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Abstract 

Ampicillin is a key β-lactam antibiotic listed as a World Health Organisation (WHO) 
Essential Medicine. Crystallisation is a unit operation of paramount importance in 
pharmaceutical manufacturing, whose design and operation are essential in controlling 
process yield and important product quality attributes, such as mean product crystal size 
(MCS) and size distribution width. A published model for the solubility of ampicillin as 
a function of pH as well as growth and nucleation kinetics is used towards the simulation 
and optimisation of its batch crystallisation. This study performs multi-objective dynamic 
optimisation of the batch crystallisation of ampicillin to establish optimal pH trajectories 
for different production objectives, including maximising the mean crystal size whilst 
minimising the size distribution width subject to various yield constraints. Trade-offs 
between different product quality attributes are thus quantified, visualised and discussed. 

Keywords: Multi-objective dynamic optimisation; batch crystallisation; ampicillin. 

1. Introduction 

Ampicillin is a broad-spectrum, semi-synthetic β-lactam antibiotic, used to treat various 
bacterial infections such as urinary and respiratory tract infections, being one of the ten 
most consumed antibiotics worldwide (Hamed et al., 2015). The β-lactam family of 
antibiotics are typically delivered orally and hence crystallisation is an essential unit 
operation in the production of these drugs, including ampicillin. The design and 
optimisation of crystallisation processes for efficient antibiotic production is important 
for its lean and agile manufacturing. The final size, shape and form of crystalline products 
are essential in pharmaceutical manufacturing as these product quality attributes influence 
downstream operations as well as the bioavailability of the crystalline product. Significant 
efforts in the development of batch crystallisation processes for their design and control 
have furthered pharmaceutical crystallisation significantly (Gao et al., 2017). Process 
modelling and optimisation studies performed before laborious, expensive experimental 
campaigns can elucidate optimal batch crystallisation manipulations (e.g. temperature, 
pH, antisolvent dosing) profiles, thus allowing for significant R&D time and cost savings. 

The batch crystallisation of ampicillin via pH manipulation has been demonstrated in the 
literature, including a model with detailed kinetics and solubility behaviour as a function 
of pH (Encarnación-Gómez et al., 2016). Dynamic optimisation of pH-profiles for 
ampicillin batch crystallisation may establish improved operating policies for improved 
process performances vs. straightforward linear pH variations demonstrated in the 
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literature thus far. This study implements the described ampicillin batch crystallisation 
model for dynamic optimisation of pH manipulation profiles to optimise product quality 
attributes subject to different operational and performance constraints. First, the published 
dynamic model for batch crystallisation is described in detail. The formulation of a 
dynamic optimisation problem with pH as the manipulated variable is described, with 
different case studies corresponding to experimental demonstrations. Optimisation results 
for different considered cases are presented in detail, followed by a critical comparison 
regarding trade-offs between process performance and key product quality attributes. 

2. Batch Crystallisation Model 

The ampicillin batch crystallisation model describes the antibiotic’s aqueous solubility 
vs. pH, nucleation and growth kinetics and population and mass balance equations, the 
simultaneous solution of which describes the crystallisation process (Encarnación-Gómez 
et al., 2016). It is assumed that all considered processes are isothermal at T = 25 °C, 
crystallisation is only induced via pH-variation and that pH variation in mixtures are 
instantaneous upon the implemented manipulation. The solubility of ampicillin as a 
function of pH is described using the extended Pitzer model (de Pessôa Filho et al., 2008) 
in Eqs. 1–2, where constants ε, σ, pKA1 and pKA2 are taken from the literature 
(Encarnación-Gómez et al., 2016), kB = Boltzmann constant, NA = Avogadro number, ρ 
= ampicillin density and the isoelectric point (pI) and its corresponding solubility (S(pI)) 
are regressed in previous work (Dafnomilis et al., 2019) 

log
S(pH)

S(pI)
 = pI −  pH + log ቈ

1 + 10pHିpKA1

1 + 10pIିpKA1
቉ + log ቈ

1 + 10pHିpKA2

1 + 10pIିpKA2
቉ + 

2

ln10
λ[S(pI)

− S(pH)] 

(1)

 λ = 
2πσ3NAρ

3
൬1 −

ε

kBT
൰ (2)

Crystallisation kinetics are described by Eqs. 3–7, where J = overall nucleation rate, G 
=linear growth rate, M = suspension density, SS = supersaturation (all of which are a 
function of time, t), and parameters kB, B0, b, s, kG and g are found in the literature 
(Encarnación-Gómez et al., 2016). The population balance in a batch crystalliser is 
described by Eq. 8, where n = the population density function, L = characteristic crystal 
length (assuming linear 1D growth), complimented by the boundary (Eq. 9) and initial 
(Eq. 10) conditions, corresponding to the population density of nuclei at t and that of 
seeds (n0), respectively. The solute mass balance across the liquid and solid phases is 
described by Eq. 11, where the ampicillin concentration, [Amp], removed from solution 
via crystallisation and contributes to the suspension density (M).  

G(t) = kG (SS(t) – 1)g (3)
∂n(t, L)

∂t
 = −

∂൫G(t)n(t, L)൯ 

∂L
 (8)

J(t) = B1(t) + B2(t) (4) n(t, 0) = 
J(t)

G(t)
 (9)

B1(t) = kB1 exp ൬–
B0

ln(SS(t)2)
൰ (5) n(0, L) = n0 (10)

B2(t) = kB2 M(t)b (SS(t) – 1)s (6)
d[Amp]

dt
 = −

dM 

dt
 (11)

 SS(t) = 
[Amp](t)

S(t)
 (7)  
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3. Dynamic Optimisation Problem Formulation 

This study considers the dynamic optimisation of the batch seeded crystallisation of 
ampicillin by manipulation of the pH trajectory over the batch duration. Generally, large 
Mean Crystal Sizes (MCS) and narrow size distributions (i.e., low STD or CV) are desired. 
Here, we maximise MCS while minimising STD by considering the objective function as 
a weighted sum of MCS and STD (Eq. 12), with associated weights WSTD and WMCS. 
Imposed constraints on the problem are defined as follows. The first constraint (Eq. 13) 
ensures sufficient supersaturation at the beginning of the batch. The second constraint 
(Eq. 14) ensures the pH is not too low (causing ampicillin degradation) or high (forming 
undesirable non-trihydrate ampicillin polymorphs); ampicillin has limited chemical 
stability at pH ≤ 5, below which degradation products are formed, and undesired non-
trihydrate polymorphs are formed at pH > 8 (Bezerra et al., 2018). The third constraint 
(Eq. 15) ensures that a minimum of a target amount of ampicillin is crystallised from 
solution at the end of the batch duration, tf. The fourth constraint (Eq. 16) ensures 
sufficient SS is maintained. We consider WSTD = 1.0, WMCS = 1.5 and the number of 
equispaced time discretisation intervals in the time domain, N = 30. The number of state 
variable collocation points, Kx = 3, and the initialisation pH profile is constant pH(t) = 7, 
unless stated otherwise in Section 4; the effects of varying Wi on the objective function 
and values of N have been considered and analysed previously (Dafnomilis et al., 2019). 

min
pH(t),tf

f (x, tf) = WSTDSTD − WMCSMCS  (12) 

7 ≤ pH(t0)  (13) 

5.5 ≤ pH(t) ≤ 8.0 (14) 

[Amp](tf) ≤ [Amp]target (15) 

1 < SS(t) (16) 

The optimisation problem is solved using orthogonal collocation on finite elements via 
the DynOpt package in MATLAB (Čižniar et al., 2005), which has been used in previous 
work for the optimisation of biochemical process control trajectories (Rodman and 
Gerogiorgis, 2019). We compare dynamic optimisation results for different cases of seed 
loading. Table 1 summarises parameters considered for each case, corresponding to three 
(experimentally demonstrated already) seeded ampicillin crystallisation cases. The target 
crystallisation yields are comparable with experiments (Encarnación-Gómez et al., 2016). 

Table 1: Dynamic optimisation problem cases considered.  
Case 1 2 3 

Seeding (wt%) 1.8 3.0 15.0 
[Amp](tf) (g kg-1) {6.8, 8.0} {6.8, 8.0} {6.9, 9.0} 

Yield (%) {39.8, 29.2} {39.8, 29.2} {46.4, 52.1} 
tf (min) 250 350 1,500 

4. Results and Discussion 

Optimal pH, nucleation, growth, SS and MCS profiles for different cases and yields are 
shown in Fig. 1. For lower crystallisation yields, the general pH manipulation is a drop 
near the beginning of the batch, followed by an increase and then a drop towards the end; 
this results in high SS at the start, followed by a decrease and then an increase towards 
the end. The initial high SS promotes nucleation; the subsequent lower supersaturation 
allows nuclei to grow to attain high MCS as per the defined objective function. The final 
increase in SS allows further nucleation to increase the yield to meet the target yield. This  
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Figure 1: Optimal trajectories for all cases; N = 30; Kx = 3; initialised at pH(t) = 7. 
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Figure 2: 3D Pareto front of the multiobjective dynamic optimisation problem (all cases). 

results in MCS profiles which drop at the start (as nuclei form, the average MCS 
decreases) followed by an increase (due to growth dominating). As the target 
crystallisation yield is increased, the resulting optimal profiles change. The final decrease 
in pH in order to enhance the yield occurs earlier; this is due to the need to crystallise 
more nuclei in order to meet the target yield. As a consequence, MCS profiles begin to 
gradually decrease due to the formation of nuclei, although are approximately the same 
as for lower yields. Lower WMCS values result in similar forms of pH manipulation and 
state trajectories, with more drastic pH drops resulting in more nucleation, and thus lower 
final MCS values, as MCS is given less importance in the objective function (Dafnomilis 
et al., 2019). As the seed loading is increased, the pH drop towards the end of the batch 
duration is observed later. For higher seed loading; the yield is enhanced as fewer nuclei 
are needed to meet the target yield. In all cases, a pH drop is only implemented towards 
the end of the batch duration, as growth is more important than generating new nuclei. 

 
Figure 3: 2D Pareto front projections of the dynamic optimisation problem. 

Pareto fronts of [Amp](tf) vs. MCS and CV are shown in Figs. 2 and 3 to quantify and 
visualise production trade-offs. For lower seed loadings, the attained MCS and CV are 
higher and lower, respectively, than for higher loading. For Case 3, there is not as evident 
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a trade-off between yield and MCS or CV. Investigating the effect of intermediate seed 
loadings and dynamic seeding policies will further elucidate process improvements. 
While experimental values of CV for different seeded cases are not provided in the 
literature (Encarnación-Gómez et al., 2016), computed MCS values attained via dynamic 
optimisation of pH profiles in this study are higher than reported values, illustrating the 
benefit of the implemented framework for batch crystallisation process improvements. 

5. Conclusions 

This study implemented dynamic optimisation for the batch crystallisation of ampicillin 
via pH control. The dynamic batch crystallisation model encompasses ampicillin 
solubility behaviour as a function of pH, growth and nucleation kinetics as a function of 
crystallisation pH, population balances (using the method of moments to reduce their 
complexity) and solute mass balances. The optimal pH manipulation trajectory varies 
with target crystallisation yield and considered seed loading. Optimal pH profiles are such 
that high supersaturation is generated at the start of the batch run in order to meet the 
target crystallisation yield followed by lower supersaturation to promote growth and 
minimise the size distribution width. Illustrations of Pareto fronts of target yield vs. 
product quality attributes (MCS and CV) show evident trade-offs between the 
crystallisation performance and desired product size distribution properties. Future work 
will consider seed loading as a dynamic control variable to further optimise dynamic 
control profiles to meet different production specifications of ampicillin production. 
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