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Adaptive Waveform Design for Interference Mitigation
in SAR

Claire Tierney1, Bernard Mulgrew2

Abstract

This work details an interference mitigation scheme for synthetic aperture radar
(SAR) which adapts the transmitted waveform spectrum to restore the quality
of the scene range-profile based on the estimated interference spectrum. By
expressing the estimation of the range-profile in the presence of correlated noise
as a system identification problem, a cost function for the optimal waveform is
derived. In order to respond effectively to changes in the radio frequency (RF)
environment, adaptive waveform systems should perform waveform design on a
small timescale, ideally on a pulse-to-pulse basis. Motivated by the need for a
computationally efficient waveform design scheme, an alternative estimator is
derived, which yields a closed form solution, which is shown to perform similarly
to the optimal case. A series of test SAR images demonstrate the efficacy of
this technique and are compared to the standard linearly frequency modulated
signal and stretch processing outcome.

1. Introduction

Synthetic aperture radar(SAR) relies on large sections of uninterrupted
bandwidth to obtain high resolution images. The dependence SAR systems
have on wideband signals means they are particularly vulnerable to radio fre-
quency interference (RFI) from neighboring spectral emissions which are often
present in the increasingly crowded RFI spectrum. RFI causes degradation of
the signal-to-interference plus noise ratio (SINR) which can mask and reduce
the quality of the desired scene information. Furthermore, this effect raises the
range profile (impulse response) sidelobes and causes significant degradation of
the final SAR image quality as scene reflectors can become blurred, bright lines
and other image aberrations may be seen across the image. As such, interference
mitigation is a long standing area of interest for SAR and its solutions are varied
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in their effectiveness and computational complexity. The major body of work to
address RFI in SAR is based around the use of linearly notched filters (see these
works and references therein [1, 2]). While the notching removes the frequency
bins that contain interference this also removes the useful signal information in
these bins.

Therefore, these methods are only partially effective unless used alongside a
sidelobe reduction algorithm as in [3] for additional computational cost. As an
alternative to filtering, more recent SAR interference mitigation attempts now
focus on estimating and separating RFI from the desired signal. These algo-
rithms are generally sub-categorised into either parametric or non-parametric
approaches. Parametric approaches model the RFI as sinusoidal waves but
must do accurately in order to avoid introducing estimation bias [1, 4, 5]. Non-
parametric methods exploit the statistical differences between the scene impulse
response and the RFI, then subspace separation or filtering is applied in the
frequency or time domains [6, 7, 8, 9]. These approaches are often highly com-
putationally expensive or impose assumptions that may not always be true, for
example in [6], the assumption is that the RFI eigenvalue bases are separable.
Both parametric methods and non-parametric methods are generally restricted
to dealing with very narrow-band interference ( < 1% of radar bandwidth).
Wider band approaches are possible, but the computational cost increases the
wider band the RFI signal is [9, 10]. With RF transmissions becoming in-
creasingly wideband in general with the demand for technology with higher
information capacities, the need for wideband interference mitigation solutions,
or more frequency diverse SAR transmissions to cope with the increasingly con-
gested RF environment is apparent. The common point in the SAR mitigation
literature is that the methods are performed on receive, or off-line post data
collection. That is, the system does not respond to the threat adaptively in
order to mitigate impact of interference. In this paper, we propose to alter the
transmission on-the-fly as a means of adaptive interference mitigation.

“Cognitive” or adaptive waveform radar systems [11] have become of recent
interest due to advancements in transmitter technology making on-the-fly design
of transmit waveforms feasible[12]. This provides the potential for waveforms
to be specifically tailored to the surrounding RF environment and the require-
ments of the radar mode. For the waveform design to be useful, the environment
for which the waveform is being tailored must not have changed significantly
between processing time-frames. To reduce the risk of waveform design re-
dundancy, transmission of the next waveform should occur promptly after the
previous received signal. This real-time scenario creates a race to design and
transmit the next waveform before further scene changes invalidate the efforts
of the design. This time-frame is regarded to be the major design challenge for
adaptive waveform design systems and highlights the need for computationally
efficient algorithms[13].

Within the past 10 years, waveform design efforts have become increasingly
spectrum-conscious; either from the perspective of spectral coexistence with
surrounding transmitters or from a performance perspective to exploit optimal
occupation of the RF spectrum to yield enhanced performance metrics. The
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spectral waveform design literature generally demonstrates one the following:
1) addition of small modifications to the standard linear frequency modulated
(LFM) waveform to place nulls in the spectrum to remove RFI or to maintain
co-existence with surrounding RF users [14, 15, 16, 17], 2) waveform design
with forbidden bands where the spectrum cannot place energy or where it is
optimal for avoiding transmitters [18, 19, 20, 21], 3) waveform optimization with
forbidden regions while also attempting to optimize for another performance
metric or feasibility constraint [22, 23, 24], 4) or more recently, by exploiting
multiple-input-multiple output (MIMO)-radar to harness both frequency and
spatial diversity to achieve spectral co-existence with other RF users [25, 26,
27, 28, 29].

Numerous recent waveform design methods consider the requirement for con-
stant modulus amplitude to ensure maximum power efficiency at the receiver.
Continually increasing phase-rate (frequency) is also desirable for implementa-
tion into electronically scanned radars, in other words, chirp-based waveforms
either via a linear or non-linear frequency sweep. A time/frequency sweep per-
mits the use of phase shifters to steer the transmitted beam - a necessary consid-
eration for phased array radars. However many of the recent works for waveform
design do not synthesize chirp-based waveforms and are also often based on it-
erative methods which may incur high computational complexity costs which
radar hardware systems may struggle to implement on the-fly. These types of
solutions are essential in understanding the required mathematics, but due to
the computational complexity and iterative nature, these methods may be im-
practical on the fly, as convergence is unlikely be guaranteed within a transmit-
receive window - this makes verification a challenge. This also does not satisfy
the criteria for fast-response adaptivity.

Furthermore, the vast majority of the spectrum based waveform design tech-
niques are based on optimizing for target detection. The common point across
the spectral waveform design techniques is that they place gaps in the spec-
trum as it is optimal to do so for detection. However, a waveform optimal for
detection is unlikely to be optimal for obtaining the best estimate of the range
profile in SAR - creation of gaps in the spectrum is detrimental to the imaging
performance. Although adaptive waveform design has been applied to a range
of radar scenarios, to the authors knowledge, very little research has been done
towards adaptive SAR systems for interference mitigation.

A SAR image is formed by obtaining the range profile of the desired scene
from many successive angles - but the presence of RFI disrupts the quality of the
range profile estimate. Each successive range-profile is altered due to the angle,
and requires re-estimation. Given the ability to modify the spectral content of
the waveform, it is then desirable to obtain the best possible estimate of the
scene in the presence of interference. In this paper, this problem is set up as
a least-squares system identification problem, by modifying the waveform such
that it attempts to estimate the range profile which satisfies the minimum mean
square error criterion.

With the aforementioned points considered, our motivations for this paper
are summarised as follows: i) formulate a waveform design approach for SAR

3
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to mitigate interference as a pre-emptive measure to maximise on-the-fly per-
formance as an alternative to relying fully on post-processing interference, ii)
provide a solution which is computationally efficient and viable for on-the-fly
such that it is implementable with phase shifters (is chirp based), iii) perform
interference mitigation which is able to tackle RFI that is greater than 1% of the
bandwidth and does not increase in computational cost with increasing band-
width iv) exploit use of frequency-domain system identification, which is not
commonly used within radar applications.

This paper proposes a computationally efficient system-
identification/waveform-design scheme for mitigating RFI in SAR on a
pulse-to-pulse basis. No prior knowledge of the RFI is required. In doing so we
also directly address the real-time challenge set out in [13].

The three main contributions of this paper are as follows:

1. Joint range-profile/interference-spectrum estimation We formulate the
problem of SAR range-profile estimation in unknown interference as a
frequency-domain system identification problem and through that formu-
lation identify the optimal solution as the generalized least squares (GLS)
estimator with a well-defined CRLB [30]. By extending concepts from fre-
quency domain adaptive filtering [31] we develop an approximation to the
GLS estimator that is based on the fast-Fourier transform (FFT). This
technique also provides an estimate of the interference spectrum on-the-fly.
It is also pertinent to note that the frequency-domain system identifica-
tion estimation approach is free from inter-range-cell interference (IRCI)
as pointed out in our preliminary results [32] and additionally in related
work applied in an LFM-MIMO case [33]. A comparison of the proposed
system identification scheme with OFDM is presented in [32].

2. Adaptive waveform design We develop a similar frequency domain approx-
imation to the CRLB. We optimize this approximate CRLB with respect
to the spectrum of the transmitted signal given the usual energy con-
straint on the waveform. This leads to a simple closed form solution that
we prove is the global minimum for the approximate CRLB (given the
energy constraint). These outcomes expand on preliminary results based
on a heuristic approach to the waveform design which were presented in
[34].

3. Computationally efficient combined estimation/design/synthesis To illus-
trate the potential of the above we combine them with a waveform-
synthesis technique for nonlinear linear frequency modulation (NLFM)
based on the stationary phase approximation (SPA) [35]. We consider
this synthesis methodology because: i) its computational complexity is
similar to what we propose above; (ii) NLFM meets the constant ampli-
tude waveform constraint required for many practical systems and only
requires phase shifters rather than time delays in electronically steered
systems. We note however that the techniques mentioned above are not re-
stricted to this form of synthesis or to NLFM. We show that the combined
system has complexity of O(M log2(M)) per transmitted pulse, where M

4
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is the sum of range extent and transmit signal length in samples.

The paper is organized as follows: Section 2 describes an overview of the
SAR system, sets up the problem in the time-domain, provides the system
model and arrives at an optimization problem. In Section 3 the system identifi-
cation problem is developed in the frequency domain via factorization with the
FFT and the proposed time-constrained frequency domain solution. In Section
4 a frequency domain waveform optimization problem is proposed and Ssection
5 gives a possible method for waveform synthesis using non-linear signals. The
performance of the proposed method is analyzed in Section 6, and SAR exam-
ple simulated scenarios are demonstrated in Section 7 and finally concluding
remarks are given in Section 8.

1.1. Notation

This paper adopts the following notation: boldface for vectors and matrices;
the transpose, hermitian, diagonal and trace operators are denoted as (.)T , (.)H ,
diag(.) and tr(.) respectively. Linear convolution operator is ∗. The statistical
expectation is denoted E(.) and the covariance is cov(.).

2. SAR System Identification

2.1. SAR System Model

The SAR “stop-and-go” assumption is employed here such that a subse-
quent pulse is not transmitted until the return from the furthest scene range
point is received. The nature of the SAR imaging scheme requires that each
successive returned range profile is different from the previous returned pulse
due to motion of the radar platform, and requires re-estimation on each wave-
form transmit-receive cycle. The full SAR data collection is over a burst of
P coherent pulses. The pth transmitted signal is an N -dimensional, finite en-
ergy, finite duration and deterministic vector, where N is proportional to the
pulse length τc and sampling rate N = τcfs.The system to be identified is a
finite impulse response sequence h with K elements. Each element of the finite
impulse response corresponds to one range cell in the SAR scene. The slant
range resolution of one range cell is defined as δr = c

2B and K = Rw

δr
where

B is bandwidth in Hz, c is speed of light in ms−1, Rw is scene extent length
in meters. In this initial argument it is assumed that N > K, there are more
transmitted signal samples than scene samples, such that the pulse duration τc
is longer than the corresponding ground patch-propagation time length tk - the
time difference between the first sample in the SAR scene ti and the last tf ,
shown in Figure 1. This is an assumption typically used in spotlight SAR in
combination with stretch processing [36]. For stripmap mode the pulse length
is often chosen to be shorter than τc < tk (N < K), a case that is explored in
section IV. This system also assumes use of wideband sampling at the receiver,
so the full bandwidth is stored on receive and stretch processing techniques are
not applied. The pulse length τc has an upper limit such that the last returned

5
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Figure 1: Spotlight SAR scene scenario with relative times in scene.

signal (from the furthermost range cell) has reached the radar before the next
pulse is transmitted to avoid range-foldover effects, a common assumption in
SAR [36].

The system block diagram shown in Figure 2 operates as per Algorithm 1
where p is the current pulse number in a coherent burst of P consecutive pulses.
Steps 2 to 6 of the Algorithm describe the operations in the main blocks of
Figure 2, starting in the top left hand corner and moving clockwise round the
diagram. An LFM signal is used to start the process as it is nearly spectrally flat
and aids the initial system identification calculation to estimate the interference
spectrum by placing energy across the entire band. To allow full use of the
synthetic aperture, all pulses are used to form the image. In this paper, back-
projection [37] is used for image formation. The impulse response estimates at
step 8 of Algorithm 1 are a convenient input for that technique. Other SAR
imaging techniques, such as the more common polar format algorithm [37],
require the associated frequency responses. As will be seen in Section 3, the
latter are also provided by the System Identification block.

2.2. Time Domain Problem Formulation

Estimation of the range profile can be expressed as a discrete time problem.
A returned range sample consists of a summation of all reflectivity points for the

6
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Figure 2: Pulse-to-pulse system flow chart.

Algorithm 1 Adaptive Waveform Design Scheme

Initialize: first pulse x1 is LFM
1: for p = 1 : P do
2: Transmit pulse xp.
3: System identification: the transmitted pulse and the associated received

signal y are used to estimate the impulse response hp of the SAR scene and

interference N̂ at the pth position of the radar.
4: Interference spectrum estimate; formed from the interference estimate.
5: Transmit waveform optimization: optimize transmit spectrum using esti-

mate of interference spectrum.
6: Stationary phase waveform design: transmit spectrum is used to synthe-

size the next NLFM transmit pulse xp+1.
7: end for
8: Pass the collection of P impulse response estimates {ĥp}Pp=1 to the SAR

image formation algorithm.

7
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corresponding time sample. The fast-time observations at the receiver can be
expressed as the convolution of the transmission sequence and the finite impulse
response vector hp as

yp(k) = hp(k) ∗ xp(k) + np(k) (1)

where the transmitted waveform is
xp =

[
xp(0) xp(1) · · · xp(k) · · · xp(N − 1)

]T , p is transmitted
pulse number and k is the kth sample of transmitted waveform where
k = (0, 1, · · · , N − 1). The finite impulse response is hp =[
hp(0) hp(1) ... hP (K − 1)

]T .

The noise plus interference n is an [N + K − 1] dimensional vector with
co-variance matrix Rnn = E[nnH ] and the interference is assumed to exist
within the same bandwidth as the transmitted signal. To simplify the notation,
we have dropped the subscript from the remainder of this Section. The linear
convolution can also be expressed in matrix form as follows

y = Xh + n (2)

where X is a (N +K − 1)×K rectangular and Toeplitz matrix where columns
contain time shifted versions of the transmitted signal xp and the received signal
is of corresponding length (N +K − 1). The terms after the data vector can be
zero as they correspond to before or after the transmitted signal.

X =



x(0) 0 ... 0
x(1) x(0) ... 0

...
...

. . .

x(K − 1) x(K − 2) ... x(0)
x(K) x(K − 1) ... x(1)

...
x(N − 1) x(N − 2) . . . x(N −K)

0 x(N − 1) . . . x(N −K + 1)
...
0 0 . . . x(N − 1)


Because we assume that the impulse response is finite and we collect all the
returns from the transmitted signal, equation (2) defines N +K − 1 equations
in K unknowns and is thus an overdetermined system. The case where this
assumption is not justified is considered in [32]. The impulse response of the
scene can be estimated as [38]

ĥ = (X
H

R−1
nnX)−1XHR−1

nny (3)

Using the estimator for the generalized least squares (GLS) problem directly is
computationally expensive and initially the interference covariance is unknown.

8



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

If the noise and interference source is white, the covariance matrix is reduced to
a diagonal of the variances Rnn = σ2

nI giving the simpler ordinary least squares
(OLS) estimator.

ĥ = (X
H

X)−1XHy (4)

Generalized least squares is equivalent to applying ordinary least squares to a
whitened version of the system [38]. In [34] we motivated the waveform design
for least-squares by postulating that if the spectra for the transmit signal is
matched to the interference, that the ordinary least squares solution can be
used. Here we seek a more formal solution. Waveform design is employed to
achieve the optimal estimation of the scene impulse response in the presence of
correlated interference according to the least-squares solution. Waveform design
for the optimal least squares solution should try to minimize the error to find
the best fit for ĥ. The Cramer-Rao lower bound (CRLB) for the generalized
least squares estimate of the impulse response vector is given by the spread of
the covariances[38]

cov(h− ĥ) = E[(h− ĥ)(h− ĥ)H ] = (XHR−1
nnX)−1 (5)

Therefore waveform design for SAR system identification in the presence of in-
terference can be formulated as the following constrained optimization problem

min
x

tr(XHR−1
nnX)−1

s.t. xHx = ET
(6)

where ET is the energy in the transmitted signal. The authors are unaware of an
existing analytical method to solve this expression. A possible numerical opti-
mization procedure is particle swarm optimization (PSO), a global optimization
technique [39]. This can be applied to the optimization problem to find the best
overall waveform under the constraint of energy. As it is an iterative method
PSO potentially requires a large number of computations to find the solution
- especially as matrix inversion is required on each iteration. We propose a
more computationally efficient approach to estimating the impulse response by
factorizing with the DFT and expressing the problem in the frequency domain.
The following steps aim to approximate the CRLB of (6) to facilitate a tractable
analytic solution that is computationally efficient. However we use (6) and its
solution through PSO, as a benchmark to quantify the performance loss incurred
by the approximation.

3. System Identification and Interference Estimation

3.1. Cyclic Extension

By describing the problem in the frequency domain we can exploit factoriza-
tion with the discrete Fourier transform (DFT) to create a computationally effi-
cient least squares expression. Matrices that are square, circulant and Toeplitz
factor conveniently with the discrete Fourier transform.

9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

From here onwards define M = N + K − 1, where M , as mentioned in
the introduction, is dependent on the sum of range extent and transmit signal
length. Equation (2) can be re-written as

y =
[

X [∗]
] [ h

0N−1

]
+ n

(recalling that X is an (M ×K) matrix) where [∗] in an (M × (N − 1)) matrix
of “don’t care” terms and 0N−1 is a column vector of N − 1 zeros. The above
will hold for any value of [∗]. The ith column of X, for the column set {∀i : 1 <
i ≤ K}, is obtained by applying i− 1 downward cyclic shifts to the first column
at i = 1, defined as xc1. If this downward cyclic shift process is extended to all
the columns in the set {∀i : 1 < i ≤ M}, it assigns columns to [∗] and defines
the (M ×M) circulant Toeplitz matrix, Xc. Thus equation (2) can be written
as

y = Xc

[
h

0N−1

]
+ n (7)

The circulant Toeplitz matrix admits the factorisation [40]

Xc = FHdiag {Fxc1}F (8)

where F is an (M×M) DFT matrix such that FHF = IM and IM is an (M×M)
identity matrix. It should be noted that this cyclic extension is an artifact of the
signal processing in the receiver and is not applied to the signal at transmission.

3.2. Frequency Domain Solution

Proceeding, we seek an alternative non-optimal estimator in place of the
computationally expensive, exact estimator in (4) . Applying Fourier transforms
to both sides of time-domain circulant matrix equation (7) and using the identity
property, where F is an M -point discrete Fourier transform, gives

Fy = FXcF
HF

[
h

0N−1

]
+ Fn (9)

Now the expression for circulant-Toeplitz matrices given in (8) can replace Xc

and again using the identity property gives

Y = ΩH + N (10)

where Ω = FXcF
H = diag {Fx1}, Y = Fy,H = F

[
h

0N−1

]
and N = Fn.

Given an expression of the system model in the frequency domain, a correspond-
ing generalized least squares estimate for H

Ĥ = (ΩHD−1Ω)−1ΩHD−1Y (11)

10
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where
E[NNH ] = FRnnFH = D (12)

Equation (11) is an approximation since it does not embody the constraint on
the estimate inherent in (7), specifically

0N−1 = [ 0N−1,K IN−1 ]F−1Ĥ (13)

where 0N−1 is an column vector of N − 1 zeros, 0N−1,K is an (N − 1) × (K)
matrix of zeros and IN−1 is an (N − 1)× (N − 1) identity matrix.

The noise-covariance matrix Rnn is positive definite as there will always
be some level of background white noise due to thermal noise. The eigen-
decomposition can be written as

Rnn = VΛVH

where Λ is a diagonal matrix of the eigenvalues and V is the orthonormal matrix
such that VHV = I whose columns are the corresponding eigenvectors. The
eigenvectors also define the Karhunen-Loeve transform(KLT) of the noise vector
VHn .The elements of VHn are orthogonal and therefore uncorrelated since

E[VHnnHV] = VHRnnV = VHVΛVHV = Λ

The KLT has history of being approximated by signal-independent transforms
such as the DFT and the discrete cosine transforms due to its complexity. This
approximation of the DFT to the KLT has lead to the DFT being used to
approximately orthogonalize signals. The justification for this was initially used
in Markov-1 processes [41]. Examples can be found in the fields of frequency-
domain adaptive filtering [31, 42] and in radar, where the frequency snapshot
model uses the orthogonalization assumption [43] and also in [20] to justify use
of the frequency domain to avoid a matrix inversion.

Assuming that now, due to the application of the DFT, the frequency domain
samples are uncorrelated, the off-diagonal elements of the frequency domain
interference covariance matrix D will be approximately zero and are disregarded
allowing a vector expression D̃ to be formed from the diagonal replacing D in
(11).

D̃ = diag(D)

This provides a simple estimate in the frequency domain which is element wise.
With this approximation we have what might be called a “doubly-diagonal”
system, both the input signal matrix Ω and the noise covariance matrix D̃ are
diagonal. The GLS of (11) reduces to OLS with the added benefit that we do
not require knowledge to D̃ to form the estimate.

Ĥi =
Yi
Ωi

i = (1, 2, · · · ,M) (14)

This frequency domain least squares problem has the same number of knowns
and unknowns, which was not the case in the time-domain problem of (2) which

11
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had fewer unknowns. Similar to methods used in frequency domain adaptive
filtering [31, 42] an approximation to the LS estimate of (3) is obtained by
projecting the estimate provided by (14) onto the feasible set of solutions defined
by the constraint of (13).

ĥc = [ IK 0TN−1,K ]F−1Ĥ (15)

where IK is an K ×K identity matrix. This operation removes the additional
N − 1 samples that was added to the original time domain problem to allow
the problem to be expressed in the frequency domain via representation via
circular convolution. The removal of the extra N − 1 terms in the time domain
also acts as noise-removal. This works best when N > K, as noise removal
performance is proportional to the number of samples N removed. This effect
on performance is demonstrated in section VI.C. Here we are also exploiting the
assumption that the impulse response is finite. In actuality, energy from the
antenna extends beyond the mainbeam into the sidelobes, but generally only
the returns corresponding from the range-swath are desired. This range swath is
assumed to be finite. This has been studied in other systems whereby an infinite
impulse response is represented as finite, and the incurred error on estimate is
generally shown to be small [44].

We further note that the same assumption of a finite and known length of
range swath is made in standard stretch processing for LFM-based SAR systems
[36]. The corresponding estimate of the time-constrained frequency response is
then:

Ĥc = F(

[
ĥc

0N−1

]
) (16)

which finally, provides an estimate N̂ of the interference N where:

N̂i = Yi − ΩiĤi (17)

and from which an estimate of the interference spectrum D̃ can be formed in a
straightforward way, D̃ = g(|N̂i|2), where g is a moving average filter which is
applied to smooth the spectral estimate.The unfiltered spectral estimate D =
|Ni|2| may exhibit large sample to sample fluctuations as this estimate results
from a single realization of the spectrum. Directly using this spectral estimate
would also yield a waveform that is high in sample-to-sample fluctuation and
may not provide a good representation of the true spectral distribution.

The TCFDE of (11),(15) and (16) provide an approximation to the GLS of
(3) that is DFT based. This approach is more computationally efficient than the
direct GLS estimator. Using the TCFDE is thus better suited to the relatively
long impulse responses that are typical in SAR, as larger DFT dimensions scale
better computationally than matrix inversions. In addition the TCFDE does
not require explicit knowledge of the interference covariance matrix Rnn and
provides a mechanism through (16) to estimate the spectrum of that interference
“on-the-fly”. The latter capability facilitates adaptive waveform design.

12



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4. Waveform Optimization

We now have three possible estimators for the impulse/frequency response.
Equation (3) provides the optimal solution if the interference covariance ma-
trix is known. Its performance is given by (5). The unconstrained frequency
domain estimate of (11) is the simplest computationally but it is liable to give
poor performance as it has no capacity for noise reduction and it approximates
linear convolution with circular convolution. The constrained frequency domain
estimate of (14), (15) and (16) is an improvement on (14) because it enforces
linear convolution and reduces noise through (15) and (16). The performance of
this constrained frequency domain estimate are explored further in [32]. Central
to many adaptive waveform design (AWD) methods is the judicious choice of a
cost function. Ideally we would like to use a cost function that accurately re-
flects the performance of the radar, e.g. (6). However, if we chose to implement
(3), the optimization of (6) is a still a major challenge. Often a cost function
is chosen that is an approximation to or a bound on the actual performance
metric because no convenient closed form solution for the metric exists. For
example, in AWD for detection [45], the asymptotic performance is used as a
cost function because no closed form solution for the detector performance on
finite data sets exists. Similarly, in bearing estimation [46], the CRLB is used
even through the estimator does not achieve that bound. Again no closed form
expression for the performance of the estimator exists. Thus while we advocate
the use of the constrained estimate of (14),(15) & (16) for estimating the im-
pulse response, we use the unconstrained estimate of (11) to provide a simple
cost function for the waveform design that leads to a closed form expression
for the transmitted spectrum in terms of the spectrum of the interference. As
argued earlier the performance of the unconstrained estimate is poorer than the
constrained one and thus we are optimizing an upper bound on the performance
of the constrained estimate.

Thus, we address the “doubly-diagonal” system discussed in Section 3, i.e.
a system defined by (10) which is not constrained by (13) and where D is a
positive definite diagonal matrix with ith diagonal element Di. It follows that
the GLS estimate is given by (11) and, by analogy to (3) and (5), the error
covariance of that estimate is

cov(H− Ĥ) = E[(H− Ĥ)(H− Ĥ)] = (ΩHD−1Ω)−1 (18)

The trace of this covariance matrix gives a single metric, P , that quantifies the
performance of the estimate

P , tr((ΩHD−1Ω)−1) =

M−1∑
i=0

Di

|Ωi|2
(19)

As with (6), the quality of the estimate is limited by the total transmit energy
ET that is available for the signal. In discrete time, using Parseval’s theorem,
this is

ET =

M∑
i=0

Ei =

M∑
i=0

|Ωi|2 =
N−1∑
k=0

|xi|2 (20)
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For ease of notation we define the energy at each frequency sample as

Ei = |Ωi|2 (21)

We seek to minimize the performance metric P subject to the energy constraint
of (20) and the property that energy is non-negative. Formally this optimization
problem can be expressed as

min
E

M−1∑
i=0

Di

Ei

s.t.

M−1∑
i=0

Ei = ET

Ei > 0, ∀i.

(22)

where E = [ E0 E1 ... EM−1 ]T . The appeal of this optimization problem,
unlike (6), is that it admits, as we now show, a simple closed-form solution.

The method of Lagrange provides the solution. However the presence of
the inequality constraints usually requires the use of the Karush-Kuhn-Tucker
(KKT) conditions (c.f. chapter 5 of [47]). However here the inequality con-
straints are straightforward. Our approach is to first solve the optimization
problem without the inequality constraints using the Lagrangian dual func-
tion [47] and then identify all the possible solutions. We show that only one
of these solutions satisfies the inequality constraints, We also show, using the
methodology set out in [48], that the single solution that satisfies the inequality
constraints is a minimum.

Without the inequality, (22) reduces to

min
E

f(E)

s.t. g(E)− ET = 0
(23)

where, we define f(E) =
∑
i
Di

Ei
and g(E) =

∑
iEi. The Lagrange function

is

L(E, λ) = f(E) + λ(g(E)− ET ) (24)

and λ is the Lagrange multiplier. Necessary conditions for a solution are ob-
tained by setting the gradient of L(E, λ) to zero. Thus

∇f(E) + λ∇g(E) = 0M (25)

where ∇f(E) indicates the gradient of f(E) and 0M is a vector of M zeros.
Hence

∂L

∂Ei
= −Di

E2
i

+ λ = 0, ∀i (26)

and thus

λ =
Di

E2
i

, ∀i. (27)
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Since D is a diagonal and positive definite, Di > 0 and hence λ > 0. It
follows that

Ei =
±
√
Di√
λ

. (28)

To solve for λ we apply the energy constraint (20) to give

Ei = ET
±
√
Di∑

i±
√
Di

. (29)

This equation defines 2M possible solutions to (23). The solutions are are depen-
dent on the choice of sign on the square root of each Di. Consistently choosing
either all positive or all negative roots, gives

Ei = ET

√
Di∑
i

√
Di

. (30)

This particular solution satisfies the non-negative energy constraint of (22).
The remaining solutions all contain combinations of both positive and negative
values for the squares roots of each Di. Hence, irrespective of the sign of the
denominator

∑
i±
√
Di, these solutions all contain both positive and negative

values for each of the energy terms Ei and hence they do not satisfy the non-
negative energy constraint. Only (30) satisfies the necessary conditions for a
solution to (22).

For brevity we will call (30) frequency domain waveform optimization
(FDWO). While the development here is similar to [20], the result is distinctly
different. In [20] a detection problem is addressed whereas here we address sys-
tem identification problem. Thus it is not surprising that the results might be
different and it is interesting to note that there is no sense of “water-filling”
(c.f.[20]) here or conclusion that signal energy should be directed to areas of
the spectrum where the interference density is relatively low. Rather (30) sug-
gests a more competitive approach. An example signal outcome E for a given
interference energy D is shown in Figure 3.

5. Waveform Synthesis

The previous section has determined the energy distribution across the fre-
quency band. The following describes a possible method of synthesizing a time
domain signal according to the spectrum described in (30). We desire a fre-
quency modulated (FM) signal with constant amplitude modulus and spectrum
distribution. The stationary phase approximation (SPA), a standard technique
used for synthesis of nonlinear FM waveforms [35, 49], provides synthesis ac-
cording to these criteria. The synthesis technique detailed here is independent
from the TCFDE scheme. If desired, this would allow alternative waveform syn-
thesis techniques to be used in conjunction with the TCFDE scheme, provided
that they synthesize a signal with the desired frequency spectrum e.g. using
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Figure 3: Illustrative example demonstrating signal energy outcome from (30) is proportional
to the interference energy.

OFDM techniques or non-chirp based methods. The particular merit of the
SPA method is that it is non-iterative and will provide a solution provided that
the instantaneous frequency is continually increasing - either at a linear rate
(LFM) or non-linearly (NLFM). SPA relies on the assumption that amplitude
variations are very slow compared to phase variations, which results in most of
the energy becoming concentrated around stationary points. Applying a Fourier
Transform to a general chirp signal with amplitude and phase variation creates
an intractable integral. A large majority of the contribution to the Fourier
spectrum occurs where the change of oscillation of the function is at its lowest,
a stationary point, this can be exploited to calculate an approximation to the
integral. This occurs when the frequency is monotonically increasing and the
amplitude variations are much slower than the phase variations. This gives rise
to the following relationship between the time and frequency domains [35, 49]

ψ̈(t) =
C

E(f)
(31)

The relationship between t and f is given by:

ψ̇(t) = 2πf (32)

where ψ̇(t) is the phase change over time and ψ̈(t) is the change in frequency
over time. These expressions allow synthesis of a NLFM waveform according
to a desired spectrum E(f) by continually increasing the phase (instantaneous
frequency). As demonstrated in Figure 4 the output spectrum is an approxi-
mation to the input spectrum as provided by E(f). While this method is not
exact, it is a computationally simple approach for waveform synthesis compared
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to more precise but computationally complex methods demonstrated in the lit-
erature [50]. Furthermore, a precise replication of the input spectrum may not
be required as E(f) is calculated based on an estimate of the interference D(f)
provided by the system identification on the prior pulse. By approximating to
the spectrum of the interference, small errors in the interference estimate are
not further propagated into the performance of the system identification of the
current pulse.

0 50 100 150 200 250
-0.5

0

0.5
a)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-25

-20

-15

-10

-5

0
b)

SPA input

SPA output

Figure 4: a): Input spectrum given by E(f) (blue) and resultant transmit spectrum given by
SPA. b): Synthesized transmit signal. Non-linear upward sweep in instantaneous frequency
gives non-linear “chirp” waveform.

6. Performance Evaluation

6.1. Simulation Experiment Set-Up

The following section demonstrates the performance of the TCFDE tech-
nique combined with the waveform optimization and design method in terms
of the error in the impulse response estimate. Additionally this section aims
to evaluate the associated loss in performance that is introduced in the de-
velopment of the alternative frequency domain estimate, the TCFDE, which
approximates the direct estimator (5). The assumed knowledge to perform the
simulations is as follows; the transmitted signal and its spectral representation,
the received signal and the length of the range-swath, which corresponds to
the impulse response length K. The known frequency domain representations
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of the received and transmitted signal, Y and Ω are processed according to
steps (14)-(16), to provide an estimate of the impulse response ĥ. The norm
of the simulated impulse response vector h is normalised to unity such that∑K−1
k=0 |hp(k)|2 = 1. Narrowband interference is generated by constructing un-

correlated complex normal samples of length M then passed through a band-
pass filter to create correlated interference samples so that the interference lies
within 10% of the overall signal bandwidth. The impulse response estimate ĥ is
evaluated and 1000 trials are executed at each configuration. The energy in each
transmit signal and the total nominal bandwidth is constant across generated
waveforms.

To quantify the performance of the following waveform design and estimator
pairs under test, and as is usual with the assessment of system identification
algorithms, we calculate the norm of the error vector (trace of the error co-
variance matrix) between the actual complex impulse response value h and the

estimated value ĥ.

ρ , tr(cov(h− ĥ)) = E[(h− ĥ)H(h− ĥ)] (33)

This metric is calculated for the ensemble of pseudo-randomly generated scene
impulse responses and interferences as described above. The interference esti-
mate ρn is calculated in the same manner as (33), replacing ĥ for N̂ . TCFDE
is a discrete time technique which can be used for any corresponding trans-
mit signal bandwidth, time and sampling frequency - the important metric for
performance being the relationship between K the number of samples corre-
sponding to the scene length and N the transmitted signal length. For the
following section B, the relationship is shown for a ratio of K/N = 0.25. This
is incrementally altered in section C by increasing the scene length and keeping
transmit signal length constant.

6.2. Performance Relative to Interference Power

As the radar system is limited by an upper bound of energy, there will
exist a critical interference level where the placement of energy into the same
band as the interferer will no longer provide a useful estimate of the impulse
response as high sidelobes and noise override the signal. To demonstrate the
performances relative to interferer strength, the following simulations increase
the interference power to lower the overall signal to interference and noise ratio
(SINR) i.e. - increased interference strength while keeping the waveform signal
constant, lowers the SINR value at each consecutive simulation experiment.

SINR =

∑M
m=0 |Ωm|2∑M

m=0E[|Dm|2]
(34)

where the power of the interferer is a finite value. The total power in the inter-
ference is increased at each simulation to demonstrate the result on performance
with increasing interference as demonstrated in Figure 5. The dependency on
the interference spectrum relative to the transmitted signal is demonstrated
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in (30). As this necessitates that performance for the FDWO-NLFM-TCDFE
method is limited by the level of interference power, the performance with in-
creasing RFI strength is demonstrated here via simulation. Simulated examples
demonstrate how performance error varies with interference power for the fol-
lowing waveform and impulse response estimation techniques;

1. LFM with stretch processing

2. Initial LFM- TCFDE

3. FDWO-NLFM-TCFDE

4. GLS optimized with PSO with known interference covariance Rnn

Where 1) is the standard SAR configuration, 2) is the first step of the system
identification process as shown in Figure 2, 3) is the waveform designed after
the initial LFM transmit-receive loop using the suboptimal estimator and 4) is
the global optimal solution constrained under energy, but without amplitude or
phase constraints. For a comparison to TCFDE, the PSO method is used to
solve the original optimization problem given in (6). The PSO optimization is
only under the constraint of energy and finds the optimal time-domain waveform
solution xpso(t) based on the interference co-variance matrix Rnn. The PSO
waveform is generated by using the estimated NLFM waveform for the initial
conditions and numerically searching for the optimal waveform to minimize the
error in the impulse response estimate (6).

6.2.1. LFM-TCFDE

In the adaptive system shown in Figure 2 the first transmitted pulse is used
to obtain an estimate of the interference frequency profile N̂ and a scene esti-
mate ĥ1. If there is no correlated noise present, the flat spectrum is optimal
for the impulse response estimation. In correlated noise this first LFM pulse
is expected to perform sub-optimally as it is not yet shaped according to the
interference as this is initially assumed to be unknown. This method simultane-
ously obtains interference and scene data on the same pulse, which if successful,
is an advantage compared to passive approaches that do not collect scene data
while collecting interference data. This first LFM pulse then allows an estimate
of D̂ and subsequently enables the design of the next NLFM pulse to obtain
an enhanced estimate by shaping the spectrum of the waveform according to
(30). While this approach to initializing the system is not the optimal solution,
it provides performance as least as good as LFM-stretch (Figure 5) until much
higher interference regions. If the interference spectrum is already known, this
step can be omitted and the FDWO-NLFM-TCFDE process can be used.

6.2.2. FDWO-NLFM-TCFDE

Leading from the initial interference spectral estimate given by the LFM-
TCFDE the performance of the FDWO-NLFM-TCDFE is indicative of the best
system performance. Note that its performance is also dependent on the quality
of the interference estimate from the prior pulse. In this way, it serves as an
indicator of the overall system performance. It is shown in Figure 5 that using
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this scheme consistently improves performance compared with transmitting the
LFM signal- both compared to evaluation via stretch processing and TCFDE.

6.2.3. CRLB

The CRLB is a waveform-dependent measure of the best possible perfor-
mance attainable by a specific designed waveform in an interference character-
ized by covariance matrix Rnn as shown in (5). The true known simulated Rnn
is used along with the time-domain SPA synthesized waveform to provide the
CRLB value. Therefore, it is a useful tool to evaluate any performance losses in
the adaptive system. These losses account for both: i) the estimation of the in-
terference to design the waveform and ii) those incurred via the TCFDE impulse
response approximation to the direct GLS estimate approach in (5). These in-
clude the diagonalization assumption used to form the expression in (14) and the
approximation of linear-to circular convolution and re-constraining this value in
the time domain in (15) back to linear convolution. The CRLB has been calcu-
lated for both the LFM waveform and the NLFM waveform used in the FDWO-
NLFM-TCDFE combination and are labeled CRLB-LFM and CRLB-NLFM
respectively in Figure 5. The larger performance gap between in LFM-TCFDE
and CRLB-LFM compared to FDWO-NLFM-TCFDE and CRLB-NLFM can
be attributed to the larger error in interference estimate, shown in Figure 6.

6.2.4. PSO-GLS

This result serves as an indicator of an absolute lower bound of performance
for a given interference. Using the simulated interference covariance matrix, the
PSO algorithm searches for the global optimal time-domain waveform solution
constrained only by energy (6). In the absence of structure constraints in the
form of phase or amplitude, while this waveform offers the best performance,
this is both computationally expensive and not amenable to physical implemen-
tation. Furthermore, note that this method is not considered here as a viable
method for waveform synthesis as the convergence time cannot be guaranteed,
and therefore does not meet the adaptivity constraints. Using this optimal tech-
nique provides a means to demonstrate the performance losses incurred in the
FDWO-NLFM-TCFDE method through; (i) using the alternative frequency-
domain estimator TCFDE (ii) using SPA to constrain the time-domain wave-
form to be constant amplitude and increasing in phase over time.

Further, if the CRLB-NLFM estimate (given the FDWO-NLFM-TCFDE)
is compared to the PSO-GLS, the difference shows the performance lost by
forcing the amplitude and phase structure via the SPA. For moderate levels of
interference there is minimal performance impact of constraining the waveform.
The difference between the FDWO-NLFM-TDFDE and PSO show the costs of
using an alternative estimator and SPA waveform synthesis.

6.2.5. Interference Estimate

The performance error of the interference spectrum estimate D̂ is shown
for comparison between the initial (LFM) (p = 1) and adapted FDWO-NLFM-
TCFDE pulse (p = 2) and finally a subsequent third pulse (p = 3) using the
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Figure 5: Performance error norm results from 35dB to 0dB at K/N = 0.25 on a semi-log
plot
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Figure 6: Mean squared error for interference spectrum estimate for initial pulse p = 1,
adapted pulse p = 2, and the subsequent pulse p = 3
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interference estimate from the prior pulse in Figure 6. There is minimal perfor-
mance gap between (p = 2) and subsequent estimation demonstrating that for
static interference further pulses are not required to improve the interference
estimate.

6.3. Performance for Relative Scene Size

Shown in (15), the TCFDE method constrains the frequency-response esti-
mate in the time-domain to re-express the estimate without assuming circular
convolution. This step removes N−1 samples to provide the original K−1 range
cells, which as a by-product removes noise that was present in the additional
N − 1 samples.

The ability to remove noise/error originating from the estimation process
is therefore dependent on the ratio between the discrete representation of the
scene impulse response K − 1 and the transmitted pulse length N − 1.

When N > K (for small scene sizes) the removal is comparatively large
but when K > N , there is less error removal. The following simulated exper-
iment demonstrates different scene lengths relative to the same pulse length
and its effect on the TCFDE performance. The longer the pulse-length relative
to the scene size, the larger the performance gain. The performance error im-
proves linearly with the removal of samples. This effect is shown in Figure 6.3
for increasing scene sizes while keeping the pulse length N constant. This is
demonstrated for interference levels of 5dB, 10dB and 15dB SINR. The higher
the interference level, the higher the gradient at which the performance drops
off due to additional noise suppression. While the method is operational for
larger scene sizes it is at reduced performance as additional noise suppression is
greater for smaller scenes.

6.4. Computational Complexity of FDWO-NLFM-TCDFE

An overview of the scaling of the processing required for one pulse is pre-
sented in this section. The larger the input scene length K and pulse length
N , the higher the number of operations required for the signal processing
for the TCDFE scheme per pulse. This method initially appears to be low-
computational complexity as this is a non-iterative process. The computational
complexity of the full adaptive cycle can be broken down into the following three
stages.

6.4.1. System identification and interference estimation

The system identification process complexity is given by the number of op-
erations between calculating ĥ and N̂. The upper limit on the computational
complexity can be given by considering the computations required each iteration
for; element-wise division in (14) which increases linearly with the vector size M
so there are M divisions, the DFT and inverse DFT in (17) O(M log 2M) [51]

and finally the element-wise multiplication used in calculating N̂. Calculating
ĥ and N̂ requires M -point DFTs as given in (14) and (15)

C1 = O(M) +O(M log 2M)
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Figure 7: Performance impact for increasing impulse response lengths at varying levels of
SINR

6.4.2. Waveform optimization and design

The waveform design can be carried out via the expression in (30). This
requires calculation of the total energy ET which is a summation over M points
and scales linearly. Calculating Ei(F ) then requires O(M) for division of M .

C2 = O(M)

6.4.3. Waveform Synthesis

The implementation of SPA requires a cumulative summation of the esti-
mated optimized waveform spectrum Ei(F ) in order to use relationship between
change in frequency and time as shown in (32). This uses the addition and multi-
plication operator. Linear interpolation is also required for obtaining frequency
values for the set of time samples corresponding to ψ̈(t). Linear interpolation
computational complexity depends both on the number of existing data points
M and the number of data points to be interpolated. For this case, the number
of points to be interpolated is the same as the original number of data points.
The largest operation performed by an interpolation algorithm is sorting the
each data point into the relevant interval between two existing points given as
(2M) log 2(2M). After this, the linear interpolation is simple and performs two
additions and one multiplication so scales linearly.

C3 = O(M) +O(M log 2(M))

Overall the FDWO-NLFM-TCDFE based adaptive cycle computational
complexity scales with O(M log 2M) as the dominant complexity term per wave-
form design-transmission/azimuth point.
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6.5. Performance Discussion

Compared with alternative SAR mitigation techniques discussed in the intro-
duction, this approach has the following advantages: i) there is no introduction
of sidelobes as a result of interference mitigation attempts - as observed in filter-
ing techniques. Gaps are not produced in the spectrum which is another source
of sidelobes in spectrum filtering methods, ii) the RFI spectrum is a by-product
of the frequency domain system identification, therefore no iterative processing
or best-fit estimates for an RFI model are required, potentially at the expense
of introducing estimation bias as in parametric methods iii) there is no inherent
assumption that the RFI and signal must have different statistical properties as
seen in non-parameteric methods iv) computational complexity does not scale
with number of interfereres or bandwidth. Compute time is irrespective of
bandwidth and the performance is dependent on overall SINR.

The performance is however limited at higher interference levels as shown
in Figure 5, for lower SINR the MSE increases. To maintain performance, the
solution will eventually have to admit gaps into the spectrum, at which point
a trade off between loss of resolution and interference mitigation must be con-
sidered, this case is explored in the following publication [52]. This dependence
on SINR also implies that, although, for larger bandwidths the system does not
incur additional computational cost, there is an adverse effect in performance
as this causes an overall increase in SINR, and therefore MSE.

7. SAR Scenario Example

We consider a spotlight SAR system and assume an approximately circu-
lar antenna pattern. The carrier frequency is fc=3GHz, transmitted signal
bandwidth is Bw=500MHz, and the number of time domain samples N =600.
The number of range bins K = (Tf − Ti) × fs = 200. The estimated impulse
response vectors collected at each azimuth point is then processed using the
back-projection image formation algorithm. The test scene image is shown in
Figure 8. which represents the back-projection image created from the actual
impulse responses of the scene without added interference. The test SAR scene
represents a static aircraft on the ground and is used to exemplify the effects of
interference on the final SAR image.

7.1. Constant Interference Source

In this example the interference source does not change its spectral content
N across the SAR data collection for all azimuth points. After a two-pulse
cycle, the waveform does not need to adapt further and continues to transmit
the designed pulse x2. The initial pulse identifies an approximate estimate of
the interference spectrum N1 and the adapted waveform provides an improved
estimate of the interference N2 as demonstrated previously. We compare the
SAR images created from the LFM-stretch method and the FDWO-NLFM-
TCFDE approach. Figure 9.a shows the LFM-stretch processing image at 10dB
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SINR. In Figure 9b, the image represents the result from the FDWO-NLFM-
TCFDE method at 10dB SINR. Comparing these images show that the FDWO-
NLFM-TCDFE method has provided a sharper more focused image than the
stretch method. Increasing to 1dB SINR causes the image quality to degrade
significantly as it reaches the upper limit of its estimation capability, but still
yields a more focused outcome than LFM-Stretch at the same SINR.

Figure 8: Test SAR image representing a stationary ground-based aircraft on top of a road
with grass either side, created using back-projection with no interference

7.2. Dynamic Interference Source

In the following example the interference spectrum is changing pulse-to-pulse
by an upwards sweep in frequency across the bandwidth frequency which the
radar signal is using and the total width of the narrowband interference is kept
constant. The total SINR is kept constant at 5dB. This scenario demonstrates a
need to employ waveform design regularly enough to compensate for interference
changing pulse-to-pulse. Figure 10b shows for comparison the LFM-Stretch
result at 5dB SINR. The image heavily degrades if the pulse is not adapted at
all after the initial interference estimate is obtained. There is slight reduction
in image quality qualitatively comparing the image obtained from adapting
every 100 pulses and the image waveform adapted on every pulse. Using fewer
adaptive cycles may be desirable in cases where overall computational load needs
to be reduced.

8. Conclusion

This work has presented a combined system identification and waveform
design scheme for mitigating RF interference in SAR on a pulse-to-pulse basis. It
has been demonstrated that under the TCFDE scheme, to minimize the error in
the scene impulse response, the waveform spectral content is proportional to the
energy of the RF interference according to the relationship in (30). Using cyclic
extension as an artifact in the processing allowed formulation of a constrained
frequency domain estimate and a low complexity method for calculating the
scene impulse response was derived. Results have demonstrated that this scheme
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a) b) c) d)

Figure 9: Simulated SAR images formed with back projection with RFI PSD unchanged
across collection aperture. The following waveform-estimation approaches and SINR levels
are tested: a) LFM-Stretch at 10dB SINR b) FDWO-NLFM-TCFDE at 10dB SINR c)LFM-
Stretch at 1dB SINR d) FDWO-NLFM-TCFDE at 1dB

a) b) c) d)

Figure 10: Simulated SAR images formed with back projection with RFI present at 5dB
SINR and updated RFI PSD at varying rates with specified waveform-estimation approaches
as follows: a) FDWO-NLFM-TCFDE Adapted every pulse at 5dB SINR b) LFM Stretch
at 5dB SINR c)FDWO-NLFM-TCFDE adapted every 100 pulses d) FDWO-NLFM-TCFDE
adapted to first pulse only
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can be used for cases where the transmitted signal length is either greater than
or less than the ground patch propagation time, but at the expense of loss
of performance due to less noise-removal. This scheme is most suitable for
the scenarios where the bandwidth availability is compromised from leakage
from neighboring transmitters or other unwanted in-band interference returning
usage of the entire spectrum to the radar. Compared to spectrum friendly
approaches where areas of the spectrum are avoided due to interference, this
scheme competes and aims to return usage of the entire spectrum.
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