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 16 

Abstract 17 

Grandparents in earthquake-prone Chile teach children to identify load-bearing walls, and the 18 

Philippines has developed an internationally respected disaster management system. Do such low-19 

cost, social adaptations increase community resilience to earthquakes, or are poorer countries forever 20 

doomed to large death tolls in small earthquakes? We attempt to answer this question by quantifying 21 

the vulnerability of exposed populations to a set of earthquakes recorded in the USGS PAGER 22 

system. We first remove the effect of strong shaking by statistically modelling published mortality, 23 

shaking intensity and population exposure data; unexplained variance from this purely physical model 24 

is dominated by, and its systematics therefore illuminate, the contribution of socio-economic factors 25 

to increasing earthquake mortality. We find that this variance partitions countries in terms of basic 26 

socio-economic measures and allows the definition of an Earthquake Vulnerability Index, which 27 

identifies both anomalously resilient and anomalously vulnerable countries. Unsurprisingly, wealthy 28 

countries perform well, while in general poor countries are more vulnerable. However some low-29 

GDP countries rival even the richest in their ability to resist shaking, suggesting that social and 30 

political will can increase resilience. Until expensive engineering solutions become more universally 31 

available, the objective targeting of resources at relatively low-cost interventions might help reverse 32 

the trend of increasing mortality in earthquakes. 33 

  34 
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1. Introduction 35 

Earthquakes represent high-impact, low-probability hazards. Their forecasting, despite significant 36 

advances in observing, understanding and modelling the physical process, is poorly constrained by 37 

current science in both space and time. This compounds the problem of persuading governments to 38 

prioritise building earthquake resilience against their response to more focused threats, particularly 39 

in the absence of proven, effective and affordable interventions. Consequently, earthquake resilience 40 

remains low and earthquake mortality continues to grow exponentially.  41 

 42 

Here, we describe a method to quantify earthquake vulnerability, and use it to identify countries 43 

whose resilience to earthquake shaking, despite low GDP, demonstrates the action of ill-defined, low-44 

cost interventions which, if properly understood, might be applied internationally to increase 45 

earthquake resilience. We argue that, until engineering solutions become more universally affordable, 46 

quantifying vulnerability and thereby identifying evidence-based interventions, could slow the 47 

increase in earthquake deaths. 48 

 49 

Globally, population vulnerability to earthquakes is strongly variable1,2; events with similar amounts 50 

of shaking produce vastly different outcomes. Here we generalise the idea of earthquake vulnerability 51 

to: the set of compound factors which tend to influence mortality in a population exposed to strong 52 

shaking. Vulnerability in this context applies to a population as a whole, incorporating a range of 53 

interrelated social, geographical and engineering factors. Here, we do not attempt to identify the 54 

component influences in the usual way for risk modelling, much less attempt to model them explicitly. 55 

We attempt to access the aggregated vulnerability effect by modelling earthquake mortality as a 56 

function of hazard and exposure only, and exploring to what extent this fails to explain the mortality 57 

data from large earthquakes since 1960. In this sense, we consider a kind of “Mortality Risk”, which 58 

we assume to be a separable function of 1) the generalised vulnerability and 2) the geophysical 59 

influences of hazard and exposure.  60 
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 61 

GDP undoubtedly has a first order influence on such vulnerability; affluent countries can construct 62 

resilient buildings, for example, which undoubtedly is a factor in reducing population vulnerability3. 63 

To focus solely on GDP and expensive engineering, however, implies that earthquake vulnerability 64 

is “hard-wired” into existing social structures and that nothing short of reorganisation of global wealth 65 

can reduce earthquake impact. Clearly this statement requires more careful examination. 66 

In 2010 earthquakes of magnitude Mw=7.0 and 7.1 respectively shook the cities of Port au Prince, 67 

Haiti4,5 and Christchurch, New Zealand6; both produced similar distributions of modelled strong 68 

shaking around their epicentres and neither induced destructive secondary hazards. Haiti suffered 69 

more than 200,000 dead, while no one was killed in New Zealand. It is tempting to conclude that the 70 

high mortality in Haiti was simply due to poverty, corruption and the lack of robust seismic building 71 

codes and enforcement resulting in poor building quality. The commonly quoted, and essentially 72 

defeatist, aphorism “earthquakes don’t kill people buildings do”, implies that the only way to increase 73 

resilience to earthquakes is the improvement of building stock. High national income indisputably 74 

allows the deployment of risk-proof engineering7 which reduces vulnerability. But this obvious 75 

economic fact does not imply that low-cost social interventions, loosely defined here as non-76 

engineered interventions available to low-income economies – including for example  hazard-77 

conscious legislation such as that which underpins the Disaster Risk Reduction and Management 78 

system in the Phillipines8, or developing tailored earthquake preparedness education for 79 

dissemination at sub-national and local levels, for example in curricula for schools9 – and which might 80 

be available to the world’s poor10, are ineffective in increasing earthquake resilience. This entirely 81 

separate conclusion requires separate investigation. 82 

Earthquake fatalities, as opposed to fatalities resulting from secondary hazards such as tsunamis or 83 

landslides, are caused by complex interactions between strong shaking and the size and vulnerability 84 

of the population exposed to them. We cannot explain the difference in mortality between the Port au 85 
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Prince and Christchurch events without considering the very different exposure of their populations. 86 

If we are to better understand vulnerability, this exposure to strong shaking, which dominates 87 

mortality, must, as far as possible, be removed from the analysis. Only then might we identify 88 

anomalously resilient communities whose socio-economic structures11 may enhance (or compromise) 89 

resilience relative to a reasonable expected outcome conditioned by population exposure to strong 90 

shaking and, ultimately, recommend economically feasible interventions.  91 

Past analyses of the social dimensions of earthquake vulnerability have been built largely on 92 

assessment of exposure based on population distributions relative to earthquake risk12; more 93 

quantitative studies have been restricted to the physical and engineering dimensions of vulnerability 94 

(for example building fragility13). Here we develop a quantitative methodology that will access the 95 

aggregate vulnerability for populations, which will include the social components.  96 

From a purely geophysical perspective (i.e. neglecting both social and engineering influences 97 

including building design and construction), an earthquake produces spatially-variable shaking 98 

intensities and will be more or less fatal depending on the strength of this shaking and the number of 99 

people experiencing it; dangerous earthquakes, like Haiti, produce strong shaking for large 100 

populations.  101 

Since 2007, the Modified Mercalli Intensity (MMI), a measure of the strength of shaking, is routinely 102 

calculated for the area affected by every damaging earthquake and is published together with the 103 

number of people estimated to have experienced shaking of different strengths. Hindcasting of 104 

earthquake shaking and population densities extends this database back to 196014,15.  Note that, while 105 

the MMI scale is defined with reference to, and calibrated against, Mercalli intensity (defined 106 

according to damage assessments, which would originally have incorporated local vulnerability 107 

implicitly), the PAGER published MMI values are calculated from a physical shaking model which 108 

does not take any account of the earthquake’s local context. MMI values are therefore akin to an 109 

objective, vulnerability-independent forecast/forward-model of damage (which then become the basis 110 
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of PAGER’s full context-dependent damage forecast).  The values we use here have therefore no 111 

contribution from vulnerability in their calculation, though they use a version of the Mercalli intensity 112 

scale.  113 

The National Oceans and Atmospheric Administration (NOAA) records the number of fatalities 114 

disaggregated by likely cause of death16. We choose this database since we wish only to consider 115 

fatalities caused by strong shaking, though it correlates well with other databases17-21 for the study 116 

period. 117 

2. Methods 118 

We begin by assuming that the number of people shaken strongly by an earthquake is a first-order 119 

control on mortality, and that therefore one indicator of likely mortality is the profile of the number 120 

of people estimated to have experienced shaking of different intensities. This is routinely estimated 121 

in the PAGER catalogue for every large earthquake globally, and is referred to here as the Shaking 122 

Intensity Profile (SIP) for the earthquake. In the absence of any other influencing factors, there would 123 

exist a weighting vector, w, whose components, wk, link the number of people experiencing shaking 124 

of a given intensity, k, to the number of deaths (per thousand for example) which might be expected 125 

for that intensity; when weighted by w, the SIP could be expected to predict the number of deaths, y, 126 

in the event due purely to the physical effects of shaking, without any socio-economic variability. 127 

The predictor for an event i, which we term the shake potency, 𝑠, takes the form: 128 

𝑠𝑖 = ∑ 𝑤𝑘𝑑𝑖𝑘
𝐾
𝑘=1            (1) 129 

where dik is the number of people exposed to shaking of Mercalli intensity k = 1,…,K (representing 130 

some subset of MMI=I,…,X) and wk is a weight related to the severity of the shaking at that intensity.  131 

If this model is well specified with respect to contributions to earthquake mortality from shaking, 132 

then, in a world in which we could accurately measure shaking strength everywhere, in which we 133 
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knew the precise distribution of population and in which we all lived in identical societies, 𝑠 could be 134 

expected to correlate strongly with earthquake mortality. In other words, provided we have a good 135 

estimate of w, we would expect variance in the data associated with the shaking alone (due to, for 136 

example, errors in the estimates of the SIP) to be purely stochastic. 137 

Of course, there is clearly also a large systematic component due to unmodelled, chiefly social, 138 

influences on mortality. Since it is not possible to separate out these components, we have chosen to 139 

take the empirical approach of optimising w so that the model, assuming only stochastic errors, gives 140 

the best explanation of the data possible. This approach should be considered not as an attempt to 141 

model the mortality data, but as an attempt to make the data conform as much as possible to our 142 

assumed physical model, thereby obtaining a lower limit on the variance attributable to social 143 

influences.  144 

We have extracted the SIPs together with the number of deaths, y, attributed to strong shaking for 145 

each event excluding those resulting in fewer than 10 deaths (giving a total data set of 232 events) 146 

and have therefore chosen a truncated Poisson model for the stochastic variance. w is estimated by 147 

maximum likelihood, including contributions from the SIP for MMI≥VI. For full details of the error 148 

model and optimisation procedures see the Appendix.  149 

3. Results and Discussion 150 

We have plotted the calculated s for each event against y in figure 1a, along with the expected 151 

mortality, λ, calculated from the optimised model (see the Appendix), as a function of s.  152 

Since we have no real constraints on the likely magnitude of the stochastic variance, we are unable 153 

formally to identify events that are not well explained by shaking alone. Insights into the nature of 154 

the social contribution to the variance remaining after optimisation must instead come from the 155 

identification of systematic social trends within the data. We choose the World Bank assessment of 156 

the national per capita GDP as the basic measure of the social status of countries experiencing this 157 
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shaking22. GDP correlates strongly with other development and educational indices and its wide 158 

application in comparable studies makes this a useful proxy indicator of development status for the 159 

present high-level study.  160 

As might be expected figure 1a exhibits significant scatter. We note that, as expected, countries with 161 

high GDP tend to plot in the bottom right quadrant, where even potent earthquakes kill few people. 162 

This clearly illustrates that the variance around this model is not purely stochastic and that its 163 

systematics are related to socio-economic structures (probably dominated by quality of construction 164 

and engineering). More surprisingly, interspersed with the hot colours of USA and Japan are a large 165 

number of blue points representing potent earthquakes in poor countries, which killed only few 166 

people. Furthermore, the plot also exhibits some national differentiation of resilience among countries 167 

of similar GDP. In figure 1b, for example, some relatively low-income countries populate distinct 168 

areas of s-y space; the blue circles of earthquakes in the Philippines cluster in the area expected to be 169 

populated by rich countries, with two orders of magnitude greater GDP, while many of the blue stars 170 

of Iranian earthquakes plot in the upper left quadrant, where less potent events kill great numbers of 171 

people, signifying less resilience than would be expected for its GDP. This supports the view that 172 

non-physical, non-economic and, at least in part, nationally constrained factors make populations 173 

more or less vulnerable to similar levels of shaking exposure. Closer study of the earthquakes 174 

represented by these data points might expose local or national interventions which are increasing 175 

resilience of communities to strong shaking in the absence of major national investment. 176 

We define shake vulnerability for a given earthquake, i=yi/λi, to be the ratio of the number of deaths 177 

in an event i to the expected mortality due to the shaking in that event, then compute an earthquake 178 

vulnerability index [EVI]i = log i, for all countries. High (low) values of this measure indicate high 179 

(low) vulnerability. A plot of EVI against log GDP (figure 2) shows the expected broad negative 180 

trend, indicating a general income-dependence of vulnerability to strong shaking. Countries which 181 

are more vulnerable than expected according to this model plot above the best-fit line, while those 182 



9 
 

which are more resilient plot below. It is not the aim of this study to explain the contrasting 183 

vulnerabilities exposed in figure 2, however some speculation as to cause might help to illustrate the 184 

potential of this analysis.  185 

The plot certainly supports the view that the death toll in the Haiti earthquake was socially influenced 186 

- the Haiti earthquake plots above the line indicating greater than expected vulnerability even for a 187 

country with this extreme poverty - but it suggests that this influence is smaller than might commonly 188 

be supposed. The anomalous vulnerability of Iran, equivalent to that of Haiti despite an order of 189 

magnitude greater GDP, might be explained by the particular geographical challenges it faces in 190 

imposing earthquake safe construction23,24, but still identifies it as the most anomalously vulnerable 191 

nation globally. The anomalous resilience of the Philippines, on the other hand, when compared to 192 

countries like India and Guatemala, which, superficially at least, face similar geographic and 193 

economic conditions, appears exemplary and is likely due, at least in part, to its development of an 194 

integrated disaster management system25 despite modest national income. Other contrasting pairs 195 

include Chile and Turkey, and Peru and Guatemala.  Also worthy of note is that, despite their 196 

significantly higher wealth, Italians by this analysis are as vulnerable as Chinese, and Greeks are as 197 

vulnerable as Indonesians. It is, of course, easy to speculate on explanations for these contrasts, and 198 

some of them are likely to be unalterable; we believe, however, that given the importance of their 199 

implications, they deserve more detailed investigation. 200 
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Figure 1 201 
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Figure 2 202 
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4. Conclusions 203 

In conclusion, this analysis suggests that cost-neutral, social interventions have increased earthquake 204 

resilience in some countries and, conversely, that their absence exposes other populations to 205 

continuing high vulnerability. Perhaps more importantly, we believe that this type of analysis has the 206 

potential to direct sociological or political, investigations which might ultimately provide a solid basis 207 

for international cooperative learning. The sociological exploration of the origins of the contrasts 208 

revealed above, for example, might more rigorously explain their underlying causes enabling the 209 

identification and characterisation of evidence-based, low-cost interventions which in turn might 210 

provide the political impetus for action.  211 

There can never be any substitute for better building in reducing vulnerability to strong seismic 212 

shaking, but until expensive engineering solutions become more universally available, dispassionate, 213 

rigorous quantification of vulnerability must, we believe, be placed in the vanguard of providing a 214 

scientific evidence-base to identify and disseminate affordable best-practice internationally. To date, 215 

efforts at political persuasion towards improving earthquake resilience have focused on the 216 

necessarily long-term and spatially-imprecise assessment of earthquake hazard but, in the absence of 217 

recommendations for cost-neutral interventions, earthquake mortality has continued to increase 218 

exponentially. Until we robustly quantify our assessment of earthquake resilience building, and can 219 

endorse effective and affordable responses to this poorly-defined, high-impact, low-probability 220 

threat, investment will likely remain a low priority across much of the developing world. While it 221 

does, death tolls in earthquakes will continue to grow.  222 

Appendix 223 

A1. Additional Definitions  224 

We begin with the definition of the shake potency s in (1), and choose the form 𝑤𝑘 = 𝛼𝑘10𝑘−(𝐾+1) for 225 

the weights. The mortality may be modelled using the relationship 226 

❑❑()(|)

T9(λ)→1
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ln𝜆 = 𝑎ln𝑠 + 𝑏          (2) 227 

where 𝜆(𝐃𝑖) = 𝑠𝑖
𝑎(𝐃𝑖)𝑒𝑏 is the expected value for the number of deaths in the event, given the shaking 228 

intensity profile, 𝐃𝑖 = [𝑑𝑖1, … , 𝑑𝑖𝐾]. 229 

A2. Choice of Error Model 230 

We have assumed that, provided our model is well-specified with respect to the shaking, the 231 

component of the variance associated with this process will be stochastic and can be described by a 232 

Poisson-based distribution. However the data are clearly over-dispersed with respect to a simple 233 

Poisson model, which has variance 𝜎2(𝜆) = 𝜆 and, although the stochastic part of this may be 234 

specifically Poisson over-dispersed, i.e. 𝜎2(𝜆) = 𝜙𝜆 where 𝜙 is a constant, we know that a significant 235 

part of the variance is due to systematic, and not stochastic, processes, chiefly the omission from the 236 

model of social factors. Without independent constraints on the magnitude of the stochastic 237 

component, we are unable to quantify the degree to which the mortality in any event is explained, or 238 

not explained, by our model, whether the magnitude of the total variance is assumed or is a free 239 

parameter in the model. 240 

We expect the form of the error model to control both the parameter estimates and the distribution of 241 

data that results from the optimisation. However, an alternative has been tested, which assumes a 242 

Gaussian distribution of ln𝑠, where the mean is directly proportional to the mortality in the event and 243 

the standard deviation is a free parameter, which is independent of the mortality. This model could 244 

be expected to yield very significantly different results from a Poisson based optimisation. However, 245 

we find that, although the parameter estimates and distribution of data are altered, the systematic 246 

trends in social parameters, that are the subject of this paper, remain qualitatively unchanged. In 247 

particular, the trends identified in vulnerability (shown in figure 2 for truncated Poisson), persist even 248 

using the Gaussian error model. 249 
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Our decision to use the Poisson model is in an effort to model the expected structure, if not the 250 

magnitude, of the stochastic component of the errors. For the reasons given above, we have chosen 251 

not to attempt to model the Poisson over-dispersion parameter 𝜙 simultaneously. The aim is that, 252 

after optimisation, as much of the data as possible is explained by the shaking process with Poisson 253 

errors, before we begin to make inferences about where and why the model fails.  254 

A3. The truncated Poisson distribution 255 

Since data for events with less than 10 deaths recorded are omitted, we use a truncated form of the 256 

Poisson distribution. The number of deaths is represented by the random variable 𝑌; for truncation at 257 

𝑦 = 𝑟 the probability mass function is given by 258 

𝑓𝑟(𝑦|𝜆) = Pr(𝑦|𝜆, 𝑦 > 𝑟)    

=
Pr(y ∩ y > 𝑟|λ)

Pr(𝑦 > 𝑟|𝜆)
 = {

0                     𝑦 ≤ 𝑟

𝑓(𝑦|𝜆)

1 − 𝐹(𝑟|𝜆)
  otherwise

 259 

where 𝑓(𝑦|𝜆) = 𝜆𝑦 𝑒−𝜆 𝑦⁄ ! is the probability mass function of the corresponding non-truncated 260 

distribution with mean 𝜆 and 𝐹(𝑟|𝜆) = ∑ 𝑓(𝑦|𝜆)𝑟
𝑦=0  is the cumulative mass function, evaluated at 𝑦 =261 

𝑟. Defining 262 

𝑇𝑟(𝜆) = 1 − 𝐹(𝑟|𝜆) 263 

we can write the moment generating function as 264 

𝑀𝑌(𝑡) =
1

𝑇𝑟(𝜆)
[𝑒𝜆(𝑒𝑡−1) − ∑ 𝑓(𝑦|𝜆)

𝑟

𝑦=0

𝑒𝑡𝑦] 265 

allowing us to find the expected value, 𝐸[𝑌] = 𝜇𝑟(𝜆), and variance, 𝜎𝑟
2(𝜆), used to calculate the 266 

expected value and intervals in Figure 1a for the optimised model (2). We find 𝑇9(𝜆) → 1, 𝜇9(𝜆) → 𝜆 267 

and 𝜎9
2(𝜆) → 𝜆 at 𝜆 >≈ 20 and estimate that for ∼ 6% of the data with 𝑦 ≥ 10 the simple Poisson 268 

approximation is not valid. 269 
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A4. Maximum Likelihood Estimation 270 

a and b are unconstrained, so the set of parameters for estimation is 𝜃 = {𝑎, 𝑏, 𝛼1, … , 𝛼𝐾}. Since 𝜆𝑖 =271 

𝜆(𝜃, 𝐃𝑖) we write the log-likelihood function as 272 

ℓ(𝜃|𝐘, 𝐃) = ∑ ln 𝑓𝑟(𝑦𝑖|𝜃, 𝐃𝑖)

N

i=1

 273 

where  Y = [y1, ..., yN] is the set of data for the number of deaths in each earthquake i and 274 

ln 𝑓𝑟(𝑦𝑖|𝜃, 𝐃𝑖) = 𝑦𝑖 ln 𝜆𝑖 − 𝜆𝑖 − ln 𝑦𝑖! − ln 𝑇𝑟(𝜆𝑖) 275 

Maximising the likelihood therefore involves minimising the function 276 

𝑔(𝜃) = ∑ [𝜆𝑖 + 𝑙𝑛𝑇𝑟(𝜆𝑖) − 𝑦𝑖𝑙𝑛𝜆𝑖]𝑁
𝑖=1  277 

We use the gradient based BFGS optimisation algorithm26. So that all 𝛼𝑘 remains positive, we set 278 

𝛼𝑘 = 10𝛽𝑘 and optimise with respect to 𝛽𝑘. We also require 2 + 𝐾 1st order partial derivatives of 𝑔(𝜃). 279 

A5. Non-uniqueness of the solutions 280 

In this formulation, solutions for {𝑏, 𝛽} are not unique. Taking 𝛼′ = 𝐴𝛼 and 𝑠(𝛼′) = 𝐴𝑠(𝛼) so that we 281 

have uniform scaling of both 𝐰 and 𝑠, we can see from (2) that 𝜆(𝛼′) = 𝜆(𝛼) if 𝑏′ = 𝑏 − 𝑎𝑙𝑛𝐴. From 282 

(3), therefore, 𝑔(𝑎, 𝑏′, 𝛼′) = 𝑔(𝑎, 𝑏, 𝛼) ≡ 𝛾. Any uniform scaling of the optimised weights corresponds 283 

to another solution for the minimum, provided the value of 𝑏 in (2) is adjusted accordingly. 284 

We define a set of arbitrary reference values for the optimised weights, corresponding to 𝛼∗, which 285 

represent the relative values of the components of 𝛼. Defining 𝐴 so that, for example, 𝛼𝜈
∗ = 1 where 286 

𝜈 is to be chosen from 𝑘 = 1, … , 𝐾, we have 287 

𝐴 = �̂�𝜈 = 10�̂�𝜈 288 

and 289 

(3) 
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𝑏(𝜈)
∗ = �̂� ln 10 �̂�𝜈 + �̂� 290 

As a method for determining the value of 𝑏∗, we therefore systematically vary 𝑏, optimising all 291 

components of 𝛽. In this case, the relationship between 𝛽𝜈 and 𝑏(𝜈) will be linear for all 𝜈 = 𝑘, with 292 

gradient 𝑐𝜈 = 𝑐 = 1 𝑎⁄ 𝑙𝑛10 and intercept 𝑑𝜈 = 𝑏(𝜈)
∗ 𝑎⁄ 𝑙𝑛10. This approach is preferable to, for 293 

example, setting 𝛽𝜈 = 0 to find 𝑏(𝜈)
∗  directly, as it provides a test that the components of 𝛽∗ are robust 294 

with respect to changes in 𝑏. 295 

A6. Optimisation Procedure 296 

Based on the discussion above, the following procedure has been adopted: 297 

1. Perform a coarse grid-search over {𝑎, 𝑏} at 𝛽 = 0 to provide initial estimates. This is maximum 298 

likelihood line-fit to the data with 𝛽 = 0.  299 

2. Optimise 𝛽 using the BFGS algorithm, with {𝑎, 𝑏} set according to the results of the grid-300 

search, and the approximation to the inverse Hessian for 𝛽, 𝐁𝑖=1, initialised to the identity 301 

matrix (𝑖 = 1 here refers to the 1st iteration). 302 

3. Initialise 𝐀𝑖=1, the approximation to the inverse Hessian for {𝑎, 𝑏}, to the identity matrix. 303 

4. Iterate: 304 

a. Optimise {𝑎, 𝑏}with 𝛽 fixed 305 

b. Optimise 𝛽 with {𝑎, 𝑏} fixed, 306 

initialising 𝐀𝑖 and 𝐁𝒊, at iteration 𝑖 ≥ 2, to their optimised values at the previous iteration, 𝑖 −307 

1. The solution converges on an arbitrary 𝜃 = 𝜃1 = {𝑎, 𝑏1, 𝛽1}, depending on the start values 308 

of the parameters and the relative size of the gradients. In general, without scaling the 309 

parameters, the solution is dominated by the start value of 𝑏, since 𝜕𝑔 (𝜃) 𝜕⁄ 𝛽𝑙10𝑙−(𝐾+1). 310 

5. Fix 𝑎 according to the results of Step 3. Vary 𝑏 systematically and re-optimise 𝛽 for each 𝑏. 311 
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6. Perform a line fit for 𝛽𝜈 vs 𝑏 for all 𝜈 = 𝑘. Calculate 𝑏∗ and 𝜃∗ = {𝑎, 𝑏∗, 𝛼∗ = 10𝛽1−𝛽𝜈
1
}, where 312 

𝛽𝜈
1 is the 𝜈th element of 𝛽1 and  has been chosen according to the standard errors in the line 313 

fits. 314 

 315 

 316 
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Figure Legends 381 

Fig. 1 Shake Potency plotted against the number of deaths attributed to strong shaking in fatal 382 

earthquakes. Colours of all symbols indicate the GDP. The red and green (truncated at r=10) lines 383 

show the model as in equation (2); the black lines show the structure of the Poisson uncertainties that 384 

have been used to optimise the model (according to the procedure outlined in the Appendix). A) All 385 

https://www.emdat.be/
http://data.worldbank.org/
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earthquakes with more than 10 fatalities. B) s-y space almost completely discriminates between 386 

earthquakes occurring in Iran (stars) and the Philippines (circled points). USA (red points) and Japan 387 

(orange points) are included for context.  388 

Fig. 2. Shaking vulnerability. EVI as a function of log GDP for countries experiencing three or more 389 

earthquakes which killed more than 10 people. The best fit to the data has been estimated by using a 390 

weighted least squares method. We compare the simplest (linear) model, where we  fix the gradient 391 

at -1, with a  model in which the gradient is a free parameter, using the standard Akaike information 392 

criterion (which penalises overfitting). We find that the fixed gradient model is the more parsimonious 393 

fit and this is presented, though our argument is unchanged using either, since both divide the data 394 

into two roughly equal groups. Neither Haiti nor New Zealand appear in the chart since neither  had 395 

three or more deadly earthquakes in the data we examined, but for illustration we show the location 396 

for the Haiti (H) earthquake and show the two deadly New Zealand (NZ) tremors as hollow symbols. 397 

This plot certainly supports the view that the difference in death toll in the Haiti and Darfield events 398 

was socially influenced, but suggests strongly that this influence is much smaller than is widely 399 

believed. 400 

 401 


