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Spontaneous motion of liquid droplets can occur on hydrophobic, micro-structured, solid surfaces
comprising a structural gradient. In this study,we examine suchmotion experimentally and explain
our observations by invoking variable droplet-surface interactions (both actuation and resistance
forces) due to the structural gradient. The oscillatory motion of the droplet constitutes an integral
aspect of the behaviour and this is incorporated in the overall modelling. The theoretical model
features a truncated spheroid for the drop shape (flattened in the region of solid contact) coupled
with the oscillatory and alternate, leading and trailing motion of the contact line. Results from the
model and experiments provide both good qualitative and quantitative agreement. The component
of the vertical oscillation is found to help overcome wetting hysteresis and actuate the motion,
this being a key element for the completeness of the model.

Key words:

1. Introduction
For millimetric droplets and bubbles, with dimensions comparable to the capillary length,

phenomena such as coalescence (Yeh et al. 2013; Soto et al. 2018), droplet splitting (Chiou et al.
2008), oscillation (Duncombe et al. 2012), bouncing (Reyssat et al. 2009) and directional transport
(Chaudhury &Whitesides 1992) under surface gradients are dominated by surface tension forces.
Among droplet dynamic actuation and interactions between liquids and solid-surfaces, directional
transport of micro- and millimetre-sized liquid droplets has attracted considerable interest in the
past two decades and offered potential benefits in many applications such as chemical analysis
and bioassay systems (Velev et al. 2003; Wixforth et al. 2004; Srinivasan et al. 2004; De Angelis
et al. 2011), dropwise condensation heat transfer (Daniel et al. 2001; Macner et al. 2014), water
harvest (Zheng et al. 2010) and self-cleaning (Blossey 2003), amongst others.

To control droplet transport on solid surfaces, the interplay and tuning of the different surface
tensions involved, i.e., solid-liquid, WSL, liquid-vapour, W, and solid-vapour, WSV, are paramount.
One of the common methodologies exploited for droplet manipulation is to create a single
sharp contrast (He & Lee 2003; Kita et al. 2018; Zhao et al. 2020) or a continuous/stepwise
(Shastry et al. 2005, 2006; Yang et al. 2006; Reyssat et al. 2009; Launay et al. 2019) gradient
on the solid by adjusting surface roughness on an intrinsically hydrophobic background, either
imposed by the material itself, or upon subsequent coating. In the last century, the influence
of roughness on static wetting was investigated, which obeys the Wenzel (1936) or Cassie &
Baxter (1944) theories depending on the intrinsic wettability and the structure of the solid surface

† Email address for correspondence: k.sefiane@ed.ac.uk
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and the nature of the liquid. On an intrinsically hydrophilic surface, roughness induces better
wetting behaviour because complete penetration of the liquid into the micro-structures occurs,
thus causing an increase in the solid-liquid interfacial area (Kim et al. 2016). This is known as
the Wenzel state with consequent enhanced droplet adhesion (Wenzel 1936). On an intrinsically
hydrophobic surface, roughness results in lower wettability as a consequence of the suppression of
liquid penetration into the micro-/nano-structures, resulting in the presence of air pockets, which
effectively reduce the droplet-surface interactions. This is known as the Cassie-Baxter state, in
which droplets are more mobile (Cassie & Baxter 1944). Therefore, introducing roughness on
intrinsically hydrophobic surfaces has been proposed as an effective means to facilitate droplet
transport.
With an aim to control droplet motion purely via structural roughness on an intrinsically

hydrophobic background, many studies have focused on the design of structured surfaces via
micro-fabrication, where the degree of roughness and hence the surface wettability gradient
can be precisely adjusted. The first droplet migration reported, due solely to surface roughness
was achieved on a half-flat-half-rough polydimethylsiloxane (PDMS) substrate, where a droplet
placed at the boundary migrated towards the flat area, 8.4., the more wettable region, minimising
its surface free energy (He and Lee 2003). Thereafter, the first continuous surface tension gradient
stemming from a progressive change in the solid fraction, 8.4., surface roughness, was created by
Shastry et al. (2005, 2006). In their work, they proposed amodel accounting for the hysteresis force
to be overcome for the migration of the droplet to ensue, which was validated by experimental
observations (Shastry et al. 2006). At the same time, spontaneous droplet motion was achieved
on a micro-grooved surface by adjusting the solid fraction of the grooves imposing the necessary
driving force for the motion (Yang et al. 2006). When examining hysteresis more closely, it was
found that among surface topography and structural length scale effects, discontinuous segments
such as micro-pillars influenced hysteresis the most (Öner & McCarthy 2000). Specifically, more
irregular micro-pillar shapes such as rhombuses or stars, induce higher hysteresis than smoother
contoured ones. Further, the critical angles for the onset of droplet sliding on tilted surfaces
were compared among surfaces with different micro-structural shapes, namely micro-pillars and
micro-grooves, for the latter in both groove and orthogonal directions (Yoshimitsu et al. 2002).
The smallest sliding angles, thus lowest hysteresis, were observed for droplet motion on micro-
grooved surfaces, 8.4., micro-striated surfaces, along the striation direction.

Other works have proposed physical principles relating friction or hysteresis to the micro-
structure solid fraction (Xu & Choi 2012; Kita et al. 2018), and driving force or velocity to the
solid fraction gradient (Kita et al. 2018), by considering the droplet-surface interactions and the
droplet shape as a linear and continuous gradient between the initial and the final positions. More
recently Zhao et al. (2020) have proposed a unified criterion describing the droplet motion as
displacement and average velocity are solely functions of the structural parameters of the micro-
striated surfaces, �, Ē ∝ Δq/q̄. However, on a superhydrophobic, micro-structured surface,
droplets typically do not experience steady motion, especially in the initial stages when they
first contact or spread on the surface (Bartolo et al. 2005; Yang et al. 2006; Jung & Bhushan
2008; Reyssat et al. 2009; Wildeman et al. 2016; Kita et al. 2018; Gordillo et al. 2019; Launay
et al. 2019). Although most works on droplet motion on micro-structured surfaces reported the
presence of an oscillatory behaviour (Yang et al. 2006; Kita et al. 2018; Launay et al. 2019;
Zhao et al. 2020) even when depositing the droplet gently on the surface, the influence of such
oscillatory behaviour on the droplet motion was not further pursued or investigated. The existence
of oscillations has an important influence on droplet behaviour and have been utilized to realize
droplet motion even without a wettability gradient/contrast by surface vibration (Brunet et al.
2007; Shastry et al. 2007; Noblin et al. 2009).
One of the first works on the oscillatory behaviour of (free) droplets controlled by surface

tension is attributable to Lord Rayleigh (1879). Oscillations caused by small distortion from the
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equilibrium shape were investigated much later in different circumstances such as in large electric
fields (Morrison et al. 1981) or in gaseous environments upon break-up from a liquid jet (Becker
et al. 1991). Some theoretical works (Courty et al. 2006; Chevy et al. 2012) provided models
of droplet oscillation on non-wetting substrates, where the oscillation period was investigated.
In order to understand the interaction between vertical oscillation and horizontal migration,
the behaviour of the contact line is essential; however, none of the theoretical works above
investigated the behaviour of the contact line under the influence of oscillations. The simulation
work of Lyubimov et al. (2006) investigated free and forced oscillations of a hemispherical
droplet on substrates with different conditions of contact line (free or pinned). On hydrophobic,
micro-structured surfaces comprising a wettability contrast, the simulation work of Moradi et al.
(2010) captured the oscillatory behaviour of the contact line. However, no theoretical model to
date has yet been proposed describing the free oscillatory motion of droplets and the contact
line on micro-structured surfaces. Further, to date there still exists a lack of knowledge on the
interactions between the oscillatory motion and the unidirectional migration.
The purpose of this work is to propose a more complete, dynamic picture of the motion of

a droplet on a hydrophobic surface under the influence of surface wettability contrast, inertia,
friction and hysteresis. Firstly, this study experimentally observes that droplets can experience a
horizontal migration, a vertical oscillatory motion as well as a leading and trailing alternating
motion of the contact line. Secondly, a dynamic physical model is developed to explain the
phenomena observed, where the vertical oscillatory motion and the horizontal migration have
been coupled. Subsequently, the model is compared to experimental observations.

2. Materials and Methods
The solid surfaces used to investigate the spontaneous droplet motion across a contrasting

wettability boundary† were hydrophobic striated micro-structures. Parallel, geometric striations,
of a top-hat profile, were etched via the Deep Reactive-Ion Etching (the Deep-RIE, or Bosch
process (Laermer & Schilp 1996)) onto smooth silicon wafers with a pre-designed mask, leading
to excellent spatial resolution of the motifs, as may be seen in the micrograph of figure 1.
Different levels of wettability were achieved by imposing different geometric parameters, i.e.,
different solid fractions or, expressed alternatively, different ratios of the top solid surface area
to the whole projected surface area, between structural units with a well-defined boundary. All
micro-striations were of constant height, h, equal to 20 µm, but with different values of width,
w, and spacing, s. The solids fabricated offered a wide range of solid fraction, q, defined as:
q = F/(F + B). Surfaces with q varying from 0.10 to 0.91 were produced. Following Deep-
RIE and further cleaning, the surfaces were coated with a perfluorodecyltrichlorosilane (FDTS)
monolayer imposing homogeneous intrinsic hydrophobicity on the micro-striated structures (see
Appendix A.1 for fabrication details). Wettability on both micro-striated and on flat FDTS-coated
surfaceswas characterised bymeasuring apparent, \app, advancing, \adv and receding, \rec, contact
angles (CAs). CAs were measured using a Drop Shape Analyser 100 (DSA 100, Krüss GmbH,
Hamburg, Germany) and are given in table 1 (see Appendix A.2 for detailed information on CA
measurements). Droplets of distilled water of volume of ca. 9 µl (corresponding to a droplet radius
upon deposition below the capillary length for water, ca. 2.7 mm) were gently deposited at the
boundary of two contrasting micro-striated surfaces (see Appendix A.2 for detailed information
on droplet volume). Experimental observations of the droplet motion were recorded with a high-

† Note: We define boundary as the intersection between the regions of the solid microstructured surface
with different solid fraction parameters, which is different from the conventional definition of interfacial
boundary widely utilized in hydrodynamics and fluid mechanics fields.
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FIGURE 1: Scanning Electron Microscopy (SEM) image showing the structure at the
boundary of micro-striations on the surface with F = 10 µm, B = 90 µm (qL = 0.10) on
the left and F = 10 µm, B = 40 µm (qR = 0.20) on the right. Inset shows magnification at
the micro-striation boundary. Geometrical parameters h, w and s are included in inset for

clarity.

Unit No. w(µm) s(µm) q \app (◦) \adv (◦) \rec (◦)
1 10 90 0.10 155 ± 1 158 ± 1 151 ± 1
2 10 40 0.20 146 ± 1 151 ± 1 143 ± 1
3 10 23 0.30 139 ± 1 145 ± 2 135 ± 1
4 10 15 0.40 132 ± 1 140 ± 1 128 ± 1
5 10 10 0.50 127 ± 1 135 ± 1 122 ± 1
6 10 7 0.59 123 ± 1 131 ± 2 116 ± 1
7 10 5 0.67 119 ± 1 129 ± 1 111 ± 2
8 20 5 0.80 114 ± 2 124 ± 1 106 ± 1
9 50 5 0.91 110 ± 1 120 ± 1 103 ± 3

Flat \ \ \ 111 ± 1 119 ± 1 105 ± 3

TABLE 1: Characteristics of the geometric parameters of the micro-structure, width, w,
spacing, s, and solid fraction, q, and the contact angles (CAs) of water on each of the

surface units. \app, \adv and \rec are the apparent, advancing and receding CAs of water
on each surface unit. All CAs were measured in the orthogonal direction to the

micro-striations.(Zhao et al. 2020)

speed camera (Chronos 1.4, Kron Technologies Inc., Canada) at 1000 fps and subsequently
analysed with a custom-made MATLAB®code.

3. An Example of Droplet Dynamic Motion
A representative example of droplet motion across the boundary of two contrasting units,

specifically, left unit (qL = 0.10) and right unit (qR = 0.20), is shown in figure 2(a). The dynamic
CAs along with the positions of the centre of mass (c.m.) in horizontal (x) and vertical (y)
directions and the contact points (CPs), extracted from the custom-built MATLAB®code, are
plotted in figure 2(b) & 2(c), respectively. CPs are defined as the front (right) and rear (left) points
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D

(a)

(b) (c)

t = 0 ms t = 5 ms t = 10 ms t = 15 ms

t = 20 ms t = 60 ms t = 100 ms t = 145 ms

1 mm

FIGURE 2: (a) Sequential photographs of a 9µl droplet moving on the boundary of unit 1
(qL = 0.10) and unit 2 (qR = 0.20). Part of the period of motion (5-20 ms, 60 ms and 100
ms) and the final position (145 ms) with displacement, D, of the centre of mass c.m. from
the initial position to the instantaneous position, are presented. The green dot represents
the c.m. of the droplet and the dotted line shows the position of the boundary on the
surface, clearly visible in the last photo (at 145 ms). (b) Right (red) and left (blue)

dynamic CAs of the droplet vs. time. Note that the sudden drop of the left CA at around 60
ms is due to the completion of CL motion across the boundary. Experimental values of
\adv and \rec for each independent unit from table 1 are indicated by the doted lines for:
\adv = 158◦ and \rec = 151◦ for unit 1 (qL = 0.10) while \adv = 151◦ and \rec = 143◦ for
unit 2 (q/<0CℎA<! = 0.20). (c) Horizontal motion of left and right contact points (CPs)

and c.m., and vertical oscillation of the c.m. with time. Green/yellow shaded stripes
marked in (1) and (2) indicate the downward/upward motion periods of c.m. y. Arrows in

(2) indicate the corresponding axis for each curve.

of the contact line (CL) in the direction of motion along the micro-striations, as seen in the side
view.
After deposition at the contrasting boundary, the droplet undergoes horizontal motion (c.m.,

x) towards the right surface unit, owed to the imposed wettability contrast and consequently
the unbalanced wetting and dewetting behaviours of the CL as the system attempts to minimize
its overall surface free energy. In addition to its horizontal motion, the droplet simultaneously
experiences rapid damping of the oscillations occurring in the vertical direction (c.m., y), at an
initial oscillation period of ca. 20 ms, as shown in figure 2(c). This oscillatory behaviour, in turn,
influences the dynamic CAs as well as the behaviour of the CPs in figure 2(b) & 2(c), respectively.
Just after deposition, from time t = 0 ms to t = ca.10 ms, the droplet spreads slightly over the
surface, with left and right CPs moving away from each other. Thereafter, from t = ca. 10 ms to
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t = ca. 20 ms, both CPs dewet/recede towards the droplet centre. Photographs taken during this
period are shown in figure 2(a). The CPs then continue to oscillate while the droplet migrates in
the same direction of the wettability contrast, 8.4., towards the right, from t = ca. 20 ms to t = ca.
100 ms, as represented in figure 2(a) & (c). The variation in solid fraction across the boundary
provides a contrast in wettability and therefore a net force towards the higher solid fraction unit
side, inducing the droplet to migrate. From figure 2(b), at ca. 60ms, the sudden drop of the left CA
indicates that the droplet has moved completely across the boundary and finds itself on a uniform,
homogeneous section of the substrate, where there is no longer any gradient in wettability, as
is clearly shown in figure 2(a) & (c). Although no sudden change in the horizontal motion of
the c.m is noticeable after the CL fully moves across the boundary, the driving force induced by
the structural gradient now vanishes, and any further droplet motion is solely due to the inertial
overshoot until the droplet finally comes to a rest.
Besides, when looking closely into figure 2(b) & (c), the CPs move synchronously with the

vertical oscillation, and they move only when the dynamic CAs are found beyond the \adv and
\rec of the corresponding surfaces that the CP moves on, as indicated by the dashed lines,
otherwise they are pinned due to hysteresis and insufficient driving force. When the CPs are
pinned temporarily (edges of each shaded stripe), the oscillation leads to deformation of the
droplet shape near the CPs, and therefore, the consequent rapid changes in the dynamic CAs,
until the CPs start to advance/recede again. When the CPs move (middle of each shaded stripe),
the dynamic CAs change is less pronounced when compared to the case of pinned CPs and
their values revolve around the peak/trough values. In order to know the interaction between the
vertical oscillation and horizontal migration, it is crucial to know how the droplet oscillates and
its influence on the CL.

4. Theoretical Model
To explain the dynamics of the oscillatory motion as well as the final position of the droplet

with respect to the solid wetting boundary, we have developed and coupled simple mathematical
models. Before the droplet leaves the boundary, its motion can be regarded as the superposition
of two components: vertical damped oscillation and horizontal migration. As a preliminary step,
we model a liquid spheroid to describe the vertical oscillatory motion observed. Subsequently, we
refine the full spheroid model to a truncated spheroid, allowing us to connect the vertical motion
with the horizontal CL behaviour. The CL behaviour is asymmetric due to the different wettability
imposed across the boundary and is further accounted for in the alternating CL slipping model.
Finally, a horizontal migration model taking into account the vertical oscillation, friction and CL
hysteresis explains the droplet motion even after it has moved completely across the wettability
boundary.

4.1. Vertical Oscillatory Model
In figure 2(a) at deposition t = 0 ms the shape of the droplet deviates slightly from sphericity.

Since the most energetically favourable shape for a liquid droplet (in the absence of gravity) is
that of a sphere (or spherical cap, when in contact with a solid), any deviation/deformation from
sphericity will increase its overall free energy. The energy increase associated with deformation
causes a tendency to return to spherical symmetry, but inertia leads to overshoot and an oscillatory
cycle is established. Consider the left-hand sketch of figure 3(a), a prolate spheroid, of volume,
+s, being a reasonable approximation to the deformed drop at this stage. The radius, 0s, of the
equivalent, B?ℎ4A820; droplet is given by:

0s =
3

√
3+s
4c

. (4.1)
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During vertical oscillation, to a reasonable approximation, the droplet modelled by a spheroid
changes its shape from prolate (Y > 0) to oblate (Y < 0) with an alternate positive to negative
perturbation in the vertical position of c.m., Y. Therefore, the polar radius of the prolate (subscript
p) or oblate (subscript o) is 0p,o = 0s + Y. The time-dependent polar radius, 0, i.e., the vertical
position of the c.m. of the spheroid, can be then expressed as (see detailed derivation in Appendix
B):

0 = 0s + Y(C) = 0s + � exp (−�C
2<
) cos (

√
16cW
5<

− �2

4<2 · C + V). (4.2)

Here A is the amplitude of the oscillation, H is a dissipation coefficient, m is the mass of the
droplet, W is the surface tension of the water-air interface and V is the phase angle at t = 0. The
initial condition when the droplet is released from the needle is V = 0. Equation 4.2 also provides
the oscillation period, g:

g = 2c( 16cW
5<

− �2

4<2 )
− 1

2 . (4.3)

Clearly a full spheroid would only contact the solid substrate, a plane, at one point. To
incorporate a CL of finite length into the model, a truncated spheroidal shape must be used.
Consider a truncated sphere of radius of curvature, 0ts, contact radius, Ats, and distance from the
centre to the truncation plane, Hts, as in figure 4 middle.
Assume a constant volume condition and 0ts = 0s for the truncated spheroid during shape

change, the relation between the whole and the truncated spheroid is derived (see detailed
derivation of C 5 in Appendix C):

H = Hts (0ts + Y)/0ts, (4.4)
where y is the vertical height above the solid of the centre of the truncated prolate spheroid
(Y > 0), sphere (Y = 0, H = Hts) or oblate spheroid (Y < 0) and Y is derived in equation 4.2. The
base radius, r, can be written as (see detailed derivation of C 6 in Appendix C):

A ≈ Ats (1 −
Y

20ts
), (4.5)

allowing us to follow change of r with Y. The value of r is not constant during the oscillation.

FIGURE 3: (a) Schematic diagram of droplet evolution in the oscillatory model and (b)
corresponding photos of motion in figure 2(a) between t = 0 ms and t = 20 ms.
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FIGURE 4: Truncated spheroids, representing a liquid drop, at three different stages:
prolate spheroid (left), sphere (middle) and oblate spheroid (right).

Besides, when the droplet contacts the solid surface, to further account for the influence of
hysteresis during the oscillation, we have H(C) (see detailed derivation of C 8 in Appendix C):

H(C) = Hts + �′ exp (−�C
2<
) cos (

√
16cW
5<
(1 + h) − �2

4<2 · C + V), (4.6)

where �′ = �Hts/0ts and h is a hysteresis coefficient (the details of its expression can be found in
Appendix C).
However, with these models, we still cannot describe the 0BH<<4CA820; behaviour of left

(subscript L) and right (subscript R) parts of the CL, henceforth denoted as CLL and CLR
respectively. The hydrophobicity and hysteresis are different for the two units across the boundary,
so when the droplet oscillates vertically on the boundary, CLL and CLR experience different
forces, which accounts for the horizontal migration of the droplet. We must therefore develop an
alternating CL slipping model to account for the different forces at CLL and CLR and relate the
horizontal migration of the droplet to the driving force and resistance from the micro-structure
units across the boundary.

4.2. Alternating CL Slipping Model
Slippage of the CL is an essential ingredient in our description of droplet bouncing and

migration across the wetting boundary. However, the mathematics in 3D becomes intractable
and therefore we present a simplified 2D model here, adopting the assumption of a drop of unit
thickness perpendicular to figure 5. Before the droplet finally leaves the boundary entirely (after
ca. 60 ms), the left and right CAs increase and decrease synchronously, although the difference
between their values is typically only a few degrees, as shown in figure 2(1). We take \ to be
the dynamic CA, at a given instant, for both CLL and CLR. The apparent equilibrium CAs on
respectively the left and the right unit surfaces alone, are denoted as \∗L and \∗R. These apparent
CAs differ from those on an ideal (flat), solid surface of the same chemical constitution, i.e., from
the Young’s CA, \Y (Young 1805), following the Cassie-Baxter relation (Cassie & Baxter 1944):

cos \∗L,R = qL,R (1 + cos \Y) − 1. (4.7)
Adopting in the nomenclature �L and �R to represent the forces acting at CLL and CLR (see inset
of figure 6):

�L = −qL (WSV − WSL)L + W(1 − qL) + W cos \ = −W(cos \∗L − cos \), (4.8)
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�R = qR (WSV − WSL)R + W(1 − qL) − W cos \ = W(cos \∗R − cos \). (4.9)
We consider firstly the case of the c.m. moving in the downwards direction (green stripes, e.g.
between t = 0 ms and t = 10 ms in figure 2(b) & (c)). It is quite plausible that for some time
\ > \∗L > \

∗
R, hence cos\ < cos\∗L < cos\∗R, and it follows that | �L |< | �R |. The time-dependent

apparent CA, \ (C), can then be expressed as:

\ (C) = \∗L + X(C) = \
∗
R + X(C) + b (4.10)

where b is a small, positive constant (b = \∗L − \
∗
R, the intrinsic difference between \∗L and \∗R)

and X(C) is small and a function of time, t. The forces acting at CLL and CLR can be written as:

�L (C) ≈ −W sin \∗L · X(C), (4.11)

�R (C) ≈ W sin \∗R · (b + X(C)). (4.12)
Note that X(C) is positive at this stage. There will be some resistance to motion of the CLs, ΨL
and ΨR for left and right surface respectively, which may be interpreted as wetting hysteresis. If
X(C) is sufficiently large to satisfy the condition:

ΨL < | W sin \∗L · X(C) |,ΨR < | W sin \∗R · (b + X(C)) |, (4.13)
then both CLL and CLR move. This corresponds to the situation observed just following droplet
deposition. Thereafter, as damping of the oscillations takes place (between C = 20. 30 ms and
C = 20. 60 ms in figure 2(b) & (c)), there is a period when:

| W sin \∗L · X(C) |< ΨL,ΨR < | W sin \∗R · (b + X(C)) |, (4.14)
and CLL is anchored by hysteresis whilst CLR slips/advances to the right under a force of
| | Wsin\∗R ∗ (b + X(C)) | −ΨR |, resulting in slight movement of the c.m. to the right, as shown in
figure 5(a2) & (a3)). As the droplet oscillation loses amplitude, for t > 100 ms in figure 2(b), X(C)
decreases and we attain the state where:

| W sin \∗R · (b + X(C)) |< ΨR, (4.15)
whereby both CLL (now moves across the boundary) and CLR become anchored (permanently),
i.e., the motion comes to an end. For CLL in the non-overshooting case, | W sin \∗L · X(C) |< ΨL.
We now consider the upward phase of oscillation, when X(C) decreases (yellow stripes, e.g.

between C = 20. 10 ms and C = 20. 20 ms in figure 2(1) & (2)). This implies that \∗L > \
∗
R > \, and

we have| �L (C) |> | �R (C) | (provided b is sufficiently small). Then, equations 4.11 & 4.12 remain
valid but note that X(C) is now negative, implying that �L(C) acts towards the right. Thereafter,
there is a period (e.g. between C = 20. 30 ms and C = 20. 60 ms in figure 2(b) & (c))) when:

ΨL < | W sin \∗L · X(C) |, | W sin \∗R · (b + X(C)) |< ΨR, (4.16)
for which CLR is anchored whilst CLL slips towards the right (as shown in figure 5(a4) & (a5))
under the force | | Wsin\∗L ∗ X(C) | −ΨL |. As the droplet contacts the structured solid surface, the
CLs move synchronously during upward and downward oscillatory phases and the tendency for
the c.m. of the droplet to move to the right side is weak. However, at later stages, when damping
has become significant, in both cases,| �L(C) |< ΨL and | �R (C) |< ΨR, both CLL and CLR are
pinned, the droplet stops moving. Between the onset and the final damping of the droplet motion,
there is a stage when CLL and CLR move alternately towards the right, so the main displacement
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of the c.m. takes place between C = 20. 30 ms and C = 20. 60 ms in figure 2(b) & (c))). In addition,
after the droplet has moved totally across the boundary and before it stops (between C = 20. 60
ms and C = 20. 100 ms in figure 2(b) & (c), there is a stage when the droplet overshoots for
a further distance beyond the boundary. During this stage, the inertia of the c.m. of the droplet
is sufficient to pull CLL and to push CLR so that the behaviours of both CLL and CLR remain
virtually unchanged as the droplet slides over the boundary until the droplet comes to a rest at the
last stage of the migration.

4.3. Horizontal Migration Model
Once the droplet has left the boundary, it cannot move indefinitely since the droplet footprint

is completely on a homogeneous micro-striated unit, i.e., in the absence of a wettability contrast,
and therefore in the absence of driving force. Motion is here then limited to that due to inertia.
(Momentum was neglected in the preceding argument, as of secondary importance, but once the
CLs become symmetrical, on the same solid surface texture, this becomes the overriding effect.)
Returning to the more realistic 3D model, the net surface force acting on the droplet sitting on
the boundary in the G direction with the centre position at Go (as shown in figure 6) is:

�d = 2 |
∫ c

lo

W(cos \∗R − cos \∗L) coslA3l |= 2WA sinloΔ cos \∗ = 2A
√

1 − (Go/A)2WΔ cos \∗,

(4.17)
where Δ cos \∗ = cos \∗R − cos \∗L, A is the droplet contact radius and lo is the azimuthal angle
corresponding to half of the droplet footprint arc on the right side of the boundary, equal to
lo = c − cos−1 Go/A. We assume that the resistance to motion from the surface, 5L,R, is directly
proportional to the solid/liquid contact area ( the assumption of 5L,R ∝ '2 in the present case is
rather reasonable as the comparison of the calculated velocity by the model with experimental
results provides a better agreement than for the casewhere the resistance is contact line dominated,

FIGURE 5: (a) Schematic diagram of evolution of droplet shape and position in the
oscillatory truncated model. Color bars show the length and position of footprints in

different states. (b) Sequential photographs of a 9 µl droplet moving on the boundary of
unit 1 (qL = 0.10) and unit 2 (qR = 0.20) for comparison. Dotted lines in (0) and (1)

indicate the position of the contrast boundary.
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FIGURE 6: Schematic diagram of the droplet footprint across the boundary of the
wettability contrast with a displacement Go. The origin, O, is set to be the centre of the
footprint contacted with the solid surface, moving with the droplet. Inset shows the

directions of the surface forces acting on the CLL and CLR.

5L,R ∝ '):

5L = 2 |
∫ −Go

−A
�qL

√
A2 − G23G |= 2W�∗qLA

∫ 1

Go/A

√
1 − (G/A)23 (G/A), G 6 A, (4.18)

5R = 2 |
∫ A

−Go

�qR
√
A2 − G23G |= W�∗qRA (c − 2

∫ 1

Go/A

√
1 − (G/A)23 (G/A)), G 6 A, (4.19)

where � is a coefficient accounting for friction (assumed independent of the solid surface motif),
�∗ is normalised � by surface tension, W, and droplet contact radius, A , and equals �∗ = �A/W.
After moving across the boundary, 8.4., when Go > A, we have �d = 0, 5L = 0 and:

5R = WcAB∗qR, G > A. (4.20)
In order to obtain information about the speed, the work done by the forces from equations 4.17-
4.20 needs to be calculated. Assuming the normalised displacement of the c.m., G, by the droplet
contact radius, A, G∗ = G/A < 1, and integrating the forces from G∗ = 0 to G∗ = G∗o = Go/A , the
work done by the above-mentioned driving force and left and right friction forces are ,Fd (G∗o),
,fL (G∗o) and,fR (G∗o) respectively, which can be derived as (G∗o < 1):

,Fd (G∗o) =
∫ Go

0
�d3G = 2WA2Δ cos \∗

∫ G∗o

0

√
1 − (G∗)23G∗, (4.21)

,fL (G∗o) =
∫ Go

0
5L3G = A

∫ G∗o

0
5L3G

∗, (4.22)

,fR (G∗o) = A
∫ G∗o

0
5R3G

∗, (4.23)

When G∗o > 1, the works become,Fd (G∗o) = ,Fd (1),,fL (G∗o) = ,fL (1) and:
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,fR (G∗o) = ,fR (1) + WB∗qRcA
2 (G∗o − 1). (4.24)

The contribution to kinetic energy from initial deposition and CL pinning must also be accounted
for. The vertical oscillation and the droplet horizontal shift are related in the alternating CL
slipping model. Further vertical oscillation helps the droplet to overcome hysteresis, therefore,
leading to a larger horizontal kinetic energy. Besides, experiments demonstrated that for cases
with large hysteresis, at the end of themotion the droplet wobbled horizontally, with its CL pinning
onto the surface, before becoming still. This suggests that the inertia force cannot overcome the
pinning of the CL and part of the kinetic energy is dissipated without easing the droplet to move
further. In consideration of all the above-mentioned effects, the kinetic energy, � , involved in
the droplet migration on a striated surface comprising a structural wetting gradient at a given
normalized displacement from the boundary, G∗o, is given by:

� (G∗o) = ,D (G∗o) +,Fd (G∗o) −,fL (G∗o) −,fR (G∗o) −,H (G∗o) =
1
2
<E2, G∗o < 1, (4.25)

where E is the droplet velocity and ,D (G∗o) is the net kinetic energy converted from vertical
oscillation. The oscillation results in a forced wetting/dewetting behaviour of the CL, which is
asymmetric along the motion direction, contributing to the value of � even without a wettability
gradient (Dong et al. 2017). In the present case, the wetting/dewetting behaviour asymmetry
is solely caused by the surface morphology, which vanishes once the droplet moves across the
boundary, and ,D (G∗o) does not contribute further to the kinetic energy. ,H (G∗o) is the kinetic
energy dissipated after the CL is pinned, before the droplet comes to a final halt. Because of the
existence of hysteresis, the CL stops moving prior to the droplet, and the droplet starts ‘wobbling’
under the ‘extra’ kinetic energy,,H (G∗o), which does no contribution to the droplet motion. For the
overshoot cases, � (1) > 0, whichmeans when the whole footprint leaves the boundary, the kinetic
energy of the droplet is non-zero, driving the droplet to move further from the boundary, whilst
for non-overshoot cases, � (G∗m) = 0, where the maximum normalized displacement, G∗m < 1,
which means the kinetic energy dissipates totally before the droplet leaves the boundary.
According to B 7 in Appendix B, ,D (G∗o) should be a function of the change in potential

energy, upon gentle deposition, from the initial deposition state to the equilibrium state, as
,D (G∗o) ∝ 8cWY2

m/5, where Ym is the maximum position change of the c.m. H and is proportional
to Ym ∝ 0ts − Hts. Moreover, the kinetic energy converted from the vertical oscillation contributes
to both sides of the CL motion, therefore, the increased driving force in the direction of the
droplet motion should be a function of the difference in the projected length of the CL in the
perpendicular direction in a similar fashion to equations 4.17 and 4.21.,D (G∗o) is then expressed
as:

,D (G∗o) = C
8cW(0ts − Hts)2

5

∫ G∗o

0

√
1 − (G∗)23G∗, (4.26)

where C is a factor accounting for the proportion of the energy converted from the total vertical
mechanical energy by the droplet shape oscillation.
,H (G∗o), the hysteresis term, appears only when the motion comes to its end. From the

experimental results, we found a continuity of kinetic energy decline to 0 instead of a sudden drop
when the CL is finally pinned. And in some cases we can even see a slight horizontal wobbling
of c.m. when CL is pinned. We also noticed that on the surface with higher q̄ where CL is pinned
more easily, and the velocity declines at a faster rate. In order to take into account this part of
energy and satisfy the kinetic energy continuity, we assume:
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,H (G∗o) ∝ / (
G∗o
G∗m
)k, (4.27)

where k is a factor indicating how fast,H (G∗o) reaches to its maximum when G∗o gets close to G∗m,
while / is the portion of kinetic energy that would be dissipated after CL is finally pinned, which
can be derived by meeting the condition � (G∗m) = 0. Since k is related to hysteresis, we assume
k = 1+ q̄, where q̄ = (qL +qR)/2, the average fraction of the given micro-striated surfaces across
the boundary. By solving equations 4.17-4.27, the velocity of the motion, E, can be estimated
as a function of the position while the maximum displacement G∗m is attained from experimental
results. An example of the evolution of each term involved in equation 4.25 as a function of G∗o is
shown in figure E.1.

5. Comparison of experimental results and theory
First, we compare the vertical oscillation and the truncated models to the experimental results

in figure 7. Results provided here are related to the smallest solid fraction difference between
striations, 8.4., the cases closest to a homogeneous striated surface in the absence of contrast in
solid fraction. For these cases, a good agreement between the experimental and the model results
are achieved. We note here that the oscillatory behaviour on homogeneous surfaces could further
support the theoretical model; however, the static nature of the droplets without the motion in the
horizontal direction bring such considerations beyond the purpose of this work. The evolution of
the contact radius A and the height of the droplet centroid (H) for both experiments (subscript e)
and models (subscript m) for three different cases are shown in figure 7. The best fit for kh in
Appendix C is kh ≈ 1.8 and the dissipation coefficient, �, is � ≈ 0.35∗10−3 kg/s. For a 9 µl water
droplet with < = 9 · 10−6 kg and W = 72 mN/m and neglecting the dissipation term, the angular
frequency can be estimated as l ≈

√
16cW/(5<) and the oscillation period, as shown in figure

7(0), is thus g ≈ 2c
√

5</(16cW) = 22 ms, which is in good agreement with our experimental
results, at least in the initial stage (g ≈ 20 ms). Also, in the same magnitude, making use of the
Rayleigh equation (Rayleigh 1879) a free droplet gives g ≈ 2c

√
</(8cW) = 14 ms.

Initially, the droplet oscillates with large amplitude, which suggests that the local, instantaneous
variations in Laplace pressure near the CL, caused by distortion of the droplet from spherical,
is sufficient to overcome wetting hysteresis and thus prompt outward/inward motion of the CL.
Later, as the oscillations become damped as a consequence of energy dissipation, Laplace pressure
variations are no longer sufficient to overcome hysteresis. When comparing the theoretical and
experimental results of the vertical oscillations of the c.m., it can be seen that the model captures
the oscillations quite well. When the c.m. is moving downwards/upwards, the CL is forced
to spread/retract and the contact radius increases/decreases. There is a good agreement of the
oscillation period between the theoretical and experimental results. In figure 7(f ), the model
captured the dependence of oscillation period on q̄, where the period decreases with q̄. The
droplets on surfaces with higher q̄ experience higher degree of hysteresis, as per the higher solid
fraction, and therefore the CL is pinned more easily during the oscillation, forcing the droplet to
oscillate faster until it reaches the equilibrium state, leading to a lower oscillation period. For the
contract radius, there is a rather qualitative agreement: the droplet spreads and recedes alternately.
It is noteworthy that there is a big discrepancy of contact radius in figure 7(a) & (e). In the case
of figure 7(a), the oscillation behaviour is strongest, the droplet overspreads onto the surface,
leading to not only larger oscillation amplitude of the CL but also a larger value of the final
contact radius than expected, because the droplet cannot restore its profile to an equilibrium state
due to hysteresis especially when its CL is receding. In the case of figure 7(e), in the presence
of large Δq, the droplet experiences greater deviations from the spherical shape, 8.4., droplet
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(a)

(b)

(c)

A

τ

(d)

(e)

(f)

0.10-0.20

0.40-0.50

0.67-0.80

0.40-0.91

0.10-0.91

FIGURE 7: (a)-(e) Comparison of experimental (subscript e) and model (subscript m)
results for the vertical oscillation of the c.m., y (mm), and contact radius, r (mm), with
elapsed time t (ms) for 5 different cases. The left and right surface fractions are shown in
each graph, 4.6., (qL = 0.10) and unit 2 (qR = 0.20) in (a). Examples of initial amplitude,
�, and intial oscillation period, g, from the model are shown in (0). (f) The dependence of
oscillation period on q̄ for all the experimental cases (red circles) with the result predicted

by the model (black line).

elongation, owing to the preferential spreading onto the right-hand side, which results into the
deviation of the contact radius. In the assumption of the model, the distortion of the shapes from
equilibrium should be small. An oscillation with larger amplitude or an elongated shape leads
to a bigger deviation between theoretical and experimental results, mainly in the values of the
amplitude while the oscillation of the period are rather well captured. In our earlier work (Zhao
et al. 2020), The effect of amplitude on the horizontal migration/displacement by releasing the
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droplet from certain heights was found to increase with increasing the releasing height, 8.4.,
Weber number, for a certain range. This work on the other hand aims to minimise the influence of
the deposition on the reported amplitude, which has proven to be challenging to accurately adjust
and it is put forward as the scope for future works.
Just after deposition, the droplet swells in the lower part, due to downwardsmomentum transfer.

This increases the local curvature, thus generating a stronger momentary Laplace pressure than
for a perfect oblate spheroid, driving the CL to expand more on the surface than predicted by the
model. Thereafter, momentum transfer leads to more liquid in the upper part than in the lower
part (figure 2(0) at C = 25 ms). The reduced volume in the lower part hence reduces the local
curvature and thus a lower Laplace pressure permits the CL to move inwards more than in the case
of a perfect prolate spheroid. Whilst in the case of larger qR, figure 7(2), (3) & (4), with higher
degrees of both wettability and hysteresis, it is more difficult for CL to shrink, resulting in a larger
radius. Such perturbations in droplet shape, not allowed for in the model, can probably explain,
at least to some extent, the reason for the quantitative differences seen between experimental and
model contact radii of the droplet in figure 7. With the increase of q̄, the gap between the two
results diminishes, because on surfaces with larger q, the droplet spreads more before it detachs
from the needle, and the vertical oscillation becomes weaker as a consequence of the enhanced
droplet-surface affinity. Other parameters that contribute to the differences between model and
experimental results could lie in the preferable spreading in the striation direction and gravity
effect. Despite these differences, the model describes in reasonable qualitative and quantitative
detail of the vertical oscillatory motion of the c.m. and the lateral alternate leading and trailing
motion of the CL.
In figure 8, the experimental results for droplet velocity, E, EB. normalized position with respect

to the contact radius, G∗ = G/A , are presented, together with behaviour expected from the model
developed above. Comparing with the experimental results for maximum displacement, the best
fits for the coefficients, �∗, and C (in equations 4.18, 4.19 and 4.26), are proposed as �∗ ≈
18.07N/m2 · AΔq/Wq̄, C ≈ 0.13. In our previous work (Zhao et al. 2020), the average velocity of
the droplet, v, is a function of Δq/q̄, Ē ≈ W(cos \Y+1)Δq/(2bq̄), where b is a friction coefficient.
So here � ∝ Ē.

Fromfigure 8, a good agreement is found between experimental results and themodel proposed.
The model describes well how the velocity changes during droplet motion on a structured surface
comprising wettability contrast. The droplet c.m. accelerates rapidly at the initial stage, when
the driving force is considerably larger than resistance to motion. Later, when the droplet moves
towards the more hydrophilic unit, 8.4., surface with larger qR, according to equation 4.16, the
length of the boundary covered by the droplet decreases, therefore, the driving force decreases;
whilst the sum of the 5L and 5R increases. A maximum is reached, followed by deceleration until
the drop comes to a halt. The difference between the experimental and model results may arise
partially from the assumption that C is considered as a constant, while the different amplitude
and period of the oscillations of both A and H, the different magnitude of the change in droplet
shape caused during deposition and by the different droplet surface interactions as a consequence
of the different wetting contrast may suggest otherwise. For example, in figure 7, the magnitude
of the oscillation as well as the initial contact radius are different for cases (0) qL = 0.10, qR =
0.20, and (1) qL = 0.40, qR = 0.50.
We have further collapsed all experimental cases to investigate the dynamic velocity evolution

of dropletsmoving across thewettability contrast by normalizing the velocity and the displacement
by maximum velocity Em and maximum displacement Gm of each wetting contrast configuration
respectively. This is presented in figure 9(0).
Figure 9 shows that droplets first accelerate upon contacting the surface, then reach the

maximum velocity when the driving force and resistance are balanced, and then decelerate
until they stop. In order to understand the evolution of the driving force for all the different
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FIGURE 8: Comparison of the results of droplet velocity, v (mm/s), EB. relative position,
G∗, from experimental results (data points) and model (trend lines) for 5 different cases.

The contrasting boundary between two units is included within the legend where numbers
represent the solid fractions for the left and right units, respectively.

FIGURE 9: (0) Experimental cases are collapsed by normalizing the velocity and the
displacement by the maximum velocity, Em, and the maximum displacement, Gm, of each
wetting contrast configuration respectively. The theoretical model of the case 0.10-0.20 is

added for comparison. (1) Comparison of the integral function � (G∗o) derived from
experimental values of dynamic velocity for all wetting contrast configurations and from
the theoretical model, where G∗o is a given displacement normalized by the droplet contact

radius, A. The droplet moves across the boundary at G∗o = 1.

cases regardless of the surface parameters, we present all experimental cases in figure 9(1) by
re-arranging equations 4.17-4.25 and simplifying some terms (see Appendix E). � (G∗o) in figure
9(1) is then an indicator of the contribution of the driving force to the kinetic energy as a function
of normalized displacement. A good agreement can be found especially in the early stage. The
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theoretical value of � (G∗o) at G∗o = 1, where the droplet moves across the boundary, is found to be
� (1) = c/4 ≈ 0.79. For the cases where the droplet can reach G∗o = 1, the experimental value of
� (1) varies between 0.6-0.9. The error mainly comes from two sources. One is due to the fact
that,D (G∗o) is neglected, then the contribution of deposition is included into,Fd (G∗o), so � (G∗o)
is larger than expected. On the other hand, because ,H (G∗o) is neglected, the energy dissipated
after contact line pinning is not included, leading to a smaller � (G∗o). One clear evidence is that,
for some cases where the droplet stops before it moves across the boundary totally (G∗o = 1),
the experimental curve of � (G∗o) deviates from the theoretical one greatly and stops because the
velocity becomes 0. Therefore, the term ,H (G∗o) can no longer be neglected in the cases where
the droplet is not able to move fully across the boundary.

6. Conclusion
The dynamic behaviour of a droplet moving across the boundary of a wettability contrast

micro-structured surface has been experimentally observed and analysed. After being deposited
on the boundary, the droplet experiences a vertical damped oscillation and, simultaneously, a
horizontal migration. The Vertical Oscillatory Model in section 4.1 and the Alternating CL
Slipping Model in section 4.2 have been developed and coupled to explain the relation between
vertical and horizontal motion as well as behaviour of the CL. In addition, the horizontal
migration aspect has been coupled with the vertical oscillation to describe the migration velocity
of the droplet in the Horizontal Migration Model in section 4.3. The coupling of all three models
provides good agreement with the experimental results, describing the velocity and position of
a droplet deposited at a structural contrasting boundary migrating towards the denser structured
unit. It is noteworthy that not all the cases have a complete droplet migration across the boundary,
although both overshooting and non-overshooting cases have been analysed and captured by the
model. Further application of the complete models should enable good prediction of detailed
motion of droplets moving on wetting contrast surfaces or surfaces with wetting contrasts placed
in sequence. This is of importance for the optimisation and accurate design of micro-fluidic
devices.
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Appendix A. Details on Experiment and Measurements
A.1. Surface fabrication

4-inch silicon wafer were purchased from Si-Mat (Silicon Materials, Landsberg, Germany).
Hexamethyldisilizane (HMDS) was applied to the wafer as adhesive for the photoresist for 10
minutes. Silicon wafers were utilized without further cleaning procedure as any additional dry or
wet cleaning treatment may indeed induced further deposition of dirt and/or contaminants. Then,
wafers were placed in an SVG 8600 (Silicon Valley Group, USA) track system in order to dispense
and spin coat a SPR 350 photoresist layer of 1.2 µm in thickness onto the surfaces. Following
this, the wafers and the photoresist were soft-baked on a heating plate at 90 °C for 60 s, exposed
for 5 seconds in vacuum inside a Karl Suss MA8 mask aligner (Süss, Garching, Germany) and
further developed inside the SVG 8600. The substrates were then covered by a pre-designed mask
displaying the desired micro-structure patterns, which were then exposed to UV light through the
mask. After the development process, the exposed resist was washed away, leaving the patterned
resist on the substrates. The substrates were then subjected to deep reactive-ion etching (deep-RIE,
Bosch process) in a surface technology system STS Multiplex ICP (inductively coupled plasma).
Etching was carried out for 20 cycles. After etching, the resist was removed from the substrate by
acetone, leaving the rigid microstructures with a height of 20 µm on the substrates. The surface
fabrication was carried out within the Class 10 cleanrooms of the ScottishMicroelectronic Centre
(SMC). After fabrication, the substrates were sealed in a wafer box and sent to Memsstar Ltd.,
Scotland for coating. A monolayer of Perfluorodecyltrichlorosilane (FDTS) was applied onto the
substrates, making the surface microstructures intrinsically hydrophobic.

A.2. Experimental Measurements
Contact angle (CA) measurements were conducted on the Drop Shape Analyser 100 (DSA

100, Krüss GmbH, Hamburg, Germany) platform. The apparent CA of the droplet, \app, was
measured in both parallel and orthogonal direction to the micro-striations upon gentle deposition.
\app measured in the orthogonal direction was found to be dependent on the micro-striation
parameters, and the values for different surface units are listed in table 1. The advancing and
receding contact angles, \adv and \rec, were measured by adding water to and withdrawing water
from the droplet, respectively, which are listed in table 1. Standard error was estimated from 5
independent measurements with a system accuracy of 0.3 °. We note here that the standard error
for all cases is within 3 °.

The standard error in the volume of the deposited droplets from 5 independent measurements
and calculations via image processing was estimated as 20. 0.5 µl. The deviation of volume comes
from the difficulty to deposit water droplet onto hydrophobic surfaces with low solid fraction, i.e.,
superhydrophobic surfaces. When the volume is small, it is difficult for the water droplet to detach
from the needle due to the low adhesion between the droplet and the hydrophobic surface, and
when the volume is large, the surface tension cannot always hold the dosed droplet as a whole,
leaving a small part of droplet attached to the needle, hence dosing less volume than expected.
Besides, the presence of the anisotropic micro-striations induces, to some extent, preferential

spreading of the droplet along the striation direction than in the orthogonal direction. The
anisotropic deviation of the droplet shape was noted, by use of a top view camera, and the
difference of droplet radii measured along the two directions was estimated to be within 20. 7%.

Appendix B. Derivation details on vertical oscillation of a spherical droplet
As stated in equation 4.1, the radius,0s, of the equivalent, B?ℎ4A820; droplet is given by:
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0s =
3

√
3+s
4c

, (B 1)

where +s is the volume of the spheroid. The spherical droplet changes its shape from prolate
(Y > 0) to oblate (Y < 0) with an alternate positive to negative perturbation in the vertical
position of c.m., Y. Therefore, the polar radius of the prolate (subscript p) or oblate (subscript o)
is 0p,o = 0s + Y. And the equatorial radius of the spheroid, 1p or 1o is given by:

1p,o =

√
3+s

4c(0s + Y)
=

√
03

s
0s + Y

. (B 2)

To evaluate the free energy of the droplet associated with its surface, the surface area of the
equivalent spheroid, (p,o, is required. The surface area for a prolate spheroid, (p is given by
(Weisstein 2003c):

(p = 2c12
p (1 +

0p

1p4p
sin−1 4p), (B 3)

where the eccentricity, 4p =
√

1 − (1p/0p)2 =
√

1 − (0s/(0s + Y))3. Using the Maclaurin series
expansion (Weisstein 2003a), (p can be written as:

(p = 2c
03

s
0s + Y

(1 +
√
(0s + Y)3
03

s 4
2
p

sin−1 4p) ≈ 4c02
s (1 +

2Y2

502
s
). (B 4)

For an oblate spheroid surface, (o, can be written as (Weisstein 2003b):

(o = 2c12
o + c

02
o
4o

ln
1 + 4o
1 − 4o

, (B 5)

where the eccentricity, 4o =
√

1 − (0o/1o)2 =
√

1 − ((0s + Y)/0s)3. As above, (o can be written
as:

(o ≈ 4c02
s (1 +

2Y2

502
s
). (B 6)

Thus, to a first approximation, the surface areas of prolate and oblate spheroids, when only slightly
deformed, are the same, (p = (o, and given by equation either B 4 or B 6. Neglecting gravity, as
is reasonable in the present context, the potential energy, %, of a perturbed drop is thus given by:

% ≈ 4cW02
s (1 +

2Y2

502
s
) (B 7)

where W is the liquid-vapour surface tension of the droplet. Defining the 8=C4A=0; kinetic energy
of the droplet,  , as  ≈ 1/2< ¤Y2 and < is the droplet mass. A more complete analysis allowing
for shape change contributions to  leads to a pre-factor of 27/40 instead of 1/2, but this leads
to undue complication and unwarranted precision (see more details on a more complete analysis
in Appendix D). Whereas on the other hand, the internal viscous dissipation, �, as � ≈ 1/2� ¤Y2

where � is a dissipation coefficient which may be related to liquid viscosity and/or to the surface
structure; nonetheless, for the sake of simplicity, the model assumes a constant value. Further
analysis demonstrated that the variability of � as a function of q̄ was found to have negligible
impact (in the order of one or two orders of magnitude lower contribution) on predicting the
oscillations period. In light of the agreement obtained between the model and the experiment, it
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seems to be a reasonable assumption whilst keeping the model as simple as possible.We construct
the Lagrangian function, !:

! =  − % = 1
2
< ¤Y2 − 4cW02

s (1 +
2Y2

502
s
). (B 8)

The corresponding Lagrange equation of the first kind with respect to the dynamic deviation from
sphericity, ¤Y, is:

3

3C
( m!
m ¤Y ) −

m!

mY
+ m�
m ¤Y = 0. (B 9)

From equations B 8 & B9, we derive:

< ¥Y + � ¤Y + 16cWY
5

= 0. (B 10)

Solving equation B 10, we obtain the time-dependent deviation of the polar radius of the spheroid,
Y(C):

Y(C) = � exp (−�C
2<
) cos (

√
16cW
5<

− �2

4<2 · C + V). (B 11)

And the time-dependent polar radius of the spheroid, 0(C):

0(C) = 0s + Y(C) = 0s + � exp (−�C
2<
) cos (

√
16cW
5<

− �2

4<2 · C + V). (B 12)

Appendix C. Derivation details on vertical oscillation of a truncated spherical
droplet

The volume of a truncated sphere, +ts, is given by:

+ts =

∫ 0ts

−Hts

cG23H =
c

3
(203

ts + 302
tsHts − H3

ts) =
c

3
03

ts (1 − cos \∗)2 (2 + cos \∗), (C 1)

where \∗ (equivalent to the apparent CA of the droplet, but here simply a geometrical concept)
is the interior angle subtended between the tangent to the spheroid and the truncation plane at
their intersection and Hts = −0ts cos \∗. The base radius of a truncated sphere (contact radius of
the droplet), Ats, is Ats = 0ts sin \∗.
For a truncated prolate or oblate spheroid in figure 4(left) & (right), respectively, the volume,

+ , is given by:

+ =

∫ 0

−Hp,o

c12 (1 − H2
p,o/02)3H = c

3
12 (20 + 3Hp,o −

H3
p,o

02 ). (C 2)

With the constant volume condition:

12 (20 + 3Hp,o −
H3

p,o

02 ) = 203
ts + 302

tsHts − H3
ts. (C 3)

Comparing full and truncated spheroids (figure 3 and 4), therefore taking: 0ts = 0s, 1 = 1p,o =√
03

s/(0s + Y), we have 0 = 0ts + Y and equation C 3 becomes:
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03
ts [2 +

3Hp,o

0ts + Y
−

H3
p,o

(0ts + Y)3
] = 03

ts (2 +
3Hts
0ts
−
H3

ts

03
ts
). (C 4)

The real solution of this equation is:

Hp,o =
Hts (0ts + Y)

0ts
, (C 5)

and the base radius, A , can be written as:

A = 1

√
(1 − H

2

02 ) = 1

√
(1 −

H2
ts

02
ts
) ≈ 0ts sin \∗ (1 − Y

20ts
) = Ats (1 −

Y

20ts
). (C 6)

When the droplet contacts the solid with a finite contact area, the CL needs to overcome
hysteresis before it can move. Compared to the ideal cases without hysteresis, the existence
of hysteresis in the realistic case distorts the droplet shape from the spheroid one, i.e, part
of the kinetic energy is ‘stored’ temporally, which should be a function of the surface area
as well as the degree of hysteresis. Accounting for this part of energy, we introduce another
term,−h% = −4cW02

s (1 + 2Y2

502
s
)h, in equation B 8:

! =  − % = 1
2
< ¤Y2 − 4cW02

s (1 +
2Y2

502
s
) (1 + h), (C 7)

where h, the coefficient of the stored energy by surface distortion via hysteresis. According to
equations B 12 & C5, vertical position of H(C):

H(C) = Hts + �′ exp (−�C
2<
) cos (

√
16cW
5<
(1 + h) − �2

4<2 · C + V), (C 8)

where �′ = �Hts/0ts and the coefficient, h, should be a function of q̄, which presents the degree
of hysteresis, so we assume the expression for h: h = khq̄W, where q̄ = (qL + qR)/2, and kh is set
to be a constant for the sake of simplicity of the model. It is noteworthy that the surface distortion
term, −h%, only exists when the CL is pinned, and it is released as kinetic energy as soon as the
CL moves. From figure 2(2) we know that the CL is pinned when Y2 is at its maxima and moves
when Y2 is small, therefore, for the simplicity of the model we assume that the distortion term
induced by hysteresis changes with Y2 continuously. Equation C 8 is applied to the derivation
of the results in figure 7. It is noteworthy that H(C) is the vertical position of the centre of the
spheroid above the surface, and the geometric centroid, i.e., the c.m. of the droplet, is above H(C)
by 3/4'(1 + cos \∗)2/(2 + cos \∗) (Harris & Stöcker 1998). This has been taken into account in
H< in figure 7.

Appendix D. Derivation of kinetic energy of the droplet
For the whole spheroid, normalizing Y by 0s, Y∗ = Y/0s we have: 0p,o = 0s + Y = 0s (1 + Y∗),

and equation B 2 becomes:

1p,o =

√
03

s
0s + Y

= 0s (1 + Y∗)−
1
2 . (D 1)

Taking the oblate spheroid case in figure D.1 as an example (Y < 0), where Aos represents the
radius of the horizontal cross-section circle with a vertical distance from the origin, H. The
distance between a point on the horizontal cross-section circle to the centre of the certain circle,
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(y, ros)

y

O
x

z

FIGURE D.1: Schematic diagram of the whole oblate spheroid. A random point on the
surface is shown in the figure with the coordinates (H, Aos). Aos =

√
G2 + I2 , where G and I

are the coordinates along G and I axes.

A (H) =
√
G2 + I2, obeys: 0 6 A (H) 6 Aos(H), using the equation for a vertically axisymmetric

ellipsoid, (G2 + I2)/12 + H2/02 = 1, we have:

A2
os (H)
02

s
(1 + Y∗) + H

2

02
s
(1 + Y∗)−2 = 1, (D 2)

A2
os (H∗) = 02

s [
1

1 + Y∗ +
H∗2

(1 + Y∗)3
], (D 3)

where H∗ = H/0s. During the vertical oscillation, by homothety, we assume the local vertical
velocity inside the spheroid, Ev, increase linearly with height and with the boundary conditions
Ev = 0 where H = −0, 8.4., the spheroid contacts the wall, and Ev = ¤Y where H = 0, 8.4., the mass
centre of the droplet has a vertical velocity ¤Y, then the vertical velocity at (H,A) within the oblate
spheroid: Ev = ¤Y(1 + H/0) = 0s ¤Y∗ [1 + H∗/(1 + Y∗)], where ¤Y∗ = ¤Y/0s.

Assume a droplet with density of d has the same shape as the oblate spheroid, then a disc of
thickness 0sXH

∗ from the droplet has vertical energy,  v = 1/2X<E2
v:

 v (H∗) = cdA2
os0sXH

∗ 1
2
E2

v =
c

2
d05

s XH
∗ ¤Y∗2 [ 1

1 + Y∗ +
H∗2

(1 + Y∗)3
] (1 + H∗2

1 + Y∗ )
2. (D 4)

Take . = H∗/(1 + Y∗) = H/0, X. = XH/[0s (1 + Y∗)] equation D 4 becomes:

 v (. ) =
c

2
d05

s X. ¤Y∗2 (1 − .2) (1 + . )2. (D 5)

Because −1 < . < 1, integrating  v (. ) from -1 to 1, the total vertical internal kinetic energy  tv
is derived:
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 tv =
c

2
d05

s ¤Y∗2
∫ 1

−1
(1 − .2) (1 + . )23. = 4

5
cd05

s ¤Y∗2 =
3
5
< ¤Y2, (D 6)

where < is the whole mass of the droplet.
Besides, there exists a horizontal component of internal  . By homothety, we assume a linear

local horizontal velocity inside the spheroid along the cross-section radius direction, Eh = ¤AosA/Aos,
where ¤Aos is the horizontal velocity at A = Aos, 8.4., on the cross-section circle at a given H, which
can be derived from equation D 3:

¤Aos =
−1 + 3H∗2/(1 + Y∗)2

2(1 + Y∗)2Aos
02

s ¤Y∗. (D 7)

Then a disc of thickness XH = 0sXH
∗ from the droplet has horizontal kinetic energy, h (H∗):

 h (H∗) =
∫ Aos

0

1
2
E2

h2cAd3AXH =
cd ¤A2

os

A2
os

∫ Aos

0
A33A =

c

4
dA2

os ¤A2
os0sXH

∗. (D 8)

With equation D 7,  h (. ):

 h (. ) =
c

4
dA2

os ¤A2
os0sXH

∗ =
c

16(1 + Y∗)3
d05

s ¤Y∗2 (−1 + 3.2)2X. . (D 9)

Taking that Y∗ � 1, the total horizontal kinetic energy  th:

 th =
c

16
d05

s ¤Y∗2
∫ 1

−1
(−1 + 3.2)23. = 1

10
cd05

s ¤Y∗2 =
3
40
< ¤Y2, (D 10)

then the total internal kinetic energy  :

 =  tv +  th =
27
40
< ¤Y2. (D 11)

The derivation of  is the same for prolate spheroid with Y > 0.

Appendix E. Rearrangement and Simplification of Horizontal Migration Model
In order to find out the evolution of the driving force for all the different cases, we re-arrange

equations 4.17-4.25 and make some simplifications. Firstly, the kinetic energy equation 4.25
G∗o < 1:

� (G∗o) = ,D (G∗o) +,Fd (G∗o) −,fL (G∗o) −,fR (G∗o) −,H (G∗o) =
1
2
<E2, (E 1)

an example of the contribution of each term in equation E 1 for the case, qL = 0.10 and qR = 0.20,
is shown in figure E.1. If we now assume that the only driving force is �d and neglect the term
,D (G∗o) (in most of the cases,Fd (G∗o)/,D (G∗o) > 4), and since,H (G∗o) plays its role mainly near
the end of the motion, we arrive to the following simplified energy equation:

,Fd (G∗o) ≈
1
2
<E2 +,fL (G∗o) +,fR (G∗o). (E 2)

By making use of the equations 4.7, 4.17-4.19 & 4.21-4.23, the integral function � (G∗o) derived
from experimental values of dynamic velocity can be expressed as:
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FIGURE E.1: The works done by different forces in the case with qL = 0.10 and
qR = 0.20, from 0 to a given displacement, G∗o = Go/A, A is the contact radius of the

droplet. The evolution of each term in equation E 1 is presented.

� (G∗o) =
,Fd (G∗o)

2cWA2 (1 + cos \Y)Δq
≈

1
2<E

2 +,fL (G∗o) +,fR (G∗o)
2cWA2 (1 + cos \Y)Δq

. (E 3)

Since we also know that the theoretical expression for � (G∗o) from equation 4.21:

� (G∗o) =
∫ G∗o

0

√
1 − (G∗)23G∗. (E 4)

It is now possible to collapse all experimental data using equation E 3 and compare with the
theoretical equation E 4. It is noteworthy that the only fitting parameter in equation E 3 is �∗ ≈
18.07N/m2 · AΔq/Wq̄. We cannot further simplify the expression because of the complicated
forms of ,fL (G∗o) and ,fR (G∗o). Experimental and model results using equations E 3 & E4 are
then compared in figure 9(1). Since ,Fd (G∗o) = 2cWA2 (1 + cos \Y)Δq� (G∗o), � (G∗o) acts as an
indicator of the contribution of the driving force to the kinetic energy as a function of normalized
displacement.
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