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ABSTRACT
An ontology specifies an abstract model of a domain of interest

via a formal language that is typically based on logic. Although de-

scription logics are popular formalisms for modeling ontologies, it

is generally agreed that tuple-generating dependencies (tgds), orig-

inally introduced as a unifying framework for database integrity

constraints, and later on used in data exchange and integration,

are well suited for modeling ontologies that are intended for data-

intensive tasks. The reason is that, unlike description logics, tgds

can easily handle higher-arity relations that naturally occur in rela-

tional databases. In recent years, there has been an extensive study

of tgd-ontologies and of their applications to several different data-

intensive tasks. However, the fundamental question of whether the

expressive power of tgd-ontologies can be characterized in terms of

model-theoretic properties remains largely unexplored. We estab-

lish several characterizations of tgd-ontologies, including character-

izations of ontologies specified by such central classes of tgds as full,

linear, guarded, and frontier-guarded tgds. Our characterizations

use the well-known notions of critical instance and direct product,

as well as a novel locality property for tgd-ontologies. We further

use this locality property to decide whether an ontology expressed

by frontier-guarded (respectively, guarded) tgds can be expressed

by tgds in the weaker class of guarded (respectively, linear) tgds,

and effectively construct such an equivalent ontology if one exists.
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1 INTRODUCTION
Model theory is the study of the interaction between formulas in

some logical formalism and their models, that is, structures that

satisfy the formulas. There are two directions in this interaction,

namely, from syntax to semantics and from semantics to syntax.

The first direction aims to identify structural properties possessed

by all models of formulas having common syntactical features. For

example, it is easy to show that every universal first-order sentence

is preserved under substructures. The second direction aims to

characterize formulas in terms of their structural properties. For
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example, the well known Łos-Tarski Theorem asserts that if a first-

order sentence is preserved under substructures, then it is logically

equivalent to a universal first-order sentence. In general, estab-

lishing results in the second direction is a much harder task than

establishing results in the first. In other words, obtaining model-

theoretic characterizations of formulas or of classes of formulas is

a far greater challenge than identifying structural properties pos-

sessed by all models of formulas with common syntactic features.

Makowsky andVardi [14]were the first to obtainmodel-theoretic

characterizations of classes of database dependencies expressed in

suitable fragments of first-order logic. Furthermore, they classified

the work on model-theoretic characterizations into two distinct

approaches, which they called the preservation approach and the

axiomatizability approach. In the preservation approach, one con-

siders two logical formalisms L and L′
, where L′

is typically a

proper fragment of L. The goal is to obtain model-theoretic char-

acterizations of the form: a set Σ of L-formulas is equivalent to a

set Σ′ of L′
-formulas if and only if the models of Σ satisfy certain

structural properties. For example, the aforementioned Łos-Tarski

Theorem is a prototypical example in the preservation approach.

In the axiomatizability approach, one considers a logical formalism

L and the goal is to obtain model-characterizations of the form:

a class C of structures is axiomatizable by a set of L-formulas if

and only if the structures in C satisfy certain structural properties.

Makowsky and Vardi [14] further distinguished the special case of

finite axiomatizability, where the goal is to obtain model-theoretic

characterizations of when a class of structures is axiomatizable

by a finite set of L-formulas. They then obtained model-theoretic

characterizations of axiomatizability and finite axiomatizability of

various classes of database dependencies.

As is well known, database dependencies were originally used

to formalize integrity constraints in databases with much of the

early work in this area focusing on the implication problem be-

tween database dependencies (see [10] for a survey). The two most

prominent classes of databases dependencies are the class of tuple-

generating dependencies (tgds) and the class of equality-generating

dependencies (egds). By definition, a tgd is a first-order sentence

of the form ∀x̄∀ȳ (ϕ(x̄, ȳ) → ∃z̄ψ (x̄, z̄)), where ϕ(x̄, ȳ) is a (possi-
bly empty) conjunction of atoms over a schema S, and ψ (x̄, z̄) is
a (non-empty) conjunction of atoms over S. Similarly, an egd is a

first-order sentence of the form ∀x̄
(
ϕ(x̄) → xi = x j

)
, where ϕ(x̄)

is a non-empty conjunction of atoms over a schema S and xi , x j are
variables from x̄ . Later on, tgds and egds found numerous uses in

other data management tasks. In particular, they have been used as

schema-mapping specification languages and, as such, have been

(and still are) successfully deployed in the study of data exchange

[1, 9] and data integration [11]. More recently, tgds and egds have

been extensively used in ontologies as we describe next.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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An ontology specifies an abstract model of a domain of interest

using a suitable logical formalism. In particular, description logics

have been extensively used as ontology languages [2]. Description

logic axioms typically involve unary and binary predicates that

correspond, respectively, to concepts in the ontology and roles

between two different concepts in the ontology. As it turns out,

many axioms used in description logics can be expressed as tgds

or egds over relational schemas consisting of unary and binary

predicates. Since data-intensive tasks, such as ontology-mediated

query answering [4], typically involve predicates of higher arities,

it is now generally agreed that tgds and egds are well-suited as

specification languages for ontologies. As a matter of fact, tgds

have been extensively studied in the context of ontologies under

different names, such as Datalog+/- [7] and existential rules [15].

Let us now summarize the known model-theoretic characteriza-

tions of tgds, egds, and description logics. Concerning the preserva-

tion approach, Lutz et al. [12] obtained model-theoretic characteri-

zations of description logics, i.e., they characterized when a finite

set of axioms in certain expressive description logics is equivalent

to a finite set of axioms in some less expressive description logic.

They also characterized when a first-order sentence is equivalent to

a finite set of axioms in a certain description logic. Quite recently,

Zhang et al. [17] obtained model-theoretic characterizations of ex-

istential rule languages in the preservation approach. In particular,

they characterized when a finite set of tgds is equivalent to (i) a fi-

nite set of frontier-guarded tgds; (ii) a finite set of guarded tgds; and

(iii) a finite set of linear tgds. The preservation approach between

two logical formalisms L and L′
gives rise to a natural decision

problem, which we will denote by Rewrite(L,L′): given a finite set

of Σ of L-formulas, is there a finite set Σ′ of L′
formulas such that

Σ is equivalent to Σ′? The papers [12] and [17] contain a number

of complexity results about the decision problem Rewrite(L,L′)

for various logical formalisms L and L′
.

Concerning the axiomatizability/finite axiomatizability ap-

proach, we mentioned earlier that Makowsky and Vardi [14] ob-

tained model-theoretic characterizations of database dependencies.

Specifically, the main results in [14] are model-theoretic charac-

terizations of sets of full tgds and egds. Also in the axiomatiz-

ability/finite axiomatizability approach, Kolaitis and ten Cate [16]

obtained model theoretic characterizations of source-to-target tgds,

which are the tgds used to formalize data exchange between a

source schema and a target schema. These results notwithstand-

ing, however, the study of model-theoretic characterizations of

sets of arbitrary tgds in the axiomatizability/finite axiomatizability

approach has remained largely unexplored so far.

Summary of Results. Motivated by the preceding state of affairs,

we embark here on a systematic investigation of model-theoretic

characterizations of classes of tgds in the finite axiomatizability

approach. This investigation is carried out in the context of ontolo-

gies. From a syntactic point of view, an ontology is specified by a

set of formulas in some formalism. From a semantic point of view,

an ontology can be identified with the set of all structures (finite or

infinite) that satisfy the formulas specifying the ontology. Thus, as

a semantic object, an ontology is an isomorphism-closed class of

structures (finite or infinite) over some fixed relational schema.

Our goal is to answer the following question: what are necessary

and sufficient conditions for an ontology (an isomorphism-closed

class of structures) to be specified by a set of tgds? The main out-

come of this investigation is to characterize the ontologies that are

finitely axiomatizable by a finite set of arbitrary tgds or by a finite

set of tgds that belong to one of the main subclasses of tgds, namely,

full, frontier-guarded, guarded, and linear tgds.

Our model-theoretic characterizations make use of structural

properties encountered in earlier model-theoretic characterizations,

such as the ontology being closed under direct products and con-

taining critical structures of every finite cardinality, where a struc-

ture is critical if each of its relations contains all possible tuples

from the domain of the structure. The main innovation, however,

is the introduction and use of the notion of (n,m)-locality, where,
intuitively, n represents the number of universal quantifiers in the

tgds andm represents the number of existential quantifiers in the

tgds. Several different notions of locality have been used in earlier

model-theoretic characterizations of restricted classes of tgds (e.g.,

in [14, 16]), yet none of them can be used in characterizations of

arbitrary sets of tgds. Our first main result asserts that an ontology

O is axiomatizable by a finite set of tgds if and only if O is closed

under direct products, contains critical structures of every finite

cardinality, and is (n,m)-local for some non-negative integers n and

m. The notion of (n,m)-locality turns turns out to be delicate, yet

flexible. Indeed, this notion can be tailored to other classes of tgds,

so that it gives rise to the refined notions of frontier-guarded (n,m)-

locality, guarded (n,m)-locality, and linear (n,m)-locality. Using

these refined notions, we obtain model theoretic characterizations

of ontologies that are axiomatizable by a finite set of, respectively,

frontier-guarded, guarded, and linear tgds.

Finally, we investigate the decision problems Rewrite(L,L′),

where L is the class of frontier-guarded tgds and L′
is the class of

guarded tgds, or L is the class of guarded tgds and L′
is the class

of linear tgds. In both these cases, we obtain complexity results that

significantly sharpen the results established in [17].

2 PRELIMINARIES
Let C and V be disjoint countably infinite sets of constants and

variables, respectively. For n > 0, let [n] be the set {1, . . . ,n}.

Relational Instances.A schema S is a finite set of relation symbols

(or predicates) with associated (positive) arity; we write ar(R) for
the arity of R. An instance1 I over S = {R1, . . . ,Rn }, or S-instance,
is a tuple (dom(I ),RI

1
, . . . ,RIn ), where dom(I ) ⊆ C is a (finite or

infinite) domain, and RI
1
, . . . ,RIn are relations over dom(I ), i.e., RIi ⊆

dom(I )ar(Ri ) for i ∈ [n]. A fact of I is an expression of the form Ri (c̄),
where c̄ ∈ RIi ; let facts(I ) be the set of facts of I . For an S-instance
J = (dom(J ),R J

1
, . . . ,R Jn ), we write J ⊆ I if facts(J ) ⊆ facts(I ). We

say that J is a subinstance of I , denoted J ⪯ I , if dom(J ) ⊆ dom(I ),
and R J = RI

|dom(J ) for each R ∈ Swith RI
|dom(J ) being the restriction

of RI over dom(J ), i.e., the relation {c̄ ∈ RI | c̄ ∈ dom(J )ar(R)}. Note
that J ⪯ I implies J ⊆ I , but the other direction does not hold. A

homomorphism from I to J is a function h : dom(I ) → dom(J ) such
that, for each i ∈ [n], (c1, . . . , cm ) ∈ RIi implies (h(c1), . . . ,h(cm )) ∈

1
In mathematical logic literature, instances are called structures, which is the term we

used in the Introduction. For the remainder of this paper, we adopt the term instances.



R Ji . We writeh : I → J for the fact thath is a homomorphism from I
to J . We also write h(facts(I )) for the set {R(h(c̄)) | R(c̄) ∈ facts(I )}.
Finally, we say that I and J are isomorphic, written I ≃ J , if there is
an 1-1 homomorphism from I to J such that h−1

: J → I .

Tuple-Generating Dependencies. An atom over S is an expres-

sion of the form R(v̄), where R ∈ S and v̄ is an ar(R)-tuple of vari-
ables from V. A tuple-generating dependency (tgd) σ over a schema S
is a constant-free first-order sentence ∀x̄∀ȳ (ϕ(x̄, ȳ) → ∃z̄ψ (x̄, z̄)),
where x̄, ȳ, z̄ are tuples of variables of V,ϕ(x̄, ȳ) is a (possibly empty)

conjunction of atoms over S, andψ (x̄, z̄) is a (non-empty) conjunc-

tion of atoms over S. For brevity, we write σ as ϕ(x̄, ȳ) → ∃z̄ψ (x̄, z̄),
and use comma instead of ∧ for joining atoms. We refer to ϕ(x̄, ȳ)
andψ (x̄, z̄) as the body and head of σ , denoted body(σ ) and head(σ ),
respectively. By abuse of notation, we may treat a tuple of variables

as a set of variables, and a conjunction of atoms as a set of atoms. An

instance I satisfies a tgd σ as the one above, written I |= σ , if the fol-
lowing holds: whenever there exists a function h : x̄ ∪ ȳ → dom(I )
such that h(ϕ(x̄, ȳ)) ⊆ facts(I ) (as usual, we write h(ϕ(x̄, ȳ)) for the
set {R(h(v̄)) | R(v̄) ∈ ϕ(x̄, ȳ)}), then there exists an extension h′ of
h such that h′(ψ (x̄, z̄)) ⊆ facts(I ). The instance I satisfies a set Σ of

tgds, written I |= Σ, in which case we say that I is a model of Σ, if
I |= σ for each σ ∈ Σ.

We write TGDn,m for the family of all possible finite sets of

tgds with at most n ≥ 0 universally, and at mostm ≥ 0 existen-

tially quantified variables.
2
We also write TGD for the family of all

possible finite sets of TGDs, i.e., TGD =
⋃
n≥0,m≥0

TGDn,m .

Classes of Tuple-Generating Dependencies. In our analysis,

we will consider the following central classes of tgds:

Full. A tgd σ is full if it has no existentially quantified variables.

The class of full tgds, i.e., the family of all possible finite sets

of full tgds, is denoted FTGD. Notice that FTGD coincides

with the class

⋃
n>0

TGDn,0.

Linear. A tgd σ is linear if body(σ ) has at most one atom. The class

of linear tgds is denoted LTGD.

Guarded. A tgd σ is guarded if body(σ ) is either empty, or has an

atom that contains all the universally quantified variables of

σ . The class of guarded tgds is denoted GTGD.

Frontier-Guarded. The frontier of a tgd σ , denoted fr(σ ), is the
set of universally quantified variables occurring in head(σ ).
A tgd σ is frontier-guarded if body(σ ) is either empty, or has

an atom that contains all the variables of fr(σ ). The class of
frontier-guarded tgd is denoted FGTGD.

It is not difficult to verify that

LTGD ⊊ GTGD ⊊ FGTGD , FTGD.

Given a class C of finite sets of tgds, i.e., C ⊆ TGD, we can naturally

define the class Cn,m , for n,m ≥ 0, as the class C ∩ TGDn,m . For

example, GTGDn,m is the class of guarded tgds with at most n ≥ 0

universally, and at mostm ≥ 0 existentially quantified variables.

Ontologies. An ontology O over a schema S is a (finite or infinite)
set of S-instances closed under isomorphisms, i.e., if I ∈ O and J is
an S-instance such that I ≃ J , then J ∈ O . Given a class C of tgds,

O is a C-ontology if there is a set Σ ∈ C such that I ∈ O iff I |= Σ.

2
A tgd has at least one variable, and thus, TGD0,0 contains only the empty set of tgds.

3 MODEL-THEORETIC PROPERTIES
We proceed to introduce three model-theoretic properties of on-

tologies that will play a crucial role in our characterizations. In fact,

will turn out that those three properties are enough to characterize

when an ontology is a TGD-ontology. The first two properties rely

on the well-known notions of critical instance and direct product,

which have been used in several different contexts (see, e.g., [14]),

whereas the third one relies on a novel locality property, which we

consider as one of the main conceptual contributions of the present

work. In the rest, we fix an arbitrary schema S = {R1, . . . ,Rℓ}.

3.1 Criticality
An S-instance I = (dom(I ),RI

1
, . . . ,RI

ℓ
) is called k-critical, for some

k > 0, if |dom(I )| = k , i.e., the domain of I consists of k distinct con-

stants from C, and RIi = dom(I )ar(Ri ) for each i ∈ [ℓ], or, in other

words, facts(I ) = {Ri (c̄) | i ∈ [ℓ] and c̄ ∈ dom(I )ar(Ri )}. For exam-

ple, the {R}-instance I , with R being a binary relation, such that

dom(I ) = {c,d} and facts(I ) = {R(c, c),R(c,d),R(d, c),R(d,d)} is 2-

critical. An ontology O over S is k-critical if it contains a k-critical
S-instance. We can now define the notion of critical ontology.

Definition 3.1 (Criticality). An ontology is called critical if it is
k-critical for each integer k > 0

It is easy to show that:

Lemma 3.2. Every TGD-ontology is critical.

Proof. Consider a TGD-ontology O over S. By definition, there

exists a finite set Σ of tgds over S such that, for every S-instance
I , we have that I ∈ O iff I |= Σ. Fix an arbitrary integer k > 0, and

a k-critical S-instance I . We proceed to show that I |= Σ, which
in turn implies that I ∈ O , and thus O is critical. Consider a tgd

σ ∈ Σ of the form ϕ(x̄, ȳ) → ∃z̄ψ (x̄, z̄). It is clear that there exists
a function h : x̄ ∪ ȳ → dom(I ) such that h(ϕ(x̄, ȳ)) ⊆ facts(I ). Let
c ∈ dom(I ), and consider the extension h′ of h such that h(z) = c
for each z ∈ z̄. Since I is k-critical, it is straightforward to verify

that h′(ψ (x̄, z̄)) ⊆ facts(I ), which implies that I |= σ , as needed.

3.2 Closure Under Direct Products
The direct product of the S-instances I = (dom(I ),RI

1
, . . . ,RI

ℓ
) and

J = (dom(J ),R J
1
, . . . ,R J

ℓ
), denoted I ⊗ J , is the S-instance K =

(dom(K),RK
1
, . . . ,RK

ℓ
), where dom(K) = dom(I ) × dom(J ), and

RKi =
{(
(a1,b1), . . . , (aar(Ri ),bar(Ri ))

)
|(

a1, . . . ,aar(Ri )

)
∈ RIi and

(
b1, . . . ,bar(Ri )

)
∈ R Ji

}
,

for each i ∈ [ℓ]. The model-theoretic property of interest follows:

Definition 3.3 (⊗-closure). An ontologyO over S is closed under
direct products if, for every two S-instances I , J ∈ O , I ⊗ J ∈ O .

It is not difficult to show the following, which is actually implicit

in [8], but we provide a proof for the sake of completeness.

Lemma 3.4. Every TGD-ontology is closed under direct products.



K∀K ≼ I

I ∃JK ∈O  with K ⊆ JK

|adom(J′)| ≤ |adom(K)| + m|adom(K)| ≤ n

∀J′ ≼ JK

Figure 1: O is (n,m)-locally embeddable in I .

Proof. Consider a TGD-ontology O over S. By definition, there

exists a finite set Σ of tgds over S such that, for every S-instance
I , I ∈ O iff I |= Σ. Consider two instances I , J ∈ O , and let

K = I ⊗ J . Our goal is to show that K ∈ O , or, equivalently, K |= Σ.
Consider a tgd σ ∈ Σ of the form ϕ(x̄, ȳ) → ∃z̄ψ (x̄, z̄), and as-

sume that there exists a function h : x̄ ∪ ȳ → dom(K) such that

h(ϕ(x̄, ȳ)) ⊆ facts(K). We show that there exists an extension h′ of
h such that h′(ψ (x̄, z̄)) ⊆ facts(K). We first observe that hI : K → I
and h J : K → J , where, for each (a,b) ∈ dom(K), hI ((a,b)) = a

and h J ((a,b)) = b. This holds since (a1,b1), . . . , (an,bn ) ∈ RK iff

(a1, . . . ,an ) ∈ RI and (b1, . . . ,bn ) ∈ R J , for every R ∈ S. There-
fore, hI ◦ h maps ϕ(x̄, ȳ) to facts(I ), and h J ◦ h maps ϕ(x̄, ȳ) to
facts(J ). Since I |= Σ and J |= Σ, there is an extension h′I of hI ◦ h,
and an extension h′J of h J ◦ h such that h′I (ψ (x̄, z̄)) ⊆ facts(I ) and
h′J (ψ (x̄, z̄)) ⊆ facts(J ). Consider now the extension h′ of h such

that h′(z) = (h′I (z),h
′
J (z)), for every z ∈ z̄. We proceed to show that

h′(ψ (x̄, z̄)) ⊆ facts(K). Consider R(w1, . . . ,wn ) ∈ ψ (x̄, z̄), and as-

sume that h′(R(w1, . . . ,wn )) = R((a1,b1), . . . , (an,bn )). By the def-

inition of h′, R(a1, . . . ,an ) ∈ facts(I ) and R(b1, . . . ,bn ) ∈ facts(J ).
Therefore, by construction, R((a1,b1), . . . , (an,bn )) ∈ facts(K).

3.3 Locality
We now proceed to introduce our new locality property of ontolo-

gies, which in turn relies on the notion of local embedding of an

ontology in an instance. Roughly speaking, an ontologyO over S is
locally embeddable in an S-instance I if, for every subinstance K of

I with a bounded number of active domain elements (i.e., domain

elements that occur in facts(K)), we can find an instance JK ∈ O
such that every local neighbour of K in JK (i.e., subinstances of JK
that contain K and have a bounded number of additional active

domain elements not in facts(K)), can be embedded in I while pre-
serving K . We call the ontology O local if every S-instance that is
locally embeddable inO is a member ofO . We proceed to formalize

the above high-level description.

The active domain of an instance I , denoted adom(I ), is the set of
elements of dom(I ) that occur in at least one fact of I . Consider an S-
instance J and a finite set of constants F ⊆ adom(J ). For an integer

m ≥ 0, them-neighbourhood of F in J is the set of S-instances

{J ′ | F ⊆ adom(J ′), J ′ ⪯ J and |adom(J ′)| ≤ |F | +m},

i.e., all the subinstances of J such that their facts contain constants

from F and at mostm additional elements not occurring in F . Fur-
thermore, given an S-instance K ⊆ J , them-neighbourhood of K

KK ≼ I

I JK ∈O  with K ⊆ JK

body(σ) 	→ head(σ)

L ≼ JK

h
g

μL

Figure 2: The function λ = µL ◦ д in the proof of Lemma 3.6.

in J is defined as them-neighbourhood of adom(K) in J , that is,
all the subinstances of J that contain K and their facts mention at

mostm additional elements not occurring in the facts of K .
Consider an ontologyO over S, and an S-instance I . For integers

n,m ≥ 0, we say thatO is (n,m)-locally embeddable in I if, for every
K ⪯ I with |adom(K)| ≤ n, there is JK ∈ O such that K ⊆ JK , and
for every J ′ in them-neighbourhood of K in JK , there is a function
h : adom(J ′) → adom(I ), which is the identity on adom(K), such
that h(facts(J ′)) ⊆ facts(I ). An illustration of when O is (n,m)-

locally embeddable in I is shown in Figure 1; the circles represent

the set of facts of the instances. The key property of locality follows.

Definition 3.5 (Locality). An ontology O over S is (n,m)-local,
for n,m ≥ 0, if, for every S-instance I , the following holds: O is

(n,m)-locally embeddable in I implies I ∈ O . We further say that O
is local if there exist n,m ≥ 0 such that O is (n,m)-local.

The next result states that every TGD-ontology is local. Actually,
it shows a stronger claim since it relates the integers n,m that wit-

ness (n,m)-locality with the number of universally and existentially

quantified variables, respectively, that can occur in the tgds.

Lemma 3.6. For n,m ≥ 0, every TGDn,m -ontology is (n,m)-local.

Proof. Consider a TGDn,m-ontology O over S. By definition,

there is a set Σ ∈ TGDn,m (i.e., each tgd of Σ mentions at most

n universally andm existentially quantified variables), such that,

for every S-instance I , I ∈ O iff I |= Σ. Consider an S-instance
I , and assume that O is (n,m)-locally embeddable in I . We pro-

ceed to show that I ∈ O , or, equivalently, I |= Σ. Consider a tgd
σ ∈ Σ of the form ϕ(x̄, ȳ) → ∃z̄ψ (x̄, z̄), and assume that there

exists a function h : x̄ ∪ ȳ → dom(I ) such that h(ϕ(x̄, ȳ)) ⊆

facts(I ). We show that there exists an extension λ of h such that

λ(ψ (x̄, z̄)) ⊆ facts(I ); the existence of λ is illustrated in Figure 2. Let

K = (dom(K),RK
1
, . . . ,RK

ℓ
) where dom(K) is the set of constants

occurring in h(ϕ(x̄, ȳ)), and, for each i ∈ [ℓ], RKi = RIi |K . It is clear

that K ⪯ I with |adom(K)| ≤ n since ϕ(x̄, ȳ) mentions at most n
variables. Since, by hypothesis, O is (n,m)-locally embeddable in

I , we conclude that there exists JK ∈ O such that K ⊆ JK , and, for
every J ′ in them-neighbourhood of K in JK , there is a function
µ J ′ : adom(J ′) → adom(I ), which is the identity on adom(K), such
that µ J ′(facts(J ′)) ⊆ facts(I ). It is clear that h(ϕ(x̄, ȳ)) ⊆ facts(JK ).
Since JK ∈ O , or, equivalently, JK |= Σ, there exists an extension д
of h such that д(ψ (x̄, z̄)) ⊆ facts(JK ). Let L = (dom(L),RL

1
, . . . ,RL

ℓ
)

where dom(L) are the constants occurring in h(ϕ(x̄, ȳ)) ∪д(ψ (x̄, z̄)),



and, for each i ∈ [ℓ], RLi = R JKi |dom(L). It is clear that L is in them-

neighbourhood ofK in JK since z̄ has at mostm variables. Therefore,

there is a function µL : adom(L) → adom(I ), which is the identity

on adom(K), such that µL(facts(L)) ⊆ facts(I ). Consider the func-
tion λ = µL ◦ д. Since д is an extension of h, and µL is the identity

on the elements occurring in h(ϕ(x̄, ȳ)), we get that λ(v) = h(v) for
each variablev in ϕ(x̄, ȳ), and thus, λ is an extension of h. Moreover,

since д(ψ (x̄, z̄)) ⊆ facts(L), we get that λ(ψ (x̄, z̄)) ⊆ facts(I ).

Domain independence is another central property of ontologies,

which will play a crucial role in our technical development, and, as

we shall see below, it is guaranteed by locality.

Definition 3.7 (Domain Independence). An ontologyO over S
is called domain independent if, for every two S-instances I and J
such that facts(I ) = facts(J ), I ∈ O iff J ∈ O .

In simple words, O is domain independent if, for every two S-
instances that have the same set of facts, but not necessarily the

same domain, either are both inO , or none of them is inO . It is not

difficult to show that locality implies domain independence.

Lemma 3.8. Every local ontology is domain independent.

Proof. Consider an ontology O over S that is (n,m)-local for

n,m ≥ 0, and two S-instances I and J such that facts(I ) = facts(J ).
We show that I ∈ O implies J ∈ O ; the fact that J ∈ O implies I ∈ O
is shown analogously. This is done by showing that O is (n,m)-

locally embeddable in J , which in turn implies that J ∈ O since, by

hypothesis, O is (n,m)-local. Consider an S-instance K ⪯ J with
|adom(K)| ≤ n. Since facts(I ) = facts(J ), it is clear thatK ⊆ I . Since
I ∈ O , it suffices to show that, for every J ′ in them-neighbourhood

ofK in I , there is a functionh J ′ : adom(J ′) → adom(J ), which is the
identity on adom(K), such that h J ′(facts(J ′)) ⊆ facts(J ). Since J ′ ⊆
I , which means that facts(J ′) ⊆ facts(I ), we get that facts(J ′) ⊆

facts(J ). Therefore, h J ′ is simply the identity on adom(J ′).

4 CHARACTERIZING TGD-ONTOLOGIES
Are the three main properties presented above, i.e., criticality, ⊗-

closure, and locality, enough to characterize when an ontology is a

TGD-ontology? We proceed to give a positive answer. Actually, we

provide a more refined result in the sense that we can characterize

when an ontology is a TGDn,m-ontology. Unsurprisingly, (n,m)-

locality is the key property for such a refined characterization.

Theorem 4.1. Given an ontology O , and integers n,m ≥ 0, the
following are equivalent:

(1) O is a TGDn,m -ontology.
(2) O is critical, closed under direct products, and (n,m)-local.

From the above result, which is interesting in its own right, we

obtain a characterization of when an ontology is a TGD-ontology.

Corollary 4.2. Given an ontologyO , the following are equivalent:
(1) O is a TGD-ontology.
(2) O is critical, closed under direct products, and local.

The rest of this section is devoted to discussing the proof of

Theorem 4.1. Actually, we focus on the non-trivial direction (2) ⇒

(1); the direction (1) ⇒ (2) follows from Lemmas 3.2, 3.4 and 3.6.

4.1 Some Preparation
We first need to introduce some auxiliary technical notions.

Existential Disjunctive Dependencies. In our proof, we are go-

ing to use existential disjunctive dependencies, which essentially

generalize tgds with equality and disjunction in the head. More pre-

cisely, an existential disjunctive dependency (edd) δ over a schema

S is a constant-free first-order sentence ∀x̄(ϕ(x̄) →
∨k
i=1

ψi (x̄i )),
where x̄ is a tuple of variables of V, ϕ(x̄) is a (possibly empty)

conjunction of atoms over S, and, for each i ∈ [k], x̄i ⊆ x̄ , and
ψ (x̄i ) is either an equality expression y = z with x̄i = {y, z}, or a
constant-free formula ∃ȳi χi (x̄i , ȳi ) with ȳi being a tuple of vari-

ables from V \ x̄ , and χi (x̄i , ȳi ) a (non-empty) conjunction of atoms

over S. If k = 1 and ψ1(x̄1) is an equality expression, then δ is

called an equality-generating dependency (egd). An instance I satis-
fies the edd δ , written I |= δ , if, whenever there exists a function
h : x̄ → dom(I ) such that h(ϕ(x̄)) ⊆ facts(I ), then there is i ∈ [k]
such that, if ψi (ȳi ) is y = z, then h(y) = h(z); otherwise, if ψi (ȳi )
is of the form ∃ȳi χi (x̄i , ȳi ), then there is an extension h′ of h such

that h′(χi (x̄i , ȳi )) ⊆ facts(I ). The instance I satisfies a set Σ of edds,

written I |= Σ, i.e., I is a model of Σ, if I |= δ for each δ ∈ Σ.

Relative Diagram of an Instance.We now proceed to introduce

the diagram of an instance relative to another instance. This can

be seen as a refinement of the standard notion of diagram of a

relational structure in model theory (see, e.g., [8]). Consider two

S-instances I ,K such that K ⪯ I , and an integer ℓ ≥ 0. We are

interested in the so-called ℓ-diagram of K relative to I , which we

define now. Let AK ,ℓ be the set of all atomic formulas of the form

R(ū) that can be formed using predicates from S, constants from
dom(K), and ℓ distinct variables ⋆1, . . . ,⋆ℓ from V, i.e., R ∈ S and
ū ∈ (dom(K) ∪ {⋆1, . . . ,⋆ℓ})

ar(R)
. Let CK ,ℓ be the set of all (possi-

bly infinite) conjunctions of atomic formulas from AK ,ℓ . Given a

formula γ (ȳ) ∈ CK ,ℓ , we can naturally talk about the satisfaction

of the sentence ∃ȳ γ (ȳ) by an instance J , in which case we simply

write J |= ∃ȳ γ (ȳ). The ℓ-diagram of K relative to I , denoted ∆IK ,ℓ
,

is the (possibly infinite) first-order formula∧
α ∈facts(K )

α ∧
∧

c ,d ∈dom(K ),
c,d

¬(c = d) ∧
∧

γ (ȳ)∈CK ,ℓ ,
I ̸ |=∃ȳ γ (ȳ)

¬∃ȳ γ (ȳ).

We are, actually, interested in the first-order formula ΦIK ,ℓ
(x̄) ob-

tained from ∆IK ,ℓ
by replacing each constant element c ∈ dom(K)

with a new variable xc ∈ V \ {⋆1, . . . ,⋆ℓ}. As for the formulas of

CK ,ℓ , we can naturally talk about the satisfaction of ∃x̄ ΦIK ,ℓ
(x̄) by

an instance J , in which case we simply write J |= ∃x̄ ΦIK ,ℓ
(x̄). It is

straightforward to verify the following easy lemma:

Lemma 4.3. Consider an S-instance I . For each S-instance K ⪯ I
and integer ℓ ≥ 0, it holds that I |= ∃x̄ ΦIK ,ℓ

(x̄).

4.2 The Proof of (2) ⇒ (1)

We now have all the ingredients needed for giving the proof of the

direction (2) ⇒ (1) in Theorem 4.1. Assume that the ontology O is

over a schema S. The proof proceeds in three main steps:

(1) We construct a finite set Σ∨ of edds over S that mention at

most n universally, and at mostm existentially quantified



variables, in such a way that O is precisely the set of models

of Σ∨. This exploits the fact that O is 1-critical (since it is

critical), and the fact that O is (n,m)-local.

(2) We then show that there exists a finite set Σ∃,=
of tgds and

egds over S that is logically equivalent to Σ∨, i.e., Σ∃,=
and

Σ∨ have exactly the same models, written Σ∃,= ≡ Σ∨; in fact,
Σ∃,=

is simply the set of tgds and egds in Σ∨. This exploits
the fact that O is closed under direct products.

(3) We finally show that there exists a finite set Σ∃
of tgds over

S from TGDn,m such that Σ∃ ≡ Σ∃,=
; in fact, Σ∃

consists of

the tgds of Σ∃,=
. This exploits the fact that O is critical.

We proceed to give further details on each of the above steps.

Step 1: The finite set of edds Σ∨

Let En,m be the set that collects all the edds over S of the form

∀x̄(ϕ(x̄) →
∨k
i=1

ψi (x̄i )) such that x̄ consists of at most n distinct

variables, and, for each i ∈ [k], ψi (x̄i ) mentions at most n + m
distinct variables. The latter means that, if ψi (x̄i ) is a formula of

the form ∃ȳi χi (x̄i , ȳi ) (i.e., is not an equality expression), then ȳi
consists of at mostm distinct variables. It is important to observe

that En,m is finite (up to logical equivalence); this is a consequence

of the fact that S is finite, and the number of variables in each edd

of En,m is finite. We then define the set Σ∨ of edds as the set of all

edds from En,m that are satisfied by every instance of O , i.e.,

Σ∨ =
{
δ ∈ En,m | for each I ∈ O, it holds that I |= δ

}
.

It is clear that Σ∨ is finite (up to logical equivalence) since Σ∨ ⊆

En,m . We show that O is precisely the set of models of Σ∨.

Lemma 4.4. For each S-instance I , I ∈ O iff I |= Σ∨.

The (⇒) direction of Lemma 4.4 holds by construction. We pro-

ceed to discuss the non-trivial direction (⇐). Consider an S-instance
I such that I < O . By Lemma 3.8, O is domain independent, which

allows us to assume that dom(I ) = adom(I ), i.e., all the constants
in dom(I ) occur in at least one fact of I . The goal is to show that

I ̸ |= Σ∨, which in turn establishes Lemma 4.4. We first show the fol-

lowing technical claim that involves ΦIK ,m (x̄); recall that ΦIK ,m (x̄)

is the formula obtained from them-diagram ofK relative to I , which
here is finite since the domain of K is finite.

Claim 4.5. There exists an S-instance K ⪯ I with |adom(K)| ≤ n
such that, for each J ∈ O , it holds that J |= ¬∃x̄ ΦIK ,m (x̄).

Proof. By contradiction, assume that, for each S-instance K ⪯ I
with |adom(K)| ≤ n, there exists J ∈ O such that J |= ∃x̄ ΦIK ,m (x̄).

We proceed to show that the ontology O is (n,m)-locally embed-

dable in I , which in turn implies that I ∈ O since, by hypothesis, O
is (n,m)-local. But this contradicts the fact that I < O .

Fix an arbitrary S-instance K ⪯ I with |adom(K)| ≤ n, and let

J ∈ O be the instance such that J |= ∃x̄ ΦIK ,m (x̄). We first observe

that J |= ∃x̄ ΦIK ,m (x̄) implies the existence of an instance JK ⊆ J

such that K ≃ JK . We can therefore assume, w.l.o.g., that K ⊆ J . To
show that O is (n,m)-locally embeddable in I , it suffices to show

that for every S-instance J ′ in them-neighbourhood ofK in J , there
exists a function h : adom(J ′) → adom(I ), which is the identity on

adom(K), such that h(facts(J ′)) ⊆ facts(I ).

By contradiction, assume that there is J ′ in them-neighbourhood

of K in J for which there is no function h : adom(J ′) → adom(I )
that is the identity on adom(K) with h(facts(J ′)) ⊆ facts(I ). Let
L be the S-instance defined as the difference between J ′ and K ,
i.e., L is such that facts(L) = facts(J ′) \ facts(K), while dom(L)
consists of all the constants occurring in facts(J ′) \ facts(K), i.e.,
dom(L) = adom(L). Clearly, there is no function h : adom(L) →
adom(I ) that is the identity on adom(K) such that h(facts(L) ⊆ I .
Observe that |adom(L) \ adom(K)| ≤ m; we assume that adom(L) \
adom(K) = {d1, . . . ,dm′} for m′ ≤ m. Let γ (ȳ) be the formula

obtained from

∧
α ∈facts(L) α after renaming each constant di to the

variable ⋆i ; clearly, ȳ = ⋆1, . . . ,⋆m′ . Since there is no function

h : adom(L) → adom(I ) that is the identity on adom(K) such that

h(facts(L) ⊆ I , we can conclude that I ̸ |= ∃ȳ γ (ȳ). Observe now

that, by construction, ¬∃ȳ γ (ȳ) is a conjunct of ∆IK ,m , which in

turn implies that the formula ¬∃z̄ γ (z̄) obtained from ¬∃ȳ γ (ȳ) after
renaming each constant c ∈ dom(K) = adom(K) to the variable xc
is a conjunct of ΦIK ,m (x̄). Since L ⊆ J , we conclude that J |= ∃z̄ γ (z̄),

which in turn implies that J ̸ |= ∃x̄ ΦIK ,m (x̄). But this contradicts

the fact that J |= ∃x̄ ΦIK ,m (x̄), and the claim follows.

Consider now the S-instance K provided by Claim 4.5. We can

show that ¬∃x̄ ΦIK ,m (x̄) is logically equivalent to an edd from En,m .

Claim 4.6. There is an edd δ ∈ En,m such that δ ≡ ¬∃x̄ ΦIK ,m (x̄).

Actually, the edd δ claimed above is obtained by simply convert-

ing ¬∃x̄ ΦIK ,m (x̄) into an equivalent edd via the standard logical

transformations; the formal construction can be found in the Ap-

pendix. However, we need to argue that, after this transformation,

we indeed obtain an edd from En,m , namely (i) the right-hand side

is non-empty, (ii) each variable in the right-hand side is either exis-

tentially quantified, or appears in the left-hand side, and (iii) there

are at most n universally and at mostm existentially quantified vari-

ables. Item (i) holds since ΦIK ,m (x̄) contains at least one negative

conjunct; otherwise, the 1-critical instance in O (it exists since O is

1-critical) is a model of ∃x̄ ΦIK ,m (x̄), which contradicts Claim 4.5.

Item (ii) is guaranteed by the fact that dom(K) = adom(K) since
dom(I ) = adom(I ); recall that the latter relies on the fact that O is

domain independence. Finally, item (iii) is ensured by the fact that

|dom(K)| = |adom(K)| ≤ n.
Having the above technical claims in place, we can now show

that I ̸ |= Σ∨, which in turn completes the proof of Lemma 4.4. By

Claims 4.5 and 4.6, we get that there exists an S-instanceK ⪯ I with
|adom(K)| ≤ n such that (i) for every J ∈ O , J |= ¬∃x̄ ΦIK ,m (x̄), and

(ii) ¬∃x̄ ΦIK ,m (x̄) is equivalent to an edd δ ∈ En,m . By the definition

of Σ∨, we conclude that δ ∈ Σ∨. On the other hand, by Lemma 4.3,

I |= ∃x̄ ΦIK ,m (x̄), i.e., I ̸ |= δ , and thus I ̸ |= Σ∨, as needed.

Step 2: The set of tgds and egds Σ∃,= such that Σ∃,= ≡ Σ∨

We define the set Σ∃,=
as the set of all tgds and egds in Σ∨, that is,

Σ∃,= =
{
δ ∈ Σ∨ | δ is either a tgd or an egd

}
.

We show that this is the desired set of tgds and egds

Lemma 4.7. It holds that Σ∃,= ≡ Σ∨.



It is clear that Σ∨ |= Σ∃,=
, that is, each model of Σ∨ is a model

of Σ∃,=
, since Σ∃,=

is a subset of Σ∨. We now discuss the non-

trivial direction Σ∃,= |= Σ∨. Towards a contradiction, assume that

Σ∃,= ̸ |= Σ∨. This implies that there is an edd δ ∈ Σ∨ of the form

∀x̄(ϕ(x̄) →
∨k
i=1

ψi (x̄i )) such that Σ
∃,= ̸ |= δ . It is clear that, for each

j ∈ [k], σj = ∀x̄(ϕ(x̄) → ψj (x̄ j )) does not belong to Σ
∃,=

; otherwise,

Σ∃,= |= δ which is not the case. Therefore, by the definition of Σ∨,
for each j ∈ [k], there exists an S-instance Ij ∈ O such that Ij ̸ |= σj ,
or, equivalently, Ij |= ∃x̄(ϕ(x̄) ∧ ¬ψj (x̄ j )). We define the S-instance

J = I1 ⊗ · · · ⊗ Ik .

Since, by hypothesis, O is closed under direct products, we get that

J ∈ O . We can also show the following technical claim concerning

the instance J ; the proof is deferred to the Appendix.

Claim 4.8. It holds that J ̸ |= δ .

By Lemma 4.4, J |= Σ∨, and thus J |= δ since δ ∈ Σ∨. But this
contradicts Claim 4.8. Consequently, Σ∃,= |= Σ∨, as needed.

Step 3: The set of tgds Σ∃ from TGDn,m such that Σ∃ ≡ Σ∃,=

We define the set Σ∃
as the set of all tgds in Σ∃,=

, that is,

Σ∃ =
{
δ ∈ Σ∃,= | δ is a tgd

}
.

We show that this is the desired set of tgds

Lemma 4.9. It holds that Σ∃ ∈ TGDn,m and Σ∃ ≡ Σ∃,=.

The fact that Σ ∈ TGDn,m follows by construction since each edd

of Σ∃
belongs to En,m . It is also easy to see that Σ∃,= |= Σ∃

since

Σ∃ ⊆ Σ∃,=
. For showing that Σ∃ |= Σ∃,=

, assume by contradiction

that there is an egd δ ∈ Σ∃,=
of the form ∀x̄(ϕ(x̄) → y = z) such

that Σ∃ ̸ |= δ . This implies that there exists an S-instance I such
that I ̸ |= δ , i.e., there is a function h : x̄ → dom(I ) such that

h(ϕ(x̄)) ⊆ facts(I ) but h(y) , h(z). Observe that h(ϕ(x̄)) ̸|= δ . Let J
be a k-critical instance, where k is the number of distinct variables

in x̄ , such that h(ϕ(x̄)) ⊆ facts(J ). It is clear that J ̸ |= δ . Since O is

critical, J ∈ O . But this contradicts the fact that δ ∈ Σ∃,= ⊆ Σ∨,
which means that δ is satisfied by every instance in O .

It should be now clear that the non-trivial direction (2) ⇒ (1) of

Theorem 4.1 readily follows from Lemmas 4.4, 4.7 and 4.9.

5 CHARACTERIZING FTGD-ONTOLOGIES
The next natural question is whether we can characterize when

an ontology can be expressed as a finite set of existential-free tgds,

i.e., when an ontology is an FTGD-ontology. Since FTGD is the

class

⋃
n>0

TGDn,0, an answer to this question can be obtained

from the characterization established in the previous section, which

exemplifies the usefulness of our new locality property. In particular,

the following is an immediate consequence of Theorem 4.1.

Corollary 5.1. Given an ontologyO , the following are equivalent:
(1) O is an FTGD-ontology.
(2) O is critical, closed under direct products, and (n, 0)-local for

some integer n > 0.

Observe also that Theorem 4.1 provides a characterization of

when an ontology can be expressed as a finite set of full tgds with

at most n > 0 universally quantified variables. In particular, given

an ontology O and integer n > 0, O is an FTGDn,0-ontology iff O
is critical, is closed under direct products, and is (n, 0)-local.

5.1 An Alternative Characterization
At this point, it is worth noting that the question of whether we can

provide a characterization for full tgds has been already considered

back in the 1980s by Makowsky and Vardi in a slightly different

context [14]. As described in the Introduction, the main goal of [14]

was to characterize the expressive power of database dependencies

in terms of model-theoretic properties. Among others, they studied

the question of when a family of databases (i.e., instances with a

finite domain) can be specified as a (finite or infinite) set of full tgds;

note that they did not obtain results about tgds with existentially

quantified variables. In principle, the characterization of [14] for

full tgds can be lifted to our setting, where we consider finite sets of

tgds and unrestricted instances. Unfortunately, the model-theoretic

characterization of full tgds in Theorem 3 of [14] turns out to be in-

correct since one of the closure properties used, called closure under
duplicating extensions, does not serve its purpose. In fact, Lemma 7

of [14] states that tgds are closed under duplicating extensions,

which, however, is not the case, as we discuss next.

In [14], an instance J is a duplicating extension of an instance I if
there are constants c ∈ dom(I ) and d < dom(I ) such that

dom(J ) = dom(I ) ∪ {d} and facts(J ) = facts(I ) ∪ h(facts(I ))

with h : dom(I ) → dom(I ) ∪ {d} being the identity on dom(I ) \ {c}
and h(c) = d .3 Intuitively speaking, J is obtained from I by adding d
to dom(I ), and by adding to facts(I ) a copy of itself after renaming

c to d . An ontology O over S is closed under duplicating extensions
if, for every I ∈ O , and S-instance J that is a duplicating extension

of I , we have that J ∈ O . Lemma 7 of [14] states that tgds are closed

under duplicating extensions, and this has been used to prove the

characterization of full tgds in Theorem 3 of [14]. However, we can

show that there is an FTGD-ontology not closed under duplicating

extensions, and thus, Lemma 7 in [14] is incorrect.

Example 5.2 (Counterexample). Consider the full tgd

σ = R(x,y), S(y, z) → T (x, z).

It is clear that the instance I with

dom(I ) = {a,b} and facts(I ) = {R(a,b), S(b,a),T (a,a)}

satisfies σ . It is easy now to verify that the instance J with

dom(J ) = dom(I ) ∪ {c} and

facts(J ) = facts(I ) ∪ {R(c,b), S(b, c),T (c, c)}

is a duplicating extension of I due to the function h : dom(I ) →
dom(I ) ∪ {c} with h(a) = c and h(b) = b. However, J ̸ |= σ ; indeed,
there is a function h : {x,y, z} → dom(J ) such that h(body(σ )) =
{R(a,b), S(b, c)}, but h(T (x, z)) = T (a, c) < facts(J ).

In what follows in this section, we obtain an alternative model-

theoretic characterization of full tgds that uses a different version

of closure under duplicating extensions. The problem with the defi-

nition of closure under duplicating extensions in [14] is that it does

not distinguish the different occurrences of the special constant,

which is mapped to the new constant, appearing in a single fact.

3
Note that the definition in [14] is for databases, but it can be transferred to instances.



Going back to our counterexample, since the different occurrences

of the constant a in T (a,a) are not distinguished, there is no way
to obtain an atom of the form T (a, c) in the duplicating extension.

A valid duplicating extension of I would be the instance J with

dom(J ) = dom(I ) ∪ {c} and

facts(J ) = facts(I ) ∪ {R(c,b), S(b, c),T (a, c),T (c,a),T (c, c)}.

This is achieved by the following refined definition. Consider two

S-instances I and J . We say that J is a non-oblivious duplicating
extension of I if there are constants c ∈ dom(I ) and d < dom(I ) such

that, for every R ∈ S and tuple t̄ ∈ (dom(I ) ∪ {d})ar(R), R(t̄) ∈ J iff
h(R(t̄)) ∈ I with h : dom(I ) ∪ {d} → dom(I ) being the identity on

dom(I ) and h(d) = c . The term non-oblivious refers to the fact that

now the definition is not oblivious to the different occurrences of

the constant c . The desired closure property follows.

Definition 5.3 (Duplicating Extensions Closure). An ontol-

ogy O over S is closed under non-oblivious duplicating extensions if,
for every I ∈ O , and S-instance J that is a non-oblivious duplicating
extension of I , it holds that J ∈ O .

Our alternative characterization of FTGD-ontologies relies on
closure under non-oblivious duplicating extensions, 1-criticality,

domain independence, and two properties that we have not con-

sidered before, namely modularity and closure under intersections.

Let us introduce those two properties; let S = {R1, . . . ,Rℓ}.

Modularity.We start with n-modularity, for n ≥ 0, which actually

provides a small witness instance with at most n domain elements

of why an instance does not belong to an ontology. Let us clarify

that in [14] there is an analogous notion for classes of databases

called n-locality. However, here we adopt the name n-modularity,

which has been already used in [16] for a similar notion in the

context of schema mappings, in order to avoid any confusion with

the new notion of (n,m)-locality introduced in this work. Indeed,

(n,m)-locality (even whenm = 0) is inherently different than the

notion of n-modularity, or the notion of n-locality from [14].

Definition 5.4 (Modularity). An ontologyO over S is n-modular,
for some integer n ≥ 0, if, for every S-instance I < O , there exists
an S-instance J ⪯ I with |dom(J )| ≤ n such that J < I .

Closure Under Intersections. We now recall closure under in-

tersections. Given two S-instances I = (dom(I ),RI
1
, . . . ,RI

ℓ
) and

J = (dom(J ),R J
1
, . . . ,R J

ℓ
), the intersection of I and J , denoted I ∩ J ,

is the instance (dom(I ) ∩ dom(J ),RI
1
∩ R J

1
, . . . ,RI

ℓ
∩ R J

ℓ
). Then:

Definition 5.5 (∩-closure). An ontologyO over S is closed under
intersections if, for every two S-instances I , J ∈ O , I ∩ J ∈ O .

The Characterization. It is now possible to obtain the alternative

characterization of when an ontology is an FTGD-ontology by using
the notion of non-oblivious duplicating extension. The proof, which

is similar in spirit to that of Theorem 4.1, is in the Appendix.

Theorem 5.6. Given an ontology O , the following are equivalent:
(1) O is an FTGD-ontology.
(2) O is 1-critical, domain independent, n-modular for some inte-

ger n ≥ 0, closed under intersections, and closed under non-
oblivious duplicating extensions.

Let us conclude this section by clarifying that the problematic

Theorem 3 in [14] does not use the property of modularity since

it follows the axiomatizability approach, where infinite sets of full

tgds are allowed. However, here we adopt the finite axiomatizability

approach, which means that we are interested only in finite sets of

full tgds, and this is the reason why modularity is needed.

6 CHARACTERIZING LTGD-ONTOLOGIES
We now focus our attention on linear tgds, and ask whether we can

characterize when an ontology is an LTGD-ontology. In particular,

our objective is to obtain characterizations for linear tgds in the

spirit of Theorem 4.1 and Corollary 4.2, based on our new locality

property. Interestingly, this can be done by replacing locality with a

refined version of it, which we call linear locality, whereas criticality

and closure under direct products remain untouched.

6.1 Linear Locality
We first refine the notion local embedding by taking into account

the fact that linear tgds have at most one body atom. As one might

expect, now an ontology O over S is locally embeddable in an S-
instance I if, for every K ⊆ I with at most one fact (instead of every

subinstance of I ) that mentions a bounded number of constants,

we can find an instance JK ∈ O such that every local neighbour of

K in JK can be embedded in I while preserving K . We proceed to

formalize this intuitive description.

Consider an ontology O over a schema S, and an S-instance I .
For n,m ≥ 0, we say that O is linearly (n,m)-locally embeddable
in I if, for every S-instance K ⊆ I such that |facts(K)| ≤ 1 and

|adom(K)| ≤ n, there exists JK ∈ O such that K ⊆ JK , and for

every J ′ in them-neighbourhood of K in JK , there is a function
h : adom(J ′) → adom(I ), which is the identity on adom(K), such
that h(facts(J ′)) ⊆ facts(I ). The property of linear locality follows.

Definition 6.1 (Linear Locality). An ontologyO over S is linear
(n,m)-local, for n,m ≥ 0, if, for every S-instance I , O is linearly

(n,m)-locally embeddable in I implies I ∈ O . We also say that O is

linear local if there are n,m ≥ 0 such that O is linear (n,m)-local.

It is important to observe that linear locality implies locality as

this will be crucial for obtaining our main characterization.

Lemma 6.2. Consider an ontology O that is linear (n,m)-local for
some n,m ≥ 0. It holds that O is (n,m)-local.

Proof. Assume that O is over the schema S. Consider an ar-

bitrary S-instance I such that O is (n,m)-locally embeddable in I .
Therefore, by definition, O is linearly (n,m)-locally embeddable in

I . Since, by hypothesis, O is linear (n,m)-local, we conclude that

I ∈ O , which in turn implies that O is (n,m)-local, as needed.

6.2 The Characterization
We proceed to show that indeed linear locality is the right notion for

obtaining our main characterization. To this end, we first present

a technical lemma, dubbed Linearization Lemma, that essentially
characterizes when a TGD-ontology can be expressed as a finite

set of linear tgds; the proof is deferred to the Appendix.

Lemma 6.3 (Linearization). Given a TGDn,m-ontology O , for
some n,m ≥ 0, the following are equivalent:



(1) O is an LTGD-ontology.
(2) O is an LTGDn,m -ontology.
(3) O is linear (n,m)-local.

Let us stress that the Linearization Lemma, apart from character-

izing when a TGDn,m -ontology is an LTGDn,m -ontology via linear

(n,m)-locality, it also tells us the following: if a finite set Σ of tgds

can be equivalently rewritten as a finite set ΣL of linear tgds, then

each tgd of ΣL does not have to use more universally or existentially

quantified variables than the tgds of Σ (direction (1) ⇒ (2)). This

is an interesting fact that, although is not essential for our main

characterization concerning linear tgds, it will serve as the basis

of the procedure for checking whether a finite set of guarded tgds

can be rewritten as a finite set of linear tgds (see Section 9).

Having the Linearization Lemma in place, it is now not difficult

to obtain the desired characterizations for linear tgds.

Theorem 6.4. Given an ontology O , and integers n,m ≥ 0, the
following are equivalent:

(1) O is an LTGDn,m -ontology.
(2) O is critical, closed under direct prod., and linear (n,m)-local.

Proof. The fact that (1) ⇒ (2) follows from Lemmas 3.2 and 3.4,

and the direction (2) ⇒ (3) of Lemma 6.3. For (2) ⇒ (1), since O is

linear (n,m)-local, Lemma 6.2 implies that O is (n,m)-local. Since,

by hypothesis,O is also critical and closed under direct products, we

get from Theorem 4.1 that O is a TGDn,m-ontology, which in turn

allows us to apply the Linearization Lemma (direction (3) ⇒ (2)),

and get that O is an LTGDn,m-ontology, as needed.

We conclude this section by observing that Theorem 6.4 provides

a characterization of when an ontology is an LTGD-ontology.

Corollary 6.5. Given an ontologyO , the following are equivalent:
(1) O is an LTGD-ontology.
(2) O is critical, is closed under direct products, and is linear local.

7 CHARACTERIZING GTGD-ONTOLOGIES
Let us now proceed with guarded tgds, and perform a similar anal-

ysis as in the previous section for linear tgds. Our objective here

is to obtain characterizations for guarded tgds in the spirit of The-

orem 4.1 and Corollary 4.2, by relying on a refined version of our

locality property, which we call guarded locality, whereas criticality

and closure under direct products remain in place.

7.1 Guarded Locality
We first refine the notion of local embedding by taking into account

the fact that guarded tgds have either an empty body, or a body

atom that contains all the universally quantified variables. As one

might guess, now an ontologyO over S is locally embeddable in an

S-instance I if, for every guarded subinstance K of I (i.e., K has a

fact that contains all the active domain elements), that mentions

a bounded number of constants, we can find an instance JK ∈ O
such that every local neighbour of K in JK can be embedded in I
while preserving the instance K . The formal definition follows.

An instance I is called guarded if either facts(I ) = ∅, or there ex-

ists a fact R(c1, . . . , ck ) ∈ facts(I ) such that adom(I ) = {c1, . . . , ck }.
Consider now an ontology O over a schema S, and an S-instance I .

For n,m ≥ 0, we say thatO is guardedly (n,m)-locally embeddable in
I if, for every guarded S-instanceK ⪯ I with |adom(K)| ≤ n, there is
JK ∈ O such that K ⊆ JK , and for every J

′
in them-neighbourhood

of K in JK , there exists a function h : adom(J ′) → adom(I ), which
is the identity on adom(K), such that h(facts(J ′)) ⊆ facts(I ). The
property of guarded locality is defined as expected.

Definition 7.1 (Guarded Locality). An ontology O over S is

guarded (n,m)-local, for n,m ≥ 0, if, for every S-instance I , the fol-
lowing holds:O is guardedly (n,m)-locally embeddable in I implies

I ∈ O . We also say thatO is guarded local if there are n,m ≥ 0 such

that O is guarded (n,m)-local.

As for linear locality, we can show that guarded locality implies

locality; the proof, which is omitted, is similar to that of Lemma 6.2

Lemma 7.2. Consider an ontology O that is guarded (n,m)-local
for some n,m ≥ 0. It holds that O is (n,m)-local.

7.2 The Characterization
We now show that guarded locality is the right notion for obtaining

our main characterization for guarded tgds. To this end, we first

present a technical lemma in the spirit of the Linearization Lemma,

called Guardedization Lemma; the proof is deferred to the Appendix.

Lemma 7.3 (Guardedization). Given a TGDn,m -ontologyO , for
some n,m ≥ 0, the following are equivalent:

(1) O is a GTGD-ontology.
(2) O is a GTGDn,m -ontology.
(3) O is guarded (n,m)-local.

Let us note that, similarly to the Linearization Lemma, the

Guardedization Lemma, apart from characterizing when a TGDn,m -

ontology is aGTGDn,m -ontology via guarded (n,m)-locality, it also

tells that, if a finite set Σ of tgds can be equivalently rewritten as a

finite set ΣG of guarded tgds, then each tgd of ΣG does not have to

use more universally or existentially quantified variables than the

tgds of Σ ((1) ⇒ (2)). This interesting fact will be crucial for the

procedure that checks whether a finite set of frontier-guarded tgds

can be rewritten as a finite set of guarded tgds (see Section 9).

Having the Guardedization Lemma in place, it is now easy to

obtain the desired characterizations for guarded tgds.

Theorem 7.4. Given an ontology O , and integers n,m ≥ 0, the
following are equivalent:

(1) O is a GTGDn,m -ontology.
(2) O is critical, closed under direct prod., and guarded (n,m)-local.

Proof. The fact that (1) ⇒ (2) follows from Lemmas 3.2 and 3.4,

and the direction (2) ⇒ (3) of Lemma 7.3. For (2) ⇒ (1), since O is

guarded (n,m)-local, Lemma 7.2 implies thatO is (n,m)-local. Since,

by hypothesis,O is also critical and closed under direct products, we

get from Theorem 4.1 that O is a TGDn,m-ontology, which in turn

allows us to apply the Guardedization Lemma (direction (3) ⇒ (2)),

and get that O is a GTGDn,m-ontology, as needed.

We conclude this section by observing that Theorem 7.4 provides

a characterization of when an ontology is a GTGD-ontology.

Corollary 7.5. Given an ontologyO , the following are equivalent:



(1) O is a GTGD-ontology.
(2) O is critical, is closed under direct prod., and is guarded local.

8 CHARACTERIZING FGTGD-ONTOLOGIES
We now concentrate on frontier-guarded tgds, and provide char-

acterizations similar to those established in the previous sections.

This is achieved by exploiting the so-called frontier-guarded local-

ity property (another refinement of our locality property), as well

as criticality and closure under direct products.

8.1 Frontier-Guarded Locality
The refined versions of the notion of local embedding for linear and

guarded tgds were essentially emerged from the syntactic shape of

the tgd bodies. This is somehow also the case for frontier-guarded

local embeddings. Frontier-guardedness can be seen as a relativized

version of guardedness. Indeed, a frontier-guarded body is essen-

tially a guarded body relative to the frontier, i.e., only the frontier

should satisfy the guardedness condition. In the same spirit, one can

define frontier-guarded instances, which are essentially guarded

instances relative to a certain set of active domain elements.

Consider an instance I , and a finite set F ⊆ adom(I ). We say that

I is guarded relative to F , or simply F -guarded, if either facts(I ) = ∅,

or there is a fact R(c1, . . . , ck ) ∈ facts(I ) such that F ⊆ {c1, . . . , ck }.
Consider now an ontology O over a schema S, and an S-instance I .
For n,m ≥ 0, we say thatO is fr-guardedly (n,m)-locally embeddable
in I if, for every finite set F ⊆ adom(I ) and F -guarded S-instance
K ⪯ I with |adom(K)| ≤ n, there exists J FK ∈ O such that K ⊆ J FK ,

and for every J ′ in them-neighbourhood of F in J FK , there exists
a function h : adom(J ′) → adom(I ), which is the identity on F ,
such that h(facts(J ′)) ⊆ facts(I ). The property of frontier-guarded

locality is defined as expected.

Definition 8.1 (Frontier-Guarded Locality). An ontology O
over S is frontier-guarded (n,m)-local, for n,m ≥ 0, if, for every S-
instance I , O is fr-guardedly (n,m)-locally embeddable in I implies

I ∈ O . We further say that O is frontier-guarded local if there are
n,m ≥ 0 such that O is frontier-guarded (n,m)-local.

As for the properties of linear and guarded locality, we can show

that frontier-guarded locality implies locality; the proof, which is

omitted, is similar to that of Lemma 6.2

Lemma 8.2. Consider an ontologyO that is frontier-guarded (n,m)-
local for some n,m ≥ 0. It holds that O is (n,m)-local.

8.2 The Characterization
Wenow show that frontier-guarded locality is an appropriate notion

towards our characterization for frontier-guarded tgds. To this end,

we first present a technical lemma in the spirit of the Linearization

and Guardedization Lemmas; the proof is deferred to the Appendix.

Lemma 8.3. Given a TGDn,m -ontology O , for some n,m ≥ 0, the
following are equivalent:

(1) O is an FGTGDn,m -ontology.
(2) O is frontier-guarded (n,m)-local.

Having Lemma 8.3 in place, it is now easy to obtain the desired

characterizations for frontier-guarded tgds.

Theorem 8.4. Given an ontology O , and integers n,m ≥ 0, the
following are equivalent:

(1) O is an FGTGDn,m -ontology.
(2) O is critical, closed under direct products, and frontier-guarded

(n,m)-local.

Proof. The fact that (1) ⇒ (2) follows from Lemmas 3.2, 3.4,

and 8.3. For (2) ⇒ (1), since O is frontier-guarded (n,m)-local,

Lemma 8.2 implies that O is (n,m)-local. Since, by hypothesis, O is

also critical and closed under direct products, we get from Theo-

rem 4.1 that O is a TGDn,m-ontology, which in turn allows us to

apply the Frontier-Guardedization Lemma (direction (2) ⇒ (1)),

and get that O is an FGTGDn,m-ontology, as needed.

We conclude this section by observing that Theorem 8.4 provides

a characterization of when an ontology is an FGTGD-ontology.

Corollary 8.5. Given an ontologyO , the following are equivalent:
(1) O is an FGTGD-ontology.
(2) O is critical, is closed under direct products, and is frontier-

guarded local.

9 RELATIVE EXPRESSIVENESS AND
REWRITABILITY

By exploiting our new locality properties, and, in particular, the

Linearization and Guardedization Lemmas, we can easily separate,

in terms of expressive power, LTGD, GTGD and FGTGD. More

precisely, we can devise a finite set of guarded (respectively, frontier-

guarded) tgds that cannot be equivalently rewritten as a finite set

of linear (respectively, guarded) tgds. Actually, those separations

were folklore, and made explicit in the recent work [17]. The value

of our analysis is that it provides further insights, using the linear

and guarded locality properties, on why those separations hold.

9.1 Semantic Separations
Linear vs. Guarded. Let us first separate LTGD from GTGD. To
this end, we need to devise a set ΣG ∈ GTGD that is provably not

equivalent to a set ΣL ∈ LTGD. Consider the singleton set

ΣG = {R(x), P(x) → T (x)}.

By the Linearization Lemma (directions (1) ⇔ (3)), there exists

ΣL ∈ LTGD such that ΣG ≡ ΣL iff ΣG is linear (1, 0)-local.4 But, we

can show that ΣG is not linear (1, 0)-local, and thus, such a set ΣL
does not exist. To this end, we devise the {R, P,T }-instance I with

dom(I ) = {c} and facts(I ) = {R(c), P(c)}.

for which it is easy to verify that ΣG is linearly (1, 0)-locally em-

beddable in I , but I ̸ |= ΣG . Therefore, ΣG is not linear (1, 0)-local.

Guarded vs. Frontier-Guarded. Let us now separateGTGD from

FGTGD. We need to devise a set ΣF ∈ FGTGD that is provably not

equivalent to a set ΣG ∈ GTGD. Consider the singleton set

ΣF = {R(x), P(y) → T (x)}.

By the Guardedization Lemma (directions (1) ⇔ (3)), there is ΣG ∈

GTGD such that ΣF ≡ ΣG iff ΣF is guarded (2, 0)-local. But, we can

4
By abuse of terminology, we say that ΣG is linear (1, 0)-local meaning that the

ontology consisting of the models of ΣG is linear (1, 0)-local .



Input: A set Σ ∈ GTGDn,m for n,m ≥ 0 over S
Output: A set Σ′ ∈ LTGD such that Σ ≡ Σ′, if one exists;

otherwise, ⊥

Σ′ := {σ | σ is over S, {σ } ∈ LTGDn,m and Σ |= σ }
if Σ′ , ∅ and Σ′ |= Σ then

return Σ′

else
return ⊥

Algorithm 1: G-to-L

show that ΣF is not guarded (2, 0)-local, and thus, such a set ΣG
does not exist. To this end, we devise the {R, P,T }-instance I with

dom(I ) = {c} and facts(I ) = {R(c), P(d)}.

for which it is easy to verify that ΣF is guardedly (2, 0)-locally

embeddable in I , but I ̸ |= ΣF . Hence, ΣF is not guarded (2, 0)-local.

9.2 Rewritability
Having the above semantic separations in place, the next natural

question is whether we can decide if a finite set of guarded (respec-

tively, frontier-guarded) tgds can be equivalently rewritten as a

finite set of linear (respectively, guarded) tgds. This brings us to the

following decision problem; let C1 and C2 be classes of tgds:

PROBLEM : Rewrite(C1,C2)

INPUT : A set of tgds Σ ∈ C1.

QUESTION : Is there a set Σ′ ∈ C2 such that Σ ≡ Σ′?

The rest of this section is devoted to studying the problems

Rewrite(GTGD, LTGD) and Rewrite(FGTGD,GTGD).

From Guarded to Linear. The problem Rewrite(GTGD, LTGD)
has been already considered in the recent work [17]. It was shown

to be PSpace-hard, but no decision procedure was provided. We

proceed to pinpoint the complexity of this problem by exploiting

the results of this work, in particular, the Linearization Lemma.

Theorem 9.1. The following hold:
(1) Rewrite(GTGD, LTGD) is 2ExpTime-complete, and ExpTime-

complete for schemas of bounded arity.
(2) Given a set Σ ∈ GTGD, a set Σ′ ∈ LTGD such that Σ ≡ Σ′, if

one exists, can be computed in double exponential time, and in
exponential time in the case of schemas of bounded arity.

The complexity lower bounds claimed in item (1) are shown via

a reduction from conjunctive query answering under guarded tgds,

which is 2ExpTime-hard in general, and ExpTime-hard for schemas

of bounded arity [5]; the proof is given in the Appendix. Consider

now a set Σ ∈ GTGD over a schema S, where each tgd of Σ has

at most n ≥ 0 universally and at mostm ≥ 0 existentially quanti-

fied variables; it is clear that Σ ∈ GTGDn,m . By the Linearization

Lemma, we know that the following statements are equivalent:

• There exists Σ′ ∈ LTGD over S such that Σ ≡ Σ′.
• There exists Σ′ ∈ LTGDn,m over S such that Σ ≡ Σ′.

This essentially means that, even though there are infinitely many

finite sets of linear tgds over S, it suffices to search only the frag-

ment of LTGDn,m over S, which is finite, to find a set Σ′ that is

equivalent to Σ. This leads to the very simple procedure depicted in

Algorithm 1. It first collects in Σ′ all the linear tgds over S with at

most n universally, and at mostm existentially quantified variables,

that are entailed by the input set of tgds Σ, and then checks whether
Σ′ is non-empty and entails Σ; the latter is actually done by check-

ing whether Σ′ |= σ for each σ ∈ Σ. We proceed to show that the

algorithm G-to-L runs in double exponential time in general, and

in single exponential time in the case of schemas of bounded arity,

which in turn implies items (1) and (2) of Theorem 9.1.

We first observe that the total number of linear tgds over Swith at
most n universally quantified variables, and at mostm existentially

quantified variables, is bounded by

|S| · nar(S)︸     ︷︷     ︸
≥ # of linear bodies

· 2 |S | ·(n+m)ar(S)︸          ︷︷          ︸
≥ # of heads

where ar(S) = maxR∈S{ar(R)}, while each such linear tgd is of size

O
(
ar(S) · |S| · (n +m)ar(S)

)
.

We also need to understand the complexity of deciding whether

a set of guarded tgds entails a linear tgd (needed in the construction

of Σ′), as well as the complexity of deciding whether a set of linear

tgds entails a guarded tgd (needed for checking whether Σ′ |= Σ).
It is easy to see that, given a set of tgds Σ and a single tgd σ of the

form ϕ(x̄, ȳ) → ∃z̄ψ (x̄, z̄), Σ |= σ iff Σ and the database Dϕ , obtain

by “freezing” ϕ(x̄, ȳ), entails the Boolean conjunctive query qϕ
obtained from ∃z̄ψ (x̄, z̄) after “freezing” x̄ ; see, e.g., [13]. Therefore,
the complexity of the implication problems in question can be easily

inherited from existing results on conjunctive query answering

under guarded and linear tgds [5, 6]:

• Given a set ΣG ∈ GTGD and a linear tgd σL , both over S, we
can decide whether ΣG |= σL in double exponential time in

ar(S), and single exponential time in the size of ΣG and σL .
• Given a set ΣL ∈ LTGD and a guarded tgd σG , both over S,
we can decide whether ΣL |= σG in exponential time in ar(S)
and the size of σG , and in polynomial time in the size of ΣL .

Putting everything together, we get that the algorithm G-to-L
runs in double exponential time in general, and in single exponential

time in the case of schemas of bounded arity, as needed.

From Frontier-Guarded to Guarded. Rewrite(FGTGD,GTGD)
has been studied in [17], and it was shown to be 2ExpTime-complete,

but without providing an effective procedure that builds an equiva-

lent set of guarded tgds, if one exists. We can provide such a proce-

dure by using the results of this work, in particular, the Guardedi-

zation Lemma. We further show that the 2ExpTime-hardness of

Rewrite(FGTGD,GTGD) holds even in the case of bounded arity.

Theorem 9.2. The following hold:
(1) Rewrite(FGTGD,GTGD) is 2ExpTime-complete even for

schemas of bounded arity.
(2) Given a set Σ ∈ FGTGD, a set Σ′ ∈ GTGD such that Σ ≡ Σ′,

if one exists, can be computed in triple exponential time, and
in double exponential time for schemas of bounded arity.

The 2ExpTime-hardness claimed in item (1), even for schemas

of bounded arity, is shown via a reduction from conjunctive query

answering under frontier-guarded tgds [3]; the proof is deferred



Input: A set Σ ∈ FGTGDn,m for n,m ≥ 0 over S
Output: A set Σ′ ∈ GTGD such that Σ ≡ Σ′, if one exists;

otherwise, ⊥

Σ′ := {σ | σ is over S, {σ } ∈ GTGDn,m and Σ |= σ }
if Σ′ , ∅ and Σ′ |= Σ then

return Σ′

else
return ⊥

Algorithm 2: FG-to-G

to the Appendix. Consider now a set Σ ∈ FGTGD over a schema S,
where each tgd of Σ has at mostn ≥ 0 universally and at mostm ≥ 0

existentially quantified variables; it is clear that Σ ∈ FGTGDn,m .

By the Guardedization Lemma, the following are equivalent:

• There exists Σ′ ∈ GTGD over S such that Σ ≡ Σ′.
• There exists Σ′ ∈ GTGDn,m over S such that Σ ≡ Σ′.

This leads to the simple procedure depicted in Algorithm 2 that

constructs an equivalent set of guarded tgds, if one exists. It first

collects in Σ′ all the guarded tgds over S with at most n universally,

and at mostm existentially quantified variables, that are entailed by

the input set of tgds Σ, and then checks whether Σ′ is non-empty

and entails Σ. We proceed to analyze its running time.

We observe that the total number of guarded tgds over S with at

most n universally quantified variables, and at mostm existentially

quantified variables, is bounded by

2
|S | ·nar(S)︸    ︷︷    ︸

≥ # of guadred bodies

· 2 |S | ·(n+m)ar(S)︸          ︷︷          ︸
≥ # of heads

while each such guarded tgd is of size

O
(
ar(S) · |S| · (n +m)ar(S)

)
.

Concerning the implication checks, we can easily inherit from

existing results on conjunctive query answering under frontier-

guarded and guarded tgds [3, 5] the following complexities:

• Given ΣF ∈ FGTGD and a guarded tgd σG , both over S, we
can decide whether ΣF |= σG in double exponential time.

• Given ΣG ∈ GTGD and a frontier-guarded tgd σF , both over

S, we can decide whether ΣG |= σF in double exponential

time in ar(S), and single exponential time in the size of ΣG .

Putting everything together, we get that FG-to-G runs in triple

exponential time in general, and in double exponential time in the

case of schemas of bounded arity, and Theorem 9.2 follows.

10 CONCLUDING REMARKS
In this work, we have established model-theoretic characterizations

of TGD-ontologies, including characterizations of ontologies spec-
ified by central classes of tgds, such as full, linear, guarded, and

frontier-guarded tgds. Our characterizations use the well-known

properties of criticality and closure under direct products, as well

as a novel locality property for TGD-ontologies. We further used

this locality property to decide whether an ontology expressed by

frontier-guarded (respectively, guarded) tgds can be rewritten as

an equivalent one expressed by tgds in the weaker class of guarded

(respectively, linear) tgds, and effectively construct such an equiva-

lent ontology if one exists. Although our results (model-theoretic

characterizations and rewritability) focus on unrestricted (finite or

infinite) instances, it can be shown that they also hold if we concen-

trate on finite instances. As a next step, we would like to perform

a similar analysis that goes beyond TGD-ontologies. In particualr,

we are planning to consider ontologies specified by tgds, egds, and

denial constraints. Moreover, in the context of rewritability, it is

interesting to investigate the optimality of the size of the equivalent

linear or guarded sets of tgds that we build (whenever they exist).
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A PROOFS FROM SECTION 4
Proof of Claim 4.6
Recall that ΦIK ,m (x̄) is obtained from them-diagram of K relative

to I by renaming each constant c ∈ dom(K) to a new variable xc ;
let ρ be the renaming function, i.e., ρ(c) = xc for each c ∈ dom(K).
Therefore, ΦIK ,m (x̄) is a formula of the form∧
α ∈facts(K )

ρ(α) ∧
∧

c ,d ∈dom(K ),
c,d

¬(ρ(c) = ρ(d)) ∧
∧

γ (ȳ)∈CK ,ℓ ,
I ̸ |=∃ȳ γ (ȳ)

¬∃ȳ ρ(γ (ȳ)).

It is clear that ¬∃x̄ ΦIK ,m (x̄) is equivalent to the sentence

δ = ∀x̄(ϕ(x̄) → ψ (x̄)),

where

ϕ(x̄) =
∧

α ∈facts(K )

ρ(α)

ψ (x̄) =
∨

c ,d ∈dom(K ),
c,d

ρ(c) = ρ(d) ∨
∨

γ (ȳ)∈CK ,ℓ ,
I ̸ |=∃ȳ γ (ȳ)

∃ȳ ρ(γ (ȳ)).

It remains to show that δ is an edd from En,m . To this end, we need

to show that (i)ψ (x̄) is non-empty, (ii) each variable inψ (x̄) is either
existentially quantified, or appears in ϕ(x̄), and (iii) δ mentions at

most n universally andm existentially quantified variables:

(i) Observe that ΦIK ,m (x̄) has at least one negative conjunct.

Assume, by contradiction, that this is not the case. Then, a 1-

critical instance inO , which exists sinceO is 1-critical, is triv-

ially a model of ∃x̄ ΦIK ,m (x̄). But this contradicts Claim 4.5,

which states that, for each J ∈ O , J ̸ |= ∃x̄ ΦIK ,m (x̄). There-

fore, we conclude thatψ (x̄) is non-empty.

(ii) Observe that dom(K) = adom(K) since K ⪯ I and dom(I ) =
adom(I ); recall that the latter relies on the domain indepen-

dence of O , which is guaranteed by Lemma 3.8. This implies

that each variable inψ (x̄) is either existentially quantified,

or appears in ϕ(x̄), as needed.
(iii) Finally, it is easy to verify that δ has at most n universally

and m existentially quantified variables since |dom(K)| =
|adom(K)| ≤ n, while, by construction, ΦIK ,m (x̄) mentions

at mostm existentially quantified variables.

This completes the proof of Claim 4.6.

Proof of Claim 4.8
Since, for each j ∈ [k], Ij ̸ |= σj , we conclude that there exists a

functionhj : x̄ → dom(Ij ) such thathj (ϕ(x̄)) ⊆ facts(Ij ). We define

the function h : x̄ → dom(J ) such that, for each variable x ∈ x̄ .

h(x) = (h1(x), . . . ,hk (x)).

By the definition of direct products, we conclude that h(ϕ(x̄)) ⊆
facts(J ). It remains to show that, for each j ∈ [k], if ψj (x̄ j ) is the
equality expression y = z, then h(y) , h(z), and ifψj (x̄ j ) is not an
equality expression, then there is no extension h′ of h such that

h′(ψj (x̄ j )) ⊆ facts(J ). Fix an arbitrary j ∈ [k]. We proceed by case

analysis on the type of the formulaψj (x̄ j ):

(1) Assume first thatψj (x̄ j ) is the equality expression y = z. By
contradiction, assume that h(y) = h(z). By the definition of

h, we get that hj (y) = hj (z), which contradicts the fact that

Ij |= ∃x̄(ϕ(x̄) ∧ ¬(y = z)).
(2) Assume that ψj (x̄ j ) is a formula of the form ∃ȳj χj (x̄ j , ȳj ),

and assume, by contradiction, that there exists an extension

h′ of h such that h′(χj (x̄ j , ȳj )) ⊆ facts(J ). For a constant

c ∈ dom(J ), we write c[i] for the i-th component of c , which
is actually a constant from dom(Ii ). We define the function

h′j : x̄ ∪ ȳj → dom(Ij ) such that h′j (v) = h′(v)[j] for each

variablev ∈ x̄ ∪ ȳj . Since h
′
is an extension of h, and hj (v) =

h(v)[j], for each variable v ∈ x̄ , we conclude that h′j is an

extension of hj . By hypothesis, h′(α) ∈ facts(J ) for each
conjunct α of χj (x̄ j , ȳj ). Assume that h′(α) = R(c̄i , . . . , c̄m ).

By the definition of the direct product, we conclude that

R(c̄1[j], . . . , cm [j]) ∈ facts(Ij ). Consequently, h′j (ψj (x̄ j )) ⊆

facts(Ij ), which in turn implies that Ij |= σj . But this is a
contradiction, and the claim follows.

B PROOFS FROM SECTION 5
Proof of Theorem 5.6 – Direction (1) ⇒ (2)

By hypothesis, O is an FTGD-ontology, which means that there

exists a set Σ ∈ FTGD over S such that I ∈ O iff I |= Σ. The fact that
O is 1-critical follows by Lemma 3.2, while the fact that is domain

independent follows from Lemma 3.8. We proceed to show that O
enjoys the other three properties, i.e., (1) is n-modular for some

n > 0, (2) is closed under intersections, and (3) is closed under

non-oblivious duplicating extensions:

(1) Let n ≥ 0 be the maximum number of variables in the body

of a tgd of Σ. Consider an S-instance I < O . There exists a full

tgd σ ∈ Σ of the form ϕ(x̄, ȳ) → ψ (x̄) such that I ̸ |= σ , which
can be witnessed via a function h : x̄ ∪ ȳ → dom(I ). Let C
be the set of constants h(x̄) ∪ h(ȳ). Consider the S-instance
Iσ such that dom(Iσ ) = C , and, for each R ∈ S, RIσ = RI

|C .

Clearly, Iσ ⪯ I and |dom(Iσ )| ≤ n. It is also easy to see that

Iσ ̸ |= σ , and thus, Iσ < O . Therefore, O is n-modular.

(2) Let I , J ∈ O and assume that, for some full tgd σ ∈ Σ of the

form ϕ(x̄, ȳ) → ψ (x̄), there exists a function h : x̄ ∪ ȳ →

dom(I ∩ J ) such that h(ϕ(x̄, ȳ)) ⊆ facts(I ∩ J ). By definition,

h(ϕ(x̄, ȳ)) ⊆ facts(I ) and h(ϕ(x̄, ȳ)) ⊆ facts(J ). Since I |= Σ
and J |= Σ, we get that h(ψ (x̄)) is subeset of both facts(I )
and facts(J ). Therefore,h(ψ (x̄)) ⊆ facts(I∩ J ), which implies

that I ∩ J |= σ , and thus, I ∩ J ∈ O .
(3) Consider an instance I ∈ O , and let J be a non-oblivious

duplicating extension of I . We need to show that J ∈ O , or,
equivalently, J |= Σ. By definition, there are constants c ∈

dom(I ) and d < dom(I ) such that d ∈ dom(J ) \ dom(I ), and
the function hc : dom(I )∪ {d} → dom(I ) that is the identity
on dom(I ) and h(d) = c , is such that hc (facts(J )) ⊆ facts(I ).
Assume there is a full tgd σ ∈ Σ of the form ϕ(x̄, ȳ) → ψ (x̄)
and a function h : x̄ ∪ ȳ → dom(J ) such that h(ϕ(x̄, ȳ)) ⊆
facts(J ). Therefore, the function µ = hc ◦ h is such that

µ(ϕ(x̄, ȳ)) ⊆ facts(I ). Since I |= σ , µ(ψ (x̄)) ⊆ facts(I ). From
the definition of non-oblivious duplicating extensions, we

can conclude that µ(ψ (x̄)) ⊆ facts(J ), and the claim follows.

This completes the proof.



Proof of Theorem 5.6 – Direction (2) ⇒ (1)

We first show the following auxiliary claim:

Claim B.1. O is closed under subinstances.

Proof. SinceO is 1-critical, there are 1-critical instances I , J ∈ O
such that dom(I ) , dom(J ). Since O is closed under intersections,

we have that the empty instance is inO . Consider now two instances

I , J such that I ∈ O , and J ⪯ I . We proceed to show that J ∈ O .
If dom(J ) = ∅, then J is the empty instance, and therefore J ∈ O .
Suppose now that dom(J ) , ∅, and let K be a critical instance

such that dom(K) = dom(J ). Since O is critical, we can conclude

that K ∈ O . From closure under intersections, we can conclude

that K ∩ I ∈ O . It remains to show that K ∩ I = J . Consider an
n-ary relation R ∈ S. Since K is critical, it has a fact R(c̄) for each
c̄ ∈ dom(K)n . This implies that facts(K ∩ I ) contains every fact R(c̄)
of facts(I ) such that c̄ ∈ dom(J )n , and therefore K ∩ I = J .

Before we proceed further, we need to recall some auxiliary

notions. A disjunctive dependency (dd) over a schema S is an edd

without existentially quantified variables, and every disjunct in the

right-hand side of the implication is either an equality expression

or an atom over S. We also need the standard notion of the diagram

of an instance. Consider an S-instance I , and let A be the set of

atomic formulas that can be formed using predicates from S and
constants from dom(I ). The diagram of I , denoted ∆I , is∧

α ∈I
α ∧

∧
α ∈A\I

¬α ∧
∧

c ,d ∈dom(I ) and c,d

¬(c = d).

We can now proceed with the rest of the proof. Assuming thatO
is over the schema S, let Σ∨ be the set of all dds over S with at most

n variables that are satisfied by every I ∈ O , i.e., δ ∈ Σ∨ iff I |= δ
for each instance I ∈ O . It is clear that Σ∨ is finite (up to logical

equivalence). We proceed to show the following technical lemma.

Lemma B.2. For each S-instance I , I ∈ O iff I |= Σ∨.

Proof. The (⇒) direction holds by construction. Consider an

S-instance I < O . We show that I ̸ |= Σ∨. Since O is n-modular for

some n > 0, there exists an S-instance In < O , with |dom(In )| ≤ n,
such that In ⪯ I . Since O is domain independent, we can assume

that dom(In ) = adom(In ). We proceed to show that In ̸ |= Σ∨, which
in turn implies that I ̸ |= Σ∨ since universal first-order sentences are

preserved under subinstances, as needed. Let ∆In be the diagram

of In , and let ΦIn (x̄) be the formula obtained from ∆In by replacing

each c ∈ dom(In ) with a new variable xc ∈ V. We show that:

Claim B.3. For every J ∈ O , J |= ¬∃x̄ ΦIn (x̄).

Proof. By contradiction, assume that there exists J ∈ O such

that J |= ∃x̄ ΦIn (x̄). We can show that there is an S-instance K
such that K ⪯ J and In ≃ K . Since, by Claim B.1, O is closed under

subinstances, we get that K ∈ O , and thus, In ∈ O (by definition, O
is closed under isomorphisms), which is a contradiction. The rest

of the proof is devoted to showing the existence of the instance K .
Let ρ be the renaming function used to obtain the formula ΦIn (x̄)

from the diagram of In , i.e., the bijection that maps each constant c ∈

dom(In ) to a distinct variable xc ∈ V. The fact that J |= ∃x̄ ΦIn (x̄)
can be witnessed via a function h : x̄ → dom(J ). Let C = {h(x) |
x ∈ x̄} ⊆ dom(J ), and letK be the S-instance such that dom(K) = C ,

and, for each R ∈ S, RK = R J
|C . Clearly, K ⪯ J . Moreover, since

in ΦIn (x̄) there is a conjunct ¬(xi = x j ) for each pair of distinct

variables xi , x j of x̄ , which in turn implies that h(xi ) , h(x j ), it is
not difficult to verify that µ = h ◦ ρ is an 1-1 function such that

µ(facts(In )) ⊆ K , and µ−1
is such that µ−1(facts(K)) ⊆ J . Therefore,

In ≃ K , and the claim follows.

We now proceed to show the following claim:

Claim B.4. There exists a dd δ such that δ ≡ ¬∃x̄ ΦIn (x̄).

Proof. Since O is closed under subinstances, we get that

facts(In ) , ∅; this holds since the empty instance is a subinstance of

every S-instance. This implies that ∆In contains at least one positive

relational atom α . Now, since O contains an 1-critical S-instance,
and is closed under isomorphisms, we conclude that In is not an

1-critical instance; otherwise, In ∈ O , which is not the case. This

implies that either |dom(In )| ≥ 2, or |dom(In )| = 1 and there is

a relation R ∈ S such that RIn is empty; otherwise, In would be

1-critical, which is not the case. Therefore, ∆In contains either the

negation of an equality atom β , or the negation of a relational atom

γ . Consequently, ¬∃x̄ ΦIn (x̄) can be equivalently rewritten as a dd.

The latter relies on the fact that, since dom(In ) = adom(In ) (recall
that this exploits domain independence), in ∆In each c ∈ dom(In )
occurring in a negative atom occurs also in a positive atom.

By Claims B.3 and B.4, there exists a dd δ ∈ Σ∨ such that δ ≡

¬∃x̄ ΦIn (x̄), and therefore, In ̸ |= Σ∨. Since In ⪯ I , we get that

I ̸ |= Σ∨. This completes the proof of Lemma B.2

Having Lemma B.2 in place, to show thatO is an FTGD-ontology,
it remains to establish the following lemma:

Lemma B.5. There exists a set Σ ∈ FTGD such that Σ ≡ Σ∨.

Proof. We define Σ as the set of tgds{
δ ∈ Σ∨ | δ is a full tgd

}
,

i.e., Σ is the subset of Σ∨ consisting of full TGDs. We show that

Σ |= Σ∨; the other direction holds trivially. By contradiction, assume

that Σ ̸ |= Σ∨. Thus, there exists a dd δ ∈ Σ∨ of the form

∀x̄

(
ϕ(x̄) →

k∨
i=1

αi (x̄i )

)
such that Σ ̸ |= δ . Let i1, . . . , iℓ be distinct integers from [k] such that
the following holds: α j (x̄ j ), where j ∈ [k], is a relational atom (i.e.,

is not an equality expression) iff j ∈ {i1, . . . , iℓ}. In simple words,

{i1, . . . , iℓ} collects all the indices from [k] such that αi j (x̄i j ), for
each j ∈ [ℓ], is a relational atom (and not an equality expression).

We proceed to show the following auxiliary claim:

Claim B.6. For each j ∈ {i1, . . . , iℓ} there exists Ij ∈ O and an
injective function h : x̄ → dom(Ij ) such that h(α j (x̄ j )) < facts(Ij ).

Proof. Since Σ ̸ |= δ , for each j ∈ {i1, . . . , iℓ}, σj = ∀x̄(ϕ(x̄) →
α j (x̄ j )) is not in Σ. Hence, for each j ∈ {i1, . . . , iℓ}, there exists

Kj ∈ O such that Kj |= ∃x̄(ϕ(x̄) ∧ ¬α j (x̄ j )). Thus, there exists a
function h : x̄ → dom(Kj ), for each j ∈ {i1, . . . , iℓ}, such that

h(α j (x̄ j )) < facts(Kj ). Suppose that h maps two distinct variables

x,y to the same constant c ∈ dom(Kj ), and letK
′
j be a non-oblivious



duplicating extension of Kj witnessed by c such that dom(K ′
j ) =

dom(Kj ) ∪ {d}. Moreover, let h′ : x̄ → dom(K ′
j ) be the function

such that h′(z) = h(z), for each variable z , y, and h′(y) = d . We

proceed to show the following claim:

Claim B.7. h′(ϕ(x̄)) ⊆ facts(K ′
j ) and h

′(α j (x̄ j )) < facts(K ′
j ).

Proof. We first observe that there exists a function µ that is

the identity on dom(Kj ) and µ(d) = c such that µ(h′(ϕ(x̄))) ⊆

h(ϕ(x̄)). From the fact that h(ϕ(x̄)) ⊆ facts(Kj ) and K ′
j being a

non-oblivious duplicating extension of Kj , we can conclude that

h′(ϕ(x̄)) ⊆ facts(K ′
j ). Suppose now, towards a contradiction, that

h′(α j (x̄ j )) ∈ facts(K ′
j ). This implies that µ(h′(α j (x̄ j ))) ∈ facts(Kj )

since K ′
j is a non-oblivious duplicating extension of Kj . From the

definition of µ and h′, we get that µ(h′(α j (x̄ j ))) = h(α j (x̄ j )), contra-
dicting the hypothesis that h(α j (x̄ j )) < facts(Kj ).

With the above result in place, the desired Ij can be constructed

starting from Kj and repeatedly duplicating constants.

For each j ∈ {i1, . . . , iℓ}, let Ij be the instance provided by

Claim B.6. By definition, there exists an injective function hj : x̄ →

dom(Ij ) such that hj (ϕ(x̄)) ⊆ facts(Ij ) and hj (α j (x̄ j )) < facts(Ij ).
SinceO is closed under isomorphisms, we can assume that, for every

i, j ∈ {i1, . . . , iℓ} and every variable x occurring in x̄ , hi (x) = hj (x).
With h being one of the functions hj , h(ϕ(x̄)) ⊆ facts(Ij ), for each
j ∈ {i1, . . . , iℓ}. Finally, let I be the intersection of each Ij , i.e.,
I =

⋂
j Ij , with j ∈ {i1, . . . , iℓ}. Since h(ϕ(x̄)) ⊆ facts(Ij ), for each

j ∈ {i1, . . . , iℓ}, we have that h(ϕ(x̄)) ⊆ facts(I ). To conclude the

proof, we show that h(α j (x̄ j )) < facts(I ), for each α j (x̄ j ) in head(δ ),
contradicting the fact that δ ∈ Σ∨. If α j (x̄ j ) is an equality expression
of the form x = y, by definition, h(x) , h(y) sine h is an injective

function. Assume now that α j (x̄ j ) is a relational atom. Therefore,

j ∈ {i1, . . . , iℓ} and h(α j (x̄ j )) < facts(Ij ). Since I =
⋂
j Ij , with

j ∈ {i1, . . . , iℓ}, we can conclude h(α j (x̄ j )) < facts(Ij ).

The claim follows from Lemma B.2 and Lemma B.5.

C PROOFS FROM SECTION 6
C.1 Proof of Lemma 6.3
We assume that O is over the schema S = {R1, . . . ,Rℓ}. Since O
is a TGDn,m-ontology, there exists a set Σ ∈ TGDn,m over S such
that, for every S-instance I , I ∈ O iff I |= Σ. We proceed to show

the directions (1) ⇒ (3) and (3) ⇒ (2); (2) ⇒ (1) holds trivially.

Direction (1) ⇒ (3)

Consider an S-instance I . We need to show the following: if O is

linearly (n,m)-locally embeddable in I , then I ∈ O (or, equivalently,

I |= Σ), which in turn implies that O is linearly (n,m)-local, as

needed. Consider a tgd σ ∈ Σ of the form ϕ(x̄, ȳ) → ∃z̄ψ (x̄, z̄) such
that there is a functionh : x̄∪ȳ → dom(I )withh(ϕ(x̄, ȳ)) ⊆ facts(I ).
We need to show that there exists an extension h′ of h such that

h′(ψ (x̄, z̄)) ⊆ facts(I ). Observe that at most n distinct variables

occur in x̄ ∪ ȳ, which implies that each fact α ∈ h(ϕ(x̄, ȳ)) contains
at mostn distinct constants from adom(I ). Since, by hypothesis,O is

linearly (n,m)-locally embeddable in I , for eachK ⊆ h(ϕ(x̄, ȳ))with
|facts(K)| ≤ 1, there exists JK ∈ O such that K ⊆ JK and, for each

J ′ in them-neighbourhood of K in JK , there exists a function fK :

adom(J ′) → adom(I ), which is the identity on adom(K), such that

f (facts(J ′)) ⊆ facts(I ). Since h(ϕ(x̄, ȳ)) consists of finitely many

atoms, and O is closed under isomorphisms, we can assume that

dom(JK )∩dom(JL) = dom(K)∩dom(L), for each K, L ⊆ h(ϕ(x̄, ȳ))
with |facts(K)| ≤ 1 and |facts(L)| ≤ 1. In other words, we can

assume that, for each pair K, L ⊆ h(ϕ(x̄, ȳ)), with |facts(K)| ≤ 1

and |facts(L)| ≤ 1, the constants of dom(JK ) not occurring in K do

not occur in dom(JL) either. Let J be an S-instance such that

facts(J ) =
⋃

K ⊆h(ϕ(x̄ ,ȳ)),
|facts(K ) |≤1

facts(JK ).

SinceO is an LTGD-ontology, we have thatO is closed under unions,

which in turn implies that J ∈ O , and thus, J |= σ . From the defini-

tion of J , we get that h(ϕ(x̄, ȳ)) ⊆ J . Since J |= σ , there exists an ex-

tensionд ofh such thatд(ψ (x̄, z̄)) ⊆ J . Let L = (dom(L),RL
1
, . . . ,RL

ℓ
)

with dom(L) = dom(д(ϕ(x̄, ȳ))) ∪ dom(д(ψ (x̄, z̄))), and for i ∈ [ℓ],

RLi = R Ji |dom(L). Since, σ mentions at mostm existentially quan-

tified variables, we have that д(ψ (x̄, z̄)) mentions at mostm con-

stants not occurring in h(ϕ(x̄, ȳ)). This implies that adom(L) con-
tains at most m constants not occurring in h(ϕ(x̄, ȳ)). We now

define an extension h′ of h such that h′(ψ (x̄, z̄)) ⊆ facts(I ), as
needed. To this end, for each K ⊆ h(ϕ(x̄, ȳ)), with |facts(K)| ≤ 1,

let LK be the S-instance such that dom(LK ) = adom(LK ) and
facts(LK ) = facts(L) ∩ facts(JK ). Clearly, adom(LK ) contains at
mostm constants not occurring in adom(K), which in turn implies

that LK is in them-neighbourhood of K in JK . Thus, there is a func-
tion fK : adom(LK ) → adom(I ), which is the identity on adom(K),
such that fK (facts(LK )) ⊆ facts(I ). Let f be the binary relation

{(c, c) | c occurs in h(ϕ(x̄, ȳ))} ∪ {(c, fK (c)) | c ∈ adom(LK )}.

It is not difficult to show that f is a total function from adom(L)
to adom(I ) such that f (facts(L)) ⊆ facts(I ). To conclude our proof,

consider the mapping h′ = f ◦ д. For each variable x ∈ x̄ , h′(x)
is equal to f (д(x)) = д(x) = h(x), and hence, h′ is an extension of

h. Moreover, for each atom α occurring inψ (x̄, z̄), д(α) ∈ facts(L),
and therefore, h′(α) ∈ facts(I ). Consequently, h′ is an extension of

h such that h′(ψ (x̄, z̄)) ⊆ facts(I ), and the claim follows.

Direction (3) ⇒ (2)

We start by defining the set of linear tgds

ΣL = {σ ∈ LTGDn,m | Σ |= σ }.

Our goal is to establish that Σ ≡ ΣL , which implies that O is an

LTGDn,m-ontology. The fact that Σ |= ΣL holds trivially. We pro-

ceed to show the non-trivial direction. Consider an S-instance I
such that I ̸ |= Σ, and assume, by contradiction, that I |= ΣL . Recall
that ΦIK ,m (x̄), for an S-instance K ⊆ I , is obtained from the m-

diagram of K relative to I by renaming each constant c ∈ dom(K)
to a new variable xc . We show the following auxiliary claim.

Claim C.1. There exists an S-instance K ⊆ I , with dom(K) =
adom(K), |adom(K)| ≤ n, and |facts(K)| ≤ 1, such that, for each
J ∈ O , it holds that J |= ¬∃x̄ ΦIK ,m (x̄).

Proof. Towards a contradiction, assume that, for every K ⊆ I
with dom(K) = adom(K), |adom(K)| ≤ n, and |facts(K)| ≤ 1, there

exists J ∈ O such that J |= ∃x̄ ΦIK ,m (x̄). We proceed to show that in



this case O is linearly (n,m)-locally embeddable in I , which in turn

implies that I ∈ O since, by hypothesis, O is linearly (n,m)-local.

But this contradicts the fact that I ̸ |= Σ (and thus, I < O).
Consider an arbitrary S-instance K ⊆ I with |adom(K)| ≤ n and

|facts(K)| ≤ 1, and assume that J ∈ O is the instance such that

J |= ∃x̄ ΦIK ,m (x̄). We first observe that J |= ∃x̄ ΦIK ,m (x̄) implies

the existence of an instance JK ⊆ J such that K ≃ JK . We can

therefore assume, w.l.o.g., that K ⊆ J . To show that O is linearly

(n,m)-locally embeddable in I , it suffices to show that for every

S-instance J ′ in them-neighbourhood of K in J , there exists a func-
tion h : adom(J ′) → adom(I ), which is the identity on adom(K),
such that h(facts(J ′)) ⊆ facts(I ). This is because, for every K ′ ⊆ I
with facts(K ′) = facts(K) and K ′ ⊆ J , the m-neighbourhood of

K in J coincides with them-neighbourhood of K ′
in J . By contra-

diction, assume that there is J ′ in the m-neighbourhood of K in

J for which there is no function h : adom(J ′) → adom(I ) that is
the identity on adom(K) with h(facts(J ′)) ⊆ facts(I ). Let L be the

S-instance defined as the difference between J ′ and K , i.e., L is such

that facts(L) = facts(J ′) \ facts(K), while dom(L) consists of all the
constants occurring in facts(J ′) \ facts(K), i.e., dom(L) = adom(L).
Clearly, there is no function h : adom(L) → adom(I ) that is
the identity on adom(K) such that h(facts(L)) ⊆ I . Observe that
|adom(L) \ adom(K)| ≤ m; we assume that adom(L) \ adom(K) =
{d1, . . . ,dm′} form′ ≤ m. Let γ (ȳ) be the formula obtained from∧
α ∈facts(L) α after renaming each constant di to the variable ⋆i ;

clearly, ȳ = ⋆1, . . . ,⋆m′ . Since there is no function h : adom(L) →
adom(I ) that is the identity on adom(K) such that h(facts(L)) ⊆ I ,
we can conclude that I ̸ |= ∃ȳ γ (ȳ). Observe now that, by construc-

tion,¬∃ȳ γ (ȳ) is a conjunct of∆IK ,m . The formula¬∃z̄ γ (z̄) obtained

from ¬∃ȳ γ (ȳ) after renaming each constant c ∈ adom(K) to the

variable xc is a conjunct of Φ
I
K ,m (x̄). Since L ⊆ J , we conclude that

J |= ∃z̄ γ (z̄), which in turn implies that J ̸ |= ∃x̄ ΦIK ,m (x̄). But this

contradicts the fact that J |= ∃x̄ ΦIK ,m (x̄), and the claim follows.

Recall that En,m is the set that collects all the edds over S of

the form ∀x̄(ϕ(x̄) →
∨k
i=1

ψi (x̄i )) such that x̄ consists of at most n
distinct variables, and, for each i ∈ [k],ψi (x̄i ) mentions at mostm
existentially quantified variables. Let K be the S-instance provided
by Claim C.1. From Claim 4.6, we know that¬ΦIK ,m (x̄) is equivalent

to an edd δ ∈ En,m of the form

∀x̄

(
ϕ(x̄) →

k∨
i
ψi (x̄i )

)
.

Since |facts(K)| ≤ 1, we further know that ϕ(x̄) consists of a single
atom. Observe that I |= ∃x̄ ΦIK ,m (x̄), and thus, I ̸ |= δ . Since I |= ΣL ,

we can conclude that ΣL ̸ |= δ . Let {i1, . . . , iℓ} be the subset of

[k] such thatψi (x̄) is a conjunction of atoms (i.e., are not equality

expressions). In other words, every ψj (x̄ j ) with j < {i1, . . . , iℓ} is
an equality expression. Moreover, let δi denote the linear tgd

∀x̄ (ϕ(x̄) → ψi (x̄i )) .

Since ΣL ̸ |= δ , we get that δi < ΣL , for each i ∈ {i1, . . . , iℓ}. This
implies that, for each i ∈ {i1, . . . , iℓ}, Σ ̸ |= δi . Let Iδ be the finite

instance such that dom(Iδ ) = adom(Iδ ) and facts(Iδ ) is obtained
by “freezing” ϕ(x̄), i.e., by replacing each variable in x̄ with a dis-

tinct constant. We also write chase(Dδ , Σ) for the possibly infinite

instance obtained by chasing facts(Iδ ) using the tgds of Σ; we as-
sume the reader is familiar with the chase procedure. By exploiting

the fact that the chase builds universal instances, i.e., chase(Iδ , Σ)
can be homomorphically mapped into every model M of Σ with

facts(Iδ ) ⊆ facts(M), we can show the following auxiliary claim:

Claim C.2. For each i ∈ {i1, . . . , iℓ}, chase(Iδ , Σ) ̸|= δi .

We can now conclude the proof. By Claim C.2, we have that

chase(Iδ , Σ) does not satisfy δi , for each i ∈ {i1, . . . , iℓ}. Further-
more, by construction, Iδ violates every equality expression in

δ . This implies that chase(Dδ , Σ) ̸|= δ . However, by construction,

chase(Iδ , Σ) |= Σ, and therefore, chase(Iδ , Σ) ∈ O . But this contra-
dicts Claim C.1, which states that, for every J ∈ O , J |= δ .

D PROOFS FROM SECTION 7
We assume that O is over the schema S = {R1, . . . ,Rℓ}. Since O
is a TGDn,m-ontology, there exists a set Σ ∈ TGDn,m over S such
that, for every S-instance I , I ∈ O iff I |= Σ. We proceed to show

the directions (1) ⇒ (3) and (3) ⇒ (2); (2) ⇒ (1) holds trivially.

Direction (1) ⇒ (3)

Consider an S-instance I . We need to show the following: if O is

guardedly (n,m)-locally embeddable in I , then I ∈ O (or, equiva-

lently, I |= Σ), which in turn implies that O is guardedly (n,m)-

local, as needed. Consider a tgd σ ∈ Σ of the form ϕ(x̄, ȳ) →

∃z̄ψ (x̄, z̄) such that there is a function h : x̄ ∪ ȳ → dom(I ) with
h(ϕ(x̄, ȳ)) ⊆ facts(I ). We need to show that there exists an exten-

sion h′ of h such that h′(ψ (x̄, z̄)) ⊆ facts(I ). Observe that at most

n distinct variables occur in x̄ ∪ ȳ, which implies that each fact

α ∈ h(ϕ(x̄, ȳ)) contains at most n distinct constants from adom(I ).
Assume that h(ϕ(x̄, ȳ)) contains d ≥ 0 distinct facts {α1, . . . ,αd },
then there exist S-instances K1, . . . ,Kd such that, for each i ∈ [d],

Ki is guarded, Ki ⪯ I , and h(ϕ(x̄, ȳ)) ⊆
⋃k
i=1

facts(Ki ). Since, by
hypothesis, O is guardedly (n,m)-locally embeddable in I , for each
i ∈ [d], there exists Ji ∈ O such that Ki ⊆ Ji and, for each

J ′ in the m-neighbourhood of Ki in Ji , there exists a function

f : adom(J ′) → adom(I ), which is the identity on adom(Ki ), such
that f (facts(J ′)) ⊆ facts(I ). Since h(ϕ(x̄, ȳ)) consists of finitely

many atoms, and O is closed under isomorphisms, we can assume

that dom(Ji ) ∩ dom(Jj ) = dom(Ki ) ∩ dom(Kj ), for each i, j ∈ [d].
In other words, we can assume that, for each pair i, j ∈ [d], the
constants of dom(Ji ) not occurring in Ki do not occur in dom(Jj )
either. Let J be an S-instance such that

facts(J ) =
d⋃
i=1

facts(Ji ).

We now prove an auxiliary claim:

Claim D.1. It holds that J ∈ O .

Proof. Since, by hypothesis,O is aGTGD-ontology, there exists
ΣG ∈ GTGD such that I ∈ O iff I |= ΣG . Let δ ∈ ΣG , and γ be the

guard of body(δ ). Consider a function λ such that λ(body(δ )) ⊆

facts(J ). We will prove that J |= δ , in turn proving J ∈ O . Since
λ(γ ) ∈ J , there exists i ∈ [d] such that λ(γ ) ∈ Ji . We proceed to show

that λ(body(δ )) ⊆ facts(Ji ). In turn, this will prove that J |= δ , since
Ji ∈ O and then Ji |= δ , which, in turn, implies that there exists

an extension λ′ ⊇ λ such that λ′(head(δ )) ⊆ facts(Ji ) ⊆ facts(J ).



Assume that the constants occurring in λ(γ ) are the set G ∪ F such

thatG ⊆ adom(Ki ), and F ⊆ adom(Ji ) \ adom(Ki ). In other words,

G collects all the constants in λ(γ ) that occur in adom(Ki ), and F
collects all the constants in λ(γ ) that occur in adom(Ji ) but not
in adom(Ki ). By construction, no constant of F occurs in Jj with
i , j, and hence, every atom in λ(body(δ )) that mention constants

form F occurs in Ji by definition. Consider an atom α ∈ λ(body(δ ))
that only mentions constants from G. In turn, this means that α
only mentions constants occurring in the guard atom of Ki , and
therefore α ∈ Ki ⊆ Ji . Since atoms occurring in λ(body(δ )) only
mentions constants from G ∪ F , these observations imply that

λ(body(δ )) ⊆ facts(Ji ).

From the definition of J , we get that h(ϕ(x̄, ȳ)) ⊆ J . Since
J |= σ , there exists an extension д of h such that д(ψ (x̄, z̄)) ⊆ J .
Let L = (dom(L),RL

1
, . . . ,RL

ℓ
) with dom(L) = dom(д(ϕ(x̄, ȳ))) ∪

dom(д(ψ (x̄, z̄))), and for i ∈ [ℓ], RLi = R Ji |dom(L). Since, σ men-

tions at most m existentially quantified variables, we have that

д(ψ (x̄, z̄))mentions at mostm constants not occurring in h(ϕ(x̄, ȳ)).
This implies that adom(L) contains at most m constants not oc-

curring in h(ϕ(x̄, ȳ)). We now define an extension h′ of h such

that h′(ψ (x̄, z̄)) ⊆ facts(I ), as needed. To this end, for each i ∈

[d], let Li be the S-instance such that dom(Li ) = adom(Li ) and
facts(Li ) = facts(L) ∩ facts(Ji ). Clearly, adom(Li ) contains at most

m constants not occurring in adom(Ki ), which in turn implies that

Li is in them-neighbourhood of Ki in JI . Thus, there is a function
fi : adom(Li ) → adom(I ), which is the identity on adom(Ki ), such
that fi (facts(Li )) ⊆ facts(I ). Let f be the binary relation

{(c, c) | c occurs in h(ϕ(x̄, ȳ))} ∪ {(c, fi (c)) | c ∈ adom(Li )}.

It is not difficult to show that f is a total function from adom(L)
to adom(I ) such that f (facts(L)) ⊆ facts(I ). To conclude our proof,

consider the mapping h′ = f ◦ д. For each variable x ∈ x̄ , h′(x)
is equal to f (д(x)) = д(x) = h(x), and hence, h′ is an extension of

h. Moreover, for each atom α occurring inψ (x̄, z̄), д(α) ∈ facts(L),
and therefore, h′(α) ∈ facts(I ). Consequently, h′ is an extension of

h such that h′(ψ (x̄, z̄)) ⊆ facts(I ), and the claim follows.

Direction (3) ⇒ (2)

We start by defining the set of guarded tgds

ΣG = {σ ∈ GTGDn,m | Σ |= σ }.

Our goal is to establish that Σ ≡ ΣG , which implies that O is

an GTGDn,m-ontology. The fact that Σ |= ΣG holds trivially. We

proceed to show the non-trivial direction. Consider an S-instance I
such that I ̸ |= Σ, and assume, by contradiction, that I |= ΣG . Since
O is domain independent, we can assume that dom(I ) = adom(I ).
Recall that ΦIK ,m (x̄), for an S-instance K ⊆ I , is obtained from the

m-diagram ofK relative to I by renaming each constant c ∈ dom(K)
to a new variable xc . We show the following auxiliary claim.

ClaimD.2. There is a guarded S-instanceK ⪯ I with |adom(K)| ≤
n such that, for each J ∈ O , it holds that J |= ¬∃x̄ ΦIK ,m (x̄).

Proof. Towards a contradiction, assume that, for every guarded

instance K ⪯ I with |adom(K)| ≤ n, there exists J ∈ O such

that J |= ∃x̄ ΦIK ,m (x̄).We proceed to show that in this case O is

guardedly (n,m)-locally embeddable in I , which in turn implies

that I ∈ O since, by hypothesis,O is guardedly (n,m)-local. But this

contradicts the fact that I ̸ |= Σ (and thus, I < O).
Consider an arbitrary guarded S-instance K ⪯ I with

|adom(K)| ≤ n and assume that J ∈ O is the instance such that

J |= ∃x̄ ΦIK ,m (x̄). We first observe that J |= ∃x̄ ΦIK ,m (x̄) implies

the existence of an instance JK ⊆ J such that K ≃ JK . We can

therefore assume, w.l.o.g., that K ⊆ J . To show that O is guardedly

(n,m)-locally embeddable in I , it suffices to show that for every

S-instance J ′ in them-neighbourhood of K in J , there exists a func-
tion h : adom(J ′) → adom(I ), which is the identity on adom(K),
such that h(facts(J ′)) ⊆ facts(I ). By contradiction, assume that

there is J ′ in them-neighbourhood of K in J for which there is no

function h : adom(J ′) → adom(I ) that is the identity on adom(K)
with h(facts(J ′)) ⊆ facts(I ). Let L be the S-instance defined as the

difference between J ′ andK , i.e., L is such that facts(L) = facts(J ′)\
facts(K), while dom(L) consists of all the constants occurring in

facts(J ′) \ facts(K), i.e., dom(L) = adom(L). Clearly, there is no

function h : adom(L) → adom(I ) that is the identity on adom(K)
such that h(facts(L)) ⊆ I . Observe that |adom(L) \ adom(K)| ≤ m;

we assume that adom(L) \ adom(K) = {d1, . . . ,dm′} form′ ≤ m.

Let γ (ȳ) be the formula obtained from

∧
α ∈facts(L) α after renam-

ing each constant di to the variable ⋆i ; clearly, ȳ = ⋆1, . . . ,⋆m′ .

Since there is no function h : adom(L) → adom(I ) that is the
identity on adom(K) such that h(facts(L)) ⊆ I , we can conclude

that I ̸ |= ∃ȳ γ (ȳ). Observe now that, by construction, ¬∃ȳ γ (ȳ) is a
conjunct of ∆IK ,m . The formula ¬∃z̄ γ (z̄) obtained from ¬∃ȳ γ (ȳ)

after renaming each constant c ∈ adom(K) to the variable xc is a
conjunct of ΦIK ,m (x̄). Since L ⊆ J , we conclude that J |= ∃z̄ γ (z̄),

which in turn implies that J ̸ |= ∃x̄ ΦIK ,m (x̄). But this contradicts

the fact that J |= ∃x̄ ΦIK ,m (x̄), and the claim follows.

Recall that En,m is the set that collects all the edds over S of

the form ∀x̄(ϕ(x̄) →
∨k
i=1

ψi (x̄i )) such that x̄ consists of at most n
distinct variables, and, for each i ∈ [k],ψi (x̄i ) mentions at mostm
existentially quantified variables. Let K be the S-instance provided
by ClaimD.2. FromClaim 4.6, we know that¬ΦIK ,m (x̄) is equivalent

to an edd δ ∈ En,m of the form

∀x̄

(
ϕ(x̄) →

k∨
i
ψi (x̄i )

)
.

Since K is guarded, we further know that ϕ(x̄) is guarded as well.

Observe that I |= ∃x̄ ΦIK ,m (x̄), and thus, I ̸ |= δ . Since I |= ΣG ,

we can conclude that ΣG ̸ |= δ . Let {i1, . . . , iℓ} be the subset of

[k] such thatψi (x̄) is a conjunction of atoms (i.e., are not equality

expressions). In other words, every ψj (x̄ j ) with j < {i1, . . . , iℓ} is
an equality expression. Moreover, let δi denote the guarded tgd

∀x̄ (ϕ(x̄) → ψi (x̄i )) .

Since ΣG ̸ |= δ , we get that δi < ΣG , for each i ∈ {i1, . . . , iℓ}. This
implies that, for each i ∈ {i1, . . . , iℓ}, Σ ̸ |= δi . Let Iδ be the finite

instance such that dom(Iδ ) = adom(Iδ ) and facts(Iδ ) is obtained
by “freezing” ϕ(x̄), i.e., by replacing each variable in x̄ with a dis-

tinct constant. We also write chase(Dδ , Σ) for the possibly infinite

instance obtained by chasing facts(Iδ ) using the tgds of Σ; we as-
sume the reader is familiar with the chase procedure. By exploiting

the fact that the chase builds universal instances, i.e., chase(Iδ , Σ)



can be homomorphically mapped into every model M of Σ with

facts(Iδ ) ⊆ facts(M), we can show the following auxiliary claim:

Claim D.3. For each i ∈ {i1, . . . , iℓ}, chase(Iδ , Σ) ̸|= δi .

We can now conclude the proof. By Claim D.3, we have that

chase(Iδ , Σ) does not satisfy δi , for each i ∈ {i1, . . . , iℓ}. Further-
more, Iδ violates every equality expression in δ since, by construc-

tion, each variables in body(δ ) is replaced with a distinct constant.

This implies that chase(Dδ , Σ) ̸|= δ . However, by construction,

chase(Iδ , Σ) |= Σ, and therefore, chase(Iδ , Σ) ∈ O . But this contra-
dicts Claim D.2, which states that, for every J ∈ O , J |= δ .

E PROOFS FROM SECTION 8
E.1 Proof of Lemma 8.3
Direction (1) ⇒ (2)

Consider an FGTGDn,m -ontologyO over a schema S. By definition,
there exists a set Σ ∈ FGTGDn,m such that, for every S-instance
I , I ∈ O iff I |= Σ. Consider an S-instance I , and assume that O is

fr-guardedly (n,m)-locally embeddable in I . We proceed to show

that I ∈ O , or, equivalently, I |= Σ. Consider a tgd σ ∈ Σ of the

form ϕ(x̄, ȳ) → ∃z̄ψ (x̄, z̄), where ϕ(x̄, ȳ) contains an atom R(w̄)

with x̄ ⊆ w̄ , i.e., R(w̄) is considered as the frontier-guard of σ . As-
sume that there exists a function h : x̄ ∪ ȳ → dom(I ) such that

h(ϕ(x̄, ȳ)) ⊆ facts(I ). We show that there exists an extension λ of
h such that λ(ψ (x̄, z̄)) ⊆ facts(I ). Let K = (dom(K),RK

1
, . . . ,RK

ℓ
)

where dom(K) is the set of constants occurring in h(ϕ(x̄, ȳ)), and,
for each i ∈ [ℓ], RKi = RIi |K , and let F be the set of constants occur-

ring in h(x̄). Since h(R(w̄)) ∈ K , it is clear that K is an F -guarded
subinstance of I . Moreover, |adom(K)| ≤ n since ϕ(x̄, ȳ) mentions

at most n distinct variables. Since, by hypothesis, O is fr-guardedly

(n,m)-locally embeddable in I , we conclude that there exists JK ∈ O
such that K ⊆ JK , and, for every J ′ in the m-neighbourhood of

F in JK , there is a function µ J ′ : adom(J ′) → adom(I ), which is

the identity on F , such that µ J ′(facts(J ′)) ⊆ facts(I ). It is clear that
h(ϕ(x̄, ȳ)) ⊆ facts(JK ). Since JK ∈ O , or, equivalently, JK |= Σ,
there exists an extension д of h such that д(ψ (x̄, z̄)) ⊆ facts(JK ). Let
L = (dom(L),RL

1
, . . . ,RL

ℓ
) where dom(L) are the constants occur-

ring in д(ψ (x̄, z̄)), and, for each i ∈ [ℓ], RLi = R JKi |dom(L). It is clear

that L is in them-neighbourhood of F in JK since z̄ has at mostm
variables. Therefore, there is a function µL : adom(L) → adom(I ),
which is the identity on F , such that µL(facts(L)) ⊆ facts(I ). Con-
sider the function λ : x̄ ∪ ȳ ∪ z̄ → adom(I ) defined as follows:

λ(v) = h(v), for each v ∈ x̄ ∪ ȳ, λ(z) = µL(д(z)), otherwise. Clearly,
λ is an extension of h. Moreover, observe that д is an extension of

h, and µL is the identity over F = h(x̄). Therefore, we have that
λ(ψ (x̄, ȳ)) = µL(д(ψ (x̄, ȳ))). Since д(ψ (x̄, z̄)) ⊆ facts(L), we get that
λ(ψ (x̄, z̄)) ⊆ facts(I ), which in turn implies that I |= σ .

Direction (2) ⇒ (1)

We assume that O is over the schema S = {R1, . . . ,Rℓ}. Since O
is a TGDn,m-ontology, there is Σ ∈ TGDn,m over S such that, for

every S-instance I , I ∈ O iff I |= Σ. We define the set of tgds

ΣF = {σ ∈ FGTGDn,m | Σ |= σ }.

Our goal is to establish that Σ ≡ ΣF , which implies that O is an

FGTGDn,m-ontology. The fact that Σ |= ΣF holds trivially. We

proceed to show the non-trivial direction. Consider an S-instance I
such that I ̸ |= Σ, and assume, by contradiction, that I |= ΣF . Since
O is domain independent, we can assume that dom(I ) = adom(I ).
Assume now a finite F ⊆ dom(I ), an F -guarded subinstance K ⪯ I ,

and let KF = (dom(L),RKF
1
, . . . ,RKF

ℓ
) where dom(KF ) = F , and,

for each i ∈ [ℓ], RKF
i = RKi |F . We define the formula ∆IK ,m,F as∧

α ∈K
α ∧

∧
c ,d ∈dom(K ),

c,d

¬(c = d) ∧ ∆IKF ,m

where ∆IKF ,m
is the m-diagram of KF relative to I . Intuitively,

∆IK ,m,F is obtained from them-diagram of K relative to I (∆IK ,m )

by removing all the conjuncts ¬∃ȳγ (ȳ) that mention constants out-

side F . Finally, we build the formula ΦIK ,m,F (x̄) from ∆IK ,m,F by

replacing each constant element c ∈ dom(K) with a new variable

xc ∈ V \ {⋆1, . . . ,⋆ℓ}. We proceed to show the following claim.

Claim E.1. There exists a finite F ⊆ dom(I ) and an F -guarded
subinstance K ⪯ I with |adom(K)| ≤ n such that, for each J ∈ O , it
holds that J |= ¬∃x̄ ΦIK ,m,F (x̄).

Proof. Towards a contradiction, assume that, for every finite

F ⊆ dom(I ) and F -guarded subinstance K ⪯ I with |adom(K)| ≤ n,
there exists J ∈ O such that J |= ∃x̄ ΦIK ,m,F (x̄). We proceed to

show that in this case O is fr-guardedly (n,m)-locally embeddable

in I , which in turn implies that I ∈ O since, by hypothesis, O is

guardedly (n,m)-local. But this contradicts the fact that I ̸ |= Σ (and

thus, I < O). Consider an arbitrary finite F ⊆ dom(I ) and F -guarded
subinstance K ⪯ I with |adom(K)| ≤ n and assume that J ∈ O is

the instance such that J |= ∃x̄ ΦIK ,m,F (x̄). We first observe that

J |= ∃x̄ ΦIK ,m,F (x̄) implies the existence of an instance JK ⊆ J such

that K ≃ JK . We can therefore assume, w.l.o.g., that K ⊆ J . To show
that O is fr-guardedly (n,m)-locally embeddable in I , it suffices to

show that for every S-instance J ′ in the m-neighbourhood of F
in J , there exists a function h : adom(J ′) → adom(I ), which is

the identity on F , such that h(facts(J ′)) ⊆ facts(I ). By contradic-

tion, assume that there is J ′ in them-neighbourhood of F in J for
which there is no function h : adom(J ′) → adom(I ) that is the
identity on F with h(facts(J ′)) ⊆ facts(I ). Let L be the S-instance
defined as the difference between J ′ and K , i.e., L is such that

facts(L) = facts(J ′) \ facts(K), while dom(L) consists of all the con-
stants occurring in facts(J ′) \ facts(K), i.e., dom(L) = adom(L).
Clearly, there is no function h : adom(L) → adom(I ) that is
the identity on adom(K) such that h(facts(L)) ⊆ I . Observe that
|adom(L) \ F | ≤ m; we assume that adom(L) \ F = {d1, . . . ,dm′}

form′ ≤ m. Let γ (ȳ) be the formula obtained from

∧
α ∈facts(L) α

after renaming each constant di to the variable ⋆i ; clearly, ȳ =
⋆1, . . . ,⋆m′ . Since there is no function h : adom(L) → adom(I )
that is the identity on F such that h(facts(L)) ⊆ I , we can conclude

that I ̸ |= ∃ȳ γ (ȳ). Observe now that, by construction, ¬∃ȳ γ (ȳ) is a
conjunct of ∆IK ,m,F . The formula ¬∃z̄ γ (z̄) obtained from ¬∃ȳ γ (ȳ)

after renaming each constant c ∈ F to the variable xc is a conjunct

of ΦIK ,m,F (x̄). Since L ⊆ J , we conclude that J |= ∃z̄ γ (z̄), which in

turn implies that J ̸ |= ∃x̄ ΦIK ,m,F (x̄). But this contradicts the fact

that J |= ∃x̄ ΦIK ,m,F (x̄), and the claim follows.



Recall that En,m is the set that collects all the edds over S of

the form ∀x̄(ϕ(x̄) →
∨k
i=1

ψi (x̄i )) such that x̄ consists of at most

n distinct variables, and, for each i ∈ [k],ψi (x̄i ) mentions at most

m existentially quantified variables. Let K be the S-instance pro-
vided by Claim E.1. From Claim 4.6, we know that ¬ΦIK ,m,F (x̄) is

equivalent to an edd δ ∈ En,m of the form

∀x̄

(
ϕ(x̄) →

k∨
i
ψi (x̄i )

)
.

Let {i1, . . . , iℓ} be the subset of [k] such thatψi (x̄) is a conjunction
of atoms (i.e., are not equality expressions). In other words, every

ψj (x̄ j ) with j < {i1, . . . , iℓ} is an equality expression. Since K is

F -guarded, we further know that there exists an atom γ (w̄) in ϕ(x̄)
such that, for each i ∈ {i1, . . . , iℓ}, w̄ contains all the variables

occurring in x̄i . Observe that I |= ∃x̄ ΦIK ,mF
(x̄), and thus, I ̸ |= δ .

Since I |= ΣF , we can conclude that ΣF ̸ |= δ . Moreover, for each

i ∈ {i1, . . . , iℓ}, let δi denote the frontier-guarded tgd

∀x̄ (ϕ(x̄) → ψi (x̄i )) .

Since ΣF ̸ |= δ , we get that δi < ΣF , for each i ∈ {i1, . . . , iℓ}. This
implies that, for each i ∈ {i1, . . . , iℓ}, Σ ̸ |= δi . Let Iδ be the finite

instance such that dom(Iδ ) = adom(Iδ ) and facts(Iδ ) is obtained
by “freezing” ϕ(x̄), i.e., by replacing each variable in x̄ with a dis-

tinct constant. We also write chase(Dδ , Σ) for the possibly infinite

instance obtained by chasing facts(Iδ ) using the tgds of Σ; we as-
sume the reader is familiar with the chase procedure. By exploiting

the fact that the chase builds universal instances, i.e., chase(Iδ , Σ)
can be homomorphically mapped into every model M of Σ with

facts(Iδ ) ⊆ facts(M), we can show the following auxiliary claim:

Claim E.2. For each i ∈ {i1, . . . , iℓ}, chase(Iδ , Σ) ̸|= δi .

We can now conclude the proof. By Claim E.2, we have that

chase(Iδ , Σ) does not satisfy δi , for each i ∈ {i1, . . . , iℓ}. Further-
more, Iδ violates every equality expression in δ since, by construc-

tion, each variables in body(δ ) is replaced with a distinct constant.

This implies that chase(Dδ , Σ) ̸|= δ . However, by construction,

chase(Iδ , Σ) |= Σ, and therefore, chase(Iδ , Σ) ∈ O . But this contra-
dicts Claim E.1, which states that, for every J ∈ O , J |= δ .

F PROOFS FROM SECTION 9
Proof of Theorem 9.1 – Lower Bounds of Item (1)
We provide a reduction from the problem of atomic query answer-

ing under guarded tgds, which is 2ExpTime-hard in general, and

ExpTime-hard for predicates of bounded arity [5]. In particular,

given a set Σ ∈ GTGD over a schema S, and an atomic query of the

form ∃x̄ Q(x̄), where Q ∈ S, we are going to devise in polynomial

time a set Σ′ ∈ GTGD such that the following are equivalent:

(1) Σ |= ∃x̄ Q(x̄).
(2) There exists a set ΣL ∈ LTGD such that Σ′ ≡ ΣL .

The Construction of Σ′

The set Σ′ is the union of two sets Σ′
1
and Σ′

2
defined as follows. The

set Σ′
1
contains, for each tgd σ ∈ Σ of the form G(x̄, ȳ),ϕ(x̄, ȳ) →

∃z̄ψ (x̄, z̄), with G(x̄, ȳ) being the guard atom, the tgd

σAux = G(x̄, ȳ),Aux → ∃z̄ψ (x̄, z̄),

where Aux is an auxiliary 0-ary predicate not occurring in S. The
set Σ′

2
consists of the tgds

σQ = Q(x̄) → Aux

σRAux = R(x),Aux → T (x)

σRS = R(x), S(x) → T (x),

where R, S,T are “fresh” unary predicates not occurring in S. It
is clear that Σ′ is a set of guarded tgds that can be constructed in

polynomial time. Notice also that the new predicates are of bounded

arity, which means that if S consists of predicates of bounded arity,

then the same holds for the schema S ∪ {Aux,R, S,T }.

Correctness of the Reduction
We proceed to show that the above construction is indeed a reduc-

tion, i.e., we need to show that the statements (1) and (2) above are

equivalent. We start with the direction (1) ⇒ (2).

(1) ⇒ (2). Consider the set ΣL ∈ LTGD that consists of σQ and

the following tgds: for each σAux ∈ Σ′
1
of the form G(x̄, ȳ),Aux →

∃z̄ψ (x̄, z̄), we have the linear tgd

G(x̄, ȳ) → ∃z̄ψ (x̄, z̄)

and we also have the linear tgd

R(x) → T (x).

We claim that Σ′ ≡ ΣL .

(Σ′ |= ΣL) Consider an instance I such that I |= Σ′, and assume that

there exists a tgd σ ∈ ΣL of the form α(x̄) → ∃x̄ ψ (x̄, z̄) and
a function h : x̄ → dom(I ) such that h(α(x̄)) ∈ facts(I ). We

need to show that there exists an extension h′ of h such that

h(ψ (x̄, z̄)) ⊆ facts(I ). By hypothesis, Σ |= ∃x̄ Q(x̄). Observe
also that I |= Σ, and thus, I |= ∃x̄ Q(x̄). Thus, due to σQ ∈

Σ′, we have that Aux ∈ facts(I ). If α(x̄) = Q(x̄) or α(x̄) =
R(x̄), then the desired extension h′ of h exists. Assume now

that α(x̄) is the body of some tgd of the form G(x̄, ȳ) →

∃z̄ψ (x̄, z̄), i.e., a linear tgd obtained from some σAux of the
form G(x̄, ȳ),Aux → ∃z̄ψ (x̄, z̄) by dropping the relation

Aux. Since Aux ∈ facts(I ), h(body(σAux)) ⊆ facts(I ), and
thus, the desired extension h′ of h exists.

(ΣL |= Σ′) Consider now an instance I such that I |= ΣL , and as-

sume that there exists a tgd σ ∈ Σ′ of the form ϕ(x̄, ȳ) →
∃z̄ψ (x̄, z̄), and a function h : x̄ ∪ ȳ → dom(I ) such that

h(ϕ(x̄, ȳ)) ⊆ facts(I ). We need to show that there exists an

extension h′ of h such that h′(ψ (x̄, z̄)) ⊆ facts(I ). Assume

first that σ ∈ Σ′
1
. This implies that there exists in ΣL a tgd

of the formG(x̄, ȳ),Aux → ∃z̄ψ (x̄, z̄) withG(x̄, ȳ) being the
guard atom of σ . Clearly, h(G(x̄, ȳ)) ∈ facts(I ), and the de-

sired extension h′ of h exists. Assume now that σ ∈ Σ′
2
. If

σ = σQ , then the existence of h′ hold trivially since σQ ∈ Σ′.
If σ is either σRAux or σRS , then h(R(x)) ∈ facts(I ), and thus,
h(T (x)) ∈ facts(I ), due to the tgd R(x) → T (x) in ΣL .

This completes the proof of (1) ⇒ (2).

(2) ⇒ (1). Assume that Σ ̸ |= ∃x̄ Q(x̄), and let I be a model of Σ such

that I ̸ |= ∃x̄ Q(x̄). We proceed to show that Σ is not closed under

union, which in turn implies that Σ is not equivalent to a set of

linear tgds. To this end, we define two instances J and J ′ as follows:

- dom(J ) = adom(J ) and facts(J ) = facts(I ) ∪ {R(c)}, and



- dom(J ′) = adom(J ′) and facts(J ′) = facts(I ) ∪ {S(c)},

where c < adom(I ). It is easy to verify that J |= Σ and J ′ |= Σ. Now,
observe that the instance J∪J ′, which has domain dom(J )∪dom(J ′)
and facts facts(J )∪facts(J ′), is not a model of Σ. This in turn implies

that Σ is not closed under union, and the claim follows.

Proof of Theorem 9.2 – Lower Bound of Item (1)
Weprovide a reduction from the problem of atomic query answering

under frontier-guarded tgds, which is 2ExpTime-hard, even in the

case of bounded arity predicates [3]. In particular, given a set Σ ∈

FGTGD over a schema S, and an atomic query of the form ∃x̄ Q(x̄),
where Q ∈ S, we are going to devise in polynomial time a set

Σ′ ∈ FGTGD such that the following are equivalent:

(1) Σ |= ∃x̄ Q(x̄).
(2) There exists a set ΣG ∈ GTGD such that Σ′ ≡ ΣG .

The Construction of Σ′

The construction of Σ′ is similar in spirit to the one employed

in the proof of the lower bounds of item (1) in Theorem 9.1. The

set Σ′ is the union of two sets Σ′
1
and Σ′

2
defined as follows. The

set Σ′
1
contains, for each tgd σ ∈ Σ of the form G(x̄, ȳ),ϕ(x̄, ȳ) →

∃z̄ψ (x̄, z̄), with G(x̄, ȳ) being the frontier-guard atom, the tgd

σAux = G(x̄, ȳ),Aux → ∃z̄ψ (x̄, z̄),

where Aux is an auxiliary 0-ary predicate not occurring in S. The
set Σ′

2
consists of the tgds

σQ = Q(x̄) → Aux

σRAux = R(x),Aux → T (x)

σRS = R(x), S(y) → T (x),

where R, S,T are “fresh” unary predicates not occurring in S. It
is clear that Σ′ is a set of frontier-guarded tgds that can be con-

structed in polynomial time. Notice also that the new predicates

are of bounded arity, which means that if S consists of predicates of
bounded arity, then the same holds for the schema S∪{Aux,R, S,T }.

Correctness of the Reduction
We proceed to show that the above construction is indeed a reduc-

tion, i.e., we need to show that the statements (1) and (2) above are

equivalent. In fact, the direction (1) ⇒ (2) can be shown using an

argument similar to the one given in the proof of Theorem 9.1 for

showing an analogous claim.

Let us now argue about the direction (2) ⇒ (1). Assume that

Σ ̸ |= ∃x̄ Q(x̄), and let I be a model of Σ such that I ̸ |= ∃x̄ Q(x̄). We

proceed to show that Σ is not closed under disjoint union, which

in turn allows us to conclude that Σ is not equivalent to a set of

guarded tgds. Recall that Σ is closed under disjoint union if, for each

pair of models K and K ′
of Σ such thatX = dom(K)∩dom(K ′) , ∅

implies K |X = K ′
|X , we have that K ∪ K ′

is a model of Σ. To this

end, we consider the instances J and J ′ such that:

- dom(J ) = adom(J ) and facts(J ) = facts(I ) ∪ {R(c)}, and
- dom(J ′) = adom(J ′) and facts(J ′) = facts(I ) ∪ {S(c)},

where c < adom(I ). It is easy to verify that J |= Σ and J ′ |= Σ. Let
K and K ′

be isomorphic copies of J and J ′, respectively, such that

dom(K) ∩ dom(K ′) = ∅. Observe that the instance K ∪ K ′
is not a

model of Σ. This in turn implies that Σ is not closed under disjoint

union, and the claim follows.
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