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ABSTRACT

The unsteady aerodynamics of floating wind turbines is more complex than that of fixed–bottom turbines, and the

uncertainty of low–fidelity predictions is higher for floating turbines. Navier–Stokes Computational Fluid Dynam-

ics (CFD) can improve the understanding of rotor and wake aerodynamics of floating turbines, and help improving

lower–fidelity models. Here, the flow field of the NREL 5 MW rotor with fixed tower, and subjected to prescribed

harmonic pitching past the tower base are investigated using blade–resolved CFD compressible flow COSA simu-

lations and incompressible flow FLUENT simulations. CFD results are also compared to predictions of the FAST

∗Corresponding author.
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1 INTRODUCTION

wind turbine code, which uses blade element momentum theory (BEMT). The selected rotor pitching parameters

correspond to an extreme regime unlikely to occur without faults of the turbine safety system, and thus relevant to

extreme aerodynamic load analysis. The rotor power and loads in fixed–tower mode predicted by both CFD codes

and BEMT are in very good agreement. For the floating turbine, all predicted periodic profiles of rotor power and

thrust are qualitatively similar, but the power peaks of both CFD predictions are significantly higher than those of

BEMT. Moreover, cross–comparisons of the COSA and FLUENT predictions of blade static pressure also highlight

significant compressible flow effects on rotor power and loads. The CFD analyses of the downstream rotor flow also

reveal wake features unique to pitching turbines, primarily the space– and time–dependence of the wake generation

strength, highlighted by intermittency of the tip vortex shedding.

1 INTRODUCTION

Wind energy plays a key role in reducing greenhouse gas emissions due to electric power generation. This is due to

both the abundance of this renewable energy resource, and the fact that the level of maturity of the wind energy conversion

technology is enabling increasingly large reductions of its levelized cost of energy (LCOE). Indeed, onshore wind LCOE

has become lower than that of fossil fuel electricity generation, and the growing technological and commercial investment

of many countries in offshore wind is expected to make offshore wind LCOE competitive with that of fossil fuel in the

near future. The presently dominant technology for harvesting offshore wind is based on fixed–bottom turbines, whose

foundations are economically affordable for water depths of less than about 50 meters. In deeper waters, the use of floating

offshore wind turbines (FOWTs), i.e. turbines mounted on moored floaters, is required.

Rotor flows of onshore and fixed–bottom offshore horizontal axis wind turbines (HAWTs) are inherently unsteady due

to several environmental factors, such as atmospheric turbulence, vertical wind shear and density stratifications, aerodynamic

influence of the tower, and temporary misalignment of wind direction and rotor axis (yaw errors). FOWT rotor flows are

subjected to an additional major source of unsteadiness, namely that resulting from the rigid body motion induced by the

relatively large tower motion enabled by its softer foundations [1], i.e. the moored floater. The overall FOWT dynamics

is determined by the dynamic equilibrium of several concurrent loads, including the aerodynamic and gravitational forces

on the rotor blades, the wave, current and mooring loads on the floating platform, and the inertial forces of all FOWT

components. The reliable and optimized design of FOWTs capable of operating with minimum maintenance in the harsh

offshore environment for 20+ years requires accurate predictions of all aforementioned loads, including the aerodynamic

ones, whose analysis is the main focus of this study. Reliable predictions of the aerodynamic loads are key to providing the

fatigue and extreme loads required for the system structural design, analyzing and optimizing FOWT hydrodynamic stability,

and designing the turbine control, often tasked with providing additional damping to improve hydrodynamic stability.

FOWT rotor aerodynamics is often analyzed with low–fidelity models such as the Blade Element Momentum The-

ory (BEMT) [2]. BEMT codes result from combining the principle of conservation of linear and angular momentum with

classical lift and drag theory. The baseline approach is two–dimensional, with three-dimensional (3D) and unsteady flow

effects accounted for by means of semi–empirical correlations. BEMT codes are computationally fast, and well validated
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1 INTRODUCTION

for utility–scale HAWT analysis and design. Their use for FOWT applications, however, is affected by an as–yet undefined

level of uncertainty, arising because state–of–the–art BEMT codes have been fine–tuned for fixed–bottom rotors and not

for FOWT rotors, whose aerodynamics is made more complex by the additional entrainment speeds due to the tower mo-

tion [3]. Promising low–fidelity alternative methods, which incorporate some more physics then BEMT codes (particularly

with regard to wake dynamics) and have been recently used for FOWT aerodynamic analyses, include free-vortex methods

(FVMs) [4,5]. FVMs assume incompressible, inviscid and irrotational flow; like BEMT codes, they do not resolve the blade

geometry and its 3D and unsteady aerodynamics, as they model the blade forces using lifting lines. Their execution speed is

still fairly high, and they can achieve a good trade–off between solution reliability and computational efficiency.

High–fidelity Navier–Stokes (NS) Computational Dluid Dynamics (CFD) has been successfully used to analyze in great

detail the unsteady flow physics of fixed–bottom turbines [6], and the technology has the potential of resolving with high

reliability the complex unsteady aerodynamics of FOWT rotors. However, even the predictions of high–fidelity CFD may

be affected by some uncertainty, particularly in the analysis of unsteady rotor flows caused by complex system kinematics,

such as that associated with the relatively large motion of FOWTs. Therefore, the availability of measured data of FOWT

rotor flow fields [7] for CFD code validation constitutes a valuable means to further improve confidence in CFD analyses,

and use their findings to improve low–fidelity codes for FOWT analysis and design.

To assess the correlation of CFD and low-fidelity BEMT predictions of FOWT rotor aerodynamics, Tran and Kim ana-

lyzed the unsteady aerodynamics of a pitching FOWT rotor [8] with different motion parameters using the ANSYS FLUENT

CFD code and several BEMT codes. They found that the agreement of low– and high–fidelity predictions in terms of peak

rotor power and thrust worsened with the severity of the pitching motion. They also studied the unsteady aerodynamics of a

surging FOWT rotor [9], using the STAR–CCM+ CFD code with overset grids and the BEMT approach, and more general

FOWT motions [10] using a strongly coupled aerodynamic/hydrodynamic high-fidelity CFD framework and the NREL wind

turbine code FAST [11]. Also in these cases, they found that the agreement of high– and low–fidelity results worsened with

the severity of the operating regime. Liu et al. [12] studied FOWT dynamics including rotor aerodynamics, floater hydrody-

namics, and mooring dynamics. Their study used a multi–disciplinary high–fidelity and fully coupled approach based on the

incompressible OpenFOAM solver, and compared the high–fidelity results to those of FAST. A good agreement of the two

approaches was reported. A comprehensive compressible flow analysis of FOWT rotor aerodynamics for the pitching and

surging cases was provided in [13], which included detailed FOWT rotor wake analyses.

Compressibility effects are likely to play a significant role in FOWT aerodynamics. The sheer size of FOWTs and the

entrainment velocity due the floater motion result in large time–dependent variations of the relative angle of attack (AoA)

to the rotor blades. In turn, these higher AoA values may result in relative Mach numbers past the blades exceeding the

compressible limit of 0.3. Both incompressible and compressible solvers are used in wind turbine aerodynamics [14, 15],

but a systematic comparison of incompressible and compressible CFD codes for FOWT aerodynamics is as yet unavailable.

Initial investigations into this aspect were reported in [16], which presented the first application of the compressible COSA

code to a pitching FOWT and comparisons with FAST predictions.

This report presents new COSA simulations of the pitching FOWT rotor studied in [16], and thoroughly compares these
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2 GOVERNING EQUATIONS

results with incompressible flow FLUENT simulations performed using the same mesh, and NREL FAST predictions. The

selected pitching parameters correspond to an extreme FOWT motion regime which may occur if faults of the turbine safety

system prevented turbine shut-down. Hence, the considered turbine kinematics is relevant to testing aerodynamic codes for

extreme load analysis.

The key novel features of this work are a) a comprehensive quantitative investigation into the impact of flow compress-

ibility on the performance of pitching FOWT rotors, b) a cross–comparative analysis of high–fidelity CFD and low–fidelity

BEMT–based FOWT rotor aerodynamic predictions, including a discussion on the possible causes of and remedies to the

discrepancies between high– and low–fidelity results, and c) a detailed analysis of the main features of pitching FOWT wake

and tip vortex generation, enabled by the use of blade–resolved CFD simulations. The flow problem formulation and the de-

tails of the two CFD set–ups are discussed first. Then the steady high– and low–fidelity simulations of the fixed–tower rotor

flow field are compared. This is followed by cross–comparative analyses of high– and low–fidelity FOWT rotor performance

predictions, and the CFD analysis of the FOWT rotor wake. A summary is provided in the closing section.

2 GOVERNING EQUATIONS

The 3D compressible RANS equations are a system of conservation laws expressing the conservation of mass, momen-

tum and energy in a turbulent fluid flow. The effects of turbulence on the mean flow field are accounted for by introducing

the Reynolds stress tensor in the momentum and energy equations. Here this tensor is modeled using Menter’s two–equation

k−ω shear stress transport (SST) turbulence model [17, 18], a linear eddy viscosity model. Thus, using the compressible

flow model, turbulent flows are determined by solving a system of seven partial differential equations (PDEs) and an equation

of state linking fluid density, pressure and internal energy.

Given a moving control volume C with boundary S, the Arbitrary Lagrangian–Eulerian (ALE) integral form of the

system of the time–dependent (TD) RANS and SST equations in a stationary (i.e. absolute) Cartesian coordinate system is:

∂
∂t

(∫
C(t)

UdC
)
+

∮
S(t)

(Φc −Φd) ·dS−
∫

C(t)
SAdC = 0 (1)

where U= [ρ ρuT ρE ρk ρω]T is the array of conservative variables, the superscript T denotes the transpose operator,

and the symbols ρ, u, E, k and ω denote, respectively, density, absolute velocity vector, and the total energy, turbulent kinetic

energy and specific dissipation rate of turbulent kinetic energy per unit mass. The total energy is E = e+(u ·u)/2+k, where

e denotes the internal energy per unit mass; the perfect gas law is used to express the static pressure p as a function of ρ, E,
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2 GOVERNING EQUATIONS

k and the mean kinetic energy per unit mass (u ·u)/2 [18]. The generalized convective flux vector Φc is:

Φc =



ρ(u−ub)
T

ρ(u−ub)
T u+ pI

ρE(u−ub)
T + puT

ρk(u−ub)
T

ρω(u−ub)
T


(2)

where I is the (3×3) identity matrix, and ub is the boundary velocity.

The definition of the generalized diffusive flux vector Φd is reported in [18, 19], and the source term SA is given by:

SA =
[
0 0T 0 Sk Sω

]T
(3)

where Sk and Sω denote respectively the source terms of the k and ω equations of the SST turbulence model [20].

In many applications involving rotational motion, such as turbomachinery, helicopter and HAWT rotor flows, it is

convenient to formulate the governing equations in a rotating (i.e. relative) frame of reference. In simple cases, such as

the aerodynamic analysis of fixed–bottom HAWT rotors in uniform wind parallel to the rotor axis, this enables solving a

problem that is unsteady in the stationary frame as a steady problem in the rotating frame.

Solving the governing equations in the relative frame, the grid is always motionless during the simulation. However,

the relative flow velocity vector can be expressed either in the relative or the absolute frame [21]. The two choices are

mathematically equivalent, but representing the relative fluid velocity in the absolute frame is numerically more convenient

for open rotor applications. Using an absolute frame representation of the relative fluid velocity, the counterpart of System (1)

in a rotating Cartesian frame is:

∂
∂t

(∫
C

UdC
)
+

∮
S
(Φc −Φd) ·dS−

∫
C

SRdC = 0 (4)

The expressions of U, Φc, and Φd in System (4) are identical to those in System (1). However, the control volume C and its

boundary S are no longer time–dependent. The source term vector SR differs from the source term SA because of additional

terms due to the inertial forces in the rotating frame, and is given by:

SR =
[
0 ρ(Ωr ×u)T 0 Sk Sω

]T
(5)
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3 GRID VELOCITIES

where Ωr denotes the angular speed of the rotating frame attached to the rotor.

It is noted that the source term depending on Ωr in Eq. (5) and the face velocities of the grid cells ub in Eq. (2) are

nonzero also for steady rotor flows.

3 GRID VELOCITIES

When the control volume C in Systems (4) and (1) represents one cell of the rotating grid attached to a fixed–bottom

HAWT rotor, ub is given by:

ub = Ωr × r (6)

in which r denotes the time–dependent position vector in the absolute frame with respect to a point on the rotational axis,

and Ωr is the constant angular speed of the rotor.

In this study, the rotational axis of fixed–bottom HAWT rotors is the z axis. To obtain the FOWT rotor grid velocities

associated with the concurrent rotation of the rotor past its axis and the pitching motion of the tower past the turbine center

of gravity, it is necessary to start from the expressions of the time–dependent grid coordinates in the case of the fixed–bottom

turbine. With reference to the schematic of Fig. 1, the time–dependent x- and y-coordinates of a grid point are thus:

xr = x0 +(x0 − xrot)(c−1)− (y0 − yrot)s

yr = y0 +(x0 − xrot)s+(y0 − yrot)(c−1)
(7)

where xrot and yrot are respectively the x- and y-coordinates of a point on the rotational axis, x0 and y0 are respectively the x-

and y-coordinates of a grid point at time t = 0, c = cosθr, s = sinθr, and θr = Ωrt is the azimuthal position of a reference

blade (blade B1 in the right plot of Fig. 1). The time–dependent x- and y- components of the grid point velocity are obtained

by taking the time–derivative of the two components of Eq. (7), and are:

ẋr = [−(x0 − xrot)s− (y0 − yrot)c]Ωr

ẏr = [(x0 − xrot)c− (y0 − yrot)s]Ωr

(8)

The two components of Eq. (8) can be viewed as the scalar counterparts of Eq. (6).

In the case of the rotor of a pitching FOWT oscillating in the yz plane with amplitude Θp and angular frequency Ωp past

a pitching center of coordinates (yp,zp), additional terms need to be included in Eq. (7) which provides the time–dependent

coordinates of the grid nodes of a fixed–bottom HAWT rotor simulation. With reference to the FOWT schematic of Fig. 2,

GTP-20-1409 Campobasso 6



3 GRID VELOCITIES

Fig. 1. Top view (left schematic) and front view (right schematic) of fixed–bottom HAWT with axis and rotation conventions.

the time–dependent inclination of the tower is:

θp = Θp sin(Ωpt +ϕp) (9)

with ϕp being a given phase angle between the instantaneous tower pitch angle θp and the rotor azimuthal position θr. The

expressions of the coordinates of a moving grid point become:

x = xr

y = yr − (zr − zp)sp +(yr − yp)(cp −1)

z = zr +(zr − zp)(cp −1)+(yr − yp)sp

(10)

where cp = cosθp and sp = sinθp. Finally, the grid velocity components associated with concurrent rotation of the rotor and

pitching of the tower, obtained by taking the time–derivative of the three components of Eq. (10), are found to be:

ẋ = ẋr

ẏ = θ̇p [−(zr − zp)cp − (yr − yp)sp]+ ẏrcp

ż = θ̇p [−(zr − zp)sp +(yr − yc)cp]+ ẏrsp

(11)

where θ̇p = ΘpΩpcos(Ωpt +ϕp).

At each physical time of the COSA FOWT rotor simulations presented in this study, the grid displacements and velocities

are computed with Equations (10) and (11) respectively. In the FLUENT FOWT simulations, the grid velocities at each time

are obtained using a newly developed user–defined function (UDF), in which the entrainment velocities are determined using

the expressions of Eq. (11), and the grid displacements are evaluated by numerical integration of the analytical expressions

GTP-20-1409 Campobasso 7



4 COMPRESSIBLE CFD SOLVER

Fig. 2. Side view of FOWT with axis and rotation conventions.

of the grid velocities.

4 COMPRESSIBLE CFD SOLVER

4.1 Space discretization and numerical integration

The compressible density-based COSA code is a finite volume cell–centered code that solves the steady and unsteady

time–domain RANS and SST equations using structured multi–block grids [18]. The code has been successfully used

to investigate the unsteady hydrodynamics of oscillating wings to extract energy from an oncoming fluid stream [18, 22,

23], the unsteady aerodynamics of Darrieus vertical axis wind turbines [24–26] and the unsteady aerodynamics of fixed–

bottom HAWTs due to yawed wind [6, 20] and blade stall [27]. Thorough verification and experimental measurement-

based validation studies of the predictive capabilities of COSA for steady and unsteady HAWT rotor flows are reported in

references [6, 16, 27]. The code also features an efficient harmonic balance solver for the rapid solution of wind turbine

unsteady periodic flows, which has been shown to reduce by up to 50 times the runtime for the NS CFD analysis of fixed–

bottom HAWT rotors with respect to the conventional time–domain NS method [6, 19, 28]. COSA has a highly efficient

parallelization of both its computing and IO sections [29], and distributed-memory (MPI) simulations have been efficiently

run with up to 16,000 cluster cores [25].

The COSA discretization of the convective fluxes of both RANS and SST PDEs uses Van Leer’s second order upwind

MUSCL extrapolations and Roe’s flux–difference splitting with Van Albada’s flux limiter. Denoting by n the outward

normal of the face of a grid cell, and dS the area of said face, the numerical approximation to the continuous convective flux

component Φc f = (Φc ·n)dS through the face is:

Φ∗
c f =

1
2

[
Φc f (UL)+Φc f (UR)−

∣∣∣∣∂Φc f

∂U

∣∣∣∣δU
]

(12)
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4.2 Low-speed preconditioning 4 COMPRESSIBLE CFD SOLVER

The superscript ∗, the subscript f , and the subscripts L and R denote numerical approximation, face value, and value extrap-

olated from left and the right of the face, respectively. The numerical dissipation is the third term in the right-hand-side of

Eq. (12), and is thus seen to depend on the generalized flux Jacobian ∂Φc f /∂U and the flow state discontinuity across each

cell face, defined by δU = (UR −UL). It can be shown that the seven components of abovesaid numerical dissipation depend

on the absolute value of the three distinct eigenvalues of ∂Φc f /∂U, which are given by

λ1 = un −ubn, λ2,3 = un −ubn ±a (13)

where un − ubn = (u− ub) · n and a is the sound speed. The convective eigenvalue λ1 has multiplicity 5, whereas both

acoustic eigenvalues λ2 and λ3 have multiplicity 1. In the COSA simulations presented below, the absolute value of all three

eigenvalues have been subjected to the cut-off condition:

|λ|= max(|λ| ,δ) (14)

where δ is a constant equal to 0.76 times the Mach number of the freestream absolute wind speed. The components of the

numerical dissipation depend linearly on the abovesaid eigenvalues, and the cut-off condition of Eq. (14) was used to prevent

the numerical dissipation from vanishing where one or more of the eigenvalues tend to zero. It is also noted that COSA solves

a nondimensionalized form of the conservation laws, in which the flow velocities become the associated Mach number.

The discretization of the diffusive fluxes and the turbulent source terms uses central finite–differencing. The integration

of the steady RANS and SST equations is performed in a strongly–coupled fashion [18], using an explicit method made up of

explicit Runge–Kutta time–marching, with local time–stepping, implicit residual smoothing and multigrid for convergence

acceleration. The strongly–coupled integration approach results in the RANS and SST equations being solved with the

same numerical method and being time–marched concurrently. TD problems are solved using Jameson’s second–order dual

time–stepping. Further detail of the space-discretization and the numerical integration of steady and general time–dependent

problems can be found in [18].

4.2 Low-speed preconditioning

The solution accuracy of density-based CFD codes decreases in the presence of low-speed flow regions where the

local Mach number drops below the threshold of 0.10 [22], and this accuracy loss is particularly severe in the case of

separated flows [30]. The primary cause of this phenomenon is the improper scaling of the components of the numerical

dissipation as the local Mach number tends to zero. When solving the density-based compressible flow equations using an

explicit integration method, low flow speeds may also result in a reduction of the residual convergence rate. In inviscid

and, to a significant extent, also in high-Reynolds number flows, this occurs because of the large disparity of acoustic

GTP-20-1409 Campobasso 9



4.2 Low-speed preconditioning 4 COMPRESSIBLE CFD SOLVER

and convective speeds, whose component normal to a face of a particular grid cell is provided by Eq. (13). Low-speed

preconditioning (LSP) [31] can resolve the accuracy issue by restoring the balance of all terms appearing in the matrix-

valued numerical dissipation as the Mach numer tends to zero (incompressible flow limit), and can improve the convergence

rate by substantially reducing the disparity of acoustic and convective speeds. Indeed, the re-equalization of the characteristic

speeds yields convergence rates which, for inviscid and relatively simple viscous flow problems, are fairly independent of

the Mach number [22]. The COSA LSP algorithm is a generalization of the preconditioner of Weiss and Smith [32]. The

unique feature of the LSP algorithm implemented in COSA [33] is that it is applied to both the RANS and SST equations,

a feature required for using the computationally efficient strongly coupled integration of the two sets of equations also for

problems containing low-speed regions.

The introduction of LSP modifies the numerical dissipation appearing in the numerical flux defined by Eq. (12) as

follows:

Φ∗
c f =

1
2

[
Φc f (UL)+Φc f (UR)−Γ−1

c

∣∣∣∣Γc
∂Φc f

∂U

∣∣∣∣δU
]

(15)

The expression of the preconditioning matrices Γc and (Γc)
−1 are reported in [33], where one finds that both of these matrices

depend on a local preconditioning parameter Mp. The value Mp = 1 results in both matrices becoming the identity matrix,

and, thus, no preconditioning. In low-speed flow analyses, instead, Mp is given by:

Mp = min(max(M,Mpg,Mvis,εp) ,1) (16)

where M is the local Mach number, Mpg is a cut-off value based on the local pressure gradient [34], Mvis is a viscous cut-off

value [22], and εp is a constant cut-off value that prevents (Γc)
−1 from becoming singular where all other arguments of the

max function in Eq. (16) approach zero. In the COSA simulations discussed below, the constant εp was set to 4.6 times the

Mach number of the freestream absolute wind speed.

At the algorithmic level, the key alteration of the numerical dissipation induced by LSP manifests itself in an alteration

of the acoustic eigenvalues of the preconditioned Jacobian Γc
∂Φc f
∂U . The preconditioned eigenvalues are:

λ1 = un −ubn, λ2,3 =
1
2
(un −ubn)(1+M2

p)±a′ (17)

GTP-20-1409 Campobasso 10



6 RESULTS

with the artificial sound speed a′ given by:

a′ =
√

4a2M2
p +(M2

p −1)2(un −ubn)2 (18)

The cut-off defined by Eq. (14) is also applied to the preconditioned eigenvalues defined by Eq. (17).

5 INCOMPRESSIBLE CFD MODEL

The incompressible flow simulations presented herein have been performed using the commercial finite volume CFD

code ANSYS FLUENT Release 19.1, which integrates the discretized equations over general unstructured grids. The same

grids were used for both COSA and FLUENT simulations. A cell–centered formulation has been used for the analyses

reported below, adopting a second-order accurate upwind space-discretization of the RANS and SST equations. In the

case of the unsteady simulations associated with the considered FOWT flow field, a first order dual time–stepping time–

marching process has been used. The incompressible model makes use of the pressure-based formulation of the RANS

equations, and the numerical integration is obtained by resorting to the COUPLED solver; with this integration method, the

momentum and the pressure-based continuity equations are solved in a fully-coupled fashion. The SST transport equations

are instead integrated in a segregated or loosely coupled fashion. Since, as discussed below, the mesh resolution at the walls

is sufficiently high, also in FLUENT the near-wall region of the boundary layer is fully resolved without resorting to wall

functions. Similarly to the COSA simulations, the steady rotor flow analyses in FLUENT have been performed in the rotor

frame using an absolute frame representation of the unknown flow velocity, whereas the time–dependent FOWT simulations

have been carried out in the absolute frame.

6 RESULTS

The study below was performed considering the NREL 5 MW virtual HAWT [35]. The turbine has a tower height of 90

m and features a 126 m–diameter three–blade rotor. The rotor has an overhang of 5 m, a shaft tilt of 5o, and a pre–coning of

2.5o. The rotor pre–coning is not included in the following analyses.

Steady and time–dependent low– and high–fidelity simulations are considered. In all steady analyses, the turbine has a

fixed–bottom tower, and the shaft tilt is neglected. The time–dependent analyses are used for analyzing the pitching FOWT

rotor unsteady performance and aerodynamics. The same grid and the same numerical set–ups of the steady flow analyses

are used for the time–dependent CFD simulation. The shaft tilt is included in both low– and high–fidelity analyses. In the

CFD analyses, the shaft tilt is accounted for by inclining the oncoming steady wind by 5o on the horizontal direction, thus

allowing one to adopt the same rotor geometry and meshes used for the steady flow analyses.

The rotor geometry and the selected wall boundary conditions are reported in Fig. 3(a), the grid around the airfoil at 50%

tip radius is shown in Fig. 3(b), and the physical domain and position of the boundaries are provided in Fig. 3(c). The COSA

simulations are performed using characteristic far field boundary conditions, which automatically detect if the flow enters
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(a) rotor geometry and wall boundary
conditions.

(b) airfoil grid at 50 % tip radius.

(c) domain dimensions and outer boundaries.

Fig. 3. CFD model of NREL 5 MW turbine.

or leaves the domain, on all far field boundaries. The FLUENT simulations are performed using a velocity inlet condition

on the front inflow boundary and the lateral far field boundary, whereas a pressure outlet is enforced on the rear outflow

boundary. All CFD simulations assume fully turbulent boundary layers at solid wall boundaries. This choice is made not

only to avoid the additional computational burden incurred by using a transition model, but also because blade leading edge

erosion [36, 37] experienced in just a few years of operation is expected to result in the blade boundary layers being fully

turbulent at most operating conditions, also due the high Reynolds number encountered over most parts of the blades.

Two structured multi–block grids with high level of orthogonality in most regions of the domain and differing for their

overall refinement are adopted for the CFD simulations. For both grids, the distance of the far field boundaries from the

turbine rotor indicated in Fig. 3(c) is set following the guidelines in [38], and a butterfly mesh pattern is used around the

rotor axis to avoid the use of degenerate cells with the COSA structured code. The coarser grid has about 10M cells, with

minimum distance of the first grid nodes off the blade surface from the blade surface itself yielding y+ of about 1 in both

steady and time–dependent simulations. In comparison to the grid used for the simulations in [16], the present coarser grid

has 25% more cells discretizing a physical domain which is eight times smaller. The finer 80M cell mesh, also used for the

steady flow analyses discussed below, is obtained from the 10M cell–grid by doubling the number of cells in each direction.

6.1 Fixed–tower rotor analyses

Two operating conditions below rated wind speed are considered for the analysis of fixed–tower rotor aerodynamics: a

near–rated condition, with wind speed of 11 m/s and rotational speed of 12 RPM, and an intermediate condition with wind
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speed of 8 m/s and rotational speed of 9.16 RPM. The freestream conditions have pressure of 1 bar, temperature of 283 K

and density of 1.225 kg/m3.

Tables 1 and 2 reports the COSA, FLUENT and FAST estimates of the rotor power and thrust at 11 m/s and 8 m/s

respectively. The FAST results of these two tables are computed with the OpenFAST release of this code [11]. To be as

consistent as possible with the CFD analyses, the FAST analyses were run using high–Reynolds number (> 5 M) airfoil lift

and drag data. The quantitative agreement among the results of the two CFD codes and FAST is very good. At the near–rated

condition, the FLUENT and COSA coarse grid thrusts are underestimated by 4.8% and 3.7%, respectively, with respect to

that of FAST. Increasing the mesh refinement, the CFD and BEMT results get closer, with the FLUENT and COSA thrust

underestimates of the FAST prediction reducing to 3.2% and 3.4% respectively. Smaller differences are observed in terms of

rotor power: the FLUENT and COSA coarse estimates are respectively 1.8% and 0.6% of the FAST prediction, with these

differences changing to 0.2% for both CFD fine grid estimates. At the intermediate wind–speed, the qualitative differences

between the high– and low–fidelity results are identical to those at the near–rated condition, and the numerical values of

these differences are very close to their near–rated wind speed counterparts. These results indicate that the two CFD codes

can be considered equivalent for predicting fixed–bottom HAWT steady performance. Moreover, the coarse grid is seen to

possess a level of spatial refinement yielding fairly grid–independent results.

Table 1. Fixed–bottom turbine (u∞=11 m/s, Ωr = 0.4π rad/s): rotor thrust T and rotor power P computed with coarse and fine COSA and
FLUENT simulations and FAST analysis.

FAST COSA-C FLUENT-C COSA-F FLUENT-F

T [N] 703.8 677.8 670.3 679.9 681.0

P [MW] 4.91 4.94 4.82 4.92 4.92

Table 2. Fixed–bottom turbine (u∞=8 m/s, Ωr=0.9592 rad/s): rotor thrust T and rotor power P computed with coarse and fine COSA and
FLUENT simulations and FAST analysis.

FAST COSA-C FLUENT-C COSA-F FLUENT-F

T [N] 383.9 365.8 364.5 364.1 NA

P [MW] 1.90 1.90 1.86 1.87 NA

The COSA and FLUENT coarse grid profiles of static pressure coefficient cp of four blade cross-sections for the near-

rated condition are depicted in Fig. 4. The pressure coefficient is defined as:

cp =
p∞ − p

1
2 ρ∞ [u2

∞ +(Ωr)2]
(19)
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(a) 24% tip radius.
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(b) 42% tip radius.
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(c) 60% tip radius.
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(d) 96% tip radius.

Fig. 4. Fixed–bottom turbine (u∞=11 m/s, Ωr = 4π rad/s): COSA and FLUENT coarse grid static pressure coefficient cp at four radial
positions.

where p and p∞ denote, respectively, local and freestream static pressure, u∞ is the freestream wind speed and r denotes the

radial position along the blade. The COSA and FLUENT cp profiles of Fig. 4 differ negligibly. The agreement of the two

predictions is excellent along most of the blade. Some small differences between the predictions of the two codes exist only

at the section closest to the hub, where the two codes predict similar cp values on the pressure side but a lower pressure level

is predicted by COSA, corresponding to higher lift. The fine grid cp profiles of both codes, not reported for brevity, show

that the coarse grid blade static pressure predictions of both analyses are grid-independent.

Figure 5 reports the limiting streamlines on the blade suction side computed by the two CFD simulations using the

coarse grid. The plots show overall good qualitative agreement with the limiting streamline plot of [38], which refers to a

wind speed of 8 m/s. The qualitative comparison of the results of these two articles is enabled by the fact that the tip speed

ratio (TSR) at 8 and 11 m/s are very close. A large separation occurs in the hub region of the blade, whose chordwise and

spanwise extent is slightly larger in the COSA simulation. The impact of these differences on the blade performance can

be adequately quantified by considering the cp profiles of Fig. 4. At 24% tip radius, corresponding to a radius of 15.6 m,

FLUENT predicts the separation at about 50% of the chord and COSA at about 40% of the chord. However, the top right plot

of Fig. 4 shows that at 42% tip radius, corresponding to a radius of 27.2 m, the blade load predicted by the two simulations

is much closer, indicating that the differences between the separation highlighted by the limiting streamlines correspond to

less dramatic differences in terms of blade load. Outside the separation zone, the limiting streamlines of the two codes are

in good quantitative agreement on the rest of the blade surface, particularly in the outboard region, where the majority of the

wind energy harvesting occurs. The larger extent of the surface separation predicted by COSA may be due to a suboptimal

choice of the LSP parameter εp, an item of future work.
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(a) FLUENT simulation.

(b) COSA simulation.

Fig. 5. Fixed–bottom turbine (u∞=11 m/s, Ωr = 4π rad/s): FLUENT and COSA coarse grid limiting streamlines on blade suction side (SS).

The results above indicate that the adopted computational set-ups allow performing reliable simulations of rotor aero-

dynamics, a key requirement for FOWT performance prediction. However, in view of analyzing floating wind farms, the

capability of the CFD models of simulating the flow behind the turbine is also important. To highlight the main flow struc-

tures in the rotor wake, the azimuthal component of the absolute vorticity ωθ is considered. Its definition is:

ωθ = (∇×u) · eθ (20)

where eθ is the circumferential unit vector of the cylindrical system whose z axis coincides with the homonymous axis of

the absolute Cartesian system in which the rotor flow is represented. Figure 6 compares the coarse mesh contours of ωθ in

the meridional plane yz. The wake of the rotor is delimited by the blade tip vortices. Dense cores of negative ωθ appear

on the two sides of the meridional plane, alternating due to the helical pattern of the vortex tube. The 3D visualization of

the tip vortex streamtube in the right plot of Fig. 6 consists of an ωθ isosurface colored with the local radius to improve its

visibility. The wake vorticity field predicted by the two codes are similar, and the tip vortex is also well resolved, although

the FLUENT simulation on this coarse grid appears to be slightly less dissipative than the COSA simulation, since the former

resolves for a longer axial distance the helical vorticity streamtubes.

The considered coarse grid has been shown to provide mesh-independent results in terms of rotor loads and power. To

investigate the impact of mesh refinement on rotor wake resolution, Fig. 7 visualizes the rotor wake obtained with a fine grid

COSA simulation using the same format of Fig. 6. The overall pattern of the vorticity field does not change notably over

that of the coarse grid COSA solution. However, the ωθ cores are resolved more neatly, and the helical vortex patterns are

resolved on a longer axial distance. This higher wake resolution further away from the rotor does not affect significantly the

rotor loads and the wake generation patterns discussed below. Thus, in light of the good quality of the coarse grid solution

of both codes, and the high computational cost of the fine-mesh time–dependent simulations, the coarse mesh was selected

for the FOWT analyses below.
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(a) Meridional plane - FLUENT. (b) Vortex tube - FLUENT.

(c) Meridional plane - COSA. (d) Vortex tube - COSA.

Fig. 6. Fixed–bottom turbine (u∞=11 m/s, Ωr = 4π rad/s): COSA and FLUENT coarse grid contours of azimuthal vorticity ωθ [1/s] in
meridional (yz) plane (left) and ωθ streamtubes behind rotor (right).

(a) Meridional plane. (b) Vortex tube.

Fig. 7. Fixed–bottom turbine (u∞=11 m/s, Ωr = 4π rad/s): COSA fine grid contours of azimuthal vorticity ωθ [1/s] in meridional (yz) plane
(left) and ωθ streamtubes behind rotor (right).

6.2 Pitching FOWT rotor analyses

The pitching FOWT analysis is performed for the near–rated operating regime only, corresponding to freestream wind

speed of 11 m/s and rotor speed of 12 RPM. The rigid body pitching motion is imposed to the whole rotor (hub and blades)

with amplitude Θp = 4o and angular frequency Ωp = 0.4π rad/s, which equals the angular frequency of the rotor speed.

The simulations do not include blade pitch and rotor speed control, and the motivation of this choice and its impact on

the analyses are discussed below. The phase ϕp between the pitching motion and the rotor revolution is set to zero. This

implies that, at the beginning of the pitching cycle the turbine tower is vertical and has maximum leeward (i.e. in positive z

direction) speed, and blade 1 in Fig. 1 is vertical above the hub. At 50% of the pitching cycle the tower is again vertical but

it has maximum windward speed, and blade 1 is vertical below the hub. The pitching center is at the tower base at yp=-90
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Fig. 8. Pitching FOWT (u∞=11 m/s, Ωr = Ωp = 0.4π rad/s, ϕp = 0o, Θp = 4o, yp=-90 m, zp=5 m): FLUENT, COSA, and FAST rotor
power (left) and rotor thrust (right) over two consecutive periods.

m, and the rotor overhang is accounted for by placing the pitching center at zp=5 m. Both the COSA and FLUENT analyses

are carried out in the absolute reference frame. The selected frequency of the turbine motion, which is one of the regimes

analyzed in [8], results in a maximum axial acceleration of the turbine nacelle of about 9.9 m/s2, a value above the threshold

of 0.2g to 0.3g at which the turbine safety system would shut down the machine [39]. Therefore, the selected kinematic

conditions should be viewed as an extreme operating condition, such as that occurring due to faults of the safety system. It

is important to test and assess FOWT aerodynamic analysis codes for extreme conditions, as these often pose design-driving

constraints.

Figure 8 compares the periodic profiles of rotor thrust and power of the new CFD analyses of the present study, and those

of the FAST simulation of [16]. At each physical time, the rotor thrust is computed as the sum of the projection on the z axis

of the aerodynamic force acting on each blade, and this latter results from integrating the pressure and viscous forces on the

entire blade surface. This method yields exact estimates at 0% and 50% of the cycle, when the tower is vertical (θp = 0), and

is affected by a small error (< 1%) at all other times, due to the inclination of the rotor axis caused by the pitching motion.

Similarly, the rotor torque is computed as the sum of the aerodynamic moment of each blade past an axis parallel to z and

passing through the time–dependent rotor center, and each moment is obtained by integrating on the entire blade surface

the moment of the pressure and viscous forces about this axis. The error affecting these torque estimates is qualitatively

and quantitatively similar to the thrust error. All curves of Fig. 8 show quasi–harmonic large–amplitude oscillations of rotor

thrust and power. These oscillations arise because the analyses do not include blade pitch and rotor speed control, and this

also causes the peak rotor power and thrust to significantly exceed their rated values. In real operations, the turbine control

greatly reduces these oscillations, or shuts down the turbine when appropriate. One of the aims of the study, however, was

to cross–compare the predictive capabilities of FOWT CFD and BEMT codes in severe aerodynamic regimes, an important

step which typically precedes the use of these aerodynamic codes for the design and verification of FOWT rotor control.

Both thrust and power achieve their minima around 0% of the cycle, when the tower has maximum leeward speed, and

their maxima around 50% of the cycle, when the tower has maximum windward speed. This occurs because at 0% and

50% of the pitching cycle the speed of the rotor hub is maximum and has a magnitude of 7.89 m/s, which is comparable to

magnitude of the absolute wind speed of 11 m/s. Therefore, when the turbine has maximum leeward speed, the relative (i.e.

effective) axial velocity of the wind at hub height is only 3.11 m/s, resulting in all analyses predicting output power below

1 MW. This low value is due both to the lower level of available wind energy, which depends on the cube of the relative
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axial wind speed over the rotor swept area, and also the fact that the instantaneous TSR has increased significantly over the

optimal value of the steady near–rated operating condition. The latter one is 7.42, a value at which the power coefficient CP

is about 0.46, whereas the instantaneous TSR at 0% of the pitching cycle is 26.26, a value at which notably lower CP values

are observed. When the rotor hub achieves its maximum windward speed at 50% of the pitching cycle, the relative axial

velocity of the wind at hub height is 18.89 m/s, resulting in all analyses predicting output power well above the rated value.

From a merely aerodynamic viewpoint, these high power peaks are consistent with an effective wind speed of 18.89 m/s.

For instance, the peak of 17.6 MW predicted by COSA for this rotor geometry and instantaneous operating condition would

correspond to a power coefficient of about 0.33, a realistic value for the instantaneous TSR value of 4.32 at this point of the

pitching cycle.

The thrust and power oscillation patterns of the two CFD codes are similar, and are also fairly similar to those of FAST.

The peak values of the rotor thrust predicted by the three analyses are in fairly good agreement, although some differences in

the slope of the three curves are visible. More notable differences exist among the peak power values of the three analyses:

COSA predicts a peak power of 17.6 MW, the FLUENT prediction of 16.4 MW is 7% lower, and the FAST prediction of

14.1 MW is 20% lower. The mean power predicted by the two CFD codes over one cycle, 6.4 MW for FLUENT and 7.1

MW for COSA, is 30 to 45% higher than that predicted by these codes in the fixed–tower simulations. The COSA mean

power increase is of the same order of magnitude of those observed for similar compressible flow CFD analyses of a 10

MW FOWT pitching with amplitudes between 3o and 5o [14]. As discussed below, part of the reason for the discrepancies

of the power predictions is the existence of compressible flow effects not included in the FLUENT and FAST simulations.

But an additional major factor accounting for the large differences between the CFD and BEMT results is likely to be a

different prediction of the two methods of the dynamic stall characteristics of pitching and rotating blades. It is also noted

that, in a cross–comparative COSA/FAST analysis of FOWT rotor aerodynamic loads in non–extreme pitching regimes [40],

the differences between the COSA and FAST predictions have been found to be notably smaller than those for the extreme

condition considered herein.

To investigate in greater detail the unsteady aerodynamics of the considered pitching FOWT rotor, the cp profiles of four

cross–sections of blade 1 at four times of the pitching cycle presented in Fig. 9 are considered. The left and right plots report

the COSA and FLUENT profiles, respectively. Each plot reports the cp profiles at 0% and 50% of the cycle, the instants at

which the rotor power and thrust take their minimum and maximum values, respectively. To enable a qualitative comparison

with the fixed–tower turbine case, the plots also provide the cp profiles of this reference condition. The cp profiles of each

plot highlight large variations of blade aerodynamics during the pitching cycle, as expected. At 50% of the period (peak

power and thrust) the pressure profiles of the three outermost sections resemble those observed in fixed–tower mode, even

though the pressure difference between the two sides of the blade is higher, especially in the leading edge region. This is due

to higher AoA to the blade with respect to the steady condition. At this point of the cycle, in fact, blade 1, which is vertical

below the hub, experiences windward entrainment velocities due to the pitching motion. At the same instant, the other two

blades have higher elevation, thus undergoing an even larger increment of aerodynamic loading. The top plots of Fig. 9 show

qualitative differences between the steady and FOWT pressure profiles at 50% of the cycle, and this is because in FOWT
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(c) 42% tip radius - COSA.
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(d) 42% tip radius - FLUENT.
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(e) 60% tip radius - COSA.
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(f) 60% tip radius - FLUENT.
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(g) 96% tip radius - COSA.
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Fig. 9. Static pressure coefficient cp at four radial positions of blade 1 of pitching FOWT (0% and 50% of pitching cycle) and fixed–bottom
turbine computed by COSA (left) and FLUENT (right).

mode the flow separation at the lower blade radii becomes even larger than in the fixed–tower case, due to the blade AoA

reaching very high levels. At the beginning of the pitching cycle, the FOWT pressure profiles on the two sides of the blade

are much closer to each other, and they even intersect. This is consistent with the substantial AoA reduction caused by low

wind speeds relative to the pitching tower in this phase. The two CFD codes provide very similar predictions over most parts

of the blade, with some more notable differences appearing only at the hub section. These differences are similar to those
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(a) Fixed tower. (b) 0% pitching cycle. (c) 50% pitching cycle.

(d) Fixed tower. (e) 0% pitching cycle. (f) 50% pitching cycle.

Fig. 10. COSA coarse grid contours of relative Mach number and streamlines at 42% tip radius (top) and 96% tip radius (bottom) of blade 1
of fixed–bottom turbine (left), FOWT at 0% of pitching cycle (center) and FOWT at 50% of pitching cycle.

observed and discussed in the case of the fixed–tower rotor, and they are too limited to justify the differences of peak power

predicted by the COSA and FLUENT simulations. The smaller COSA and FLUENT cp differences at high radii are partly

due to compressibility effects, as shown below.

To further investigate the unsteady aerodynamics of the considered FOWT regime and highlight the key differences with

fixed–tower rotor aerodynamics, the contours of relative Mach number and the streamlines past the cross-sections of blade 1

at 42% and 96% tip radius for the fixed–bottom turbine and the pitching FOWT case are reported in Fig. 10. The left plots

refer to the blade sections of the fixed–bottom turbine, and the middle and right plots refer to the two sections at 0% and 50%

of the pitching cycle. Cross-comparison of the six plots highlights flow features in line with the key findings of the cp profile

analyses based on the results in Fig. 9, more specifically: (i) the qualitative similarity of the steady pressure field and that

of the pitching rotor blade at 50% of the pitching cycle, (ii) the significant load increase of the pitching blade with respect

to the steady case, due to the higher AoA caused by the windward motion of the tower and resulting in flow separation at

the inboard part of the blade in the trailing edge region, and (ii) the inversion of pressure and suction side in the pitching

regime at the beginning of the pitching cycle. The Mach contour plot past the outer section at 50% of the pitching cycle also

indicates Mach numbers well in excess of 0.3. Indeed, it is found that a significant portion of the outer part of the blade has

peak Mach numbers in the suction side region well above 0.4 in this phase of the tower motion. This results in compressible

flow effects that cannot be captured by the incompressible flow simulation, as highlighted by the verification provided below.

Inspection of the COSA and FLUENT cp profile of the blade tip section depicted in Fig. 11 reveals that flow com-

pressibility alters the pressure field with respect to the incompressible solution, an effect that can be quantified. One notes

that COSA predicts a slightly lower pressure than FLUENT on the blade suction side. This difference is entirely due to

flow compressibility, and this can be proved by correcting the FLUENT pressure profile by means of the so-called Glauert’s
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Fig. 11. COSA, FLUENT and Glauert-corrected profiles of static pressure coefficient cp at 96% tip radius at 50% of pitching cycle.

(a) 0% pitching cycle. (b) 25% pitching cycle.

(c) 50% pitching cycle. (d) 75% pitching cycle.

Fig. 12. COSA coarse grid contours of azimuthal vorticity ωθ [1/s] in yz plane at 0%, 25%, 50% and 75% of pitching cycle.

transformation rule [41]:

cp,corr =
cp√

1−M2
w

(21)

Using the relative Mach number of the approaching wind, Mw = 0.23, the corrected pressure profile matches exactly the

COSA prediction, as seen in Fig. 11. The aforementioned verification was performed by computing Mw ignoring the induc-

tion effect. However, the relative velocity is dominated by the entrainment velocity of the rotor; as a result, the impact of
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the induction on the Mw estimate is not expected to be significant. Indeed, whether neglecting the induction or using the

induction factor estimated by FAST, the Mw estimates vary by less than 1%. Neglecting flow compressibility reduces slightly

the lift generated by the tip sections, thus implying a slight underestimate of the turbine power in the FLUENT simulation.

Applying Glauert’s correction to the entire surface of the three blades, and integrating the resulting static pressure to obtain

the overall rotor power, the peak power of the FLUENT simulation increases by about 2.5%, thus reducing the difference

between the peak power of COSA and FLUENT to less than 5%.

The CFD FOWT results above highlighted high levels of rotor flow unsteadiness, likely to alter the wake generation

process and the wake/rotor interaction losses of floating wind farms with respect to the fixed–bottom turbine case. As the

fixed–tower rotor analyses showed that both codes deliver good and comparable wake resolution, only COSA simulations

are used below to analyze FOWT wake physics. Contour plots of the azimuthal component ωθ of the absolute vorticity

at 0%, 25%, 50% and 75% of the pitching cycle are provided in the four plots of Fig. 12. The wind is directed along the

positive zw axis. In the simulations, the rotor tilt was accounted for by pitching the wind at the far field boundaries by

the tilt angle of 5o on the z axis rather than tilting the rotor in the grid. The ywzw reference frame of Fig. 12 is rotated

by 5o in the clockwise direction with respect to the original z axis. Thus, the tower axis at 0% and 50% of the pitching

cycle is parallel to yw. In all cases, ωθ refers to the cylindrical system with axis z. Comparing the four plots of Fig. 12 to

their fixed–tower rotor counterparts in Fig. 6, notable differences of the tip vortex pattern are observed. More specifically,

the FOWT tip vortices lose the coherent circular cross-section pattern observed in steady conditions. Moreover, significant

differences appear between the upper and lower regions of the FOWT wake, the latter appearing more similar to its fixed–

tower counterpart. This is due to the fact that the velocity perturbation associated with the pitching motion is lower at lower

radii. The top region of the wake exhibits the highest differences with respect to the fixed–tower case, and also a significant

dependence on time. Two fairly distant tip vortex cores are visible at the beginning of the cycle, which evolve in a single

core at 25% of the period, when the rotor reaches its furthest downstream position. When the turbine reaches maximum

windward speed (50% of pitching cycle), two relatively close vortex cores appear. At 75% of the period, these two vortex

cores have moved downstream of the rotor maintaining their initial axial spacing and a third vortex core next to the rotor tip

appears. It is noted however, that the axial distance between this new third core and the following one is notably larger than

that between the two cores at 50% of the pitching cycle. These phenomena highlight a complex pattern of the generation and

near-field propagation of tip vortex in the upper region of the rotor wake, investigated below in greater detail.

During the pitching cycle, the rotor undergoes significant variations of the blade AoA, whose minimum values yield

nearly zero blade lift around the initial part of the considered cycle. As lift is the main driving force of the tip vortex, the

generation strength of the latter also experiences a periodic cycle, resulting in an intermittent release of tip vortices in the

upper region of the rotor wake. It is also noted that the axial spacing of the ωθ tip vortex helical streamtubes of the floating

rotor varies during the oscillation cycle. Moreover, in the considered case of pitching motion, unlike the surging rotor case,

this axial spacing varies also azimuthally at all times, due to the linear dependence of the tower-induced velocity on the

distance from the pitching center, i.e. the elevation y. These phenomena are further analyzed in Fig. 13, reporting the ωθ

contours of the fixed–tower rotor flow field, and the pitching FOWT rotor flow fields at 0% and 50% of the pitching cycle
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(a) Fixed tower. (b) 0% pitching cycle. (c) 50% pitching cycle.

Fig. 13. COSA coarse grid contours of azimuthal vorticity ωθ [1/s] in xy plane of fixed–bottom turbine (left), FOWT at 0% of pitching cycle
(center) and FOWT at 50% of pitching cycle (right).

in the xy plane, which contains the rotor center. When the pitching FOWT rotor moves windward (plot at 50% cycle), the

footprint of the tip vortices is notably smaller than in the fixed–tower case. This is because the relative axial velocity of

the wind is maximum, resulting in the contant-ωθ helixes moving rapidly downstream of the rotor and their axial spacing

also being maximum in the cycle. However, as the strength of this phenomenon increases with the elevation y, this effect is

minimum for the blade tip at the lowest y coordinate, which indeed shows the largest tip vortex footprint of the pitching rotor

blades, and the axial spacing of the helixes is minimum at this elevation. The footprint of the tip vortices is more pronounced

at the beginning of the period (plot at 0% cycle), when the rotor has maximum leeward speed. In these conditions, the

relative axial velocity of the wind reaches its minimum levels and even becomes negative at the highest y values. The high

entrainment speed in the leeward direction reduces the axial spacing of the constant ωθ helixes, and therefore the xy plane

intersects an azimuthally longer portion of these vorticity streamtubes.

The ωθ contour plot at 0% of the pitching cycle of Fig. 13 also explains the intermittent release of tip vorticity in the

top part of the rotor, observed in the discussion of Fig. 12. The pressure/suction side inversion of the highest blade, due to

the near-zero value of the axial component of the relative wind speed in the tip region, results in near-zero lift forces. This

removes the driving force of the tip vortex, which is absent at the tip of this blade, as visible in the middle plot of Fig. 13.

7 CONCLUSIONS

This study presented thorough comparative analyses of pitching FOWT rotor aerodynamics carried out with the BEMT–

based FAST wind turbine code, and blade–resolved NS CFD simulations. These latter were performed with the COSA

compressible code and the FLUENT incompressible code, in which a new UDF for prescribing FOWT rotor kinematics was

developed. The NREL 5 MW HAWT was the selected baseline turbine. A very good agreement of the FAST, compressible

and incompressible CFD predictions of the fixed–tower rotor performance at 8 and 11 m/s was observed. This confirms the

suitability of the low–fidelity BEMT approach for the analysis of fixed–bottom HAWTs, and also the negligible impact of

flow compressibility on the aerodynamics of this utility–scale turbine. The latter finding was also supported by the excellent

agreement of the blade surface static pressure distributions and the wake patterns computed with the two CFD analyses.

For an extreme pitching regime, featuring amplitude of 4o and pitching frequency equal to the frequency of the rotor
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angular speed, the low– and high–fidelity predictions of the peak rotor thrust of the pitching rotor at the near–rated wind

speed of 11 m/s were found to be in relatively close agreement. However, notably larger differences were noted for the peak

rotor power. The compressible flow analysis predicted a peak power of 17.6 MW, the incompressible analysis prediction

was 7% lower, and the BEMT prediction was 20% lower. The difference between the incompressible and compressible

predictions was reduced to less than 5% by applying Glauert’s compressibility correction to the incompressible estimate

of the blade static pressure at peak rotor power. This confirms that compressibility effects in FOWT rotor flows may be

significant and have to be systematically accounted for. The fairly large differences between the BEMT and blade–resolved

CFD analyses are likely to be due to different predictions of the dynamic stall affecting rotating blades subjected to time–

and space–dependent periodic AoA variations. The stall models of BEMT codes are not validated for this motion type, and

significant progress of all FOWT aerodynamic methods could be enhanced by the availability of realistic measured data

for code validation. For non-extreme pitching regimes, however, the differences between the time–dependent profiles of

turbine power, rotor thrust and blade pitching moments have been found to be notably smaller than in the extreme conditions

considered herein [40].

The CFD analyses of the FOWT rotor wake highlighted and discussed the intermittency of FOWT rotor tip vortex and

wake generation, caused by the large periodic variations of the tower–induced entrainment velocity and the blade AoA. The

lowest values of this variable yield periodic weakening or even interruption of the tip vortex and wake generation in the higher

region of the rotor swept area. This phenomenon is common also to surging FOWTs, but the pitching platform case differs

from the surging platform case in that the blades of a pitching rotor will have an elevation–dependent (and thus azimuthal

position–dependent) and out–of-phase variation of the lift along the blade length. All this results in larger circumferential

non–uniformities of pitching rotor wakes, and may lead to a dependence of the wake recovery rate on the FOWT platform

type, a key aspect for the design of future FOWT farms.

The COSA code can be used also for the analysis of surging FOWTs, and this kinematic functionality was recently

tested in the ARCTIC code, the recently developed incompressible counterpart of COSA [42]. The surging functionality will

be used to carry out comparative analysis of wake aerodynamics of fixed–bottom, pitching, and surging FOWTs in future

studies. The assessment of compressibility effects in FOWT rotor aerodynamics could be made even more rigorous by using

the same baseline code. Future work will include doing this using the compressible COSA code and its recently completed

incompressible counterpart, the ARCTIC code. Both codes have a very high parallel efficiency, tested with up to 32,000–core

MPI simulations. Moreover, both codes also feature a nonlinear harmonic balance solver for the rapid and accurate solution

of periodic open rotor flows, including FOWT rotor flows [40]. These features, along with license–free usage of these codes,

make them suitable for very large realistic FOWT analyses.
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