on a suite of common
iterative graph analytics algorithms, including Breadth-First Search
(BFS), Single-Source Shortest Path (SSSP), PageRank (PR) and
Collaborative Filtering (CF), constructed on top of CoSPARSE’s
SpMV abstraction. Specifically, we make the following contributions:

• On-the-fly, automatic, co-ordinated reconfiguration of the hard-
ware and software based on input data properties, i.e. the dimen-
sion/density of matrices and the density of vectors, including:

– Software reconfiguration between inner product and outer
product based SpMV implementations, and

– Hardware reconfiguration of the memory subsystem to
exploit data-sharing patterns (private/shared) and on-chip
memory types (cache/scratchpad).

• Extensive experiments with in-depth analysis to derive the
threshold for software and hardware reconfiguration decisions.

• A consistently efficient, high-performance SpMV framework for
graph analytics across diverse algorithms and datasets.

• Evaluation of CoSPARSE against competing systems that
demonstrates up to 877× better energy efficiency and 3.51×
speedup for graph algorithms over Ligra on a Xeon CPU.

II. BACKGROUND AND RELATED WORK

Graph algorithms can be implemented as iterative sparse matrix
vector multiplications (SpMVs) to take advantage of highly optimized
SpMV backends [10]. However, the diverse nature of graph pro-
cessing workloads creates challenges for achieving high performance
across a wide range of graph algorithms and inputs.

A. Graph Frameworks using Software Reconfigurations

For graph traversal algorithms such as breadth-first-search (BFS),
the size of the active vertex set varies from iteration to iteration [13].
For example, the SSSP algorithm on pokec, a commonly used
graph benchmark, shows that during execution the percentage of
active vertices increases from <0.1% to 47% and again decreases
to <0.1% (Figure 9). To harness this property, switching between
dense and sparse representations of the active vertex set and the
corresponding dataflows across iterations is widely adopted in recent
graph frameworks [1], [9], [11]–[14], [16]. In terms of SpMV, the
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dense representation is equivalent to the inner product algorithm (IP)
and the sparse one corresponds to the outer product algorithm (OP).
Graph frameworks usually target existing platforms with no hardware
modifications and require user input for accurate reconfiguration.
For example, Ligra [9], a lightweight shared-memory based graph
framework implementing software reconfiguration, uses an empirical
parameter, i.e. |V | = |E|/20, as the reconfiguration threshold unless
set differently, where |V | denotes the active vertex size and |E| is
the number of edges. CoSPARSE, instead, automatically analyzes
choices at both software and hardware levels within a tightly-coupled
framework to achieve best performance at graph iteration granularity.

B. Optimized Hardware Acceleration for Graph Analytics

Many vertex-programming based graph processing accelerators
using frontier scheduling have been proposed recently [2]. Graphi-
cionado [3] exploits the on-chip scratchpad memory for random ac-
cesses and applies graph slicing to maximize data reuse. TuNao [15]
maps the Gather-Apply-Scatter paradigm to ECGRA modules and
enhance data reuse by storing high-degree vertices in on-chip buffers.
GraphPIM [5] provides efficient processing-in-memory offloading
with minor architectural extensions to achieve dramatic memory
bandwidth improvement. To obtain best efficiency with minimum
hardware, graph processing accelerators tend to target one dataflow,
and often do not consider the characteristics of the input vector.
CoSPARSE, instead, is implemented on top of a programmable
general-purpose hardware substrate that can be easily extended to
support different graph algorithms by providing an SpMV framework
abstraction and efficiently execute both IP and OP.

C. Opportunities in Combining Software/Hardware Optimizations

CoSPARSE requires a hardware substrate that is programmable
and reconfigurable to orchestrate software and hardware reconfig-
uration. Recent work has proposed a many-core general purpose
accelerator called Transmuter [7] that supports reconfiguration of the
resource sharing pattern (private/shared), and on-chip memory type
(cache/scratchpad(SPM)). The architecture features a massive number
of lightweight processing elements (PEs) and a reconfigurable mem-
ory hierarchy. The PEs are grouped into tiles and are coordinated by
a local control processor (LCP). Each PE and LCP are lightweight in-
order processors with standard ISA support. The PEs are connected to
a two-level memory hierarchy consisting of reconfigurable crossbars
(RXBars) and reconfigurable caches (RCaches). Each level of the
reconfigurable memory hierarchy (L1/L2) can be configured into
shared/private caches/SPMs. The reconfiguration can happen both at
compile time or at runtime. The runtime hardware reconfiguration
overhead is estimated to be ≤10 clock cycles. We will refer to an
A × B system as a Transmuter design with A tiles and B PEs
per tile. The use of programmable cores facilitates dataflow recon-
figuration and support for diverse graph algorithms. The hardware
reconfigurability of Transmuter also lends a good fit to CoSPARSE,
since the hardware is amenable to different data access patterns and
flexible in response to properties of the evolving data set. Note that
though CoSPARSE is evaluated on this hardware platform, this work
is applicable to any general programmable reconfigurable hardware.

III. COSPARSE RECONFIGURATION LAYER DESIGN

Figure 2 gives an overview of the heuristic-driven reconfiguration
strategy, which is triggered before each SpMV execution. Based on
the density of the input vector, we decide whether to use the IP
or OP based SpMV algorithm; this is the software (re)configuration
choice. Then, based on the density and size of the matrix and the
vector, we decide on the two-level on-chip memory configuration of
the hardware; this is the hardware (re)configuration.

Adjacency Matrix (G) Iteratively call SpMV abstraction: 
f_next = SpMV(G.T, f) , f is frontier (active vertex set)

f is dense f is sparse

G.T and f fits in cacheG.T and f exceeds 
cache size

G.T and f exceeds 
cache size

L1: shared cache spm
L2: shared cache

(SCS)

L1: shared cache
L2: shared cache

(SC)

L1: private cache
L2: private cache

(PC)

L1: private spm
L2: private cache

(PS)

PE SPM Cache RCache SHARED PRIVATE RXBar
L2
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PE SPM Cache RCache SHARED PRIVATE RXBar
L2
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PE SPM Cache RCache SHARED PRIVATE RXBar
L2
L1

PE SPM Cache RCache SHARED PRIVATE RXBar
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PE: Reconfigurable Cache: SPM
Cache

Reconfigurable Crossbar:
Shared
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Product
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Productx = x =

Fig. 2: Structure of CoSPARSE hardware and software reconfigura-
tion framework. For every invocation to CoSPARSE, we select the
best software (IP or OP), followed by hardware configurations (SCS
or SC for IP, PC or PS for OP), assuming a 2×4 system.

A. Reconfigurable SpMV Implementation

Figure 2 shows the four hardware configurations that we identified
to be most suitable for SpMV, i.e. SC (L1: shared cache and L2:
shared cache) and SCS (L1: shared cache scratchpad and L2: shared
cache) for IP and PC (L1: private cache and L2: private cache) and
PS (L1: private scratchpad and L2: private cache) for OP.
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Fig. 3: Matrix partitioning based on non-zero elements and algorithm
mapping of IP on SCS and OP on PS that focuses on maximizing
data reuse and reducing stalls for random accesses on a 2×2 system.

Inner product (IP) Implementation. To maximize parallelism,
the matrix is partitioned into disparate row partitions which are stored
in row-major COO format to facilitate spatial locality for accesses.
The COO format stores the row index, column index, and the value
for each non-zero matrix element. The vector is stored as a dense
array. Each tile performs multiplication and accumulation on one of
the matrix row partitions with the vector. Hence, each tile works on
different segments of the output vector in parallel without introducing
data races, and thus avoids synchronization. In addition, the mapping
exploits reuse opportunities of the input vector, which is shared
among the tiles and PEs within a tile. Therefore, to maximize data
sharing, CoSPARSE selects the SC and SCS modes, which enables
the PEs and the tiles to share a large chunk of on-chip memory.

Figure 3(top) illustrates the computation scheme of IP for SCS. The
input vector elements are stored in the shared SPM in L1 to curtail
the overhead of random accesses to the vector elements due to matrix
sparsity. The vector elements in the SPM are shared among all PEs
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within a tile. For large matrices, the matrix is partitioned vertically to
ensure that the vector segment corresponding to a vertical partition
(vblock) fits in the SPM. SC uses the same scheduling except that the
vector elements are randomly accessed from the L1 shared caches.

Outer product (OP) Implementation. OP also involves each tile
multiplying an exclusive row partition with the vector. The matrix is
stored in a column-based sparse format, i.e. CSC format, which stores
the row index and the value for each non-zero matrix element and an
array of pointers to the start row index of each column. The vector
is stored in a sparse format, i.e. (index, value) tuples of the vector
non-zero elements. The LCP assigns a contiguous chunk of non-zero
vector elements to each PE and the PEs perform mergesort with the
corresponding matrix columns. Since each PE accesses an exclusive
set of columns, there is no data sharing between PEs and between
tiles. Therefore, private on-chip memories are used in both L1 and
L2 to prevent data thrashing and cache contamination. The PEs can
also benefit from higher access bandwidth and shorter latency to L1,
since bank conflicts and arbitration are eliminated.

Figure 3(bottom) shows the execution flow of OP in PS. The sorted
list maintaining the head elements of the non-empty matrix columns
is kept in the private SPM to support fast random accesses from
list management. For higher scalability, the sorted list uses a heap
structure, i.e. a binary tree which guarantees that the parent is smaller
than its children. When the sorted list cannot fit in the SPM, it spills
over to the shared memory, but the tree nature of heap ensures that
the majority of comparisons and swaps still happen in the SPM. The
scheduling for PC is the same. However, since PC uses caches in L1
and has no control over the cache replacement policies, the sorted
list elements may be evicted to L2 or even the main memory.

B. Workload Balancing Strategies

Many real-world sparse matrices have non-uniform distributions
[1], causing imbalanced workload distribution across PEs. To achieve
maximum parallelism, both static matrix partitioning (before execu-
tion) and dynamic task distribution (during execution) are applied.

Inner product (IP) treats the vector as dense, so the execution
time of a PE is highly dependent on the number of non-zero
matrix elements assigned to it. Figure 3(top) illustrates the matrix
partitioning method used by IP. The sparse matrix is first statically
partitioned into row partitions with the same number of non-zero
elements. Each PE is assigned one of the row partitions and thus
obtains a similar amount of work. The row partitions are further
divided into multiple vertical blocks (vblocks) so that the vector
elements corresponding to each vblock can fit in the shared SPM.
Ideally PEs work on the same vblock at a time so that each tile
can fetch the vector elements for the other tiles into L2 caches. The
vertical partition is not required for the SC mode but can still be
beneficial because of the improved spatial and temporal locality of
vector accesses. Since each tile works on disparate row partitions, no
synchronization is needed after each PE finishes processing a vblock.
Also, since the matrix is sparse, the imbalance in the number of non-
zero elements within a vblock is not large enough to visibly impact
performance. The proposed partitioning scheme is sufficiently light-
weight and effective in that it balances the workload by assigning
each PE the same number of matrix non-zeros and fully utilizes the
underlying hardware by considering the size of the on-chip storage.

Outer product (OP) is different from IP in that the vector density
affects the workload (actual number of non-zero elements) assigned
to PEs. If the vector used for SpMV remains the same throughout
execution, the matrix partitioning can also take into account vector
sparsity. However, this is not the case for our target applications, i.e.
iterative graph algorithms, and thus dynamic workload-balancing is
needed. Similar to IP, the matrix is first divided into row partitions

with the same number of non-zero elements and assigned to each tile.
Within a tile, the LCP distributes the non-zero elements of the vector
evenly to each PE, such that the number of columns assigned to each
PE, i.e. the storage needed for the sorted list, is roughly the same.
The combination of static and dynamic workload-balancing provides
an effective solution for irregular matrix distribution and works well
for applications with evolving vectors, e.g. graph algorithms.

C. Reconfiguration Threshold Analysis

The thresholds used at each level of the reconfiguration decision
tree is based on extensive experiments and analysis. The methodology
for these experiments is detailed later in Section IV-A.

1) Software Reconfiguration Threshold: When the vector is sparse,
OP tends to outperform IP because it only considers the matrix
columns that have corresponding non-zeros in the input vector, and
thus significantly reduces the number of matrix elements fetched
during computation. However, the overhead of mergesort grows in
a super-linear fashion with the number of matrix columns to merge,
which grows with increasing vector density and matrix dimension,
and causes the benefits of OP to diminish in comparison to IP.
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Fig. 4: Speedup of OP (PC) vs. IP (SC). IP performs better for dense
vectors and OP performs better for sparse vectors. The crossover
vector density decreases when more PEs are present in a tile.

Figure 4 shows the speedup of OP over IP and demonstrates a
clear crossover point between the two algorithms for different system
sizes and input matrices. We define the crossover vector density
(CVD) as the density above which the IP algorithm should be used,
and below which, the OP algorithm should be used to achieve the
best performance. The CVD decreases with an increasing number of
PEs per tile because the performance of OP does not scale with the
number of PEs as well as it does for IP.

The dimension and density of the matrix also have an impact on
the CVD. When the matrix becomes sparser, the total amount of
reuse for vector elements becomes smaller for IP, whereas OP is not
affected by the matrix sparsity, causing the CVD and the performance
benefit of OP to increase slightly.

Takeaways. There exists a crossover point at which CoSPARSE
switches from IP to OP to achieve the best performance as the
vector density decreases. The crossover density decreases from ∼2%
to ∼0.5% as the number of PEs in a tile increases from 8 to 32.

2) Hardware Reconfiguration Threshold for Inner Product (IP):
The best hardware reconfiguration for IP depends on both the
dimension and density of the matrix, as well as the density of the
vector. As shown in Figure 5, the performance benefit of the SCS
mode is positively correlated to the vector density. In the SC mode,
the vector elements are fetched into L1 caches on-demand and could
be evicted to L2 caches or even the main memory by the cache
replacement policy. The SCS mode stores the vector elements in the
L1 SPM to allow fast random accesses. Since SCS eliminates the
case where useful vector elements are evicted from L1 and reloaded,
SCS encounters a lower number of L2 cache accesses than SC mode
and thus less memory stalls, especially for high density vectors.

The matrices evaluated here have the same number of non-
zero elements, so the largest matrix is also the sparsest matrix.
The performance benefit obtained by SCS is highly dependent on
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Fig. 5: Speedup of SC vs. SCS for IP. SCS achieves more performance
gain for denser vectors or when the reuse of data in SPM is higher.

the number of times the vector elements in the SPM are reused
(Nreuse). For uniformly random matrices, Nreuse is proportional
to the number of non-zero elements in a vblock (Figure 3), i.e.
N·r·NUM PES PER TILE

NUM TILES
, where N is the matrix dimension and

r is the matrix density. Based on the formula, the largest matrix
exhibits the least reuse among the four matrices, and thus the least
speedups. For the same reason, the performance benefit reduces when
the system size changes from 4×8 to 8×8 or from 4×16 to 8×16,
since Nreuse decreases as the number of tiles increases. When the
number of PEs increases, Nreuse also increases. However, as the SC
mode also has a larger cache to fit more vector elements in L1, the
performance benefit does not show a clear trend.

Takeaways. The speedup of SCS is positively correlated to vector
density as well as the number of times that the vector elements
stored in the SPM are reused, i.e. the number of matrix elements
corresponding to these vector elements.

3) Hardware Reconfiguration Threshold for Outer Product (OP):
The performance benefit of PS versus PC is reported in Figure 6.
As the vector density increases, more matrix columns need to be
merged, resulting in an increase in speedup with PS. This is because
PS maintains the sorted list of the head elements of the non-empty
matrix columns in a heap structure in the SPM, and the majority of
random accesses are handled by the SPM. PC, however, does not
have control over the locations of the sorted list elements. When the
sorted list cannot fit in L1, the list management accesses can span
across the memory hierarchy. The situation becomes severe with high
vector density since the length of the sorted list grows with the vector
density, which is indicated by the lower hit rates of both the L1 and
L2 caches. On the other hand, when vector sparsity allows the sorted
list to fit in the L1, PC outperforms PS as PC does not have SPM
management overhead and higher access bandwidth to the L2.
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Fig. 6: Speedup of PC vs. PS for OP. The performance gain of PS
grows with increasing vector density, increasing number of tiles, and
decreasing number of PEs per tile.

The performance benefit of PS is closely related to the number
of columns that need merging, which is determined primarily by the
matrix dimension and vector density, and also related to the size of
the hardware system. Since the number of PEs and L1 RCache banks
are the same, the increased number of PEs in a tile allows PC to have
a larger cache to fit the sorted list. As the L1 hit rates increase for PC,
the speedup of PS drops when there are more PEs per tile. On the
other hand, the performance benefit of PS increases rapidly with the
number of tiles. As the number of cores doubles by switching from a
4×8 to an 8×8 system, the PC mode achieves an average speedup of
1.80× and PS mode achieves 1.96×. Increasing the number of tiles

keeps the number of matrix columns to merge the same, but reduces
the length of the matrix columns, and thus the total number of non-
zero elements to merge. In this case, the performance benefit of the
PS mode becomes more obvious, because the chances of loading the
next elements in the matrix column are reduced, and random accesses
to the sorted list becomes a more significant bottleneck.

Takeways. PS achieves better performance when there are more
columns to merge, or when the length of columns to merge reduces.
The speedup of PS decreases for systems with more PEs in a tile.

D. Graph Analytics Algorithms on CoSPARSE

Hardware accelerated graph processing solutions often require
programmers with in-depth architectural knowledge of the hardware
to fully exploit the available performance benefit [3]. Existing graph
processing frameworks, on the other hand, enhance user-friendliness
by abstracting away scheduling and implementation details, but
achieving the best performance still requires expert intervention,
e.g. to define accurate thresholds [14]. CoSPARSE addresses both
performance and programmability with a software and hardware
reconfigurable SpMV framework. The software and hardware con-
figurations are automatically determined based on algorithms and
input characteristics upon invocation to the decision tree. The runtime
hardware reconfigurations are triggered by one of the LCPs and are
estimated to take ≤10 cycles. The SpMV scheduling and implemen-
tation are embedded in the framework. End users only need to define
the key computations to realize a graph algorithm, similar to [9].
Example algorithm implementations are shown below.

1) Graph Analytics Algorithm Mapping: In this work, we im-
plement and evaluate four common graph algorithms which are
representative in machine learning and graph traversal, i.e. Breadth-
First Search (BFS), Single-Source Shortest Path (SSSP), PageRank
(PR) and Collaborative Filtering (CF).

To map a graph algorithm to CoSPARSE, two key operations need
to be specified. Matrix Op defines the computation between the
non-zero elements of the adjacency sparse matrix and the elements
of the frontier vector. Vector Op applies computation to the vector
elements. Taking SpMV as an example, Matrix Op denotes the sparse
matrix vector multiplication. Since Matrix Op already calculates
the final result, Vector Op is not applicable for SpMV. All graph
algorithm implementations in CoSPARSE are mapped based on code
from the Ligra framework [9]. The definition of the key operations
of the implemented graph algorithms are detailed in Table I.

TABLE I: Definitions of Matrix Op and Vector Op of Algorithms
mapped to CoSPARSE, where Sp represents the adjacency sparse
matrix and V represents the frontier vector.

Algorithm Matrix Op(Sp,V) Vector Op(V)
SpMV

∑
Spsrc,dst ∗ Vsrc N/A

BFS min(Vsrc) N/A
SSSP min(Vsrc + Spsrc,dst,Vdst) N/A
PR

∑
(Vsrc/deg(src)) α+(1−α)∗Vupdated dst

CF
∑

(Spsrc,dst−Vsrc ∗Vdst)∗Vsrc−λ∗Vdst β ∗ Vupdated dst + Vdst

2) Input and Output Conversion Overhead: Throughout the ex-
ecution of a graph analytics algorithm, the sparse matrix remains
constant, but the sparsity of the vector may vary from iteration to
iteration. A new output vector is produced and serves as the input
vector for the next iteration. To support the IP and OP algorithms and
runtime reconfiguration, two copies of the input compressed sparse
matrix (in COO and CSC formats, respectively) are stored in main
memory to avoid matrix conversion overhead, similar to [9], whereas
the lightweight vector conversion between sparse and dense format is
performed for the iterations that require reconfiguration. In most of
the graph analytics algorithms in our experiments, switching between
IP and OP only happens once or twice during execution, e.g. for BFS
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TABLE II: Microarchitectural parameters of gem5 model.

Module Microarchitectural Parameters
PE/LCP 1-issue, 4-stage, in-order (MinorCPU) core @ 1.0 GHz

RCache
(per bank)

4 kB, 1-ported, word-granular
CACHE: 4-way set-associative non-coherent cache with 8 MSHRs and
64 B block size, stride prefetcher
SPM: physically-addressed, word-granular

RXBar

Nsrc ×Ndst non-coherent crossbar with 1-cycle response
Arbitrate/Shared: 1-cycle arbitration latency, 0 to (Nsrc-1) serialization
latency depending upon number of conflicts
Transparent/Private: no arbitration, direct access

Main
Memory

1 HBM2 stack: 16 64-bit pseudo-channels, each @ 8000 MB/s, 80-
150 ns average access latency

and SSSP, where the vector changes from sparse to dense and then
back to sparse. The other algorithms, namely PR and CF, always use
dense vectors, and thus no vector format conversion is needed.

IV. EVALUATION

A. Experimental Setup
CoSPARSE is modeled using the gem5 simulator. The microarchi-

tectural parameters are listed in Table II. The PEs and LCPs are
modeled after an in-order ARM Cortex M4F, and the cache and
crossbar latencies are based on prior work [7]. For systems larger
than 8×16, the simulation resources required become prohibitive and
a trace-based simulation model is used [7]. A power model is built
based on the static and dynamic power of each individual component
of the system and cross-verified with a fabricated chip prototype [8].
The crossbar and core power models are based on synthesis reports
and cache power is calculated by CACTI 7.0.

The SpMV implementation in CoSPARSE is compared against
state-of-the-art SpMV implementations on a CPU (Intel i7-6700K)
running MKL 2018.3 and a GPU (NVIDIA Tesla V100) running
cuSPARSE v8.0. The graph algorithm implementations are evaluated
against Ligra [9]. To evaluate the performance and efficiency of
CoSPARSE, we use a combination of uniformly random matrices,
power-law matrices generated by NetworkX, and real-world graphs
from SNAP dataset and SuiteSparse Matrix Collection. The details
of the real-world graphs are listed in Table III.

TABLE III: Specifications for real-world graphs.

Graphs # Vertices # Edges Type Kind Density
livejournal 4,847,571 68,992,772 Directed 2.9 ×10−6

pokec 1,632,803 30,622,564 Social Network Directed 1.2 ×10−5

youtube 1,134,890 2,987,624 Undirected 2.3 ×10−6

twitter 81,306 1,768,149 Directed 2.7×10−4

vsp 21,996 2,442,056 Random Undirected 5.0 ×10−3
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Fig. 7: The SpMV execution time of power-law matrices normalized
to uniform matrices on SC (IP) and PC (OP) on an 8×16 system.
Workload balancing benefits IP more than OP, especially SC for IP.

B. Workload Balancing Evaluation
The execution time of SpMV for power-law matrices, normalized

to that for uniformly random matrices of the same dimension and
density on cache-only hardware configurations, are shown in Figure 7.
For IP, the workload-balancing technique improves the execution
time by 7% to 30% and benefits SC more than SCS. Since SC

does not have SPMs, it cannot efficiently handle random accesses.
In addition, in SC, the workload imbalance could cause some PEs to
finish their assigned work early and remain idle, instead of fetching
vector elements that could be reused by other PEs into the shared L1.
Therefore, the performance of SC is more sensitive to the irregular
matrix distribution, and thus more likely to benefit from the workload-
balancing scheme. It is worth noting that in some cases for IP, the
execution time of power-law matrices is less than that of uniform
matrices. This is because the existence of dense rows/columns in
power-law matrices results in fewer non-empty matrix rows/columns.
In this case, fewer input vector elements are used for computation and
fewer output vector elements are generated, which are more likely to
fit in the L1, improving both locality and performance.

As shown in Figure 7-b), for OP, the execution time of power-
law matrices is also shorter than that of uniformly random matrices.
This is because the irregular distribution of the matrices increases
the possibility that the matrix column corresponding to a non-zero
vector element has no elements, thus reducing both the number of
columns and the number of non-zero elements to merge. The matrix
partitioning technique further improves the execution time of both
hardware configurations by up to 10%.

C. Comparison against Existing Platforms

The hardware substrate used in CoSPARSE is programmable so
as to support easy implementation of SpMV-based applications, such
as graph algorithms. Therefore, we evaluate SpMV against CPU and
GPU and compare the graph algorithm implementations to Ligra [9].
Accelerators are specifically optimized for certain applications by
eliminating extraneous hardware overhead for programmability and
flexibility, and thus are not considered for performance and energy
efficiency analysis for fair comparison.

vsp twitter youtube pokec

Fig. 8: Speedup and energy efficiency gain of CoSPARSE (16×16)
over CPU and GPU. The vector density sweeps from 0.001 to 1.0.
CoSPARSE achieves an average speedup (energy efficiency gain) of
4.5×(282.5×) and 17.3×(730.6×) over CPU and GPU, respectively.

1) SpMV: Figure 8 demonstrates the speedup and energy efficiency
gain of SpMV, on a suite of real-world graphs, over CPU and GPU
implementations. Overall, CoSPARSE achieves an average speedup
of 4.5× and 17.3× compared to the CPU and GPU, respectively.
Although the GPU has a significantly higher core count and peak
memory bandwidth compared to the CPU, the irregular and low-
locality memory accesses, coupled with the thread divergence inher-
ent in the SIMT model, bottlenecks the GPU. Memory dependence
stalls account for 32% of the GPU stalls (increasing with vector
density), and most of the remaining cycles (averaging 35%) are
spent in synchronization, instruction fetching, and throttled memory
accesses. Despite the high memory bandwidth, the highest average
bandwidth utilized by a kernel varies from 12-71%, and the overall
performance is <0.006% of the peak performance. The CPU shows
better performance than the GPU because the out-of-order cores
can hide the overhead of the irregular memory accesses and handle
complex execution flow. High power consumption is observed in both
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the CPU and GPU because of the massive number of threads in the
GPU and the high-performance out-of-order cores in the CPU. In
contrast, the underlying architecture of CoSPARSE uses lightweight
in-order cores and a flexible memory hierarchy. CoSPARSE improves
memory parallelism and locality by determining the best software and
hardware configuration, and carefully scheduling and balancing the
workload. The average energy efficiency gain over CPU and GPU
are 282.5× and 730.6×, respectively.

The performance and energy efficiency gains grow as the vector
becomes sparser, since CoSPARSE takes advantage of the vector
sparsity and skips computation and accesses to the output vector if
the vector element is zero. With vector density <0.01, the underlying
algorithm switches from IP to OP (except for pokec), and further
eliminates accesses to matrix elements that correspond to zero
elements in the vector. Since pokec has the largest dimension, it has
more columns to merge for the same vector density, and thus, OP
only performs better than IP for a vector density of 0.001.

2) Graph Analytics Algorithms: We first conduct a case study
illustrating the execution of graph analytics on our CoSPARSE
framework. Figure 9 shows the execution time per iteration running
SSSP with pokec normalized to IP in the SC mode. From Iter 4 to
Iter 8, the IP implementation outperforms OP because of the high
vector density (as large as 47% in Iter 6). Within these IP iterations,
Iter 6 and Iter 7 have the highest vector density and achieve the
best performance in the SCS mode, whereas Iters 4, 5, and 8 favor
the SC mode. The rest of the iterations involve vector densities less
than 0.5%, and achieve better performance using OP in the PC mode.
The synergistic software and hardware reconfiguration amass a net
speedup of 1.51×, over the SC-only IP execution, i.e. a baseline
implementation with no software or hardware reconfiguration. Similar
trends are observed with BFS and SSSP for the rest of the graphs. The
combined software and hardware reconfiguration achieves a speedup
of up to 2.0× across different algorithms and input graphs.

Iteration Vector
Density

Normalized Execution Time Best
ConfigurationInner Product Outer Product

SC SCS SC PC PS SW HW
0 <1% 1.0 1.0 <0.1 <0.1* <0.1 OP PC
1 <1% 1.0 1.1 <0.1 <0.1* <0.1 OP PC
2 <1% 1.0 1.2 0.1 0.1* 0.1 OP PC
3 <1% 1.0 1.2 0.6 0.5* 0.6 OP PC
4 1% 1.0* 1.2 7.5 6.7 6.8 IP SC
5 12% 1.0* 1.1 >10 >10 >10 IP SC
6 47% 1.0 0.8* >10 >10 >10 IP SCS
7 27% 1.0 0.9* >10 >10 >10 IP SCS
8 5% 1.0* 1.0 4.1 3.7 3.8 IP SC
9 <1% 1.0 1.1 0.5 0.4* 0.4 OP PC
10 <1% 1.0 1.0 0.1 0.1* 0.1 OP PC
11 <1% 1.0 1.0 <0.1 <0.1* <0.1 OP PC
12 <1% 1.0 1.1 <0.1 <0.1* <0.1 OP PC
13 <1% 1.0 1.1 <0.1 <0.1* <0.1 OP PC

* The execution time of the best configurationReconfiguration

Fig. 9: Vector density, execution time normalized to IP in SC,
and the best software/hardware configuration for each iteration of
CoSPARSE (16×16) for SSSP on pokec. Each iteration is color coded
with the best configuration. The best configuration changes with the
active vertex set, which conforms to the analysis in Section III-C.

The performance and energy efficiency gain of CoSPARSE on a
16×16 system over Ligra on a Xeon CPU is shown in Figure 10.
In terms of performance, CoSPARSE outperforms Ligra in most
cases and achieves a maximum speedup of 3.5×. Ligra outperforms
CoSPARSE for pokec on BFS and SSSP slightly because the CPU
has much more hardware resources, e.g. on-chip memory, to handle
the large memory footprint of pokec. However, the CPU consumes at
least 200× more power and 40× more area than CoSPARSE. Upon
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Fig. 10: Speedup and efficiency gain of CoSPARSE (16×16) over
Ligra (Intel Xeon E7-4860 at 2.6 GHz, 48 cores with 256GB DRAM).

normalizing the performance by the power consumption, we obtain
an efficiency gain of 84× for BFS and 129× for SSSP. Overall,
CoSPARSE achieves an average energy efficiency gain of 404.4×
across all evaluated algorithms and graphs, compared to Ligra.

V. CONCLUSION

This work proposed CoSPARSE as a novel solution that combines
software and hardware reconfiguration strategies to optimize the
performance and efficiency of SpMV, and thereby SpMV-based graph
analytics algorithms. We mapped different SpMV algorithms with
custom scheduling and workload balancing onto an architecture
with fast reconfiguration of the on-chip memory hierarchy. As a
fully-automated system, CoSPARSE judiciously decides the best-
performing software/hardware configuration. The parameters that
guide the reconfiguration decision-making engine are obtained by
evaluating SpMV on a wide range of matrices and system sizes. For
SpMV, CoSPARSE showed significant speedups (4.5× and 17.3× on
average) and energy efficiency gains (282.5× and 730.6× on average)
compared to the CPU and GPU, respectively. CoSPARSE also
provides an energy efficient platform for graph analytics; compared to
Ligra on CPU, CoSPARSE achieved an average speedup and energy
efficiency improvement of 1.5× and 404.4×, respectively.
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