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ABSTRACT
Consistent query answering (CQA) aims to deliver meaningful an-

swers when queries are evaluated over inconsistent databases. Such

answers must be certainly true in all repairs, which are consistent

databases whose difference from the inconsistent one is somehow

minimal. Although CQA provides a clean framework for querying

inconsistent databases, it is arguably more informative to compute

the percentage of repairs in which a candidate answer is true, in-

stead of simply saying that is true in all repairs, or is false in at

least one repair. It should not be surprising, though, that comput-

ing this percentage is computationally hard. On the other hand,

for practically relevant settings such as conjunctive queries and

primary keys, there are data-efficient randomized approximation

schemes for approximating this percentage. Our goal is to perform

a thorough experimental evaluation and comparison of those ap-

proximation schemes. Our analysis provides new insights on which

technique is indicated depending on key characteristics of the input.
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1 INTRODUCTION
A database is inconsistent if it does not conform to its specifica-

tions given in the form of constraints. There is a consensus that

inconsistency is a real-life phenomenon that arises due to many

reasons such as integration of conflicting sources. With the aim

of obtaining conceptually meaningful answers to queries posed

over inconsistent databases, Arenas, Bertossi, and Chomicki intro-

duced in the late 1990s the notion of Consistent Query Answering

(CQA) [1]. The key elements underlying CQA are (1) the notion of

repair of an inconsistent database D, that is, a consistent database
whose difference with D is somehow minimal, and (2) the notion

of query answering based on certain answers, i.e., answers that are
entailed by every repair. Here is a simple example taken from [6]:

Example 1.1. Consider the schema S consisting of a single rela-
tion Employee(id, name, dept) that comes with the constraint that

the first attribute, i.e., the id, is the key of the relation Employee.
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Consider also the database D over S consisting of the tuples:

(1, Bob,HR) (1, Bob, IT) (2,Alice, IT) (2,Tim, IT).

Observe that the above database is inconsistent w.r.t. the key con-

straint since we are uncertain about Bob’s department, and the

name of the employee with id 2. In this case, to devise a repair,

we only need to keep one of the two atoms that are in a conflict.

In this way, we obtain a ⊆-maximal subset of D that is consistent.

Consider now the Boolean query that asks whether employees 1

and 2 work in the same department. This query is true only in two

repairs, and thus, according to certain answers, is not entailed.

CQA has been extensively studied both from a theoretical point

of view (see, e.g., [17–20, 25]), and a practical point of view (see,

e.g., [11, 13, 16]). Nevertheless, the CQA approach comes with a

conceptual limitation. The notion of certain answers only says that

a candidate answer is entailed by all repairs, or is not entailed by at
least one repair. But, as it has been discussed in [6, 7], the former is

too strict, while the latter is not very useful in a practical context.

ARefinedApproach.With the aim of obtaining more informative

answers, we would like to rely on a notion that is more flexible

than certain answers that tells us how likely a candidate answer

is to be a consistent answer. This is achieved via the notion of

relative frequency, which essentially computes the percentage of

repairs that entail a candidate answer [6]. To illustrate this notion,

let us consider again Example 1.1. The relative frequency of the

empty tuple (which is the only candidate answer since the query is

Boolean) is 50% since, out of four repairs in total, only two satisfy

the query. It should not be surprising, though, that the problem of

computing the exact relative frequency of a candidate answer is

computationally very hard; in fact, it is #P-hard in data complexity,

i.e., when the query and the constraints are fixed, even if we focus

on conjunctive queries and primary key constraints [21, 22].
1
With

such a computationally hard problem in our hands, as is customary

in the literature, the way to proceed is to give up exact solutions, and

target data-efficient approximations with explicit error guarantees.

Data-efficient Approximations. For practically relevant settings,
in particular, conjunctive queries and primary keys, which is the

main concern of the present work, we can approximate the relative

frequency f of a candidate answer via a data-efficient randomized

approximation scheme, i.e., a randomized algorithm that runs in

polynomial time in the size of the input database, that computes a

number a with relative error guarantees [6, 10]. The latter means

that |a − f | ≤ ϵ · f , for a fixed ϵ > 0, or, in other words, the relative

difference between f and a is bounded by ϵ . Furthermore, since a
is the output of a randomized procedure, this should hold with a

high probability, i.e., at least 1 − δ for some small 0 < δ < 1.

1
By primary keys we mean that each relation has at most one key, which is usually

what we encounter in real-life database schemas.
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The main data-efficient randomized approximation schemes for

approximating the relative frequency of a candidate answer in the

case of conjunctive queries and primary keys rely on ideas and

techniques that have been originally proposed in the context of ap-

proximating the number of satisfying assignments of DNF Boolean

formulas [15]. In fact, a wide range of problems such as network

reliability [14], querying probabilistic databases [10], and, of course,

querying inconsistent databases [6], to name a few, can benefit from

the approximation schemes devised in the DNF context.

There are three main approaches, coming from the DNF litera-

ture, that one can exploit in order to devise a data-efficient random-

ized approximation scheme for our problem. Consider a database

D, a set of primary keys Σ, a conjunctive query Q , and a candidate

answer t̄ , i.e., a tuple of constant values from the domain of D:

▶ According to the first approach, which we call natural, a care-
fully chosen numberN of repairs ofD w.r.t. Σ are sampled uniformly

at random, and the ratio S/N , with S being the number of positive

samples, i.e., the repairs for which t̄ is an answer to Q , provides a
good approximation of the relative frequency of t̄ .

▶ The second approach, which we call KL-based, where KL

stands for Karp and Luby, the authors that proposed this approach,

is similar in spirit to the natural one with the crucial difference

that the samples are now drawn from a slightly more sophisticated

sampling space S, which is sometimes called symbolic [24]. The

goal here is to approximate the ratio r/|S|, where r is the number of

repairs ofD w.r.t. Σ for which t̄ is an answer toQ , which can be then

converted into an approximation of the relative frequency of t̄ . The
symbolic sampling space is useful in those cases where the number

of repairs entailing the candidate answer is much smaller than

the number of all repairs, i.e., the relative frequency is very small,

and thus, approximating it directly via the natural approach will

require a large numberN of samples to obtain a good approximation.

Consequently, S is designed in such a way that the ratio r/|S| is

much larger than the relative frequency in the relevant cases.

▶ The third approach relies on an approximation scheme, orig-

inally proposed in the DNF context, for a problem known as the

union of sets [15]: given the description of n ≥ 1 sets S1, . . . , Sn ,
compute |

⋃n
i=1

Si |. It turned out that computing the relative fre-

quency of t̄ can be efficiently reduced to the union of sets problem,

and thus inherit the corresponding approximation scheme.

It was generally known that techniques from the DNF literature

can be adapted to our setting. Nevertheless, this is the first work

that explicitly applies those techniques to the CQA setting.

Main Objective. While the refined approach to querying incon-

sistent databases, which exploits the more informative notion of

relative frequency, has been adopted and studied in theory, and

several data-efficient randomized approximation schemes can be

devised for the central setting of conjunctive queries and primary

keys, there is no corresponding infrastructure that can be used to

experimentally evaluate such techniques. The main objective of

this work is to take a major step in rectifying this state of affairs.

We present a benchmark (test infrastructure and test scenarios)

for randomized approximation schemes that are designed to deal

with conjunctive queries and primary keys, covering awide range of

scenarios. We have developed datasets of varying amount of incon-

sistency, and conjunctive queries of varying structural complexity

by carefully tuning key static and dynamic query parameters that

affect the performance of the approximation schemes. At this point,

let us stress that the proposed benchmark, although it has been

designed having approximation schemes in mind, it is quite generic,

and can serve as the basis for evaluating algorithms that target the

exact relative frequency, or certain answers. We then proceed to

analyze the main data-efficient randomized approximation schemes

for approximating the relative frequency of a candidate answer in

the case of conjunctive queries and primary keys on our benchmark,

with the aim of answering the following research questions:

(1) How does the performance of the approximation schemes

in question is affected by the amount of inconsistency and

the structural complexity of the conjunctive query?

(2) Can we arrive at definitive conclusions that can guide the

choice of the randomized approximation scheme to be ap-

plied depending on some key characteristics of the input?

(3) Is, in the end, approximate consistent query answering as

described above feasible in practice?

Main Outcome. Our experimental analysis revealed a striking dif-

ference between Boolean and non-Boolean conjunctive queries. In

the former case, sampling from the natural space is the indicated

approach, no matter the amount of inconsistency and the structural

complexity of the query. This is not true for non-Boolean queries,

where the approximation scheme that adopts the natural approach

is the worst performer. Instead, the KL-based approach is the indi-

cated one, no matter the amount of inconsistency and the structural

complexity of the query. Finally, we can safely claim that approx-

imate CQA in the presence of primary key constraints is feasible

in practice. We have seen that for the modest scenarios from our

benchmark, which is what we expect to face in practice, the run-

time of the best performing approximation scheme is encouraging

considering the hardness of the problem at hand.

Additional details on the approximation schemes, the implementation,
the test infrastructure, and the test scenarios are deferred to the appen-
dix. The actual implementation, as well as the actual test scenarios,
can be found at https://gitlab.com/mcalautti/cqabench.

2 PRELIMINARIES
We recall the basics on relational databases, keys, and conjunctive

queries. Given n > 0, we may write [n] for the set {1, . . . ,n}.

Relational Databases. We assume a countably infinite set C of

constants from which database elements are drawn. A (relational)
schema S is a finite set of relation symbols (or predicates) with

associated arity. We write R/n to denote that R has arity n. A fact
over S is an expression of the form R(c1, . . . , cn ), where R/n ∈ S
with n > 0, and ci ∈ C for each i ∈ [n]. A database over S is a

finite set of facts over S. The active domain of a database D, denoted
dom(D), is the set of constants occurring in D.

Key Constraints. A key constraint (or simply key) κ over a schema

S is an expression of the form key(R) = A, where R/n ∈ S and

A ⊆ [n]. Such an expression is called an R-key. Given an n-tuple
of constants t̄ = (c1, . . . , cn ), and a set A = {i1, . . . , im } ⊆ [n], for
some m ∈ [n], we write t̄[A] for the tuple (ci1 , . . . , cim ), i.e., the

projection of t̄ over the positions in A. A database D satisfies κ if,

for every two facts R(t̄),R(s̄) ∈ D, t̄[A] = s̄[A] implies t̄ = s̄ . We



say that D is consistent w.r.t. a set Σ of keys, written D |= Σ, if D
satisfies each key in Σ; otherwise, is inconsistent w.r.t. Σ. In this

work, we focus on sets of primary keys, i.e., sets of keys that, for
each predicate R of the underlying schema, have at most one R-key.
For technical clarity, we assume, w.l.o.g., that each key constraint

is of the form key(R) = {1, . . . ,m}.

Conjunctive Queries. Let V be a countably infinite set of variables
disjoint from C. An atom over a schema S is an expression of the

form R(t1, . . . , tn ), where R/n ∈ S, and ti ∈ C ∪ V for each i ∈ [n].
Notice that a fact is an atom without variables. A conjunctive query
(CQ) over S is a first-order formula of the form

Q(x̄) B ∃ȳ
(
R1(z̄1) ∧ · · · ∧ Rn (z̄n )

)
,

where each Ri (z̄i ), for i ∈ [n], is an atom over S, each variable

mentioned in the z̄i ’s appears either in x̄ or ȳ, and x̄ are the answer
variables of Q . A homomorphism from a CQ Q as the one above to

a database D is a function h from the set of variables and constants

in Q to dom(D) that is the identity over C such that Ri (h(z̄i )) ∈ D

for every i ∈ [n]. A tuple t̄ ∈ dom(D) |x̄ | is an answer to Q over D
if there exists a homomorphism h from Q to D with h(x̄) = t̄ . We

writeQ(D) for the set of answers toQ over D. By abuse of notation,
we may sometimes treat a CQ Q as the set of its atoms.

Repairs and Blocks. For an inconsistent database D w.r.t. a set

Σ of primary keys, a repair of D w.r.t. Σ is a maximal subset of D
that is consistent w.r.t. Σ, i.e., if D ′ ⊆ D is a repair, then there is no

D ′′ ⊆ D that is consistent w.r.t. Σ and D ′ ⊊ D ′′
. Let rep(D, Σ) be

the set of repairs ofD w.r.t Σ. When we focus on primary keys, there

is a convenient way to construct repairs. We first collect all the

facts of the database that are in a conflict, i.e., they have the same

predicate R and agree on key(R), into disjoint sets called blocks. A

repair can be constructed by keeping exactly one fact from each

block. Formally, for α = R(c1, . . . , cn ), the key value of α w.r.t. Σ is

keyΣ(α) =


⟨R, ⟨c1, . . . , cm⟩⟩ if key(R) = {1, . . . ,m} ∈ Σ,

⟨R, ⟨c1, . . . , cn⟩⟩ otherwise.

Then, given a database D, we define

blockΣ(α,D) = {β ∈ D | keyΣ(β) = keyΣ(α)}.

Clearly, for α, β ∈ D, if keyΣ(α) = keyΣ(β), then blockΣ(α,D) and
blockΣ(β,D) coincide. Moreover, if blockΣ(α,D) is a singleton con-

sisting of α , then α is not in a conflict. A repair can be constructed

by keeping one fact from each block. Formally, with blockΣ(D)
being the set of blocks {blockΣ(α,D) | α ∈ D},

rep(D, Σ) =
{
{α1, . . . ,αn } | ⟨α1, . . . ,αn⟩ ∈ ×B∈blockΣ(D) B

}
.

Consistent Query Answering.We proceed to define the consis-

tent answer to a CQ over a database that may be inconsistent w.r.t. a

set of primary keys. This is based on the notion of relative frequency

of a tuple. Consider a database D, a set Σ of primary keys, and a

CQ Q(x̄). The relative frequency of a tuple t̄ ∈ dom(D) |x̄ | w.r.t. D,
Σ and Q measures how often the tuple t̄ is an answer to Q if we

evaluate Q over all the repairs of D w.r.t. Σ. Formally, the relative

frequency of t̄ w.r.t. D, Σ and Q is the ratio

RD ,Σ,Q (t̄) =
|{D ′ ∈ rep(D, Σ) | t̄ ∈ Q(D ′)}|

|rep(D, Σ)|
.

Input: A database D, a set Σ of primary keys, a CQ Q(x̄),
ϵ > 0, and 0 < δ < 1

Output: A set of tuple-number pairs

ans := ∅

foreach t̄ ∈ dom(D) |x̄ | such that RD ,Σ,Q (t̄) > 0 do
p := ApxRelativeFreq(D, Σ,Q, t̄, ϵ, δ )
ans := ans ∪ {(t̄,p)}

return ans
Algorithm 1: ApxCQA[ApxRelativeFreq]

The numerator is simply the number of repairs D ′ ∈ rep(D, Σ) such
that t̄ is an answer to Q over D ′

, while the denominator is the

total number of repairs of D w.r.t. Σ. The answer to Q over D in the
presence of Σ, denoted ansD ,Σ(Q), is defined as the set{

(t̄,RD ,Σ,Q (t̄)) | t̄ ∈ dom(D) |x̄ | and RD ,Σ,Q (t̄) > 0

}
.

The main problem of concern in this context follows:

PROBLEM : CQA
INPUT : A database D, a set Σ of primary keys,

and a CQ Q(x̄).
OUTPUT : The set ansD ,Σ(Q).

Computing the set ansD ,Σ(Q) boils down to iterating over each

tuple t̄ ∈ dom(D) |x̄ | , and computing its relative frequency w.r.t. D,
Σ and Q . This brings us to the following key problem:

PROBLEM : RelativeFreq
INPUT : A database D, a set Σ of primary keys,

a CQ Q(x̄), and a tuple t̄ ∈ dom(D) |x̄ | .
OUTPUT : The number RD ,Σ,Q (t̄).

The above problem is intractable evenwhen Σ andQ are fixed [6, 21].

Hence, also CQA is an intractable problem even when Σ and Q are

fixed. To cope with the high complexity of CQA we give up exact

query answering, and rely on data-efficient approximations.

3 APPROXIMATE CQA
An approximation of the relative frequency of a tuple is computed

via a randomized approximation scheme for RelativeFreq. Having
the latter in place, we can then talk about randomized approxima-

tion schemes for CQA. We assume familiarity with basic notions

from probability theory such as the notions of event, random vari-

able, and its expected value; details can be found in the appendix.

Approximation Schemes for RelativeFreq. A data-efficient ran-
domized approximation scheme for RelativeFreq is a randomized

algorithm A that takes a database D, a set Σ of primary keys, a CQ

Q(x̄), a tuple t̄ ∈ dom(D) |x̄ | , and numbers ϵ > 0 and 0 < δ < 1, runs

in polynomial time in | |D | | + | |t̄ | |, 1/ϵ and log(1/δ ),2 and produces

a random variable A(D, Σ,Q, t̄, ϵ, δ ) such that

Pr
(
|A(D, Σ,Q, t̄, ϵ, δ ) − RD ,Σ,Q (t̄)| ≤ ϵ · RD ,Σ,Q (t̄)

)
≥ 1 − δ .

Approximation Schemes for CQA. A data-efficient randomized
approximation scheme forCQA is an algorithm that takes a database

D, a set Σ of primary keys, a CQ Q(x̄), and numbers ϵ > 0 and

2
As usual, for a syntactic object o, we write | |o | | for its size.



0 < δ < 1, runs in polynomial time in | |D | |, 1/ϵ and log(1/δ ), and
computes a set of pairs of the form

{(t̄,A(D, Σ,Q, t̄, ϵ, δ )) | t̄ ∈ dom(D) |x̄ | and RD ,Σ,Q (t̄) > 0},

where A is a data-efficient randomized approximation scheme for

RelativeFreq. It is easy to see that the next theorem holds for Al-

gorithm 1, which is parametrized by an approximation scheme for

the problem RelativeFreq. Note that checking if RD ,Σ,Q (t̄) > 0 can

be done in polynomial time in | |D | | + | |t̄ | |: check whether there is a

homomorphism h from Q(x̄) to D such that h(x̄) = t̄ and h(Q) |= Σ.

Theorem 3.1. Let ApxRelativeFreq be a data-efficient random-
ized approximation scheme for the problem RelativeFreq. It holds
that ApxCQA[ApxRelativeFreq] is a data-efficient randomized ap-
proximation scheme for the problem CQA.

Henceforth, we may simply say approximation scheme meaning

data-efficient randomized approximation scheme.

4 APPROXIMATION SCHEMES
We present the main approximation schemes for RelativeFreq that

can be obtained from the literature by adapting existing approxima-

tion schemes introduced in the context of DNF Boolean formulas.

But first we need to introduce the crucial notion of synopsis.

4.1 Database Synopsis
In principle, an approximation scheme for RelativeFreq would re-

quire to access the input database D. However, doing this naively
is prohibitive in practice since, in general, D is very large. It turns

out that an approximation scheme for RelativeFreq does not really

need to access the whole database, but only some relatively small

parts of it, which we call synopsis, that depend on the set of primary

keys, the CQ, and the given tuple.

Consider an instance of RelativeFreq, that is, a database D, a

set Σ of primary keys, a CQ Q(x̄), and a tuple t̄ ∈ dom(D) |x̄ | . The
(Σ,Q)-synopsis of D for t̄ is the pair (H ,B), where

H =

{
h(Q(x̄))

���� h is a homomorphism from Q(x̄) to D
with h(x̄) = t̄, and h(Q) |= Σ

}
and

B = {blockΣ(α,D) | α ∈ ∪H ∈HH } .

In simple words, the (Σ,Q)-synopsis ofD for t̄ collects all the consis-
tent homomorphic images of Q(t̄) in D (the set H ), and the blocks

of the atoms occurring in a consistent homomorphic image of Q(t̄)
in D (the set B). We further define the set

db(B) = {{α1, . . . ,αn } | ⟨α1, . . . ,αn⟩ ∈ ×B∈BB} ,

i.e., the set of databases that can be formed by keeping exactly one

atom from each member B of B. We also define the ratio

R(H,B) =
|{I ∈ db(B) | H ⊆ I for some H ∈ H}|

|db(B)|

assuming thatH , ∅; otherwise, R(H,B) = 0.

We show a useful result, which essentially tells us that the (Σ,Q)-
synopsis of a database D for a tuple t̄ can be efficiently constructed

(in the size of D and t̄ ), and it contains enough information that

allows us to compute the relative frequency of t̄ w.r.t. D, Σ and Q .

Lemma 4.1. Consider a database D, a set Σ of primary keys, a CQ
Q(x̄), and a tuple t̄ ∈ dom(D) |x̄ | . Let (H ,B) be the (Σ,Q)-synopsis
of D for t̄ . The following hold:

(1) (H ,B) can be computed in polynomial time in | |D | | + | |t̄ | |.
(2) For each H ∈ H , |H | ≤ |Q |.
(3) RD ,Σ,Q (t̄) = R(H,B).
(4) RD ,Σ,Q (t̄) = 0 if and only ifH = ∅.

As we shall see, Lemma 4.1 allows an approximation scheme to

directly operate on (Σ,Q)-synopses, thus significantly improving

the performance. In order to be able to refer to (Σ,Q)-synopses,
without explicitly mentioning the underlying database, key con-

straints, query, and tuple, we have the notion of admissible pairs. A

pair of sets of databases (H ,B) is called admissible ifH , ∅, and

there are a database D, a set Σ of primary keys, a CQ Q(x̄), and a

tuple t̄ ∈ dom(D) |x̄ | such that (H ,B) is the (Σ,Q)-synopsis of D
for t̄ ; by definition, B , ∅. For brevity, we may refer to admissible

pairs (H ,B) meaning thatH and B are sets of databases.

4.2 Monte Carlo Approximation
Consider a randomized procedure Sample that takes as input an
admissible pair (H ,B), and computes a random number in [0, 1].

This randomized procedure actually samples objects from a sam-

pling space obtained from (H ,B), and checks whether each sam-

pled object enjoys certain properties, which determines the output.

Sample((H ,B)) produces a random variable, and a crucial problem

for us is computing its expected value E[Sample((H ,B))]:

PROBLEM : EV[Sample]
INPUT : An admissible pair (H ,B).

OUTPUT : The number E[Sample((H ,B))].

We can talk about efficient randomized approximation schemes

for EV[Sample] defined in a similar way as data-efficient random-

ized approximation schemes for RelativeFreq, but instead of the

ratio RD ,Σ,Q (t̄) we consider the value E[Sample((H ,B))], while

the randomized algorithm A is required to run in polynomial time

in |H |, maxH ∈H{| |H | |}, | |B| |, 1/ϵ and log(1/δ ).3 As we shall see,
the following simple iterative procedure is an efficient randomized

approximation scheme for EV[Sample] for a carefully chosen num-

ber of iterations N : (1) S := 0, (2) for N times do the following:

S := S + Sample((H ,B)), and finally (3) return S/N .

It is clear that as long as we increase the number N of iterations

in the above procedure, the ratio S/N is a better approximation of

E[Sample((H ,B))]. The crucial question is the following: what is a

sufficiently large value for N ? In particular, given (H ,B), an error

parameter ϵ , and an uncertainty coefficient δ , can we compute the

minimum number (up to a constant factor) of iterations N such

that the above algorithm approximates E[Sample((H ,B))] within

a factor of ϵ , and with probability at least 1 − δ?
A positive answer to the above key question is obtained from [8],

where a generic randomized algorithm has been proposed that

optimally estimates, with high probability, such a number of iter-

ations. Actually, from [8] we get a randomized algorithm, called

OptEstimate[Sample], which is parameterized with a randomized

3
It should run in polynomial time in |H |, maxH ∈H { | |H | | } (not in maxH ∈H { |H | }),

and | |B | | since these are the parameters of a synopsis that depend on the database.



Input: An admissible pair (H ,B), and ϵ > 0 and 0 < δ < 1

Output: A random number in [0, 1]

N := OptEstimate[Sample]((H ,B), ϵ, δ )
S := 0; ctr := 0

repeat
S := S + Sample((H ,B))

ctr := ctr + 1

until ctr = N ;

return S/N

Algorithm 2:MonteCarlo[Sample]

procedure Sample as described above, that accepts as input (H ,B),

ϵ and δ , and optimally computes the number of iterations N . Hav-

ing this algorithm in place, we then obtain the optimal Monte

Carlo Estimator for E[Sample((H ,B))] shown in Algorithm 2. We

know from [8] that if Sample enjoys certain properties, then we get

thatMonteCarlo[Sample] is an efficient approximation scheme for

EV[Sample]; we write | |H ,B|| for |H | +maxH ∈H{| |H | |} + | |B| |:

Lemma 4.2. Let Sample be a randomized procedure that takes as
input an admissible pair (H ,B), and outputs a number in [0, 1].
If (1) Sample((H ,B)) runs in polynomial time in | |H ,B||, and
(2) there exists a polynomial pol such that E[Sample((H ,B))] >

0 implies E[Sample((H ,B))] ≥ 1/pol(| |H ,B||), then the algo-
rithm MonteCarlo[Sample] is an efficient randomized approxima-
tion scheme for the problem EV[Sample].

Recall that our main concern are approximation schemes for

RelativeFreq. Such approximation schemes can be obtained from

the one for EV[Sample] discussed above. This is achieved by de-

vising a randomized procedure Sample that satisfies the items (1)

and (2) in Lemma 4.2, while the value R(H,B), for an admissible

pair (H ,B), coincides with E[Sample((H ,B))], or it can be de-

rived from E[Sample((H ,B))]. More precisely, the goal is to devise

a randomized procedure Sample, which takes as input an admis-

sible pair (H ,B) and outputs a number in [0, 1], that is r -good for
some rational number r > 0, i.e., it satisfies conditions (1) and (2)

in Lemma 4.2, r can be computed in polynomial time in | |H ,B||,

and E[Sample((H ,B))] = R(H,B) · r . Having such a procedure in

place, it is then not difficult to obtain an approximation scheme for

RelativeFreq due to Lemma 4.1. We proceed to present three such

randomized procedures, which in turn give rise to three Monte

Carlo approximation schemes for RelativeFreq. We call those pro-

cedures samplers. The first one samples from the natural sampling

space, while the other two from a symbolic sampling space.

Natural Sampling Space. For an admissible pair (H ,B), the natu-

ral sampling space S(H,B) is defined as the set of databases db(B).

Our first sampler, dubbed SampleNatural, is given in Sampler 1.

Lemma 4.3. SampleNatural((H ,B)) is 1-good.

From Lemmas 4.1, 4.2, 4.3, we get the following for Algorithm 3:

Theorem 4.4. Natural is a data-efficient randomized approxima-
tion scheme for RelativeFreq.

Symbolic Sampling Space: The KL Variation. An alternative

approach towards an approximation scheme for RelativeFreq is to

Input: An admissible pair (H ,B)

Output: A random number in [0, 1]

Choose I ∈ S(H,B) with probability

1

|S(H,B) |

if there exists H ∈ H such that H ⊆ I then
return 1

else
return 0

Sampler 1: SampleNatural

Input: A database D, a set Σ of primary keys, a CQ Q(x̄), a

tuple t̄ ∈ dom(D) |x̄ | , ϵ > 0, and 0 < δ < 1

Output: A random number in [0, 1]

Let (H ,B) be the (Σ,Q)-synopsis of D for t̄
if H , ∅ then

p := MonteCarlo[SampleNatural]((H ,B), ϵ, δ )
else

p := 0

return p

Algorithm (Approximation Scheme) 3: Natural

Input: An admissible pair (H ,B)

Output: A random number in [0, 1]

Choose (i, I ) ∈ S•
(H,B)

with probability

1

|S•
(H,B)

|

if there is no j < i such that I ∈ I
j
(H,B)

then
return 1

else
return 0

Sampler 2: SampleKL

use a sampler such that, on input (H ,B), its expected value is not

exactly R(H,B), but a number from which R(H,B) can be derived.

To this end, we devise a slightly more complex sampling space than

the natural one called symbolic (a term borrowed from [24]), by

exploiting ideas from [15]. Consider an admissible pair (H ,B). Let

H1, . . . ,Hn be an arbitrary ordering (e.g., lexicographical) among

the databases ofH . For each i ∈ [n], we define the set

Ii
(H,B)

= {I ∈ db(B) | Hi ⊆ I }.

Intuitively, if (H ,B) is the (Σ,Q)-synopsis of D for t̄ , then Ii
(H,B)

collects all the databases I ∈ db(B) for which Hi is a witness of

t̄ ∈ Q(I ). Our symbolic sampling space is defined as

S•
(H,B)

=
{
(i, I ) | i ∈ [n] and I ∈ Ii

(H,B)

}
.

Our second sampler, called SampleKL, is given in Sampler 2. Then:

Lemma 4.5. SampleKL((H ,B)) is
(
|db(B)|/|S•

(H,B)
|

)
-good.

From Lemmas 4.1, 4.2 and 4.5, we get the following result for the

approximation scheme KL depicted in Algorithm 4:

Theorem 4.6. KL is a data-efficient randomized approximation
scheme for RelativeFreq.



Input: A database D, a set Σ of primary keys, a CQ Q(x̄), a

tuple t̄ ∈ dom(D) |x̄ | , ϵ > 0, and 0 < δ < 1

Output: A random number in [0, 1]

Let (H ,B) be the (Σ,Q)-synopsis of D for t̄
if H , ∅ then

p := MonteCarlo[sampleKL(M)]((H ,B), ϵ, δ )·
|S•

(H,B)
|

|db(B)|

else
p := 0

return p.

Algorithm (Approximation Scheme) 4: KL(M)

Input: An admissible pair (H ,B)

Output: A random number in [0, 1]

Choose (i, I ) ∈ S•
(H,B)

with probability

1

|S•
(H,B)

|

k := 0

foreach j ∈ {1, . . . , |H |} do
if I ∈ I

j
(H,B)

then
k := k + 1

return
1

k
Sampler 3: SampleKLM

Symbolic Sampling Space: The KLM Variation. Our third sam-

pler is a variation of SampleKL, called SampleKLM, inspired by an

algorithm presented in [26], and is given in Sampler 3. As expected,

Lemma 4.5 holds also for this variation:

Lemma 4.7. SampleKLM((H ,B)) is
(
|db(B)|/|S•

(H,B)
|

)
-good.

From Lemmas 4.1, 4.2, 4.7, we get the following result for the

approximation scheme KLM depicted in Algorithm 4:

Theorem 4.8. KLM is a data-efficient randomized approximation
scheme for RelativeFreq.

Let us stress that, although SampleKL and SampleKLM are both

|db(B)|/|S•
(H,B)

|-good, there are crucial differences between the

two that might make one preferable over the other in some con-

texts. In general, SampleKLM can be much slower than SampleKL
since to generate a sample it always needs to iterate over every

element of H , for a given admissible pair (H ,B), whereas the

number of iterations in SampleKL, which depends on (H ,B), is

generally smaller that |H |. However, the variance of the random

variable SampleKLM((H ,B)) is generally smaller than the vari-

ance of SampleKL((H ,B)), which can effectively reduce the time

required to optimally estimate the number of samples needed by

means of the algorithm OptEstimate[SampleKLM].

4.3 Self-adjusting Approximation
In this section, we follow a different approach for devising an ap-

proximation scheme for RelativeFreq, inspired by results from [15].

A key difference of this approach is that the right number of itera-

tions is computed deterministically, i.e., via a deterministic instead

Input: A database D, a set Σ of primary keys, a CQ Q(x̄), a

tuple t̄ ∈ dom(D) |x̄ | , ϵ > 0, and 0 < δ < 1

Output: A random number in [0, 1]

Let (H ,B) be the (Σ,Q)-synopsis of D for t̄
if H , ∅ then

p := SelfAdjustingCoverage((H ,B), ϵ, δ ) ·
1

|db(B)|

else
p := 0

return p

Algorithm (Approximation Scheme) 5: Cover

of a randomized procedure. Although this estimation is not optimal

as the one discussed in the previous section for Monte Carlo approx-

imations schemes, it has the advantage that it makes the running

time of the relative approximation scheme more predictable.

The algorithm that we are going to use is known in the literature

as the self-adjusting coverage algorithm, which has been originally

proposed for solving the union of sets problem [15]. The latter takes

as input the description of n ≥ 1 sets S1, . . . , Sn , and asks for the

number |
⋃
i ∈[n] Si |. The following is a problem of special interest

for us, which is essentially the union of sets problem tailored to our

setting. Recall that, given an admissible pair (H ,B), we assume an

arbitrary ordering H1, . . . ,Hn among the databases ofH .

PROBLEM : UnionOfSets
INPUT : An admissible pair (H ,B).

OUTPUT : The number |
⋃
i ∈[n] I

i
(H,B)

|.

Observe that the above problem asks for the numerator of the

ratio R(H,B). Hence, by having an efficient randomized approxima-

tion scheme for UnionOfSets, we get an approximation scheme for

RelativeFreq due to Lemma 4.1. An efficient approximation scheme

for UnionOfSets, dubbed SelfAdjustingCoverage, can be obtained

via the self-adjusting coverage algorithm in [15], and can be found

in the appendix. The next result concerning Algorithm 5 follows:

Theorem 4.9. Cover is a data-efficient randomized approximation
scheme for RelativeFreq.

5 IMPLEMENTATION DETAILS
We now discuss our implementation of the approximation schemes

for CQA. It is crucial to clarify that the implementation slightly

deviates from the pseudocode given in Algorithm 1 for efficiency

reasons. In particular, each call to ApxRelativeFreq(D, Σ,Q, t̄, ϵ, δ )
in Algorithm 1 computes the (Σ,Q)-synopsis of D for t̄ separately.
This is prohibitive since computing a synopsis needs to query the

underlying database, and thus, access the disk several times. Our

implementation avoids redundant disk accesses by computing all

the (Σ,Q)-synopses via a single SQL query. Given a database D, a
set Σ of primary keys, a CQ Q(x̄), and ϵ > 0 and 0 < δ < 1, in our

implementation we first construct, via a preprocessing step,

synΣ,Q (D) =
{
(t̄, (H ,B))

���� RD ,Σ,Q (t̄) > 0, and (H ,B) is

the (Σ,Q)-synopsis of D for t̄

}
.

We then iterate over the pairs (t̄, (H ,B)) from synΣ,Q (D) and call

the approximation scheme ApxRelativeFreq. Notice, however, that



ApxRelativeFreq does not have to explicitly compute the (Σ,Q)-
synopsis ofD for t̄ , and then check whether the set of homomorphic

images is non-empty, since this has been done by the preprocessing

step.
4 ApxRelativeFreq only has to compute the number p. The

interesting task here was the implementation of the preprocessing

step that needs to effectively compute the set synΣ,Q (D), while the
rest was implemented in a rather straightforward way.

The Preprocessing Step. A simple but useful observation is that

all the approximation schemes presented in Section 4 that take as

input an admissible pair (H ,B), which is essentially the (Σ,Q)-
synopsis of D for some tuple t̄ , are oblivious to the syntactic shape

of the facts in H and B, i.e., the actual relation and tuple of con-

stants of those facts is irrelevant to the execution of the algorithms.

This allows us to work with an encoding of synΣ,Q (D), denoted
enc(synΣ,Q (D)), using integer identifiers for facts. It turned out

that such an encoding can be constructed by first executing a sim-

ple rewriting Qrew
of Q over D, and then obtain enc(synΣ,Q (D))

from Qrew(D) in linear time in the size of Qrew(D). Due to space

constraints, we omit the detailed definition ofQrew
as an SQL query,

as well as how the set enc(synΣ,Q (D)) is obtained from Qrew(D).
The details can be found in the appendix.

Implementing the Rest. For implementing the rest of the ap-

proximation schemes in question, we extended the framework Ap-
proximate DNF Counting Suite (ADCS) from [24], which collects

algorithms for approximating the number of satisfying assignments

of DNF Boolean formulas. This suite provides implementations of

Algorithm 2 and the self-adjusting coverage algorithm. Hence, it

was enough to implement Samplers 1, 2 and 3. The approximation

scheme for CQA (Algorithm 1) was implemented as a family of

algorithms (one for each approximation scheme for RelativeFreq),
where the set enc(synΣ,Q (D)) is constructed in a preprocessing

step as above. For making random choices, we used the Mersenne

Twister pseudo-random number generator from [23].

6 EXPERIMENTAL SETTING
In order to effectively evaluate the approximation schemes for CQA
presented above, we need to design our test scenarios in a way that

will allow us to expose how the running time of the approximation

schemes is affected by key input parameters such as the amount of

inconsistency in the database, and the number of joins in the query.

In Section 6.1, we discuss the tools that we used to generate our

test scenarios. In Section 6.2, we describe our test scenarios. Finally,

in Section 6.3, we give details about the experimental setup.

6.1 Test Scenarios Infrastructure
For devising our test scenarios, we need a way to generate data, add

some inconsistency (we also call it noise) to the data, and generate

CQs. For generating the data, we solely rely on existing tools. For

adding noise to the data, although several different tools exist that

could help us to accomplish this task, none of those tools provides

the level of control that is needed for our analysis, and thus, we

devised our own noise generator. For generating CQs, we use an

existing tool that allows us to tune syntactic (also called static)

parameters of the query (e.g., the number of joins), together with

4
By Lemma 4.1, for each (t̄ , (H, B)) ∈ synΣ,Q (D), H , ∅.

our generator that allows us to tune also some dynamic (database

dependent) parameters that are central for our analysis.

Data Generator. For the data generation phase we exploit TPC-H
(2.18.0), one of the main TPC benchmarks that offers a diverse work-

load of manually curated queries over a relational schema, mod-

elling most common data management scenarios. The schema is in

third normal form, and models a typical data warehouse, dealing

with sales, customers, and suppliers. It contains eight relations, and

comeswith integrity constraints, including primary keys. Databases

of varied size can be generated via the data generator provided by

TPC-H. It receives a scale factor as part of its input, specifying the

size of the database to generate, and it generates a NULL-free data-

base. Note, however, that the databases generated with this tool are

consistent w.r.t. the underlying constraints. Nevertheless, since it

has been designed to generate data that is as close as possible to a

real-world scenario, we use it for generating consistent data, and

then inject inconsistency via a noise generator that we developed.

Query-aware Noise Generator for Primary Keys. Making a data-

base inconsistent is a complex process, and several attempts for

developing a general-purpose tool for this task can be found in

the literature; see, e.g., [2, 4, 5, 9, 12]. Nevertheless, for the reasons

explained below, none of those tools is suitable for our purposes:

▶ Existing tools are query-oblivious, i.e., do not take into account

any query. The reason is that they have been developed in the

context of data cleaning where no query is involved. However, by

generating noise in a query-oblivious way, we may fail to obtain

meaningful datasets for our purposes. Even if we generate noise

by randomly adding facts to the database, considering only the

primary keys, it is likely that we will not affect the evaluation of the

query. This is because we typically deal with very large databases,

while only a small portion of them is needed to answer a query.

▶ Existing tools have been designed to work with more general

classes of constraints than primary keys such as equality-generating

dependencies. Hence, although they allow us to tune some param-

eters during the noise generation process, we cannot tune fine-

grained parameters that are specific to primary keys such as the

number of facts in a block, or the number of non-singleton blocks.

Our noise generator takes as input a database D, a set Σ of

primary keys with D |= Σ, a CQQ(x̄) such thatQ(D) , ∅, a number

0 < p ≤ 1, and two integers ℓ,u with 0 < ℓ ≤ u. The number p
specifies the percentage of noise (w.r.t. Σ) that should be added toD,
which will lead to a databaseD∗

, while ℓ andu specify the minimum

and the maximum size of a non-singleton block in blockΣ(D∗). The

following steps are performed:

Step 1: The noise generator first constructs the set

synΣ,Q (D) = {(t̄1, (H1,B1)), . . . , (t̄n, (Hn,Bn ))}

as in Section 5. Recall that, for i ∈ [n], (t̄i , (Hi ,Bi )) is such that t̄i ∈
Q(D),Hi is the set of homomorphic images ofQ(t̄i ) in D, and Bi is

the set of blocks of the atoms occurring in a homomorphic image

of Q(t̄i ) in D. Thus, synΣ,Q (D), and in particular H =
⋃n
i=1

Hi ,

contains all the facts of D that can affect the query result.

Step 2: For every relation R inH , with key(R) = {1, . . . ,k} ∈ Σ,
assuming thatHR is the set of R-facts inH – there are no two R-
facts inHR with the same key value – the noise generator randomly



selects ⌈p · |HR |⌉ facts from HR . Let R(ā1, ¯b1), . . . ,R(ām, ¯bm ), for

m > 0, be the selected facts and ⟨R, ā1⟩, . . . , ⟨R, ām⟩ the key values.

Step 3: Finally, for each i ∈ [m], the noise generator chooses a

number s ∈ [ℓ,u], uniformly at random, which essentially specifies

the size of the block of facts with key value ⟨R, āi ⟩, and adds s − 1

new facts R(āi , ū1), . . . ,R(āi , ūs−1) to the database D.

It remains to explain how the new facts added to D at step 3 are

generated. One could naively construct the new facts by randomly

constructing each tuple of constants ūj , for j ∈ [s − 1]. However,

tuples with randomly generated values are unlikely to join with

other tuples in the database. Thus, most probably, such randomly

generated facts will not be part of the (Σ,Q)-synopsis of the new
inconsistent database D∗

for some arbitrary tuple, which means

that they will not affect the query result over D∗
. Hence, our noise

generator constructs the above s − 1 facts in a more careful way.

For each j ∈ [s − 1], it randomly selects an atom R(ā′, ū ′) ∈ D such

that the key value of R(ā′, ū ′), that is, ⟨R, ā′⟩, is different from the

key value of the block under construction, say ⟨R, āi ⟩ for i ∈ [m],

and then it sets ūj = ū
′
. Selecting values in this way ensures that

the noise generator preserves the join patterns present in the data.

This is especially true for joins over multi-attribute foreign-keys.

Query Generator. The TPC-H benchmark provides several manu-

ally curated queries. However, we need a range of carefully designed

queries that will allow us to stress the approximation schemes.

Static Query Generator. To generate our stress test queries we

exploit a recent query generator [3], which we call static query
generator (SQG) since it allows us to tune only static parameters of

the query, without taking into account any database. In particular,

SQG takes as input a schema S (the schema of the output CQ), two

integers j ≥ 0 and c ≥ 0 (the number of joins, and the number

of occurrences of constant values, respectively, in the output CQ),

a number 0 ≤ p ≤ 1 (the percentage of attributes in the output

CQ that should be projected), and a function f from {R[k] | R/n ∈

S and k ∈ [n]} to C, i.e., from the set of attributes of the relations

of S (R[k] refers to the k-th attribute of R) to C, which specifies the

constant values that can appear in a certain attribute. Details on

how the output CQ is generated can be found in the appendix.

Dynamic Query Generator. One of the challenges of our work
is to identify the right input parameters that allow us to properly

analyze the behaviour of the approximation schemes for CQA in

question. Concerning the input query, the main parameters that

one can consider are, as customary in the literature, the number

of joins, the number of occurrences of constants, and the number

of attributes that are projected; these are the parameters that SQG

allows us to tune. However, by considering only those static parame-

ters we cannot control the size of a database synopsis, which clearly

affects the performance of the approximation schemes. It turned

out that we also need to consider some dynamic query parameters.

Consider a database D, a set Σ of primary keys, and a CQ Q(x̄).
Assume that synΣ,Q (D) = {(t̄i , (Hi ,Bi ))}i ∈[n] for some n ≥ 1; as

usual, (t̄i , (Hi ,Bi )) is such that t̄i ∈ Q(D), Hi is the set of homo-

morphic images of Q(t̄) in D, and Bi is the set of blocks of the

atoms occurring in a homomorphic image of Q(t̄) in D. The dy-
namic query parameters that are central for our analysis are: (i)

the homomorphic size of Q w.r.t. D defined as |
⋃n
i=1

Hi |, which

measures how large is the portion of D that is needed to compute

Q(D) = {t̄1, . . . , t̄n }, and (ii) the output size of Q w.r.t. D defined as

the cardinality of Q(D), which coincides with |synΣ,Q (D)|.
It is clear that the output size of Q w.r.t. D affects all the approx-

imation schemes in exactly the same way; in fact, it only affects

the number of iterations over the tuples of Q(D) (see Algorithm 1).

Hence, this parameter alone will not provide useful insights in un-

derstanding the key differences between the various approximation

schemes. The homomorphic size ofQ w.r.t. D, on the other hand, is

more interesting as it affects the size of a (Σ,Q)-synopsis (H ,B)

in synΣ,Q (D). In particular, it will affect the running time of the

approximation schemes for RelativeFreq that, according to our im-

plementation of Algorithm 1, we need to call with input (H ,B)

at each iteration. Hence, since each (Σ,Q)-synopsis in synΣ,Q (D)
can have different size, it is natural to consider the average size of
a (Σ,Q)-synopsis in synΣ,Q (D) as a key parameter, which is given

by the formula |
⋃n
i=1

Hi |/|synΣ,Q (D)|, i.e., the average number

of homomorphic images of

⋃n
i=1

Hi that are distributed to each

(Σ,Q)-synopsis of synΣ,Q (D). Let us recall, however, that one of
the main goals of our experimental analysis is to provide hints

on which approximation scheme is the indicated one based on

some key input parameters, which now include the average size

of a (Σ,Q)-synopsis. Nevertheless, we would not be able to pro-

vide such a general guidance, based on the absolute value of this

average, as it can be arbitrarily large depending on D, Σ, and Q .
Hence, we consider a parameter, which we call the balance of Q
w.r.t. D, defined as the inverse of the average above. This means

that the closer is the balance to 1, the smaller is the average size of

a (Σ,Q)-synopsis, and the closer it is to 0, the higher is this average.
It should be clear that we need a query generator that allows us to

tune, not only static query parameters, but also dynamic ones, and

in particular the balance. We describe such a tool, called dynamic
query generator (DQG). It takes as input an integer n > 0, a database

D, a CQ Q (the starting query from which n new CQs should be

generated with varied balance w.r.t.D), numbers 0 ≤ b1, . . . ,bn ≤ 1

(the balance of the output queries w.r.t. D), and an integer t > 0 (a

time threshold that indicates how many hours the query generator

should run). The goal is to generate CQs Q1, . . . ,Qn starting from

Q such that, for each i ∈ [n], the balance ofQi w.r.t. D is as close as

it can get to bi in the available time t . In particular, DQG generates

a pool of CQs P by iteratively choosing at random a subset of the

attributes of the relations occurring inQ that are projected, and this

is repeated for t hours. Then, for each i ∈ [n], the generator keeps
a CQ Qi ∈ P such that, for each Q ′ ∈ P , the absolute difference
between the balance of Qi w.r.t. D and bi is less or equal than the

absolute difference between the balance of Q ′
w.r.t. D and bi , i.e.,

the balance of Qi is closer to bi than the balance of the other CQs.

6.2 Test Scenarios
For our test scenarios we consider the TPC-H schema, denoted SH,
and the set ΣH of primary keys over SH coming with the TPC-H

benchmark. A test scenario is a family of pairs of the form (D,Q),
where D is a database over SH that is inconsistent w.r.t. ΣH, and Q
is a CQ over SH. The database-query pairs that form a test scenario

T are carefully chosen depending on which aspect of the approxi-

mation schemes for CQAwe want to investigate viaT . For example,



a test scenario that is meant to analyze how the approximation

schemes behave when the amount of noise is varied, should consist

of database-query pairs where the amount of noise in the databases

varies, while the main query parameters such as the number of

joins in a CQ, and the balance of a CQ w.r.t. its paired database,

should be fixed. We first generated a large set of database-query

pairs and then defined our test scenarios as subsets of this large set.

A Large Set of Database-Query Pairs. Starting from SH and ΣH,

we generated a large set of database-query pairs PH as follows:

(1) First, we generated a databaseDH over SH, withDH |= ΣH, by ex-
ploiting the data generation tool provided by the TPC-H benchmark

with scale factor 1GB; DH contains almost 9 millions tuples.

(2) We then generated 25 CQs using SQG. In fact, for each j ∈ [5],

we generated five CQs Q1

j , . . . ,Q
5

j by iteratively calling SQG with

input (SH, j, 2, 1, f ), where f maps an attribute R[i], for R/n ∈ SH
and i ∈ [n], to the set of constants occurring in DH at attribute

R[i], and keeping the CQs whose evaluation over DH is non-empty.

In other words, for each j ∈ [5], we generated five CQs over SH
with j joins, 2 occurrences of constants, and all the attributes being

projected, that are non-empty over DH. After several experiments,

we observed that almost all the CQs generated by SQG with less

than 2 or greater than 2 occurrences of constants are trivial, i.e,

when evaluated over DH, in the former case they return everything

that can be returned, while in the latter case are empty. This is why

we focus on CQs with 2 occurrences of constants.

(3) For each Q ∈ {Qi
j }i , j ∈[5], we generated the databases

DQ [0.1],DQ [0.2], . . . ,DQ [0.9],DQ [1],

which are inconsistent w.r.t. ΣH, by calling, for each number p ∈

{0.1, . . . , 0.9, 1}, the query-aware noise generator with the input

(DH, ΣH,Q,p, 2, 5). Recall that the numbers 2, 5 specify the min. and

max. size of a non-singleton block in blockΣ(DQ [p]). Sizes outside
the range [2, 5] did not influence the results of our analysis.

(4) For each CQ Q ∈ {Qi
j }i , j ∈[5] and p ∈ {0.1, 0.2, . . . , 0.9, 1}, we

generated 11 CQs

Qp [0],Qp [0.1],Qp [0.2], . . . ,Qp [0.9],Qp [1],

whereQp [0] is the Boolean query obtained fromQ by having all the

variables as existentially quantified, while the other 10 queries are

obtained by DQG with input (10,DQ [p], 0.1, 0.2, . . . , 0.9, 1, 12). In

other words, the CQ Qp [q], for q ∈ {0.1, 0.2, . . . , 0.9, 1}, is a query

such that its balance w.r.t. DQ [p] is close to q (in fact, as close as it

could get after running DQG for 12 hours).

Having the databases from step 3 and the queries from step 4, PH
is defined as the set of database-query pairs{

(DQ [p],Qp [q]) | Q ∈ {Qi
j }i , j ∈[5],

p ∈ {0.1, . . . , 0.9, 1} and q ∈ {0, 0.1, . . . , 0.9, 1}
}
,

which consists of 2750 database-query pairs.

The Various Test Scenarios. Having PH in place, we can now in-

troduce the test scenarios that we considered in our experiments.

It should be clear by now that the input parameters analyzed in

our evaluation are (i) the amount of noise in the input inconsistent

database (w.r.t. ΣH), (ii) the balance of the input query (w.r.t. to the

input database), and (iii) the number of joins in the input query. In

order to understand how the running time of the approximation

schemes for CQA is affected by the above parameters, we consid-

ered different test scenarios (which are subsets of PH) where one of
the parameters varies and the other two are kept fixed:

▶ For each balance value q ∈ {0, 0.1, . . . , 0.9, 1} and number of

joins j ∈ [5], we considered the noise scenario with 50 pairs

Noise[q, j] =
⋃

p∈{0.1, ...,0.9,1}
Q ∈{Q i

j }i∈[5]

{
(DQ [p],Qp [q])

}
.

▶ For each noise percentage p ∈ {0.1, . . . , 0.9, 1} and number of

joins j ∈ [5], we considered the balance scenario with 55 pairs

Balance[p, j] =
⋃

q∈{0,0.1, ...,0.9,1}
Q ∈{Q i

j }i∈[5]

{
(DQ [p],Qp [q])

}
.

▶ For each noise percentage p ∈ {0.1, . . . , 1} and balance value

q ∈ {0, 0.1, . . . , 1}, we considered the joins scenario with 25 pairs

Joins[p,q] =
⋃

Q ∈{Q i
j }i , j∈[5]

{
(DQ [p],Qp [q])

}
.

Summing up, we considered 55 noise scenarios each consisting

of 50 database-query pairs, 50 balance scenarios each consisting of

55 pairs, and 110 join scenarios each consisting of 25 pairs.

6.3 Experimental Setup
Hardware and Software Configuration. For the experiments

we used two HP EliteDesk 800 G4 SFF Desktops, with an Intel(R)

Core(TM) i5-8500 CPU@3.00GHz processor, 16GB RAM, 500GB

mechanical drive, running Xubuntu 19.04 64-bit. All the databases of

our test scenarios are stored in each machine in a single PostgreSQL

11.5 instance. All the algorithms (i.e, the approximation schemes,

including the preprocessing step) have been implemented in C++,

compiled with g++ 8.3.0 using the -std=c++11 flag and the -O3

optimization flag; no other flags have been used.

Execution. The experiments have been performed with δ = 0.25

and ϵ = 0.1, i.e., 75% confidence and 10% error. The reason why we

fix the value of ϵ and δ , which are problem-agnostic parameters, is

because we know that their actual value does not allow us to reliably

differentiate the approximation schemes [24]. All the approximation

schemes were required, for each test scenario, to terminate within

1 hour; beyond that, they were flagged as timed out.

CPUTime andDataGenerated. Executing all of our experiments

required 48 days of CPU time. The collected data, including the

approximated query answers for every scenario with the corre-

sponding running times, amounts to 130GB of uncompressed logs.

7 EXPERIMENTAL EVALUATION
We are now ready to proceed with the evaluation and comparison of

the approximation schemes for CQA. As explained in Section 5, the

implementation of the approximation schemes for CQA deviates

from the pseudocode given in Algorithm 1. We first construct, via a

preprocessing step, the set of pairs synΣ,Q (D) for the given database
D, set Σ of primary keys, and CQ Q , and then iterate over the pairs
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(b) Noise[0, 3]
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(c) Noise[0, 5]
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(d) Noise[0.3, 1]
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(e) Noise[0.3, 3]
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(f) Noise[0.3, 5]
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(g) Noise[0.5, 1]
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(h) Noise[0.5, 3]
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Figure 1: Noise test scenarios - Noise[balance, joins]

of synΣ,Q (D) and call the approximation scheme for RelativeFreq
in question. Let us first briefly report on how the preprocessing

step performs over the database-query pairs of PH.
For the wide variety of database-query pairs (D,Q) that we have

generated, synΣH,Q (D), which is essentially what we give as an

input to the approximation schemes for CQA in our experiments,

can be effectively computed via the query rewriting approach men-

tioned in Section 5. Let us stress that our approach is by no means

the ultimate way for computing synΣH,Q (D) as one may devise

a more sophisticated and optimized procedure. Nevertheless, it

turned out that it performs reasonably well in almost all of our

scenarios. For most pairs (D,Q) of PH it took between 20 and 30

seconds for the computation of the set synΣH,Q (D). More precisely,

for 80% of the pairs of PH, the preprocessing step completed its

execution in less than 30 seconds, for 94% in less than a minute,

while the execution time over all pairs never exceeded two minutes.

Although there is room for improvement in terms of the running

time of the preprocessing step, the take-home message is that re-

lying on such a preprocessing step is not prohibitive in practice;

furthers details can be found in the appendix.

7.1 Evaluating Approximate CQA
We now focus on the task of evaluating and comparing the main

approximation schemes for CQA presented in Section 4. In particu-

lar, we consider ApxCQA[Natural], ApxCQA[KL], ApxCQA[KLM],

and ApxCQA[Cover]; henceforth, for brevity, we simply write A
instead of ApxCQA[A]. Note that the running times that we are

going to present do not consider the time of the preprocessing step

since it is the same for all the approximation schemes.

Noise Scenarios. Although we performed experiments for all the

55 noise scenarios, we present only the results of nine representative

scenarios (see Figure 1); the rest can be found in the appendix. Let us

stress, however, that the main conclusions that we draw below from

those nine scenarios are in line with what we can conclude from

all the 55 noise scenarios. The plots depicted in Figure 1 show how

the running time of the approximation schemes for CQA is affected

by varying the noise, where for each noise level the running time

is the average over all the CQs for that level of noise (five in total).

The fact that an approximation scheme timed out for n out of the

five CQs for a noise level is indicated by the integer n. It turned
out that there is a striking difference on which algorithm performs

better depending on whether the CQs are Boolean or not.

TheBooleanCase.The running time of the approximation scheme

Natural is not significantly affected by the increase of noise when-

ever we focus on Boolean CQs (see plots (a), (b) and (c) of Figure 1).

On the other hand, the running time of KL, KLM and Cover quickly
increases as we increase the level of noise. They even timeout for

some queries at high levels of noise (≥ 70%) and many joins (≥ 3).

Let us explain the reasons behind those observations.

Consider the set synΣH,Q (D) over which the algorithms are ex-

ecuted. Natural and KL(M) compute the number of iterations via

a call to the optimal estimator OptEstimate[Sample]((H ,B), ϵ, δ ),
for each pair (t̄, (H ,B)) ∈ synΣH,Q (D), with Sample being the

adopted sampler. The runtime of this procedure is proportional

to the variance of Sample((H ,B)), and to the inverse of the ex-

pected value E[Sample((H ,B))], which is not surprising since the

computed number of iterations is optimal [8]. For Natural, the
value E[Sample((H ,B))] coincides with R(H,B), while for KL(M)

is Num/|S•
(H,B)

|, where Num is the numerator of R(H,B). When

focusing on Boolean CQs, R(H,B) is generally close to one since

the set synΣH,Q (D) = {(⟨⟩, (H ,B))} is a singleton, and thus, the

only synopsis therein collects all the homomorphic images of the

query. This implies thatNum is close to |db(B)|. On the other hand,

the fact that all the homomorphic images are collected in the set

H implies that |S•
(H,B)

| becomes very large, in particular, much

larger than |db(B)|, and the difference increases as we increase

the amount of noise. Therefore, Num/|S•
(H,B)

|, which coincides

with E[SampleKL((H ,B))] and E[SampleKLM((H ,B))], quickly

decreases as the noise increases. Moreover, the large size of S•
(H,B)

makes sampling from the symbolic sampling space more demand-

ing as the noise increases. This trend is even more evident when we

consider more joins since the size of the setH tends to be higher.

Concerning the approximation scheme Cover, its high runtime

is explained by the fact that its number of iterations is linear in
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(b) Balance[0.2, 3]
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(c) Balance[0.2, 5]

10 20 30 40 50 60 70 80 90 100
Balance (%)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ex
ec

ut
io

n 
tim

e 
(s

)

KL
KLM
Natural
Cover

(d) Balance[0.4, 1]
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(f) Balance[0.4, 5]
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(g) Balance[0.6, 1]
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Figure 2: Balance test scenarios - Balance[noise, joins]

|H | [15], which, as already discussed, is generally large for Boolean

queries. Moreover, as mentioned above, the runtime increase is also

explained by the fact that Cover draws samples from the symbolic

sampling space S•
(H,B)

, which becomes more time consuming as

the noise increases. As an additional remark, let us say that Cover,
contrary to what one would expect, is the worst performer de-

spite the fact that its running time is linear in |H |, in contrast to

KL(M) that rely on a more complex sampler, and thus, they depend

quadratically on |H |.5 The reason for this is that the factor that is

multiplied by |H | in the number of iterations of Cover can become

very large, even for not very small values of ϵ and δ such as 0.1 (i.e.,

10% error) and 0.25 (i.e., 75% confidence). Hence, the fact that KL(M)

performs much less iterations than Cover leads to a better perfor-

mance despite the fact that SampleKL and SampleKLM are more

demanding samplers. One would start observing that Cover per-
forms similarly or better than KL(M) only when |H | becomes very

large, which, in the Boolean case, happens only when we consider

many joins, and high levels of noise (see plot (c) in Figure 1).

The Non-Boolean Case. Focusing on non-Boolean CQs (see plots

(d), (e) and (f) in Figure 1), Natural is no more among the fastest

algorithms. Actually, its runtime rapidly increases as we increase

the amount of noise, whereas KL(M) perform much better. The

reason for this is that in the case of queries with higher balance,

the number of synopses in synΣH,Q (D) = {(t̄i , (Hi ,Bi ))}i ∈[n] in-

creases. Since H1, . . . ,Hn form a partition of

⋃n
i=1

Hi , the car-

dinality of each Hi tends to decrease as we increase the balance.

Therefore, the expected value E[SampleNatural((Hi ,Bi ))], which

is equal to R(Hi ,Bi ), tends to be closer to zero, whereas the values

E[SampleKL((Hi ,Bi ))] and E[SampleKLM((Hi ,Bi ))], which coin-

cide, are closer to one. We can then explain the runtime of Natural
and KL(M) by providing a discussion similar to the one above for

the Boolean case. Moreover, Cover is now considerably faster since

the cardinality of eachHi tends to be small, and thus, it performs

much less iterations. However, due to the reason discussed above in

the Boolean case, it still performs worse than KL(M). The behaviour

5
Since E[SampleKL((H, B))] = E[SampleKLM((H, B))] is greater or equal to

1/ |H |, and the samplers SampleKL(M) need to iterate over every index in [ |H |].

described above becomes even more evident for CQs with even

higher balance (see plots (g), (h) and (i) in Figure 1).

Balance Scenarios. As we have already observed, the balance of

the query has an effect on the running time of the approximation

schemes for CQA. To quantify the impact of the balance on the

running time, we consider here the family of balance scenarios. We

ran experiments for all the scenarios but we present only the results

of nine representative ones (see Figure 2); the rest can be found in

the appendix. Let us note, however, that the main conclusions that

we draw below are in line with what we can conclude from all the

50 balance scenarios. Figure 2 shows how the running time of the

approximation schemes for CQA is affected by varying the balance

of the query, where for each balance level the running time is the

average over all CQs with that level of balance (five in total).

It is clear that Natural is the worst performer with timeouts at

high number of joins and high levels of noise. On the other hand,

KL and KLM perform better followed byCover. Another interesting
observation is that Cover is, in general, the only approximation

scheme that its running time decreases as the balance increases.

Let us explain the reasons behind those observations.

Concerning Natural, the plots depicted in Figure 2 confirm what

we discussed above in the analysis of the noise scenarios: having

more synopses (H ,B) in synΣH,Q (D), we get a lower ratio R(H,B),

which in turn leads to higher running time for a single synopsis. In

fact, for queries with low balance, Natural is usually comparable to

the other algorithms, unless we consider a high level of noise and

many joins, which also contribute in decreasing R(H,B).

Regarding the approximation schemes KL and KLM, as discussed

in the analysis of the noise scenarios, higher balance means that the

values E[SampleKL((H ,B))] and E[SampleKLM((H ,B))], which

coincide, are higher. Hence, the running time for a single synopsis

decreases. However, higher balance also means that there are more

synopses in synΣH,Q (D) that must be processed by the approxi-

mation scheme. After some level of balance, there is essentially

no improvement of the running time for a single synopsis, as the

number of iterations computed by OptEstimate is as small as it can

get. This is confirmed by the fact that for the very first levels of



balance, KL(M) decrease in runtime, but after that, the running time

is essentially dominated by the number of synopses over which the

algorithms need to iterate, and thus, it increases linearly.

On the contrary, Cover always benefits from an increase in bal-

ance. This is due to the fact that the number of iterations that Cover
has to perform keeps decreasing as the balance increases (since

|H | decreases). However, although the number of iterations always

decreases, this remains considerably higher than the optimal num-

ber of iterations of KL(M), due to the high constant factors. Thus,

Cover performs worse than KL(M) in terms of plain running time.

Join Scenarios. It turned out that the experimental analysis based

on the join scenarios did not provide any new insights on the

behaviour of the approximation schemes; the analysis can be found

in the appendix. There is an interesting observation, though, which

cannot be readily seen from the analysis based on the noise and

balance scenarios, and concerns the comparison between KL and

KLM. Although for a small number of joins KLM performs better

than KL (for any level of noise), as we increase the number of joins,

KL catches up, and in the Boolean case may even perform better.

7.2 Take-home Messages
Here are the take-home messages of our analysis, which reveal a

striking difference between Boolean and non-Boolean CQs. A more

detailed discussion can be found in the appendix.

(1) For Boolean CQs,Natural is the best performer, no matter the

amount of noise, and no matter the number of joins in the query,

whereas Cover is the worst. Only in the case of CQs with many

joins Cover is comparable to KL(M), but in any case, Natural is the
indicated scheme. Interestingly, this outcome is in contrast to what

is generally believed in the DNF setting, where sampling from the

natural sampling space is regarded to be impractical [6, 15].

(2) For non-Boolean CQs, KLM is the way to go in almost all

the scenarios, i.e., for any level of noise and for any level of (non-

zero) balance of the query. Only for CQs with many joins KL is

comparable to KLM. Nevertheless, KL is never going to outperform

KLM. The worst algorithms are Natural and Cover. They perform

similarly for low levels of noise and balance (regardless the number

of joins), but, in general, Natural is the slowest.
(3)We can safely claim that approximate CQA in the presence

of primary keys is feasible in practice. We have seen that the pre-

processing step, which is responsible for computing the synopses,

has completed its execution in less than 30 seconds in most cases.

Furthermore, for modest scenarios, which is what we expect to face

in practice, the running time of the best performing approximation

scheme is reasonable; e.g., for 50% noise, 50% balance, and CQs with

3 joins, the runtime of the best performer is at most 6 seconds, and

this decreases to 3 seconds for 30% noise, and 30% balance.

Let us conclude this section by stressing that we have also ex-

perimentally validated our main conclusions concerning the main

approximation schemes for CQA (take-home messages (1) and (2))

by relying on a different batch of test scenarios that are closer to

real-world use cases. The details can be found in the appendix.

8 CONCLUSIONS
Our work provides the first comprehensive and publicly available

benchmark (test infrastructure and test scenarios) for randomized

approximation schemes for CQs and primary keys. It also provides

experimental results for the main data-efficient randomized approx-

imation schemes that can be inherited from the DNF literature, and

adapted to the CQA setting, with new insights on which approxima-

tion technique is indicated depending on characteristics of the input.

Our intention is to maintain and enrich our test infrastructure, as

well as our (test and validation) scenarios.
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A NOTIONS FROM PROBABILITY THEORY
A (discrete) probability space is a pair PS = (Ω, π ), where Ω is a

finite set, called sample space, and π : Ω → [0, 1] is a function

such that

∑
ω ∈Ω π (ω) = 1. A subset E ⊆ Ω is called an event. The

probability of an event E, denoted Pr(E) is defined as
∑
ω ∈E π (ω). A

random variable over PS is a function X : Ω → Q. For every x ∈ Q,
X = x denotes the event {ω ∈ Ω | X (ω) = x}. More complex events

involving inequalities and other constraints are defined in a similar

way. The expected value of X , denoted E[X ] is defined as∑
x ∈X (Ω)

x · Pr(X = x),

where X (Ω) is the image of X , that is,

X (Ω) = {x ∈ Q | there exists ω ∈ Ω such that X (ω) = x}.

Let X1, . . . ,Xn be random variables over some probability space

PS = (Ω, π ). We say that X1, . . . ,Xn are independent if

Pr

( n⋂
i=1

Xi = xi

)
=

n∏
i=1

Pr(Xi = xi ),

for all x1, . . . , xn ∈ Q. If X1, . . . ,Xn are independent and Xi (Ω) ⊆
[0, 1], for each i ∈ [n], then Hoeffding’s inequality states that

Pr(|X̄n − E[X̄n ]| ≤ γ ) ≥ 1 − 2e−2nγ 2

,

for every γ > 0, where X̄n denotes the random mean of the random

variablesX1, . . . ,Xn , i.e., the random variable over (Ω, π ), such that

X̄n (ω) =
1

n
·

n∑
i=1

Xi (ω),

for each ω ∈ Ω. Note that if all Xi ’s have the same mean µ, then

Pr(|X̄n − µ | ≤ γ ) ≥ 1 − 2e−2nγ 2

, for every γ > 0.

B APPROXIMATION SCHEMES
In this section, we provide proofs for the technical results given in

Section 4, as well as details concerning the self-adjusting coverage

algorithm that are missing from the main body of the paper.

Proof of Lemma 4.1
Item (1): There exist at most polynomially many (w.r.t. | |D | | and

| |t̄ | |) homomorphisms from Q(x̄) to D with h(x̄) = t̄ . Thus, to con-

struct H , it suffices to iterate over each such homomorphism h,
construct h(Q), and check whether h(Q) |= Σ, in which case h(Q)
is added to H . Once we have H in place, we can construct B via a

straightforward search over D.

Item (2): It follows by definition of (Σ,Q)-synopsis.

Item (3): Consider the set of homomorphisms

H = {h | h is a homomorphism from Q(x̄) to D

with h(x̄) = t̄, and h(Q) |= Σ}.

Therefore, the numerator Num of RD ,Σ,Q (t̄) is equal to

|{D ′ ∈ rep(D, Σ) | there exists a homomorphism h ∈ H

such that h(Q) ⊆ D ′}|.

Consider now the partition {D+,D−} of D, where D+ contains all
the blocks of facts occurring in

⋃
h∈H h(Q), and D−

contains the

remaining blocks. Consequently, Num is equal to

|{D ′ ∈ rep(D+, Σ) | there exists a homomorphism h ∈ H

such that h(Q) ⊆ D ′}| · |rep(D−, Σ)|.

The denominator of RD ,Σ,Q (t̄), i.e., |rep(D, Σ)|, is equal to

|rep(D+, Σ)| · |rep(D−, Σ)|.

Hence,

RD ,Σ,Q (t̄) =
|{D ′ ∈ rep(D+, Σ) | ∃h ∈ H s.t. h(Q) ⊆ D ′}|

|rep(D+, Σ)|
.

Since D+ coincides with B, the above expression is precisely the

ratio R(H,B), and the claim follows.

Item (4): Assume thatH , ∅. Then, there exists a homomorphism

h fromQ(x̄) toD, whereh(x̄) = t̄ andh(Q) |= Σ. Clearly, there exists
a repair D ′ ∈ rep(D, Σ) that contains h(Q), and thus t̄ ∈ Q(D ′),

which in turn implies that RD ,Σ,Q (t̄) , 0.

Conversely, assume that RD ,Σ,Q (t̄) , 0, and let D ′ ∈ rep(D, Σ)
be the repair such that t̄ ∈ Q(D ′). The latter is equivalent to the fact

that there exists a homomorphism h from Q(x̄) to D ′
with h(x̄) = t̄ .

SinceD ′ ⊆ D,h is also a homomorphism fromQ toD. SinceD ′ |= Σ,
we get that h(Q) |= Σ, and thereforeH , ∅, as needed.

Proof of Lemma 4.3
Consider an admissible pair (H ,B). The fact that SampleNatural
runs in polynomial time w.r.t. | |H ,B|| is straightforward. We now

consider the expected value of SampleNatural((H ,B)). Note that

X = SampleNatural((H ,B)) is the random variable from the prob-

ability space (Ω, π ) to {0, 1}, where Ω = S(H,B) and π is the uni-

form distribution over S(H,B), i.e., π (I ) = 1/|S(H,B) |, for each

I ∈ S(H,B). Moreover, X (I ) = 1, whenever there exists H ∈ H

such that H ⊆ I , and 0 otherwise. Therefore,

Pr(X = 1) =
∑

{I ∈Ω |∃H ∈H s.t. H ⊆I }

π (I ) = R(H,B).

Thus, E[X ] = E[SampleNatural((H ,B))] = R(H,B).

It remains to show that when E[SampleNatural((H ,B))] > 0,

then E[SampleNatural((H ,B))] ≥ 1/p(| |H ,B||), for some polyno-

mial p. From the above discussion, this is equivalent to show that

R(H,B) > 0 implies R(H,B) ≥ 1/p(| |H ,B||). If R(H,B) > 0, then

there exists I ∈ db(B) = S(H,B) such that H ⊆ I , for some H ∈ H .

Fix such an H , and let BH be the set of all blocks in B with key

values occurring in H . Then, every I ∈ db(B) such that H ⊆ I is
of the form H ∪ B, where B is any set from db(B \ BH ). Hence,

there exist at least |db(B \ BH )| sets I ∈ db(B) such that H ′ ⊆ I ,
for some H ′ ∈ H . Consequently,

R(H,B) ≥
|db(B \ BH )|

|db(B)|
.

Since |db(B)| = |db(BH )| · |db(B \ BH )|, we conclude that

R(H,B) ≥
1

|db(BH )|
≥

1

bh
,

where b is the size of the largest B ∈ db(B) and h is the size of the

largest H ∈ H . Clearly, bh is a polynomial of | |H ,B||.



Proof of Lemma 4.5
Let (H ,B) be an admissible pair, withH = {H1, . . . ,Hn }. To show

that SampleKL((H ,B)) runs in polynomial time w.r.t. | |H ,B||, it

suffices to show that a pair (i, I ) ∈ S•
(H,B)

can be chosen with

probability 1/|S•
(H,B)

| in polynomial time w.r.t. | |H ,B||, and that

we can check whether I ∈ Ii
(H,B)

in polynomial time w.r.t. | |H ,B||.

For the former task, it suffices to first choose i ∈ [n]with probability
|Ii
(H,B)

|/|S•
(H,B)

|, and then choose I ∈ Ii
(H,B)

with probability

1/|Ii
(H,B)

|. For the latter task, it suffices to check whether Hi ⊆ I .

Observe that the above two tasks can be performed in polynomial

time w.r.t. | |H ,B|| if we can compute |Ii
(H,B)

| (for some given

i ∈ [n]) and |S•
(H,B)

| in polynomial time. Since

Ii
(H,B)

= {I ∈ db(B) | Hi ⊆ I },

we conclude that |Ii
(H,B)

| = |db(B \ BHi )|, where BHi is the set

of blocks in B with key values in Hi . Computing |db(B \ BHi )| is

straightforward. To compute |S•
(H,B)

|, observe that

|S•
(H,B)

| =

n∑
i=1

���Ii
(H,B)

��� .
Since each term of the summation can be computed in polynomial

time w.r.t. | |H ,B||, |S•
(H,B)

| can be compute in polynomial time.

Let us now focus on the expected value of SampleKL((H ,B)).

Note that X = SampleKL((H ,B)) is a random variable from the

probability space (Ω, π ) to {0, 1}, where Ω = S•
(H,B)

, and π is the

uniform distribution. Moreover, for each (i, I ) ∈ Ω,

X ((i, I )) =

{
1 if there is no j < i such that I ∈ I

j
(H,B)

,

0 otherwise.

Therefore,

Pr(X = 1) =
∑

{(i ,I )∈Ω |∄j<i s.t. I ∈I j
(H,B)

}

π ((i, I )) =
Num

|S•
(H,B)

|
,

where Num is the numerator of R(H,B). Hence,

E[X ] = E[SampleKL((H ,B))] = R(H,B) ·
|db(B)|

|S•
(H,B)

|
.

Recall that |S•
(H,B)

| can be computed in polynomial time in

| |H ,B||. It remains to show that E[SampleKL((H ,B))] > 0 im-

plies E[SampleKL((H ,B))] ≥ 1/p(| |H ,B||), for some polynomial

p. From the above discussion, we get that E[SampleKL((H ,B))] =

Num/|S•
(H,B)

|, where Num is the numerator of R(H,B). By defini-

tion of R(H,B), Num = |{I ∈ db(B) | Hi ⊆ I for some Hi ∈ H}|.

Hence, if we let k ∈ [n] be such that |Ik
(H,B)

| is maximum,

Num ≥ |{I ∈ db(B) | Hk ⊆ I }| = |Ik
(H,B)

|.

Therefore,

E[SampleKL((H ,B))] ≥
|Ik
(H,B)

|

|S•
(H,B)

|
≥

|Ik
(H,B)

|

n · |Ik
(H,B)

|
=

1

n
.

Proof of Lemma 4.7
Consider an admissible pair (H ,B), withH = {H1, . . . ,Hn }. The

analysis of the running time of SampleKLM with input (H ,B) is

along the lines of the one given in the proof of Lemma 4.5. Con-

cerning the expected value, X = SampleKLM((H ,B)) is a random

variable from the probability space (Ω, π ), where Ω = S•
(H,B)

, and

π is the uniform distribution. In this case, the range of X is the set

{k−1}k ∈[n]. In particular, for each (i, I ) ∈ Ω, we have that

X ((i, I )) =
1

|{j ∈ [n] | I ∈ I
j
(H,B)

}|
.

Thus, for every k ∈ [n], we have that

Pr
(
X =

1

k

)
=

∑
{(i ,I )∈Ω | | {j ∈[n] |I ∈I j

(H,B)
} |=k }

π ((i, I )).

Consider now a pair (i, I ) ∈ Ω. If I is such that |{j ∈ [n] | I ∈

I
j
(H,B)

}| = k , for some k ∈ [n], then there exist exactly k − 1

distinct pairs (j1, I ), . . . , (jk−1
, I ) ∈ Ω, which are different than (i, I ),

with the same property. Hence, we conclude that

Pr
(
X =

1

k

)
= k ·

Numk
|S•

(H,B)
|
,

where Numk is the number of all I ∈ db(B) such that |{j ∈ [n] |

I ∈ I
j
(H,B)

}| = k . The latter is equivalent to say that Numk is the

number of all I ∈ db(B) that contain exactly k distinct sets in H .

Thus, the expected value of X = SampleKLM((H ,B)) is

E[X ] =

n∑
k=1

1

k
· Pr

(
X =

1

k

)
=

n∑
k=1

Numk
|S•

(H,B)
|
.

Clearly,

∑n
k=1

Numk = Num, where Num is the numerator of

R(H,B), which in turn implies that

E[X ] = E[SampleKLM((H ,B))] =
Num

|S•
(H,B)

|
.

Therefore,

E[SampleKLM((H ,B))] = R(H,B) ·
db(B)

|S•
(H,B)

|
.

We have already shown that computing |S•
(H,B)

| is feasible in poly-

nomial time w.r.t. | |H ,B||. Moreover, from Lemma 4.5, we know

that there exists a polynomial p such that E[SampleKL((H ,B))] =

E[SampleKLM((H ,B))] > 0 implies E[SampleKL((H ,B))] =

E[SampleKLM((H ,B))] ≥ 1/p(| |H ,B||), and the claim follows.

Self-adjusting Approximation
The SelfAdjustingCoverage algorithm, which is an adaptation of an

algorithm given in [15], is depicted in Algorithm 6.We need to show

that SelfAdjustingCoverage is an efficient approximation scheme

for UnionOfSets, which will immediately imply Theorem 4.9.

Our adapted algorithm essentially takes as input an admissible

pair (H ,B), where H = {H1, . . . ,Hn }, as the description of the

sets I1

(H,B)
, . . . ,In

(H,B)
. Thus, from results in [15], for showing

that SelfAdjustingCoverage is an efficient approximation scheme

for UnionOfSets, it suffices to show that the following tasks can be

carried out in polynomial time w.r.t. | |H ,B||:



Input: An admissible pair (H ,B), ϵ > 0, and 0 < δ < 1

Output: A random number in [0, 1]

steps := 0; total := 0; trials := 0

N := ⌈(8 · (1 + ϵ) · |H | · ln(3/δ ))/((1 − ϵ2/8) · ϵ2)⌉

while true do

Choose (i, I ) ∈ S•
(H,B)

with probability

1

|S•
(H,B)

|

while true do
steps := steps + 1

if steps > N then
goto finish

Choose j ∈ {1, . . . , |H |} with probability

1

|H |

if I ∈ I
j
(H,B)

then
goto end_inner_while

end_inner_while:

total := steps
trials := trials + 1

finish:

p :=
total · |S•

(H,B)
|

|H | · trials
return p

Algorithm 6: SelfAdjustingCoverage

(1) choose a pair (i, I ) ∈ S•
(H,B)

with probability 1/|S•
(H,B)

|,

(2) choose a number j ∈ {1, . . . , |H |} with probability 1/|H |,

(3) check whether I ∈ Ii
(H,B)

, for some i ∈ [n], and

(4) compute the number |S•
(H,B)

|.

We have already shown in the proof of Lemma 4.5 that tasks 1, 3 and

4 can be carried out in polynomial time w.r.t. | |H ,B||. Moreover,

choosing j ∈ {1, . . . , |H |} with probability 1/|H | is clearly feasible

in polynomial time w.r.t. | |H ,B||, and the claim follows.

C THE PREPROCESSING STEP
We start by making a simple but useful observation. All the algo-

rithms in Section 4, as well as Algorithm 6, that take as input an

admissible pair (H ,B), which is essentially the (Σ,Q)-synopsis of
D for some tuple t̄ , are oblivious to the syntactic shape of the facts

in H and B, i.e., the actual relation and tuple of constants of those

facts is irrelevant to the execution of the algorithms. This allows us

to work with an encoding of synΣ,Q (D), denoted enc(synΣ,Q (D)),
using integer identifiers for facts, which can be easily constructed

by first executing a simple rewriting Qrew
of Q over D, and then

construct enc(synΣ,Q (D)) fromQrew(D) in linear time in |Qrew(D)|.

Computing the Encoding of the Synopsis Set
Assume that the given CQ Q(x̄) is of the form ∃ȳ (R1(z̄1) ∧ · · · ∧

Rn (z̄n )). Suppose, for the moment, that we have a rewriting Qrew

of Q of arity (|x̄ | + 4 · n) such that Qrew(D) is the set of tuples

{(h(x̄), rid1, bid1, tid1, kcnt1, . . . , ridn, bidn, tidn, kctrn ) |

h is a homomorphism from Q to D},

where, for each i ∈ [n], ridi (relation id) is an integer that iden-

tifies the relation Ri , bidi (block id) is an integer that identifies

the block blockΣ(Ri (h(z̄i )),D |Ri ), with D |Ri being the restriction

of D to the relation Ri , tidi (tuple id) is an integer that identifies

the fact Ri (h(z̄i )) in blockΣ(Ri (h(z̄i )),D |Ri ), and kcnti (key count)

is the cardinality of blockΣ(Ri (h(z̄i )),D). Observe that the pair

(ridi , bidi ) uniquely determines the block blockΣ(Ri (h(z̄i )),D) ∈

blockΣ(D), while the triple (ridi , bidi , tidi ) uniquely determines

the fact Ri (h(z̄i )) ∈ D. In what follows, we write [[ridi , bidi ]] and
[[ridi , bidi , tidi ]] for the integer identifier of blockΣ(Ri (h(z̄i )),D)
and Ri (h(z̄i )), respectively, and we will refer to blocks and facts

using their integer identifiers. It should be clear that given a tuple

(h(x̄), rid1, bid1, tid1, kcnt1, . . . , ridn, bidn, tidn, kctrn ) (1)

ofQrew(D), the setH = {[[ridi , bidi , tidi ]]}i ∈[n] is the homomorphic

image of Q in D via the homomorphism h. Moreover, H |= Σ iff

for each i, j ∈ [n], with i , j, (tbli , bidi ) = (tblj , bidj ) implies

tidi = tidj . Hence, enc(synΣ,Q (D)) can be constructed by iterating

over the tuples of Qrew(D), and for each tuple of the form (1),

if H = {[[ridi , bidi , tidi ]]}i ∈[n] |= Σ, then H is added to the H -

component of the (Σ,Q)-synopsis ofD forh(x̄), and, for each i ∈ [n],
the fact [[ridi , bidi , tidi ]] is added to the block [[ridi , bidi ]] of the B-

component of the (Σ,Q)-synopsis of D for h(x̄).
After the completion of the above procedure, some identifiers

might be missing from the blocks of the B-component; in fact, the

identifiers that do not occur in a set of theH -component. However,

since we know the cardinality of each block of the B-component,

we simply need to add the integer identifiers that are missing, which

in turn leads to the set enc(synΣ,Q (D)). It remains to explain how

the rewriting Qrew
of Q is defined as an SQL query.

The Rewriting
For a relation R/n, we define a query QR of arity n + 4 such that

QR (D) is the set of tuples

{(t̄, rid, bid, tid, kcnt) | R(t̄) ∈ D},

where rid identifies R, bid identifies blockΣ(R(t̄),D |R ), tid identifies

R(t̄) in blockΣ(R(t̄),D |R ), and kcnt is |blockΣ(R(t̄),D)|. Assume, for

every relation R, a unique integer identifier #R. If, for example, R
is a binary relation with attributes A and B, and key key(R) = {1},

and D |R consists of R(a1,b1), R(a1,b2), R(a1,b3), R(a2, c1), R(a2, c2),

then QR (D) is as follows:

A B rid bid tid kcnt

a1 b1 #R 1 1 3

a1 b2 #R 1 2 3

a1 b3 #R 1 3 3

a2 c1 #R 2 1 2

a2 c2 #R 2 2 2

We define QR as an SQL query by means of the following view.

Let ᾱ , κ̄, ν̄ denote the list of all attributes, key attributes, and non-

key attributes of R, respectively:

CREATE VIEW QR AS

SELECT ᾱ , #R AS rid,

dense_rank() OVER (ORDER BY κ̄ ) AS bid,
row_number() OVER (PARTITION BY κ̄ ORDER BY ν̄ ) AS tid,
count(*) OVER (PARTITION BY κ̄ ) AS kcnt
FROM R



The above SQL view exploits the dense_rank and row_number
window functions from the ANSI SQL standard, and thus are sup-

ported by all major RDBMSs such as PostgreSQL, MySQL, SQL

Server and Oracle. The function row_number ranks (with increas-

ing integers) all the selected rows as specified by the corresponding

OVER expression, while dense_rank is similar but two occurrences

of the same tuple get the same rank.

Having the above view in place, we can now rewrite the conjunc-

tive queryQ(x̄) of the form ∃ȳ (R1(z̄1) ∧ · · · ∧ Rn (z̄n )) intoQ
rew

as

follows. Assuming that the SQL version of Q is

SELECT ᾱ FROM R1, . . . ,Rn WHERE θ ,

Qrew
is the SQL query of arity |ᾱ | + 4 · n of the form:

SELECT ᾱ , R1.rid,R1.bid,R1.tid,R1.kcnt,

R2.rid,R2.bid,R2.tid,R2.kcnt,

· · ·

Rn .rid,Rn .bid,Rn .tid,Rn .kcnt
FROM QR1

AS R1,QR2
AS R2, . . . ,QRn AS Rn

WHERE θ ORDER BY ᾱ .

Remark.We would like in our experimental analysis to measure

the time for constructing enc(synΣ,Q (D)), and thus our implemen-

tation of Algorithm 1 builds it upfront. However, since Qrew
orders

the output tuples by ᾱ , we could avoid the explicit computation

of the whole set enc(synΣ,Q (D)). Actually, we could iterate over

the tuples of Qrew(D), as the RDBMS computes them, and keep in

memory only the (Σ,Q)-synopsis of D for one tuple t̄ at a time.

D STATIC QUERY GENERATOR
To generate our stress test queries we exploit a recent query gen-

erator [3], which we call static query generator (SQG). We call it

static since it allows us to tune only static parameters of the query,

without taking into account any database.

SQG takes as input a schema S (the schema of the output CQ),

two integers j ≥ 0 and c ≥ 0 (the number of joins, and the number

of occurrences of constant values, respectively, in the output CQ),

a number 0 ≤ p ≤ 1 (the percentage of attributes in the output

CQ that should be projected), and a function f from {R[k] | R ∈

S and k ∈ [n]}, i.e., the set of attributes of the relations of S (R[k]
refers to the k-th attribute of the relation R) to C, which specifies

the constant values that can appear in a certain attribute.

The query generator first identifies a set of joinable attribute

pairs of the relations of S by analyzing the foreign-key dependencies
of S. It then iteratively creates j ≥ 0 join conditions by choosing

at random an attribute R[k], where R/n ∈ S and k ∈ [n], and then

choosing at random an attribute P[ℓ], where P/m ∈ S and ℓ ∈ [m],

that is joinable with R[k]. The result of this step is a set of j join
conditions of the form R[k] = P[ℓ]. The query generator then

proceeds analogously to generate c ≥ 0 occurrences of constant

values, i.e., constant conditions of the form R[k] = a, where R/n ∈ S,
k ∈ [n], and a ∈ f (R[k]). Clearly, the above randomly generated

conditions uniquely determine (up to variable renaming) a set of

atomsAj ,c over S, that is, the smallest set of atoms over S such that,

for each join condition R[k] = P[ℓ], there is an R-atom and a P-
atom that mention the same variable at R[k] and P[ℓ], respectively,
and for each constant condition R[k] = a, there is an R-atom that
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Figure 3: Distribution of preprocessing step running time

mentions a at R[k]. Finally, assuming that T is the set of attributes

of the relations occurring in Aj ,c , the query generator chooses at

random ⌈p · |T |⌉ attributes ofT that should be projected. This gives

rise to the CQ Q j ,c ,p obtained by considering the conjunction of

the atoms of Aj ,c with all the variables occurring at an attribute of

T that has been randomly chosen being output variables, and all

the other variables being existentially quantified.

E EXPERIMENTAL EVALUATION
Weproceed to give some further details concerning the performance

of the preprocessing step over the database-query pairs of PH. We

also discuss our experimental analysis based on the join scenarios

that is omitted from the main body of the paper. We finally provide

a bit more detailed discussion concerning the take-home messages

of our analysis.

Preprocessing Step
Our goal here is to illustrate that for the wide variety of database-

query pairs (D,Q) that we have generated, synΣH,Q (D), which is

essentially what we give as an input to the approximation schemes

for CQA in our experiments, can be effectively computed via the

query rewriting approach from Section 5. Let us stress that our ap-

proach is by no means the ultimate way for computing synΣH,Q (D)
as one may devise a more sophisticated and optimized procedure;

this goes beyond the scope of our work. Nevertheless, it turned out

that it performs reasonably well in almost all of our scenarios.

In Figure 3, we show the normalized distribution of the running

time of our preprocessing step, executed over every pair (D,Q) ∈
PH, i.e., a bar of height p that corresponds to running time t seconds
means that for p ·100 percent of pairs (D,Q) in PH, the construction
of the set synΣ,Q (D) via the preprocessing step took between t and

t + 1 seconds. For most pairs (D,Q) of PH it took between 20 and 30

seconds for the computation of the set synΣH,Q (D). More precisely,

for 80% of the pairs of PH, the preprocessing step completed its

execution in less than 30 seconds, for 94% in less than a minute,

while the execution time over all pairs never exceeded two minutes.

Although there is room for improvement in terms of the runtime
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(d) Joins[0.2, 0.3]
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(e) Joins[0.4, 0.3]
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(f) Joins[0.6, 0.3]
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(g) Joins[0.2, 0.5]
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(i) Joins[0.6, 0.5]

Figure 4: Join test scenarios - Joins[noise, balance]

of the preprocessing step, the take-home message is that relying

on such a preprocessing step is not prohibitive in practice.

Join Scenarios
We proceed to investigate how the running time of the approxima-

tion schemes for CQA is affected by varying the number of joins

occurring in the query. To this end, we consider the family of join

scenarios, which consists of 110 test scenarios each consisting of

25 database-query pairs. We ran experiments for all those scenar-

ios but, for the sake of clarity, we present only the results of nine

representative scenarios (see Figure 4). Let us stress, however, that

the main conclusions that we draw below are in line with what we

can conclude from all the 110 join scenarios. Our results regarding

all 110 join scenarios (together with our results regarding all the

noise and balance scenarios that are omitted from the main body

of the paper) can be found below in Section G. When varying the

number of joins in the query, each level of joins is associated with a

completely different batch of CQs, where the body and the output

variables change. Hence, comparing absolute running times in this

case makes less sense. Therefore, the plots in Figure 4 show the

share of the running time of each approximation scheme w.r.t. the

running time of the others when focusing on a certain level of joins.

In other words, for a join scenario Joins[p,q], we plot, for each

j ∈ [5] and approximation scheme A, the percentage of average
time taken by A w.r.t. the other algorithms. As in the analysis of

the noise scenarios, we draw different conclusions depending on

whether the CQs are Boolean or not.

The Boolean Case. Regardless of the number of joins, Natural is
the best performer, taking an extremely small share of the overall

running time, and this holds for any level of noise (see plots (a), (b)

and (c) in Figure 4). KL improves as the number of joins increases,

whereas KLM degrades and eventually performs worse than Cover,
for high noise. In any case, Cover is always slower than one of the

two KL variants. As already discussed in the analysis of the noise

and balance scenarios,Natural is the best performer for any number

of joins in the query because |H | is large, with (H ,B) being the

only synopsis in synΣH,Q (D), and therefore, R(H,B) is close to one.

On the other hand, the expected values E[SampleKL((H ,B))] and

E[SampleKLM((H ,B))], which coincide, are closer to zero. Also,

the number of iterations of Cover is linear in |H |.

An interesting observation, which cannot be readily seen from

the analysis based on the noise and balance scenarios, is the rela-

tionship between KL and KLM. For few joins in the query, KLM
performs better than KL (for any level of noise), and the reason is

that having the same expected value for their samplers, the vari-

ance of SampleKLM(H ,B) is smaller, and thus the computation of

the optimal number of iterations takes much less time. However,

we should not forget that SampleKLM is more demanding than

SampleKL since SampleKLM needs to iterate over every element

ofH . This affects the running when we have more joins and higher

noise, as |H | can be quite high, and thus KLM spends most of its

time in sampling. Actually, KLM is now worse than KL, and even

worse than Cover, as it only depends linearly on |H |.

The Non-Boolean Case. Focusing on non-Boolean CQs (see plots

(d), (e) and (f) in Figure 4), Natural is the worst performer, where

the difference w.r.t. other algorithms is getting bigger as we increase

the number of joins. The KL(M) approximation schemes are now

always the best performers, and, as in the Boolean case, KLM is

better when we have few joins, but KL catches up as we consider

more joins. Cover always performs worse than KL(M).

With higher balance, as we have already discussed, for a given

synopsis (H ,B) ∈ synΣH,Q (D), R(H,B) is closer to zero. Moreover,

by increasing the number of joins, |synΣH,Q (D)| increases, and
thus, Natural takes even more share of the overall running time.

For KL(M), as explained before, high balance means low running

time, and as for the Boolean case, KL catches up compared to KLM
at large numbers of joins due to the higher computational cost of

SampleKLM. For even higher balances (see plots (g), (h) and (i) in

Figure 4), the effect of increasing the number of joins on Natural is
more evident as R(H,B) is getting closer to zero.

Take-home Messages
Here is a bit more detailed discussion on the take-home messages of

our analysis than the one given in the main body of the paper. They



reveal a striking difference between Boolean and non-Boolean CQs,

and highlight the applicability of approximate CQA in practice.

(1) For Boolean CQs, the approximation scheme Natural is the
best performer, no matter the amount of noise, and no matter the

number of joins in the query, whereas Cover is the worst. Only in

the case of CQs with many joins Cover is comparable to KL(M), but

in any case, Natural is the way to go.

We remark that the problem of approximating the relative fre-

quency of a tuple is closely related to the problem of approximating

the fraction of truth assignments that satisfy a (Block) DNF for-

mula.
6
A database synopsis (H ,B) can be seen as a Block DNF

formula, where facts are variables,H is the set of all clauses, and

B is a partition over the variables. In this setting, sampling from

the natural sampling space is generally regarded to be impracti-

cal [6, 15] since the fraction we want to approximate can be, in

general, very close to zero. However, in the CQA setting, we have

seen that in the case of Boolean CQs, relying on the natural sampler

is the indicated direction. The reason is that for Boolean CQs, the

(only) database synopsis (H ,B) is such thatH is large (as it con-

tains all the homomorphic images of the query), and typically CQs

have few joins. The above two properties imply that the relative fre-

quency is actually close to one. Thus, if we cast our problem as the

problem of computing the fraction of truth assignments satisfying

a Block DNF formula, then this fraction will be close to one.

(2) For non-Boolean CQs, KLM is the way to go in almost all

the scenarios, i.e., for any level of noise and for any level of (non-

zero) balance of the query. Only for CQs with many joins, and high

noise, KL is comparable to KLM. Nevertheless, KL is never going to

outperform KLM in practice. The worst algorithms for non-Boolean

CQs are Natural and Cover. They perform similarly for low levels

of noise, balance and joins, but, in general, Natural is the slowest.

(3)We can safely claim that approximate CQA in the presence

of primary key constraints is feasible in practice. We have seen

that the preprocessing step, which is responsible for computing the

synopses, has completed its execution in less than 30 seconds in

most cases. Furthermore, for modest scenarios, which is what we

expect to face in practice, the running time of the best performing

approximation scheme is reasonable. For example, for 50% noise,

50% balance, and CQs with 3 joins, the runtime of the best per-

former is at most 6 seconds, and this decreases to 3 seconds for 30%

noise, and 30% balance. Hence, after executing the preprocessing

step, one can choose the appropriate approximation scheme for the

database and query at hand, according to the conclusions of items

(1) and (2), leading to an overall process whose running time is quite

encouraging considering the hardness of the problem in question.

Thus, we strongly believe that finding approximate solutions to

CQA is feasible in practice.

At this point, let us stress again that our approach, described in

Section C, for computing the synopses is by no means the ultimate

one, and there is room for improvement. Moreover, the performance

of the approximation schemes for CQA can greatly benefit from a

parallel implementation of the sampling phase without additional

synchronization overhead.

6
A Block DNF formula is a positive DNF formula, where its variables are partitioned

into X1, . . . , Xn , and only truth assignments that make exactly one variable from

each Xi true are considered.

F VALIDATING OUR RESULTS
Recall that we concluded Section 7.2 by noticing that we have also

experimentally validated ourmain conclusions concerning themain

approximation schemes for CQA (see take-home messages (1) and

(2) above). We proceed to actually perform this validation. To this

end, we rely on a different batch of test scenarios, which we call

validation scenarios, that are closer to real-world use cases.

Validation Scenarios
For our validation scenarios we rely on a subset of the query work-

loads provided by two TPC benchmarks: TPC-H once again, and

TPC-DS. The queries coming with the above two benchmarks have

been manually designed to resemble a typical query workload of a

data warehouse setting. The TPC-DS benchmark also comes with

its own primary keys, but it has a different structure than TPC-H; it

is actually a combination of multiple snowflake schemas, and thus,

it contains more relations (24) and columns (up to 34).

Generating the Data. Similarly to what we did for the stress test

scenarios, we considered the TPC-H and TPC-DS schemas SH and

SDS, together with their set of primary keys ΣH and ΣDS, respec-
tively. We generated the consistent databasesDH andDDS using the

data generation tools provided by the TPC-H and TPC-DS bench-

marks, respectively, with scale factor 1GB. The databases DH and

DDS contain roughly 9 and 20 million tuples, respectively.

Selecting the Queries. The TPC-H and TPC-DS benchmarks pro-

vide a manually-curated workload of query templates that can

be instantiated using the provided query generation tools. Such

queries are meant to represent typical queries in a data warehousing

scenario, and in each workload each query template has a unique

integer identifier. Since some of the templates do not correspond to

conjunctive queries (they use some form of negation), we generated

concrete instantiations of a selection of 17 positive queries from

the above benchmarks, after removing aggregate functions in the

SELECT clause. We report below the queries we considered; Qi
B

denotes the instantiation we obtained from the i-th query template

of the query workload of benchmark TPC-B, with B ∈ {H,DS}:

QH = {Q1

H
,Q4

H
,Q5

H
,Q6

H
,Q8

H
,Q10

H
,Q12

H
,Q14

H
,Q19

H
}

and

QDS = {Q1

DS
,Q33

DS
,Q60

DS
,Q62

DS
,Q65

DS
,Q66

DS
,Q68

DS
,Q82

DS
}.

Devising our Validation Scenarios. Since our intention is to as-

sess our results over scenarios that are closer to real settings, our

batch of queries is coming from the above workloads. Hence, we

have no control on the balance and the number of joins of each CQ,

but we can freely vary the noise. We consider databases with noise

between 10% and 80%. Let us note that we do not go beyond 80%

for a couple of reasons: (i) for some of the considered queries, the

process of generating noise using our query-aware noise generator

is becoming extremely demanding without terminating in a reason-

able amount of time, and (ii) databases with noise beyond 80% are

unlikely to appear in a real-life scenario.

For each B ∈ {H,DS}, and for each CQ Q ∈ QB, we considered

the validation scenario of Q , dubbed Validation[Q], consisting of 8
databasesD1, . . . ,D8 that are inconsistent w.r.t. ΣB. For each i ∈ [8],

Di was generated by calling our query-aware noise generator with
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Figure 5: Validation scenarios

input the (consistent database) DB, the set of primary keys ΣB,
the query Q , noise level i/10, and minimum and maximum block

size equal to 2 and 5, respectively. Summing up, we considered 17

validation scenarios (9 based on TPC-H, and 8 based TPC-DS) each

consisting of 8 inconsistent databases of increasing noise.

Experimental Validation Analysis
Although we ran experiments for all the validation scenarios, for

the sake of clarity, we present only the results of eight represen-

tative scenarios (see Figure 5). Let us stress that all the validation

scenarios provide results that indeed confirm our main outcomes

regarding the approximation schemes for CQA. Our results for all
17 validation scenarios are presented below in Section H.

The plots depicted in Figure 5 show how the running time of the

approximation schemes is affected by varying the noise focusing on

the CQs Qi
H
, for i ∈ {4, 6, 10, 12}, and Qi

DS
, for i ∈ {33, 65, 66, 68}.

Each plot also specifies the average and the standard deviation of

the balance of the corresponding query Q over the inconsistent

databases from Validation[Q] up to 4 decimal digits.

Observe that for most of the CQs presented in Figure 5, the stan-

dard deviation of their balance is very close to zero (it is zero up to

4 decimal digits), and hence, it does not change much for different

levels of noise. The only exceptions are the CQs Q10

H
and Q65

DS
con-

sidered in plots (c) and (g) of Figure 5, respectively. However, even

in those cases the standard deviation is low, which implies that

the balance of such queries does not deviate too much, on average,

when varying the noise. Therefore, we can safely compare the plots

in Figure 5 with the corresponding ones in Figure 1 about the noise

scenarios where the balance and the number of joins are fixed.

Validating Take-home Message (1). The queries Q4

H
,Q6

H
,Q12

H

andQ68

DS
have an average balance of zero over all eight inconsistent

databases on which they have been evaluated. Actually, except for

Q6

H
, which is a Boolean query, the other queries are non-Boolean

but behave like Boolean as the number of output tuples is very small

when compared to the number of homomorphic images, which in

turn implies that the balance is close to zero. For Q4

H
, the only at-

tribute in the SELECT clause is a categorical one, which takes very

few values in the database; the same applies to Q6

H
. Regarding Q68

DS
,

the low balance is because, although the number of homomorphic

images is large, and the output attributes are not categorical, due

to the WHERE clause, they take only a few distinct values. This

causes the number of output tuples to stay low w.r.t. the number of

homomorphic images, and hence, the balance is low on average.

The above discussion essentially tells us that we should compare

the trend of the runtime of the approximation schemes according

to plots (a), (b), (d) and (h) of Figure 5 with the trend of the runtime

according to the plots (a), (b) and (c) of Figure 1, which consider

CQs of zero balance. It is evident that the overall trend is confirmed

as the approximation scheme Natural is the best performer for any

level of noise, whereas all the other algorithms quickly time out

for most CQs. This actually validates our first take-home message

concerning Boolean CQs, and CQs of low balance.

Validating Take-home Message (2). The average balance ofQ10

H

and Q33

DS
is 0.20, while that of Q66

DS
is 0.3575. Therefore, we can

compare the trend of the running time of the algorithms according

to the plots of Figure 5 with the trend of the runtime according

to plots (d), (e) and (f) of Figure 1. We can see that also in this

case the overall trend is confirmed with KLM being the fastest

approximation scheme, regardless of the noise, whereas Natural is
the slowest where its running time quickly increases as the noise

increases. Finally, the average balance for query Q65

DS
is 0.60, and

comparing the trend of the running time according to plot (f) of

Figure 5 with that according to plots (g), (h) and (i) of Figure 1, which

consider CQs of high balance, we can also confirm our second take-

home message concerning non-Boolean CQs of high balance.

G ALL TEST SCENARIOS
For the sake of completeness, we provide the plots for all the test

scenarios. Figure 6 collects the plots for all Noise scenarios with

balance up to 0.4, while Figure 7 collects the plots for all Noise

scenarios with balance between 0.5 and 1.0. Figure 8 collects the



plots for all Balance scenarios with noise up to 0.5, while Figure 9

collects the plots for all Balance scenarios with noise between 0.6

and 1.0. Finally, Figure 10 collects the plots for all Join scenarios

with balance up to 0.2, Figure 11 with balance between 0.3 and 0.5,

Figure 12 with balance between 0.6 and 0.8, and Figure 13 with

balance between 0.9 and 1.0.

H ALL VALIDATION SCENARIOS
Finally, again for the sake of completeness, we present the plots for

all the validation scenarios, including those not shown in Section F.

Figure 14 collects the plots for the TPC-H validation scenarios,

while Figure 15 the plots for the TPC-DS validation scenario. Recall

that Qi
B
denotes an instantiation of the i-th query template of the

query workload of benchmark TPC-B, with B ∈ {H,DS}.
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Figure 6: Noise scenarios Noise[balance, joins] with balance up to 0.4
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Figure 7: Noise scenarios Noise[balance, joins] with balance between 0.5 and 1.0
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Figure 8: All Balance scenarios Balance[noise, joins] with noise up to 0.5
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Figure 9: Balance scenarios Balance[noise, joins] with noise between 0.6 and 1.0
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Figure 10: Join scenarios Join[noise, balance] with balance up to 0.2
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Figure 11: Join scenarios Join[noise, balance] with balance between 0.3 and 0.5
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Figure 12: Join scenarios Join[noise, balance] with balance between 0.6 and 0.8
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Figure 13: Join scenarios Join[noise, balance] with balance between 0.9 and 1.0
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Figure 14: Validation scenarios based on TPC-H
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Figure 15: Validation scenarios based on TPC-DS
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