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Abstract:  21 

Fungal keratitis (FK) accounts for approximately half of the microbial keratitis encountered in low 22 

middle income countries (LMICs) and predominantly affect the working rural-poor. FK causes 23 

significant morbidity with the majority of patients left with moderate or worse visual impairment 24 

and approximately 25 % requiring expensive and often unsuccessful surgical interventions. The 25 

severity of FK and the resultant corneal damage or resolution can be attributed to i) the virulence 26 

and bioburden of the fungal pathogen, ii) the host defense mechanism and immune response and iii) 27 

sub-optimal diagnostics and anti-fungal treatment strategies. This review provides a comprehensive 28 

overview of the multifaceted components that drive FK progression and resolution, highlighting 29 

where knowledge gaps exist and areas that warrant further research.  30 

Keywords:  31 
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PAMP Pathogen associated molecular pattern 43 

PDT Photodynamic therapy 44 

PRR Pattern recognition receptor 45 

PTX3 Pentraxin 3 46 

ROS Reactive oxygen species 47 

SigA Secretory Immunoglobulin A 48 

SLIPI Secretory leucocyte protease inhibitor 49 

SP-A/D Surfactant protein A/D 50 

TLR Toll-like receptor 51 

TPK Therapeutic keratoplasty 52 

ZAG Zinc-α-glycoprotein 53 
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1. Introduction  55 

The incidence of microbial keratitis in the developing world has increased to epidemic proportions 56 

prompting cornea specialists to recommend the status of ‘Neglected Tropical Disease’ to this 57 

condition (Ung et al., 2019a). Fungi have been implicated in the disease with increasing frequency, 58 

accounting for 1-45 % of infectious keratitis depending upon the geographic distribution (Garg, 59 

2012; Gower et al., 2010). This is most evident in regions where a significantly high proportion of the 60 

populations are involved in agrarian activities (Lalitha et al., 2015; Whitcher et al., 2001). Whilst 61 

filamentous fungi (Fusarium and Aspergillus) are the most common etiological agents causing fungal 62 

keratitis (FK) in tropical regions, yeasts like Candida play an important role in temperate climates 63 

(Srinivasan, 2004). The clinical outcomes of FK are worse than bacterial keratitis due to delayed 64 

diagnosis, inappropriate use of antibiotics and/or steroids, the virulence of the organism, as well as a 65 

limited choice of clinically approved antifungal drugs (Prajna et al., 2012). There have been no new 66 

FDA approved treatments for this condition since the introduction of Natamycin in the 1960’s 67 

(Austin et al., 2017). Even where adequate treatment is provided, a quarter of the patients with FK 68 

will fail medical treatment, be left with moderate or worse visual impairment and/or require surgical 69 

interventions like therapeutic keratoplasty (TPK) (Khor et al., 2018; Prajna et al., 2012).  70 

At least 166 genera and 144 species of fungi have been reported to cause human FK including over 71 

100 genera of filamentous fungi, 18 genera of yeasts or yeast-like fungi, and 6 genera of dimorphic 72 

fungi (Jones et al., 1970; Karsten et al., 2012, Thomas and Kaliamurthy, 2013). These fungi may be 73 

newly introduced from the environment, or potentially arise from the ocular microbiome. Next 74 

Generation Sequencing (NGS) is beginning to enable novel insights into the host fungal ocular 75 

microbiome in both health and FK (Prashanthi et al., 2019, Shivaji et al., 2019, Wang et al., 2020). In 76 

health, up to 94 distinct fungal genera have been identified at the ocular surface through NGS. In 77 

these studies, the predominant phyla identified were Basidiomycota and Ascomycota, which were 78 

present in all positive samples, and thus may constitute the core fungal microbiome at the ocular 79 
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surface within these populations.  Prashanthi et al recently conducted NGS analysis on samples 80 

obtained from FK and healthy control ocular swabs. They found that in FK, the relative abundance of 81 

Ascomycota increased, whilst that of Basidiomycota decreased, and that overall the alpha diversity 82 

indices decreased in the FK samples compared to healthy controls (Prashanthi et al., 2019). The 83 

implications of this dysbiosis on FK progression are not yet well understood, and are beyond the 84 

scope of this review.  85 

Of importance to ophthalmologists in the diagnosis and treatment of FK are the differences in 86 

geographic prevalence, risk factors, pathogenesis, distinctive signs of keratitis and antifungal 87 

susceptibility of filamentous fungi and yeasts. Here we will consider the biology of FK, examining the 88 

virulence mechanisms of the pathogen (Section 2), the host defense mechanisms (Section 3), host-89 

pathogen interactions (Section 4), the clinical features of disease (Section 5), diagnostic methods 90 

(Section 6), and treatment strategies (Section 7).  91 

2. Fungal Virulence  92 

In contrast to systemic fungal infections which typically affect immunocompromised hosts, FK is able 93 

to develop in both the immunocompromised and immunocompetent (Karthikeyan et al., 2011). The 94 

virulence characteristics of the fungal pathogen and stages of disease progression can be broadly 95 

grouped as i) immune evasion, ii) adhesion, iii) invasiveness, iv) toxin production, and v) biofilm 96 

formation (Figure 1).  97 

2.1 Immune evasion  98 

All of the major fungal pathogens produce asexual spores (conidia), which are introduced to the 99 

tear-film and ocular surface from the environment. The cell-surface of Aspergillus and Fusarium 100 

conidia are covered by a protective hydrophobin and rodlet layer which aids in shielding of the 101 

highly immunogenic fungal cell-surface proteins β-glucan and α-mannon (known as pathogen 102 

associated molecular patterns (PAMPs)) from immune cell recognition (Aimanianda et al., 2009; 103 
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Carrion Sde et al., 2013; Fuchs et al., 2004). Absence of the gene (rodA) which encodes the rodlet 104 

proteins has been shown to increase the susceptibility of fungi to the immune response (Hohl and 105 

Feldmesser, 2007; Thau et al., 1994). However, despite the shielding layer, conidia may still be 106 

recognized by host soluble mediators such as complement factor C3, SP-A and SP-D, as discussed 107 

below (Section 3.2) (Aimanianda et al., 2009; Blango et al., 2019). 108 

Figure 1. Mechanisms of fungal virulence 
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Additionally, fungi have melanin pigments in their cell-wall adjacent to the rodlet layer (Langfelder et 109 

al., 2003). Dihydroxynaphthalene (DHN)‐melanin and dihydroxyphenylalanine (DOPA)‐melanin are 110 

the two main types of melanin pigments in the fungal cell wall (Butler and Day, 1998; Wheeler and 111 

Bell, 1988), and in vitro and in vivo studies have shown that the presence of these pigments provides 112 

protection against  environmental UV radiation damage and immune cell phagocytosis (Jahn et al., 113 

1997; Thywißen et al., 2011). Melanin can also block complement factors, such as C3 from binding to 114 

fungal antigens and thus reducing complement mediated opsonization (Brakhage and Liebmann, 115 

2005; Tsai et al., 1998). These pigments can also resist the fungicidal effect of antifungal drugs like 116 

terbinafine (Almeida-Paes et al., 2016) and amphotericin B (Mario et al., 2016). The concentration of 117 

melanin pigments decreases with the germination of conidia (Youngchim et al., 2004), thus the 118 

rodlet layer and fungal melanin production play a crucial role in the survival in the conidial stage of 119 

growth.  120 

 121 

2.2 Adhesion 122 

Hydrophobins and other conidia cell-surface proteins mediate host cell adherence. The outer fibril 123 

layer of yeast and filamentous fungal conidia is comprised of the lectin-like proteins mannan and 124 

galactomannan, which recognize mannose glycoproteins within the corneal epithelial cell membrane 125 

(Blango et al., 2019). It has been demonstrated that corneal epithelial abrasion leads to increased 126 

expression of cell-surface mannose glycoproteins as part of the wound healing response, thus 127 

enhancing the availability of these cell-surface receptors (Zieske and Gipson, 1986). The corneal 128 

epithelium also has other fungal binding sites, such as fibronectin, collagen and laminin (Coulot et 129 

al., 1994).  130 

2.3 Morphogenesis 131 
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Morphogenesis is the ability of the fungal pathogens to switch from yeast form to hyphal form. 132 

While the pathogen can disseminate more efficiently during the yeast stage, the hyphal forms are 133 

well adapted for invading and damaging tissues (Saville et al., 2003; Vila et al., 2017). Following 134 

adhesion to the corneal epithelium and a favorable microenvironment, such as nutrient availability 135 

and temperature, the conidia swell and begin germination, producing fungal hyphae (Beauvais and 136 

Latgé, 2018). The hyphae are able to grow and pass through the epithelium, into the stroma and 137 

eventually gain access to the anterior chamber if left unabated. Candida and filamentous fungi have 138 

also been shown to invade the corneal epithelium via endocytosis, which is mediated by invasion 139 

proteins and through the disruption of epithelial cell tight-junctions by proteolytic digestion 140 

(Sheppard and Filler, 2014). Fungal invasiveness is related to fungal load and inversely proportional 141 

to the host immune response (Vemuganti et al., 2002). Whilst conidia are relatively inert to host 142 

immune surveillance mechanisms, the protective outer layers are disrupted during germination, 143 

exposing the inner polysaccharides, which are much more immune-stimulatory (discussed in Section 144 

4.2).      145 

2.4 Production of mycotoxins and extra cellular enzymes  146 

In addition to the physical disruption of the corneal epithelium, stroma and endothelium caused by 147 

the fungal hyphal growth, fungi are also able to produce virulence factors (extracellular enzymes and 148 

secondary metabolites (Hohl and Feldmesser, 2007)) with a broad range of roles, which ultimately 149 

contribute to their invasiveness, primarily through tissue degradation (Mellon et al., 2007; Park et 150 

al., 2013; Shibuya et al., 2006). Mycotoxin production and action is known to vary between isolates 151 

and may be differentially expressed between in vitro and in vivo conditions (Naiker and Odhav, 152 

2004). A study by Selvam et al identified 637 extracellular proteins across their Aspergillus clinical FK 153 

isolates grown in vitro (Selvam et al., 2015). The majority of identified secreted proteins are 154 

proteases which can degrade host tissue, such as MMPs (matrix metalloprotease, collagenase) and 155 

serine and cysteine proteases (Balakrishnan Sangeetha et al., 2020; Monod et al., 2002; Yike, 2011; 156 
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Zhu et al., 1990). Other extracellular enzymes include nucleases, oxidases, catalases, phosphatases, 157 

and peptidases (Ibrahim-Granet et al., 2008). Together these degrade complex macromolecules and 158 

provide nutrients (such as amino acids, lipids and metals such as iron, zinc, manganese and copper) 159 

for fungal growth which are sequestered through siderophores (high affinity metal binding 160 

compounds) secreted by the fungi (Cassat and Skaar, 2013). Proteases secreted by fungi may also 161 

induce the production and recruitment of pro-inflammatory cytokines and host proteases, affecting 162 

the protease/anti-protease balance resulting in enhanced tissue damage (Yike, 2011).  163 

The toxins produced by Aspergillus spp. include aflatoxins, gliotoxin A, fumagillin and helvolic acid 164 

(Hedayati et al., 2007). Fusarium spp. produces nivalenol, T-2 toxin, deoxynivalenol, 165 

diacetoxyscirpenol, fusaric acid and zearalenone (Aboul-Nasr et al., 2013; Raza et al., 1994). These 166 

toxins inhibit phagocytosis, intracellular killing, cytokine production, antigen presentation and the 167 

production of reactive oxygen species (ROS) by macrophages. In addition, they may play a role in 168 

inhibiting the function of T-cell (Cusumano et al., 1990; Kupfahl et al., 2008). 169 

Aflatoxin B1 is an important mycotoxin produced by Aspergillus and is acutely and chronically toxic 170 

to animals and humans. Its production by A. flavus isolates obtained from FK patients has been 171 

shown to be highly variable, but increased compared to A. flavus collected from the environment 172 

when grown in vitro (Leema et al., 2010). Proteases from Candida have been shown in vitro to 173 

degrade complement component C3 in human serum (Kaminishi et al., 1995). Furthermore, fungal 174 

serine proteases have recently been shown to cleave Dectin-1, an important immune cell-surface 175 

receptor of β-glucan, which is highly abundant in the fungal cell wall (Griffiths et al., 2018).  176 

Despite the abundance and broad range of fungal secondary metabolites and extracellular enzymes 177 

identified and characterized within in vivo studies, caution must be taken when extrapolating to 178 

what may be happening within active FK. It is known that strains differentially express proteases, 179 

and these expression levels may differ between in vitro and in vivo characterization. For example, a 180 

study by Gopinathan et al demonstrated that whilst the filamentous fungi included in their study 181 
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secreted high levels of serine proteases in vitro, serine proteases were not detectable from the 182 

cornea of infected rabbits (Gopinathan et al., 2001).  183 

2.5 Biofilm formation 184 

Biofilms are three-dimensional structures formed by a single or multiple microbial flora by producing 185 

an extracellular polymer matrix on biotic or abiotic surfaces (Sandai et al., 2016). There are several 186 

genera of fungal pathogens capable of forming biofilms (Sardi Jde et al., 2014) such as Candida spp. 187 

including C. albicans (Al-Fattani and Douglas, 2006; Dongari-Bagtzoglou et al., 2009), C. tropicalis, C. 188 

parapsilosis, and C. glabrata (Harriott et al., 2010), Aspergillus spp. (Silva et al., 2011) and Fusarium 189 

spp. A major outbreak of contact lens associated Fusarium keratitis in 2005-2006 was attributed to 190 

Fusarium biofilm formation on contact lens (Chang et al., 2006; Donnio et al., 2007; Dyavaiah et al., 191 

2007; Saw et al., 2007). 192 

The role of fungal biofilm and the extracellular matrix is manifold. Biofilms promote fungal adhesion 193 

and structural stability, whilst protecting the fungi from external threats. When compared to free-194 

living cells, biofilms are exhibit different phenotypic behaviors in growth rate, changes in gene 195 

expression and are often highly resistant to antifungal treatments and the host immune system 196 

(Hirota et al., 2017; Mukherjee and Chandra, 2004; Sandai et al., 2016, Ranjith et al., 2018).  197 

The biofilm extracellular matrix is comprised of complex and heterogeneous mixtures of proteins, 198 

carbohydrates, lipids and nucleic acids, with interspecies variation in composition and function of 199 

individual components – although many of the macromolecule functional roles in biofilm are 200 

currently poorly understood (Zarnowski et al., 2014, Gulati and Nobile, 2016). Biochemical analysis 201 

of the extracellular matrix of C. albicans biofilm by Zarnowski et al has shown that it comprised 202 

primarily of proteins (55 %). Proteomic analysis determined that these extracellular proteins were 203 

primarily involved in metabolism and metabolic pathways, and thus may digest extracellular 204 

biopolymers as an energy source within the biofilm. The same study determined that 25 % of the 205 

matrix biomass was comprised of carbohydrates, including those from Candida (e.g. polysaccharides 206 
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β-1,3-glucan, β-1,6-glucan, branched mannan), but primarily from the animal host, highlighting the 207 

importance of host derived factors in biofilm formation. Lipids were present at 15 % and nucleic acid 208 

at 5 %. The nucleic acid present is largely non-coding DNA, which provides a structural scaffold and 209 

protection from external threats, including antifungals. The role that lipids play in biofilm matrix has 210 

been largely unexplored (Nett and Andes, 2020).  211 

The protein expression profile of a Fusarium falciforme FK isolate in biofilm compared to planktonic 212 

growth has recently been reported (Calvillo-Medina et al., 2019). 19 proteins were overexpressed in 213 

biofilm, and 6 were expressed uniquely in biofilm. Several of the enzymes identified are involved in 214 

glycolysis/gluconeogenesis and pentose phosphate pathways, and a number of proteins identified 215 

have been shown to act as ligands to host cellular components, and as such, may promote 216 

angiogenesis, adhesion, nutrient acquisition and immune evasion. This study also characterized six 217 

distinct stages of biofilm; i) adhesion, ii) filamentation of conidia, iii) elongation of hyphae, iv) 218 

formation and thickening of matrix, v) conidiation and further biofilm formation and vi) maturation. 219 

The final three stages occurred following nutrient depletion from the microenvironment.   220 

Similarly, these stages of biofilm development and maturation were recently characterized for a 221 

Fusarium solani FK isolate (Córdova-Alcántara et al., 2019). It was shown that specific inhibitors of 222 

matrix constituents (carbohydrates, proteins, lipids and nucleic acids) reduced biofilm formation, 223 

and that mature biofilm conferred resistance to antifungals and UV irradiation.  224 

Interestingly, not all FK fungal isolates are able to form biofilms. Recent studies by Ranjith et al 225 

(Ranjith et al., 2017, 2018) determined that 42-47% of Candida FK isolates were unable to form 226 

biofilm, underscoring the heterogeneity of pathogens causing FK. In a study of 7 C. albicans isolates, 227 

four were able to form biofilm and only one exhibited multi-antifungal resistance, whereas the other 228 

three remained susceptible (Ranjith et al., 2018). 27 genes involved in virulence and biofilm 229 

formation were found to be temporally upregulated in the biofilm-forming Candida compared to the 230 
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non-biofilm formers, thus targeting of these genes across the stages of biofilm development could 231 

serve as a therapeutic strategy.  232 

 233 

3. The Host Defense Mechanism 234 

The cornea is exposed to the external environment and continuously comes into contact with 235 

irritants and potential pathogens. This does not lead to infection in the vast majority of cases due a 236 

complex system of host defenses, including physical, chemical and host immune derived factors and 237 

cells. 238 

3.1 Physical defenses 239 

The physical barriers exist to mechanically prevent injury to the ocular surface and intraocular space. 240 

The physical barriers include i) the eyelids and blinking action, ii) the tear film and iii) the corneal 241 

epithelium. The tear film has multiple roles to play as an effective defense mechanism; acting as a 242 

lubricant to aid blinking, which washes microbes away from the cornea through shear stresses (the 243 

mechanics of which are discussed elsewhere (Masterton and Ahearne, 2018; Pflugfelder and Stern, 244 

2020)); it prevents the corneal epithelium from drying out, and is a major source of nutrients and 245 

oxygen to the avascular cornea. Additionally the tear film has antimicrobial properties and can 246 

modulate the innate response of the corneal epithelium (discussed below).   247 

The corneal epithelium is the outermost layer of the cornea, and serves as the primary structural 248 

barrier directly protecting the visual apparatus against invading pathogens. It is approximately 50 249 

µm thick (5-7 cells deep) and comprises of tightly packed non-keratinized stratified squamous 250 

epithelial cells (Ehlers et al., 2010; Sridhar, 2018). The corneal epithelium protects the underlying 251 

corneal layers (the stroma and endothelium) from abrasions (including from eyelid motion, tear 252 

fluid, contact lens use, eye rubbing), and from infiltration of microbes, whether they be from the 253 

host bacterial or fungal ocular microbiome (Huang et al., 2016; Prashanthi et al., 2019) or 254 
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opportunistic pathogens. The corneal epithelium is not only a physical barrier to invading 255 

microorganisms; the cells are able to directly generate and secrete molecules which are both 256 

antimicrobial and modulate the immune response.  257 

The most common risk factor for the development of FK is a breach of the corneal epithelium, 258 

usually sustained by corneal trauma or abrasion (often by vegetative matter). This not only alters the 259 

structural profile of the corneal surface, but also leads to an alteration in the expression of surface 260 

and secreted proteins and immune modulators, and thus skews the fine balance of host defenses at 261 

the cornea surface and within the tear film. The use of topical corticosteroids is also another major 262 

risk factor.  263 

3.2 Chemical Molecular Defenses  264 

The ocular surface is constantly exposed to the environment, and thus to opportunistic and 265 

pathogenic bacteria and fungi. Tear fluid is a complex aqueous solution, and as already described 266 

serves a number of roles. It comprises of three layers; closest to the cornea is the mucin layer, then 267 

the middle aqueous layer, which together form the bulk of the tear-film, and finally the superficial 268 

lipid layer (Mantelli and Argüeso, 2008). Whilst an antimicrobial role for tear-lipids has been 269 

demonstrated in vitro (Mudgil, 2014), the anti-fungal role of lipids has not been studied and will not 270 

be discussed further.  271 

The aqueous layer of the tear film is highly proteinous, with over 2500 unique proteins and almost 272 

100 metabolites identified within samples collected from healthy eyes, abundant from pg mL-1 to mg 273 

mL-1  (Ananthi et al., 2013; Chen et al., 2011; Kandhavelu et al., 2017; Zhou et al., 2012). The liquid of 274 

the aqueous layer, which contains the majority of tear film proteins, is secreted from the lacrimal 275 

gland, with other proteins arising directly from the corneal and conjunctival epithelia, serum and 276 

from neutrophils, which are resident within closed-eye tears (Prashar, 2019).  277 
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The proteins found within the tear film have a diverse range of mechanisms by which they protect 278 

the cornea from invading microorganisms. These range from pathogen aggregation, to decoy 279 

receptors, to direct killing, to nutrient scavenging, and to immune cell recruitment, and the 280 

expression of many of these proteins has been found to be under or over expressed during FK 281 

(Azkargorta et al., 2017; Kuo et al., 2019). It is also important to consider that many of the proteins 282 

found within the tear film are likely to have dual roles, and/or act synergistically together to protect 283 

the cornea from microbial invasion. Antimicrobial peptides (AMPs) are a major class of protective 284 

proteins present within the healthy tear film with immunomodulatory effects as well as direct 285 

antimicrobial action, and have the ability to work against both bacteria and fungi (McDermott, 2013; 286 

Mohammed et al., 2017; Oshiro et al., 2019). They are positively charged and thus they are able to 287 

interact directly with the negatively charged surface of fungi, causing disruption through 288 

electrostatic actions. AMPs can be classified as membrane or non-membrane disruptive, and often 289 

the direct mechanism of action is not yet fully understood (Choi et al., 2012; Oshiro et al., 2019). 290 

Lysozyme, lipocalin and lactoferrin are the most abundant proteins within the tear film, together 291 

accounting for 80 % of total protein content and are functionally interdependent (Prashar, 2019). 292 

The action of lysozyme on fungi is two-fold. Firstly it is able to hydrolyze N-glycosidic linkages within 293 

the cell wall, and secondly, through cationic-protein interactions is able to disrupt the fungal cell 294 

membrane (Hanstock et al., 2019; Marquis et al., 1982; Samaranayake et al., 2001), together these 295 

actions lead to cell lysis, and thus cell death. 296 

Lactoferrin and lipocalin both interfere with the ability of fungi to acquire iron. Iron is essential for 297 

the redox reactions of fungal antioxidants, and poor availability of iron prevents conidia from 298 

germinating, and thus lactoferrin and lipocalin have fungistatic effects. Whilst lactoferrin chelates 299 

iron within the environment directly (Fernandes and Carter, 2017; González-Chávez et al., 2009), 300 

lipocalin is able to bind directly to siderophores secreted by fungi (Fluckinger et al., 2004; Leal et al., 301 

2013). Lactoferrin has also been shown to have direct antifungal action by a similar mechanism to 302 
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lysozyme, whereby lactoferrin interacts directly with the fungal cell-surface, resulting in damage to 303 

the cell membrane, membrane permeability and a fungal apoptosis-like process (Andrés et al., 2016; 304 

Farnaud and Evans, 2003).    305 

α and β-defensins are small, cysteine rich, non-glycosylated cationic and amphipathic peptides. 306 

Whilst β-defensins are present at the ocular surface, α-defensins are released by neutrophils (which 307 

are present in closed-eye tears, or recruited following initiation of FK). Their activity has mostly been 308 

studied in the context of Candida spp. infections, and their mechanisms of action are not fully 309 

understood, however defensins have been shown to block adhesion to human epithelium, and 310 

prevent Candida biofilm formation (Chairatana et al., 2017; Haynes et al., 1999).  311 

Histatins are a group of histidine rich, small peptides with fungicidal activity. Their modes of action 312 

again are not fully understood, however it is known that the histadin-5 peptide is internalized into 313 

the Candida cell, where it causes a decrease in mitochondrial ATP synthesis, the efflux of ATP and 314 

other ions, and promotes the generation of reactive oxygen species (ROS) (Swidergall and Ernst, 315 

2014). It is important to note that C. albicans has been shown to evade the fungicidal action of 316 

histatins through influx/efflux pumps, activation of stress response pathways and secretion of 317 

proteases which degrade histatin (Swidergall and Ernst, 2014).  318 

Psoriasin is a member of the S100 family of calcium binding proteins. It has been shown to have 319 

differing effects against Candida and filamentous fungi. Psoriasin contributes to inhibition of Candida 320 

adhesion to epithelial cells, but does not directly kill it (Brauner et al., 2018). However, in its 321 

cysteine-reduced form, Psoriasin is able to kill filamentous fungi. This is due to selective 322 

internalization, followed by intracellular zinc binding and the subsequent initiation of apoptosis-like 323 

cell death (Hein et al., 2015). Psoriasin is not seemingly internalized by Candida. 324 

Secretory leukocyte protease inhibitor (SLIPI) and elafin are low molecular weight inhibitors that 325 

control the enzymatic activity of neutrophil serine proteases. Specifically, SLIPI inhibits human 326 
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neutrophil elastase and cathepsin G, whereas Elafin is able to inhibit human neutrophil elastase and 327 

proteinase 3 (Zani et al., 2009). Whilst SLIPI and Elafin have a role in protecting the ocular surface by 328 

dampening these hydrolytic, tissue destructive proteases, SLIPI and Elafin also have been shown to 329 

have direct anti-fungal roles (Baranger et al., 2008; Sallenave, 2010). The anti-fungal mode of action 330 

of the two proteins is most likely due to cationic disruption of the fungal membrane, although this is 331 

not yet fully understood.  332 

Secretory Immunoglobulin A (sIgA) is the major antibody present in tear fluid. sIgA binds directly to 333 

lectin-type adhesion molecules on the fungal cell-surface, preventing binding of the cell to the 334 

corneal epithelium and promotes pathogen aggregation, leading to direct removal by the tear film 335 

(McDermott, 2013; Prashar, 2019). 336 

Mucins, present in the mucus layer of the tear film, are secreted from specialized goblet cells in the 337 

conjunctival epithelium and from the corneal and conjunctival epithelium directly. Transmembrane 338 

mucins are able to anchor to corneal epithelium and act not only as a support to stabilize the tear 339 

film, but also act as decoy receptors on the cornea surface for invading organisms, thus trapping 340 

pathogens to facilitate their removal (Dartt and Willcox, 2013; Mantelli and Argüeso, 2008). It has 341 

also been reported that positively charged proteins, such as lysozyme and SLIPI, along with sIgA may 342 

also accumulate within the mucus layer of the tear film, forming a protective antimicrobial coat 343 

(Sack et al., 2001); i.e. these proteins work synergistically. The pathogen is trapped by mucin, which 344 

is then killed by AMPs or other proteins outlined here, or aggregated for mechanical clearance by 345 

blinking.  346 

As well as the multitude of proteins within the tear film which may act directly to kill or clear the 347 

invading organism, there are also a number of mechanisms which aid in fungal recognition and 348 

subsequent killing or removal through downstream pathway initiation. The examples of C-type 349 

lectins and complement component 3 are described below.  350 
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C-type lectins are proteins which bind to carbohydrates. Their role is to moderate inflammatory 351 

responses and thus limit infections at the ocular surface. The most abundant lectins within the tear 352 

film which can affect fungal responses are mannose binding proteins (MBP) and surfactant proteins 353 

(SP-A and SP-D). These lectins recognize pathogen associated molecular patterns (PAMPs) on the 354 

yeast-like and filamentous fungi cell-surface, such as mannose (Pandit et al., 2012), eliciting a wide 355 

range of responses, including aggregation and opsonization, increasing killing efficacy during 356 

phagocytosis, and complement activation (Brummer and Stevens, 2010; Gupta and Surolia, 2007).  357 

Complement component 3 (C3) plays an essential role in the control of opportunistic fungal 358 

infections, and it is the most abundant complement protein found in tears. It may be activated by all 359 

three of the complement pathways - classical, alternative and lectin, with the latter two the most 360 

significant in this context. Whilst fungi are resistant to complement mediated killing directly, 361 

activation of C3 leads to fungal opsonization, and ultimately fungal clearance (Tsoni et al., 2009). To 362 

prevent excessive tissue damage, complement must be tightly regulated, and a number of 363 

complement inhibitors are also found in tears. Moreover, both lysozyme and lactoferrin have been 364 

shown to inhibit the complement pathway to varying degrees (Willcox et al., 1997).   365 

 366 

4. The Organism - Host interplay   367 

4.1 Risk Factors 368 

The morbidity associated with FK is often the consequence of shifted organism - host interplay; with 369 

the breakdown of the host defense due to anatomical and physiological factors, allowing access of 370 

the fungi to the denuded corneal epithelial surface (Srinivasan et al., 1997).  Ocular trauma and 371 

corneal abrasion, commonly attained whilst performing agrarian activities is a major risk factor 372 

encountered in more than half of filamentous FK cases (Shah et al., 2019). Agricultural activity, like 373 

thrashing of paddy, releases a high amount of viable fungal spores, which when coupled with a 374 
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corneal trauma sets up a perfect situation for the disease to occur (Atluri and Murthy, 2002; Uddin 375 

and Chakraverty, 1994). Indeed, there is a higher incidence of filamentous FK occurring during the 376 

windy and harvest seasons (July and January) in South India (Lin et al., 2012). Whilst filamentous FK 377 

associated with agricultural ocular injury predominantly affects workers in low-middle income 378 

countries (LMICs),  there have been instances of outbreaks of filamentous FK in high resource 379 

settings through use of contaminated contact lens solutions (Chang et al., 2006; Saw et al., 2007). 380 

While the bulk of filamentary FK occurs in immunocompetent individuals with ocular injury, there 381 

have been studies reporting increased incidence in an immunocompromised patient setting. 382 

Filamentous fungi are the most common FK fungi associated with HIV infection as reported from 383 

African countries (Burton et al., 2011). In a study from Tanzania, 77 % of patients with FK were 384 

positive for HIV infection (Mselle, 1999), whilst HIV was reported as the most common risk factor 385 

identified in approximately 25 % of the FK cases in a study from New York (Ritterband et al., 2006).  386 

Infections due to Candida spp. are more commonly seen in immunocompromised patients, or those 387 

with systemic illness, such as diabetes (Sengupta et al., 2012). Those with pre-existing ocular 388 

conditions, such as decompensated corneas and post keratoplasty scenarios especially in interface 389 

keratitis following lamellar keratoplasties are also at risk (Qiao et al., 2020; Sun et al., 2007). 390 

Furthermore, Brothers et al demonstrated that tissue warming during endothelial keratoplasty 391 

processing may be responsible for promoting Candida growth in donor rims (Brothers et al., 2017). 392 

The topical use of corticosteroids and prior ocular surgery are also significant risk factors for both 393 

filamentous and yeast-like FK development.   394 

4.2 Immune response to fungal invasion 395 

In normal eye health, the cornea is avascular and has relatively few resident macrophages and 396 

dendritic cells dispersed throughout the epithelium and stromal layers, these are present in a 397 

gradient from the lower density in the central cornea and increasing towards the limbus (Brissette-398 
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Storkus et al., 2002; Hamrah and Dana, 2007; Mobeen et al., 2019; Palomar et al., 2019). The 399 

resident leukocytes express a number of pattern recognition receptors (PRRs) on their cell-surface to 400 

detect PAMPs on invading pathogens. Binding of these receptors to targets initiates signaling 401 

cascades which ultimately increase the immune response, including neutrophil recruitment (Figure 402 

2). During fungal infection, neutrophils comprise 95 % of the cellular infiltrate (Karthikeyan et al., 403 

2011; Leal et al., 2013), and infected corneas are characterized by progressive erosion and necrosis 404 

of corneal tissue, a reduction in corneal epithelium and a disordered corneal stroma (Zhang et al., 405 

2018b).  406 

The large size of fungal hyphae precludes from killing through neutrophil phagocytosis (Dursun et 407 

al., 2003). Rather, the recruited neutrophils exert their anti-fungal activity by a number of other 408 

ways. These include i) the regulation of hyphal growth through the generation of ROS, ii) neutrophil 409 

extracellular traps (NETs), iii) iron acquisition through mechanisms such as lipocalin secretion, and 410 

Figure 2. Fungal infiltration and immune cell recruitment/activation following epithelial damage. Not to scale. 
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metal chelation through calprotectin (Clark et al., 2016; Leal et al., 2013; Leal et al., 2012; Taylor et 411 

al., 2014). Calprotectin accounts for approximately 40 % of cytosolic protein within neutrophils, and 412 

upon neutrophil release (through degranulation and specific secretion), it is able to chelate zinc and 413 

manganese from the environment, negatively impacting fungal germination and growth (Clark et al., 414 

2016). Furthermore, a subset of neutrophils have been shown to express IL-17, and these 415 

demonstrate enhanced ROS generation and thus fungal killing compared to their counterparts 416 

(Taylor et al., 2014). iv) Neutrophils may also mediate fungal killing through the release of acidic 417 

mammalian chitinase (AMCase), which is able to hydrolyze chitin, the major fungal cell wall 418 

component (de Jesus Carrion et al., 2019).  419 

Membrane bound PRRs include Toll-like receptors (TLRs) and C-type lectins. TLR2 recognizes glucans 420 

present within the cell wall of yeast-like and filamentous fungi, and TLR4 recognizes mannan on the 421 

cell-surface of filamentous fungi (Redfern and McDermott, 2010; Yuan et al., 2010). Whilst activation 422 

of TLR2 and TLR4 results in pro-inflammatory chemokine release, including IL-1β and IL-6, and 423 

leukocyte recruitment from peripheral and limbal blood vessels (Guo and Wu, 2009) (Figure 3), TLR2 424 

activation by Candida zymosan has also been shown to incite an anti-inflammatory response via IL-425 

10 production, and may be another fungal defense mechanism (Netea et al., 2006).  426 

Dectin-1 is a C-type cell-surface lectin of pivotal importance in the immune fungal response (Leal et 427 

al., 2010; Salazar and Brown, 2018). Dectin-1 is expressed on the surface of macrophages and 428 

dendritic cells, and binds to β-glucan exposed on the cell-surface of germinating conidia within the 429 

corneal stroma (Figure 3). Dectin-1 then activates a Syk-CARD9-NFκβ intracellular signaling pathway 430 

which ultimately triggers IL-1β and other pro-inflammatory cytokine release, NLRP3 inflammasome  431 

activation, and ultimately results in neutrophil recruitment (Drummond and Brown, 2011; 432 

Karthikeyan et al., 2011; Liu et al., 2015; Snarr et al., 2017). In addition to the intracellular signaling 433 

cascade, Dectin-1 and TLR4 activation may induce phagocytosis of the ligand, and elicit a respiratory 434 

burst through activated NADPH-oxidase, thus killing the pathogen (Leal and Pearlman, 2012). 435 
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Polymorphisms in TLR4 and Dectin-1 have both been shown to increase susceptibility of the host to 436 

fungal infections (Bochud et al., 2008; Marakalala et al., 2011).   437 

Pentraxin 3 (PTX3) is a PRR expressed by corneal epithelial cells, as well as macrophages, dendritic 438 

cells and neutrophils following Aspergillus exposure (Zhang et al., 2018a; Zhang et al., 2018b). PTX3 439 

is able to recognize fungal spores, and upregulation of PTX3 within the corneal epithelium correlates 440 

with the severity of infection. Expression of PTX3 has shown to be independent of Dectin-1 441 

activation, but dependent on Syk signaling pathways. A role for TLR4 in the signaling pathway of 442 

PTX3 has also been shown, however this has not yet been demonstrated in the context of FK (Jaillon 443 

et al., 2014). Ultimately, PTX3 upregulation leads to the production of IL-1β, activation of other pro-444 

inflammatory cascades, increased phagocytic clearance by macrophages, and is thought to have a 445 

non-redundant role in early infection.  446 

Figure 3. Signalling cascade by macrophage following fungal PAMP recognition. Not to scale. 
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4.3 Omics approaches to elucidating the clinical state-of-play 447 

Much of our understanding of the host-pathogen interaction during FK has come from studying cell-448 

lines and clinical isolates in vitro, from in vivo animal models, or from extrapolating data acquired 449 

from fungal-mucosal surface interactions at other mucosal epithelia within the human. In recent 450 

years, “omics” approaches have emerged as an important tool for studying gene and protein 451 

expression from human clinical samples, and have broadened our molecular understating of FK, and 452 

served to validate some of the findings from the afore mentioned models. These have recently been 453 

reviewed elsewhere (Azkargorta et al., 2017; Kuo et al., 2019), but some of the most significant 454 

findings are outlined below.  455 

Chidambaram et al examined gene expression within tears during late stage FK through 456 

transcriptomics and reported that 291 genes were upregulated and 90 downregulated compared to 457 

healthy controls (Chidambaram et al., 2017a). Unsurprisingly, the genes with the highest 458 

upregulation were proinflammatory, involved in the immune response and specifically, neutrophil 459 

chemotaxis. These included those encoding for IL-1β, the inflammasome NLRP3, TNF, multiple 460 

chemokines, PRRs, including TLR2 and TLR4, and SYK. Genes encoding complement proteins were 461 

also upregulated, whereas complement regulator Complement Factor H was downregulated. Genes 462 

involved in microbial killing were also upregulated, particularly those encoding ROS generation 463 

processes. MMP9 is responsible for collagen degradation and is highly destructive to tissue; the gene 464 

for MMP9 was the most upregulated of all MMP genes. Genes involved in epithelial cell adhesion, 465 

such as for the formation of cellular tight junctions were also downregulated.  466 

Proteomics has enabled comparisons between infected and non-infected human eyes by identifying 467 

and quantifying the levels of protein expression in tears, demonstrating translation of the 468 

transcriptome, and can provide information about what is functioning within a snapshot of time. For 469 

example, Kandhavelu et al identified 1223 proteins uniquely expressed in A. flavus FK tears 470 

compared to healthy controls, 177 of which could be quantified with high confidence (Kandhavelu et 471 
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al., 2017). They found that all three complement pathways were represented at high levels in patient 472 

tears, along with inhibitors and negative regulators of the complement pathway. Coagulation 473 

cascade and wound healing proteins were only found in infected tears. Proteins associated with 474 

NETs (neutrophil extracellular traps), MMPs (destructive proteases which degrade collagen and 475 

basement membranes) and plasminogen were also present at higher levels in patient tears 476 

compared to controls. They also saw upregulation of serine protease inhibitors, membrane attack 477 

complex inhibitors and acute phase proteins. Parthiban et al also recently studied the proteome of 478 

patients with A. flavus FK, and found similar expression profiles, with haptoglobin (a plasma 479 

glycoprotein which binds free hemoglobin), alpha-1-antitrypsin (which controls activity of many 480 

proteolytic enzymes), human serum albumin (indicating leakage from nearby blood vessels), 481 

lactoferrin (iron binding) and apolipoprotein (lipid binding for transportation) all upregulated. They 482 

saw downregulation of zinc-α-glycoprotein (ZAG), serotransferrin precursor (iron binding transport 483 

protein), lipocalin (transport of small hydrophobic molecules), lacritin (an iron binding transfer 484 

protein) and cystatin SN (an inhibitory protein which regulates proteolytic cathepsins) (Parthiban et 485 

al., 2019).  486 

ZAG has been characterized as a multidisciplinary protein, and has been implicated in lipid 487 

metabolism (Hassan et al., 2008; Russell and Tisdale, 2011). Whilst it has been shown to be down 488 

regulated in A. flavus FK (Ananthi et al., 2011; Parthiban et al., 2019), as well as other disease states 489 

(Ihnatko et al., 2013; Lema et al., 2010), interestingly, it has been shown to be upregulated within 490 

tears of Fusarium FK patients (Ananthi et al., 2013). Although Ananthi et al saw a differential 491 

expression profile of ZAG in Fusarium FK compared to A. flavus, they similarly demonstrated 492 

upregulation of haptoglobin, alpha-1-antitrypsin, apolipoprotein, lactoferrin and albumin; and 493 

downregulation of cystatin SA, lipocalin and lacritin (Ananthi et al., 2013).  494 

Together this data supports the findings from in vitro and in vivo models and indicates a highly pro-495 

inflammatory, proteolytic microenvironment from early to late stage FK. It is clear that tight 496 
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regulation of pro-inflammatory pathways to active resolution is required to strike the balance 497 

between fungal clearance, and mitigation of permanent tissue damage, and this process is not yet 498 

well understood.  499 

 500 

5. Clinical Features  501 

In contrast to bacterial keratitis, the symptoms of FK are often disproportionately less severe than 502 

might be expected considering the size of the ulcer. This may be one of the reasons why patients 503 

often present late to treatment centres, commonly with an advanced fungal corneal ulcer. Feathery 504 

margins (Figure 4a) are the most characteristic clinical feature of FK and are well appreciated in the 505 

early stages of infiltration (Dalmon et al., 2012). Other clinical features include a raised surface, 506 

endothelial plaque, dry texture, and satellite lesions. While ring infiltrates can occur in fungal and 507 

bacterial keratitis, it is 10 times more likely to indicate acanthamoeba keratitis, and multifocal 508 

lesions are more commonly seen in acanthamoeba keratitis than fungal keratitis. In ulcers caused by 509 

the dematiaceous fungi, there may be macroscopic pigment deposition over the surface (Kumar et 510 

al., 2019). Keratitis caused by Candida may be more localized and have a collar button configuration, 511 

often with a small ulceration and an expanding infiltrate (Sun et al., 2007). Infectious crystalline 512 

keratopathy has also been reported with Candida spp. (Rhem et al., 1996). Interface keratitis in 513 

lamellar keratoplasty due to Candida often presents with minimal inflammatory signs and 514 

symptoms. In the initial stages, slight ocular pain and redness may be the only symptoms reported 515 

by patients, with unaffected visual acuity. The cornea is usually clear with small (0.5-2 mm) single or 516 

multiple whitish infiltrates seen at the graft–host interface. The anterior chamber is usually quiet 517 

with no inflammation. Hypopyon is a common accompaniment with larger ulcers (Fontana et al., 518 

2019). The classical morphological changes of FK may not be appreciated in larger sized ulcers, and 519 

microbial distinction based on clinical features is more challenging (Dahlgren et al., 2007, Dalmon et 520 

al., 2012). 521 
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In spite of appropriate treatment, FK has higher odds for perforation and longer healing time than 522 

bacterial keratitis (Prajna et al., 2013a). The poor prognostic factors identified are larger infiltrate 523 

size at presentation, larger epithelial defect, ulcers caused by Aspergillus, presence of hypopyon and 524 

smear positivity in spite of prior antifungal treatment (Lalitha et al., 2006). The MUTT (Mycotic Ulcer 525 

Treatment Trial) II study defined a high risk case with high chances of perforation and TPK 526 

requirement as an ulcer with geometric mean infiltrate size more than 6.63 mm, involving the 527 

posterior one third of cornea with associated hypopyon (Prajna et al., 2017b). Polymicrobial keratitis 528 

with fungus and bacteria are more challenging to treat, with a poorer outcome than FK and may 529 

need early surgical intervention (Fernandes et al., 2015). In a longitudinal study comparing the visual 530 

outcomes of bacterial and fungal corneal ulcers, the best corrected vision of 20/400 or worse at 4 531 

years from the onset of infection was more common in patients with scars due to fungal ulcer 532 

compared to scars of bacterial ulcer, even after successful antimicrobial treatment (Menda et al., 533 

2019).  534 

6. Diagnosis 535 

Figure 4. Clinical picture of A. early fungal keratitis with characteristic feathery margin, B. Late fungal keratitis 
indistinguishable from C. Bacterial keratitis. Microbial smear examination of branching fungal hyphae seen in 
D. Potassium hydroxide wetmount, E. Grams stain, F. Calcoflourwhite stain. 
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6.1 In vivo confocal microscopy  536 

In vivo confocal microscopy (IVCM) has been used to identify fungal hyphae in the corneal stroma. 537 

Fungal hyphae are seen as high contrast filaments with 4-6 µm thickness and 60-400 µm length 538 

(Brasnu et al., 2007). Apart from the direct visualization of the fungal filaments, honeycomb 539 

distribution of anterior stromal inflammatory cells in the absence of stromal bullae was significantly 540 

associated with FK compared to bacterial keratitis (Chidambaram et al., 2018). IVCM is unable to 541 

differentiate between Aspergillus and Fusarium based on branching angle, adventitious sporulation 542 

or dichotomous branching characteristics. However, Aspergillus ulcers were associated with stromal 543 

dendritiform cells, and Fusarium ulcers were associated with stellate appearance of interconnected 544 

cell processes with nuclei (Chidambaram et al., 2017b; Chidambaram et al., 2018). IVCM enables the 545 

depth of the corneal stromal infiltration with fungal hyphae and the response to treatment to be 546 

monitored (Takezawa et al., 2010).  547 

6.2 Microbiological Investigations 548 

While clinical features may offer a clue, it may not be enough to differentiate fungal and bacterial 549 

keratitis in all instances (Figure 4b and c), without the aid of microbiological investigations (Chang 550 

and Chodosh, 2011; Dalmon et al., 2012; Kaufman and Wood, 1965; Thomas et al., 2005). This 551 

assumes significance in a LMIC setting, where bacteria and fungi can cause infectious keratitis in 552 

almost equal proportions. A careful and adequate specimen collection and an immediate access to 553 

smear examination are the most important steps to get reliable microbiological confirmation. 554 

Specimens are obtained by scraping the base and the edges of the ulcer under topical anesthesia 555 

using a Kimura spatula. In deeper lesions, a corneal biopsy using 2-3 mm trephine may be required 556 

for obtaining adequate specimen.  557 

6.2.1 Conventional microbiology techniques: direct microscopy and culture  558 
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Direct microscopic examination and culture remain the gold standard for the aetiological diagnosis 559 

of FK (Ficker et al., 1991; Sharma et al., 2002). Commonly used direct examination of corneal 560 

scraping material are 10 % potassium hydroxide (KOH) wet mount, Gram stain (Bharathi et al., 2006; 561 

Sharma et al., 1998; Vajpayee et al., 1993), Giemsa (Rosa et al., 1994), calcoflour white, periodic acid 562 

Schiff, Gomori methenamine silver stain and lactophenol cotton blue (Chander et al., 1993; Chang 563 

and Chodosh, 2011; Garg, 2012) (Figure 4). The 10 % KOH is a rapid, simple and inexpensive 564 

procedure for detection of fungi. It has sensitivity in a range from 61-94 % and specificity of 91-97 % 565 

for detection of fungi (Bharathi et al., 2006; Garg, 2012; Rathi et al., 2017; Revankar and Sutton, 566 

2010). Gram stain has been reported to yield an accuracy of 35-90 % in detection of fungi in culture 567 

positive cases (Badiee et al., 2010). For culture, the corneal scraping material is generally inoculated 568 

onto culture plates in the form of multiple ‘C’; only growths on the ‘C’ streaks are considered as 569 

significant. Commonly used media for culture include 5 % sheep blood agar (incubated at 37 °C) and 570 

potato dextrose agar (incubated at 22-25 °C) (Benson and Lanier, 1992; Wilhelmus et al., 1994). The 571 

growth of fungi usually occurs in 3-4 days but culture media may require incubating for longer 572 

periods of up to 4-6 weeks. In addition, culture is often necessary to identify the fungi and anti-573 

fungal susceptibility patterns to optimize the treatment. In clinically suspicious cases of FK, culture 574 

showed positive results 25-59 % of the time (Moshirfar et al., 2019).  575 

6.2.2 Molecular diagnostic methods  576 

Genome-based tests for diagnosing FK are highly sensitive, less-time consuming than cultures, and 577 

are ideal for ocular surface samples where the volume of the samples are in low quantities. Different 578 

types of molecular techniques based on amplification, such as nested polymerase chain reaction 579 

(PCR), real-time PCR, direct PCR, loop-mediated isothermal amplification and dot hybridization are 580 

being developed for the detection of fungal pathogens (Zhao et al., 2014). The different targets of FK 581 

detection include highly conserved ribosomal RNA (rRNA) genes (18S, 5.8S, and 28S rRNA genes), 582 

internal transcribed spacer region (ITSs 1 and 2), elongation factor1-alpha gene and the 583 
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mitochondrial cytochrome b gene (Kuo et al., 2019). Genome-based tests for diagnosing FK have 584 

reported a sensitivity of nearly 90 % or higher, but specificity of these techniques is highly variable, 585 

ranging from 17-97 % (Kuo et al., 2019). 586 

6.2.3 Recent advance in the diagnosis of FK              587 

Recent techniques like next generation sequencing (NGS), deep sequencing and metagenomics have 588 

advanced the field of genomic research and might help in identification of fungal pathogens causing 589 

FK. Shigeyasu et al., reported a case of FK, which could not be identified by routine microscopy 590 

where metagenomic shotgun NGS analysis with corneal scraping sample proved to be confirmatory 591 

(Shigeyasu et al., 2018). Metagenomic NGS methods mark greater advances in rapid detection of 592 

rare pathogens, and are also suitable for identifying slow growing, fastidious and unculturable fungal 593 

pathogens (Lalitha et al., 2020). A wide range of pathogens have been identified by NGS analysis 594 

from formalin-fixed corneal specimens (Li et al., 2018).  595 

The use of fluorescent real-time optical molecular SmartProbes have recently been explored as a 596 

novel method for detecting microbial isolates in corneal smears from microbial keratitis patients. 597 

Gunasekaran et al demonstrated that this technique exhibited an equivalent or higher degree of 598 

sensitivity and specificity than gold-standard culture and Gram stain techniques (Gunasekaran et al., 599 

2020), and offers an exciting new direction for low cost point-of-care diganostics.  600 

7. Treatment of FK 601 

7.1 Anti-fungal drugs 602 

The treatment of FK is prolonged, often running into weeks. Topical 5 % natamycin drops remain the 603 

drug of choice for filamentous FK while topical 0.15 % amphotericin is preferred for Candida 604 

keratitis. Azoles and triazoles have been used as adjuncts or alternatives to natamycin or 605 

amphotericin. A number of studies have examined how alternative treatment strategies compare to 606 

these gold-standards, however none have yet proven superior.  607 
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Topical natamycin vs voriconazole: The Mycotic Ulcer Treatment Trial I (MUTT I) was a National Eye 608 

Institute supported, randomized, active comparator controlled, double-masked, multi-center clinical 609 

trial comparing outcomes in patients with filamentous fungal corneal ulcers receiving topical 610 

natamycin (5 %) and topical voriconazole (1 %). This study concluded that, natamycin was superior in 611 

terms of visual improvement and prevention of complications, and that voriconazole should not be 612 

recommended as a monotherapy for filamentous FK (Prajna et al., 2013a). A subgroup analysis of 613 

MUTT I showed that irrespective of the organism, patients randomized to voriconazole had higher 614 

culture positivity on repeat scraping at day 6 of treatment than in the natamycin group, thereby 615 

concluding that voriconazole was inferior to natamycin in the treatment of all fungi. Higher culture 616 

positivity at day 6 was also associated with a poorer visual outcome (Ray et al., 2017).  A Cochrane 617 

review on medical treatment for FK concluded that patients treated with natamycin had a lower risk 618 

of corneal perforation (FlorCruz and Evans, 2015). 619 

Oral voriconazole: In a double masked randomized placebo controlled study (MUTT II), addition of 620 

systemic voriconazole to topical antifungal therapy in deep stromal severe filamentous FK did not 621 

show any added benefit. There was no difference in the rate of perforation and/or need for TPK, 622 

visual acuity, scar size or rate of re-epithelialization. There were significantly more adverse events in 623 

the oral voriconazole group, including elevations in liver enzymes and visual disturbances, than 624 

patients in the placebo group (Prajna et al., 2016). However, a subgroup analysis in Fusarium ulcers 625 

treated with oral voriconazole showed a reduction in the need for TPK and a reduced 3-month scar 626 

size (Prajna et al., 2017a). 627 

Intrastromal voriconazole: A randomized controlled trial was conducted by Narayana et al to 628 

evaluate the effectiveness of intrastromal voriconazole in addition to topical natamycin application 629 

for the treatment of moderate to severe FK. The trial concluded that there were no improvements in 630 

microbiological cure rate at 3 or 7 days, visual acuity, the rate of perforation or the need for TPK 631 

among those randomized to intrastromal voriconazole (Narayana et al., 2019). This was despite a 632 
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number of isolated case reports demonstrating the efficacy of intrastromal voriconazole in deep 633 

fungal corneal ulcers (Sharma et al., 2011, Sharma et al., 2013).   634 

Natamycin vs amphotericin: In vitro tests have shown no synergy or antagonism when natamycin 635 

was added to amphotericin in the treatment of filamentous FK. A randomized controlled trial found 636 

no difference in 24-hour culture positivity in moderate filamentous fungal corneal ulcers randomized 637 

to amphotericin or natamycin (Lalitha et al., 2011). Furthermore combination therapy may increase 638 

the risk of potential drug toxicity as well as the cost of therapy. 639 

Intracameral amphotericin: A few case series have reported the efficacy of intracameral 640 

amphotericin B as adjunctive treatment of FK unresponsive to conventional antifungal therapy 641 

(Kaushik et al., 2001; Yilmaz et al., 2007). However a randomized controlled trial did not find any 642 

additional benefit of intracameral amphotericin B over topical antifungal therapy when performed 643 

alone or in combination with drainage of hypopyon in filamentous FK (Sharma et al., 2016). 644 

Additionally anterior subcapsular cataract has been reported after intracameral amphotericin B 645 

injection.  646 

The major limitations for most of these studies were that they were conducted in India and most 647 

infections were related to agricultural exposure and not to immunocompromised hosts, or contact 648 

lens wear, such as those seen in developed countries. Therefore, it is possible that these differing 649 

risk factors and/or genetic factors might modify the interaction between the infectious organism, 650 

antifungal medications, and host responses.  651 

Newer Drugs: Posaconazole is a newer triazole with broad spectrum activity against Candida, 652 

Fusarium and Aspergillus. Oral posaconazole (200 mg four times a day, or 400 mg twice a day) alone 653 

or in combination with topical formulation (4 mg – 10 mg/0.1 mL) has been used in the treatment of 654 

recalcitrant Fusarium keratitis (Sponsel et al., 2002; Torres et al., 2005; Tu et al., 2007).  655 
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Echinocandins act on the fungal cell-wall by inhibiting the synthesis of (1,3)-D-glucan. The three 656 

commercially available echinocandins are caspofungin, micafungin and anidulafungin (Patil and 657 

Majumdar, 2017). Kamoshita et al reported a case of Wickerhamomyces anomalus FK that 658 

responded to topical treatment with the antifungal micafungin (Kamoshita et al., 2015). In vitro and 659 

animal studies have reported the efficacy of Capsulofungin in Candida spp. causing keratitis.  660 

7.2 Corneal collagen crosslinking 661 

Corneal collagen crosslinking (CXL) aims to strengthen and stiffen the cornea through the induction 662 

of crosslinks in stromal collagen and is often used to treat keratoconus. No benefit in the treatment 663 

of moderate filamentous fungal ulcers randomized to adjuvant crosslinking with riboflavin and UV-A 664 

light was reported when compared to topical natamycin or amphotericin. There was no 665 

improvement in microbiological cure, infiltrate and/or scar size, epithelization, and no difference in 666 

adverse events including corneal perforation and the need for TPK. Additionally, in the patients 667 

randomized to crosslinking, the visual acuity at 3 months was worse by 3 Snellen lines compared to 668 

those who had not received CXL treatment (Prajna et al., 2020). CXL has also been found to have an 669 

increased rate of perforation in recalcitrant deep stromal fugal keratitis (Uddaraju et al., 2015). 670 

7.3 Rose Bengal Photodynamic therapy 671 

Photodynamic therapy (PDT) in combination with a photosensitizer offers an anti-fungal free 672 

approach to treating infection through the generation of ROS. PDT with 0.1 % rose bengal and green 673 

light (518 nm) showed successful inhibition of growth of Fusarium solani, Aspergillus fumigatus, 674 

Candida albicans (Arboleda et al., 2014), and has been used in successful treatment of multidrug 675 

resistant Fusarium keratitis in a post keratoplasty patient (Amescua et al., 2017). A demarcation line 676 

was seen in the anterior stroma following the procedure (Martinez et al., 2018).  In vitro and in vivo 677 

studies have also shown that PDT with rose bengal can arrest corneal melting and cause crosslinking 678 

of the stromal lamellae and stiffening of the cornea (Fadlallah et al., 2016).  679 
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7.4 Therapeutic Keratoplasty 680 

FK has a five times odds for perforation and longer healing time compared to bacterial keratitis 681 

(Prajna et al., 2013b). The need for therapeutic keratoplasty (TPK) can vary from 15 % in mild-682 

moderate keratitis to 40 % in severe keratitis. The goals of the TPK are to primarily eliminate the 683 

infection and restore the integrity of the globe. The cure rate of TPK for FK varies from 60-90 % with 684 

a recurrence rate of 6-15 % (Sharma et al., 2010). Presence of hypopyon, corneal perforation, limbal 685 

involvement and lens involvement are major risk factors for recurrence of FK after TPK (Shi et al., 686 

2010). Xie et al reported a recurrence rate of 7.8 % with lamellar keratoplasty for FK, with the risk 687 

factors for recurrence being Aspergillus keratitis, pre-operative steroid use, endothelial plaque or 688 

hypopyon (Xie et al., 2008).   689 

 690 

8. Critical gaps and Future Research directions: 691 

In spite of the growing evidence advocating the importance of ocular microbiology as an adjuvant to 692 

clinical diagnosis, many corneal ulcers are still being treated empirically based on clinical features 693 

alone, and this is contributing to poor prognosis and antimicrobial resistance. This is commonly due 694 

to poor ocular healthcare-access, poor microbiology laboratory infrastructure, lack of trained 695 

microbiologists, out-of-pocket costs, variations in patient sampling and prior antimicrobial use (Ung 696 

et al, 2019b).  Exciting new developments in this field including deployment of NGS and proteomics 697 

in clinical practice will aid in the rapid detection and characterization of the invading fungi, and may 698 

enable diagnosis from the tear-sample rather than invasive scrapes, although cost and infrastructure 699 

may limit the appeal and uptake of these techniques.  A simple, reproducible, point–of-care 700 

deployable ocular microbiological diagnostic kit at an affordable cost would enhance the utilization 701 

of microbiological techniques which will be critical to the appropriate therapeutic regimen to be 702 

initiated.   703 
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Ocular morbidity in FK is a result of the interplay between the invading fungi and the defence 704 

mechanism of the host. Even the best current therapeutic regimen is only directed towards killing 705 

the invading fungus without taking into account the tissue destruction caused by an exaggerated 706 

immune response. It is becoming clear that different fungi have different virulence patterns, with 707 

this differentiation existing even amongst the same species. Adding to the complexity is that there 708 

seems to be a difference in host response, and potentially the underlying ocular microbiome 709 

between patients. Future therapeutic strategies should aim at personalized treatment regimen 710 

which would include appropriate anti-infectives along with selective locally acting 711 

immunomodulators which would curtail an unnecessary and a possibly harmful exuberant immune 712 

response, thereby providing an enabling environment for the host responses to tackle the invading 713 

fungus.   714 

In order to achieve this personalised medicine approach, the paucity of molecular knowledge 715 

surrounding host-pathogen interactions within the human eye must be addressed and fed into the 716 

drug and diagnostic translational pipeline. This presents an exciting and dynamic area of research 717 

and can focus a lens onto this neglected disease to improve patient outcomes.  718 
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