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Abstract 

Large investments are required for the positioning and drilling of oil and gas wells, 
implying that decisions related to these activities may be significantly aided by sound and 
proven mathematical-oriented methods. The use of intuitive engineering judgement alone 
cannot guarantee sustainable profitability over long periods, especially under geological 
(reservoir model) uncertainty. To capture significant uncertainty sources in the subsurface 
geology of the reservoir considered in this study, geostatistical model realisations are 
obtained using available information (permeabilities and porosities). We use specialised 
algorithms of the MATLAB Reservoir Simulation Toolbox (MRST, interfaced with 
PETRELTM) in order to determine optimal petroleum production well locations and 
production rates and thus maximise the field oil recovery. The developed computational 
workflow has been applied to a realistic case study, for which robust optimality is 
demonstrated using the worst-case realisation for determining optimal well locations.  

Keywords: Production optimisation; optimal well placement; geological uncertainty. 

1. Introduction 

Well placement optimisation at the early planning stages of field development is 
necessary to achieve the best possible economic benefits. Reservoir simulations that 
quantify fluid flow behaviour with respect to well positions can be used to describe 
subsurface flow phenomena over a long time horizon. However, these simulations can be 
computationally expensive and this limits the number of iterations that can be performed 
in the search for an optimal operation strategy. The application of mathematical 
optimisation to well placement problems usually includes gradient-based methods, mixed 
integer programming, genetic algorithms and particle swarm optimisation (Bangerth et 
al., 2006; Onwunalu and Durlofsky, 2010). The complexity of this problem is aggravated 
by geological uncertainty, which can be accounted for by incorporating multiple 
geological realisations in the optimisation formulation. The use of the entire superset and 
a subset of equiprobable geological realisations for well placement optimisation has been 
carried out by Yeten et al. (2003) and Wang et al. (2012), with intense computational 
efforts. However, the application of flow diagnostics adopted in this work for well 
placement optimisation, utilises an adjoint code for gradient evaluations (Møyner et al., 
2015), thus enabling faster and accurate computations compared to previous studies. The 
objective of the present study is to offer a systematic exploration of different operational 
strategies (with flow visualisations) for optimal oil recovery, demonstrated on a realistic 
field using the functionalities of the MATLAB Reservoir Simulation Toolbox (MRST).  
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2. Methodology 

Static modelling: The first step in this stage involves the mapping of horizons and faults 
from the available seismic data in PETRELTM (Figs. 1a and 1b). This is followed by the 
creation of surface maps that mark the reservoir’s boundary (Fig. 1c). Well log 
interpretations are carried out next to identify the productive geological zones based on 
the reservoir’s lithology, porosity and fluid resistivity (Fig. 1d). The result of this 
interpretation is the final static model as shown in Fig. 1e, which is upscaled for dynamic 
simulation purposes (Fig. 1f). The field contains 5 injection wells and 3 production wells. 

 
Figure 1: Static and dynamic reservoir model development procedure. 

Incorporating uncertainty: Geological uncertainty exists because it is difficult to know 
the exact properties of every section 
of the realistic reservoir (Rahim and 
Li, 2015). Using the sequential 
Gaussian simulation functionality of 
PETRELTM, 50 realisations of the 
reservoir’s permeability (horizontal 
and vertical) are generated. The grid 
structure and the fluid and rock 
properties of each realisation are 
imported into MATLAB (where 
optimisation tasks are performed 
using the MRST toolbox). The 
Lorenz coefficient (Lc) is the main 
ranking metric applied and the worst realisation is that with the highest Lc. 

Dynamic modelling and optimisation formulation: Optimisation tasks are carried out 
over the worst case scenario after ranking the geological realisations, thus ensuring robust 
feasibility of the obtained solution (worst-case optimisation).  The mathematical 
formulation of the reservoir model, objective function, operational constraints and 
adopted solution strategy (Møyner et al., 2015) are shown in Table 1. The dynamic 
reservoir model (Eqs. 1–3) describes the flow field in the reservoir and the time-of-flight 
(TOF, the time required for a fluid particle to travel along a streamline from its starting 

Figure 2: 4 out of 50 geological realisations. 
implemented 
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point to the current position). The pressure is denoted as p, the TOF as τ, the Darcy 
velocity as �⃗�, the reservoir’s storage capacity as ϕ, the permeability tensor as K, and the 
fluid mobility as λf. Flow in the reservoir can be driven by wells, nbh, which are controlled 
by the bottomhole pressure (BHP), but also by other wells, nr, which are rate controlled. 
Both well types, nw, have perforations, npf, through which fluid flows from the reservoir 
into the wellbore. All wells are modelled using the Peaceman well model (Eq. 4) in which 
the well perforation fluxes are denoted by qpf. The index of the well to which perforation 
number j belongs is denoted as Nw(j). Moreover, k is the well index and W j

pf is the 
Peaceman well index. Furthermore, a set of manipulations (controls), in the form of 
closure relations, are specified for each well type (Eqs. 5–6); u is the control vector.  

Table 1: Modelling and optimisation framework for well placement optimisation. 

 

Besides the well placement optimisation, rate control optimisation is subsequently 
performed on the optimally located wells. The first objective function (Eq. 7) is applied 
to the well placement optimisation task; the objective function is based on the Lorenz 
coefficient (Eq. 7), which is written in terms of the flow capacity, F, and the storage 
capacity, ϕ. This coefficient measures how the oil displacement efficiency for a given 
well pattern differs from that of an ideal (piston-like) displacement pattern in the 
reservoir. Thus, this coefficient is a measure of the optimality of the water flooding 
operation and hence the oil recovery in the reservoir. However, a simplified Net Present 
Value (NPV) expression (without installation cost of wells and other factors) is utilised 
as the objective function of the rate control procedure (Eq. 8). T represents the length of 
the time horizon, qc and qci are the field production and injection rates of components c 
(oil and water) respectively. The revenues and costs of production and injection of 
components c are rc and rci respectively and d is the discount rate. Furthermore, we note 
that 𝓒, 𝓣, 𝓥, 𝓠 and 𝓟 represent the discretised system in terms of variables, qpf, pbh, p, v, τ. 

To perform optimisation computations, the primary variables (pressure, rates and TOF) 
in Eqs. 1–3 are solved for, and the objective function gradients are computed for a set of 
controls. The solution strategy (two-point flux approximation for spatial discretisation – 
Eq. 10) minimises computational workload and makes it adaptable to different linear 
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algebraic solvers. The adjoint equations comprises the Lagrange function for the problem 
(Eq. 11), its derivatives (Eq. 12) and simplifications (Eqs. 13–14) that yield an objective 
function which depends on the state variables, x and not on the control variables u. xT is 
a vector of the solution quantities pT, vT, τT, qT and pbh

T. G[x(u)] represents the objective 
function and g[x(u),u] = 0 represents a set a constraints; λ is the Lagrange multiplier, J is 
the Jacobian, and superscript T denotes the vector/matrix transpose, as applicable above. 

Optimal well controls: A steepest-descent algorithm is implemented for finding optimal 
controls (Eq. 9). This utilises the supplied NPV objective function, the well rate bounds 
(maximum and minimum) and voidage replacement; α represents the step size and P is a 
projection to the constraints. While evaluating the objective, the value of α is adjusted 
and the algorithm stops when the improvement in the objective function between two 
successive iterations is less than the specified tolerance (in this case, equal to: 5×10–4). 

Well placement algorithm: The algorithm begins by adding pseudowells with a zero-
rate in the region around each injector and computes the gradients of the added wells 
(based on the Lorenz coefficient). The original well is then replaced by the pseudowell 
with the largest gradient. The process is repeated until all wells remain stationary.  

3. Simulation and optimisation results 

In carrying out the optimisation procedure it is assumed that the production wells have 
been drilled whereas the injection wells are yet to be drilled. Thus, the aim of the 
optimisation task to determine the optimal injection well positions that yields the best 
possible oil displacement in the reservoir. In our case study, the reservoir model contains 
2,726 cells with an initial pressure of 500 bar; two phases are present (oil and water). 
Densities and viscosities of both phases are 859 kg m–3, 1014 kg m–3, 2 cP and 0.5 cP 
respectively; the relative permeability exponents of both phases were set as 2. All 5 
injection wells and 3 production wells are assumed to have vertical geometries. The initial 
injector placement was done such as to maintain good hydraulic connectivity between the 
injection and production wells given the faulted nature of the reservoir – this is based on 
reservoir engineering judgement (Fig. 3a).  However, on applying the well placement 
algorithm, optimal injector locations that guarantee improved oil sweep are obtained. This 
can be observed in the oil saturation plots for both placement patterns (unexplored regions 
of the reservoir - the yellow patches in Fig. 3a are absent in Fig. 3b). The well paths taken 
by the algorithm during the search for optimal injector well position are shown in Fig. 3c.  

The Lorenz coefficient (a measure of reservoir heterogeneity and the efficiency of oil 
displacement) is also shown for the two placement scenarios. A smaller value of this 
parameter represents a better displacement scenario; this is the case with the optimised 
well positions as shown in Fig. 3b compared to Fig. 3a. F/ϕ denotes the ratio of the 
reservoir’s flow capacity to its storage capacity (Fig. 4a). For a perfect/idealised oil 
displacement in the reservoir, the F/ϕ ratio = 1. It is observed that the optimised well 
placement yields an F/ϕ curve closer to an idealised displacement scenario compared to 
initial well positions. In order to further validate the optimality of the new well 
configurations determined by the algorithm, we run multiphase flow simulations for a 
production timeframe of 5 years and obtain the oil recovery over this period. It is shown 
in Fig. 4b that the oil recovery of the optimised well placement far supersedes that of the 
initial well placement (twice the recovery of the initial placement at the end of the 
production forecast – Fig. 4b). This indicates that intuitive-based well placements will 
hardly yield similar performance and oil recovery (field profitability) to that obtained by 
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sound mathematical techniques. The well placement algorithm thus capitalises on the 
underlying permeability distribution for optimal determination of injection well locations. 

 
Figure 3: Oil saturation distribution before and after well placement optimisation. 

The optimal control configurations (injection and production rates for respective wells) 
based on the new well placements are thus illustrated in Fig. 4c and 4d, respectively.  

 
Figure 4: (a) Oil displacement efficiency F/ϕ diagram, (b) percentage oil recovery, optimal 
manipulations for injection (c) and production (d) wells in the field considered, (e) NPV evolution. 

The application of the rate optimisation algorithm, which is based on the NPV indicates 
that injection well I2 with a steady decreasing injection rate at each timestep should be 
allocated the highest injection rate at the start of production. Next in magnitude is I1 with 
a relatively lower injection rate. I4 has the lowest injection rate compared to other 
injection wells and may be considered the least performing. Since operators have control 
over the injection rates at the surface, it can be said that the rate optimisation algorithm 
also inherently solves a rate allocation problem. The production rate responses from the 
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different wells indicates that P3 is the most productive well and significantly contributes 
to the overall field NPV. The evolution of the NPV objective function is shown in Fig. 4e. 
It is observed that within the first 5 iterations, the algorithm is able to find a near optimal 
solution. Compared to a methodology that requires numerous direct calls to a high-fidelity 
simulator or an approximation of the simulator’s output (Epelle and Gerogiorgis, 2019a; 
b), the implemented algorithm attains optimality in fewer iterations (within 2 min of run 
time). Although the presented case study is somewhat small (in terms of the number of 
wells), such rapid computational performance is also expected when the problem size 
increases. Beyond the computational time required for the rate control optimisation step, 
we present the time required for the entire workflow (Fig. 5). Most of the time is spent on 
static model development and preliminary dynamic simulations to ascertain performance.  

 
Figure 5: Time requirement for each step of the computational workflow. 

4. Conclusion 

This study presents an injection well placement and rate control problem of a realistic oil 
field under geological uncertainty. A worst-case scenario optimisation is performed based 
on 50 geological realisations obtained from static reservoir modelling, via Sequential 
Gaussian Simulation. By implementing a well placement optimisation algorithm, oil 
recovery in the field is boosted to twice the value obtained via intuition-based methods 
(for a 5-year forecast period). Furthermore, the robust computational methodology for 
rapid determination of gradients enables rate control (using NPV is the objective function) 
and well placement optimisation (using the Lorenz coefficient as the objective function). 
These tasks are performed in a matter of minutes, thus demonstrating the applicability of 
the implemented approach towards real-time decision support in reservoir management. 
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