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In the presence of inertia-gravity waves, the geostrophic and hydrostatic balance that
characterises the slow dynamics of rapidly rotating, strongly stratified flows holds in
a time-averaged sense and applies to the Lagrangian-mean velocity and buoyancy. We
give an elementary derivation of this wave-averaged balance and illustrate its accuracy
in numerical solutions of the three-dimensional Boussinesq equations, using a simple
configuration in which vertically planar near-inertial waves interact with a barotropic
anticylonic vortex. We further use the conservation of the wave-averaged potential
vorticity to predict the change in the barotropic vortex induced by the waves.

1. Introduction

Our understanding of the large-scale dynamics of the atmosphere and ocean rests
on the concept of geostrophic balance: motion with timescales much longer than the
inertial timescale f−1, with f the Coriolis parameter, is assumed to dominate, resulting
in the familiar balance between Coriolis force, buoyancy and pressure gradients. The
idea of dominant slow motion has stimulated decades of research extending balance
beyond geostrophy to define dynamics which filter out fast motion to a high degree
of accuracy – that is, dynamics restricted to a suitably defined slow manifold (e.g.
Machenhauer 1977; Leith 1980; Allen & Newberger 1993; Warn et al. 1995; McIntyre
& Norton 2000; Mohebalhojeh & Dritschel 2001; Vanneste 2013; Kafiabad & Bartello
2018, 2017). However, the amplitude of the fast motion, e.g. in the form of inertia-gravity
waves, can often be large, corresponding to states well away from the slow manifold. For
instance, the velocities associated with near-inertial waves (NIWs hereafter) in the ocean
frequently exceed those of the (vortical) balanced motion (e.g. Alford et al. 2016). There
is, therefore, a need to reassess the notion of balance to account for the impact of waves.
This can be achieved using reduced models which, rather than filtering the waves, average
over their rapidly oscillating phases to describe the slow interactions between waves and
vortical flow. We refer to these as wave-averaged models.

Bretherton (1971), Grimshaw (1975) and, more recently, Wagner & Young (2015)
showed that wave averaging naturally leads to a generalised-Lagrangian-mean (GLM)
description of the flow, in which averaging is carried out at fixed particle label rather
than fixed Eulerian position. Wave-averaged models can therefore be interpreted as
approximations to the GLM equations of Andrews & McIntyre (1978) (see Bühler 2014
for an introduction to GLM). The wave-averaged models of interactions between NIWs
and quasigeostrophic flow derived by Xie & Vanneste (2015) and Wagner & Young (2016)
fall into this category. Salmon (2016) provides an interesting variational perspective into
this class of models in which weakly nonlinear internal waves interact perturbatively with
quasigeostrophic flow.

One of the most striking predictions of wave-averaged and GLM theories is that a form
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of hydrostatic and geostrophic balance continues to hold in the presence of strong waves,
but that this balance applies to the Lagrangian mean flow, in the sense that

fz × uL = −∇π + b
L
z, (1.1)

where z is the vertical unit vector, uL and b
L

are the Lagrangian-mean velocity and
buoyancy, and π is a mean pressure-like scalar that includes a quadratic wave-averaged
contribution (Moore 1970; Xie & Vanneste 2015; Wagner & Young 2015; Gilbert &
Vanneste 2018; Thomas et al. 2018). The balance in (1.1) follows expeditiously by
simplification of the exact GLM momentum equation (Andrews & McIntyre (1978)
Theorem I) in the small Rossby number limit. In section 3 we provide an alternative
derivation of (1.1) proceeding from the Eulerian equations.

The Lagrangian-mean velocity, uL in (1.1), is the sum of Eulerian-mean and Stokes
velocities,

uL = u+ uS, where uS = ξ′ · ∇u′, (1.2)

with ξ′ and u′ = ξ′t denoting wave displacement and velocity and the overline denoting
(Eulerian) time averaging. The appearance of the Stokes velocity uS in the Coriolis
term implies the existence of the Stokes–Coriolis force fz × uS whose importance for
shallow currents driven by surface gravity waves has long been recognised (e.g. Ursell
& Deacon 1950; Hasselmann 1970; Huang 1979; Leibovich 1980; Bühler 2014). Here
we are concerned with the Stokes–Coriolis force associated with internal gravity waves
which operates in the interior ocean. Equation (1.1) is a remarkable generalisation of
the familiar geostrophic balance, with practical implications, e.g. for the interpretation
of ocean velocities inferred from satellite altimetry data, yet (1.1) is not widely known.
Another prediction of wave-averaged and GLM theories is the material conservation of
a form of potential vorticity (PV) which combines the PV of the mean flow with a
wave-averaged contribution. Together with (1.1) this leads to a wave-averaged form of
quasigeostrophic dynamics which captures the feedback exerted by waves on the mean
flow.

The aim of this paper is to illustrate the validity and usefulness of the wave-averaged
geostrophic balance and PV conservation by testing these relations against numerical
solutions of the three-dimensional Boussinesq equations. Applying wave-averaged rela-
tions to numerical simulations poses difficulties related to the definition of a suitable time
average and the estimation of particle displacements ξ′ in (1.2). We sidestep these issues
by focussing on a simple configuration: an NIW, initially with no horizontal dependence,
and the vertical structure of a plane travelling wave, is superimposed on an axisymmetric
(Gaussian) barotropic anticyclonic vortex. This configuration has the advantage that,
because the NIW is approximately linear, it retains a simple vertical and temporal
structure proportional to ei(mz−ft), with m the vertical wavenumber. Time averaging
can therefore be replaced by a straightforward vertical averaging and the Eulerian-mean
component of the flow can be identified with the barotropic component. Moreover, it
turns out that for NIWs, the Stokes drift uS can be deduced from the wave kinetic
energy, thus circumventing the need to estimate the displacements ξ′.

We describe our numerical simulation of the interaction between NIWs and an anticy-
clonic vortex in §2. The wave evolution follows a broadly understood scenario: after
a rapid adjustment, wave energy concentrates in the vortex core, giving rise to an
approximately axisymmetric trapped structure which is modulated periodically in time
(Llewellyn Smith 1999). Our focus is on the response of the mean flow to this wave
pattern. In §3, we briefly sketch a derivation of the wave-averaged balance (1.1) and of
the wave-averaged PV. Particularising this to the case of vertically planar inertial wave,
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f N a m Ro Bu E0 νh νz

200 1600 0.45 288 0.05 0.0038 1/2 5 × 10−18 5 × 10−23

Table 1: Simulation parameters. The horizontal domain size, L = 2π, determines the
unit of length; the unit of time is defined so that the initial energy density of the NIW is
E0 = 1/2. The vortex strength is such that the initial Eulerian domain-averaged mean-
flow kinetic energy density is 0.1; the Gaussian vortex in (2.1) has maximum azimuthal
velocity 0.32Rofa = 1.45 at r = 1.13a.

following Rocha et al. (2018), we relate (i) mean vertical vorticity to mean pressure
and wave energy, and (ii) wave-induced change of mean vorticity to wave energy using
PV conservation. We assess the accuracy of these predictions in numerical solutions and
find remarkably good agreement in spite of the complexity of the full three-dimensional
Boussinesq model and of the fact that the strong scaling assumptions required by the
theory are only marginally satisfied for the parameters chosen. Our results illustrate the
value of wave-averaged theories for the analysis of geophysical flows in the context of
three-dimensional nonlinear dynamics.

2. Numerical solution of the Boussinesq equations

We analyse solutions of the non-hydrostatic Boussinesq equations for an initial con-
dition consisting of a NIW superimposed on a barotropic anticyclonic vortex with the
initial vertical vorticity

ζ0(r) = −Rof e−r
2/a2

, (2.1)

where r is the radial coordinate, a the vortex radius, and Ro the maximum Rossby
number,

Ro = |ζ0|max/f. (2.2)

The NIW is initially horizontally uniform, with vertical structure eimz with vertical
wavenumber m and initial energy E0. In addition to the Rossby number, the flow is
characterised by the Burger number

Bu = N2/(fma)2, (2.3)

where the inverse wavenumber m−1 and vortex radius a are respectively used to define
the characteristic vertical and horizontal scales. We focus on the regime where both Ro
and Bu are small as required for nearly geostrophic mean dynamics and NIW dynamics
(Young & Ben Jelloul 1997).

The Boussinesq equations are solved in a triply periodic domain, using a code adapted
from that of Waite & Bartello (2006), which relies on a de-aliased pseudospectral method
and a third-order Adams–Bashforth scheme with time step 0.06/f . The (2π)2 × 2π/36
domain is discretised using a 11522 × 96 uniform grid. A hyperdissipation of the form
νh(∂2x + ∂2y)4 + νz∂

8
z is used for the momentum and density equations. The simulation

parameters are listed in table 1. The domain size is much larger than the vortex radius
(2π/a ≈ 14) to mitigate the effect of waves re-entering from the boundaries. The NIWs
are initialised with a horizontal velocity

(u′0, v
′
0) = (cosmz, sinmz) ; (2.4)
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Figure 1: Horizontal slices of wave kinetic energy (u′
2
+v′

2
)/2 (top row), vertical vorticity

ζ (middle row) and change in Eulerian-mean vertical vorticity ζ − ζ0 (bottom row) at
times (from left to right) t = 0, 20.4, 43.2, 76.3, 99.2 and 122.1 inertial periods 2π/f .

thus the initial NIW kinetic energy density is E0 = (u20 + v20)/2 = 1/2. The vortex
strength is such that the Eulerian mean-flow kinetic energy density is 0.1.

The evolution of the NIW in the presence of a vortex is illustrated by the sequence of
snapshots of horizontal slices shown in figure 1. The NIW kinetic energy (u′

2
+ v′

2
)/2 is

displayed in the top row, the vertical vorticity in the middle row, and the (barotropic)
mean vorticity in the bottom row (this is also the Eulerian mean vorticity). The wave-
energy concentration is modulated periodically in time, with a period much larger than
the inertial period. The dynamics of the vertical vorticity ζ is dominated by the fast
oscillation at the inertial frequency induced by NIW advection of ζ. This oscillation is
filtered out by vertical averaging, leaving an Eulerian mean vorticity ζ that is almost
axisymmetric and oscillates slowly in unison with the wave energy.

In the top row of figure 1 the NIW energy level in the vortex core increases by over a
factor of five above that of the initial condition (2.4). This focussing by the mean flow
results in an approximately axisymmetric trapped structure; this is a finite-amplitude,
near-inertial normal mode of the vortex (Llewellyn Smith 1999). In anticipation of the
strong wave expansion in (3.2) below, we emphasize that this concentration of NIW
energy happens even if mean-flow velocity is much less than NIW velocity: weak mean
flows shift the lowest frequency of the internal wave band to f +ζ/2 (Kunze 1985; Young
& Ben Jelloul 1997). Thus vortices with ζ/2 < 0 support trapped modes with frequencies
slightly less than f , and the initial condition (2.4) projects onto this mode. We now turn
to the mean-flow effects of this trapped mode.

3. Wave-averaged analysis

We first derive the wave-averaged geostrophic balance (1.1) and wave-averaged PV
conservation for general inertia-gravity waves, then consider their application to NIWs
and the numerical solution of §2.
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3.1. The strong-wave expansion

We provide only an informal sketch of the derivation and refer the reader to Wagner
& Young (2015) for details (and Thomas et al. (2018) for related shallow-water results).
We start with the Boussinesq equations

ut + u · ∇u+ fz × u+∇p = bz , (3.1a)

bt + u · ∇b+N2w = 0 , (3.1b)

∇ · u = 0 . (3.1c)

For simplicity we take the Brunt–Väisälä frequency N constant (see Wagner & Young
(2015) for the non-constant case).

We assume that the flow consists of fast waves, with small amplitude ε� 1, interacting
with a slow flow, with smaller amplitude ε2. This is the strong-wave assumption which
makes it possible to capture the impact of the waves on the flow without the need to
carry out the perturbation expansion to an unwieldy high order. The flow and wave
amplitudes are assumed to vary on the slow timescale of quasigeostrophic dynamics,
which is O(ε−2f) in our notation. We expand all dynamical fields as

u = εu′ + ε2u+ · · · (3.2)

Here the prime identifies the wave component, the overbar the Eulerian-mean component
obtained by averaging over the fast wave timescale, and the dots include a rapidly varying
O(ε2) term as well as O(ε3) terms. Introducing (3.2) into (3.1) gives, at order ε, the linear
inertia-gravity-wave equations

u′t + fz × u′ +∇p′ = b′z , (3.3a)

b′t +N2w′ = 0 , (3.3b)

∇ · u′ = 0 . (3.3c)

Averaging the next-order equations gives

u′ · ∇u′ + fz × u+∇p = bz , (3.4a)

u′ · ∇b′ +N2w = 0 , (3.4b)

∇ · u = 0 . (3.4c)

We can rewrite the nonlinear terms in (3.4a) in terms of the wave displacement ξ′. For
instance, we have

u′ · ∇u′ = −ξ′ · ∇u′t , (3.5a)

= fz × ξ′ · ∇u′ + (ξ′ · ∇)∇p′ − (ξ′ · ∇)b z , (3.5b)

= fz × uS +∇ 1
2p

S − bSz . (3.5c)

In passing from (3.5b) to (3.5c) we have used the remarkable result

(ξ′ · ∇)∇p′ = 1
2∇(ξ′ · ∇p′) = 1

2∇p
S, (3.6)

where pS = ξ′ · ∇p′ is the Stokes pressure. The identity (3.6) is established in Wagner
& Young (2015) and a simplified proof is given in Appendix A. Using (3.5c) the mean
momentum equations in (3.4a) are reduced to the wave-averaged balance equations (1.1)
with

b
L

= b+ b
S

and π = p+ 1
2p

S, (3.7)
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Figure 2: Radial profiles of f times the Lagrangian- and Eulerian-mean vertical vorticity,
and of 4p. The times t = 43.2 (left) and 76.3 (right) inertial periods correspond to
maximally concentrated and nearly uniform wave energy respectively.

where b
S

= ξ′ · ∇b′ is the Stokes buoyancy. Finally, with u′ · ∇b′ = −ξ′ · ∇b′t =
N2ξ′ · ∇w′, one finds from (3.4b) that wL = w + wS = 0.

It is natural to introduce the streamfunction ψ
L

= π/f to write the components of the
wave-averaged balance relations (1.1) as

uL = (−ψL

y , ψ
L

x , 0) and b
L

= ψ
L

z , (3.8)

mirroring the familiar geostrophic and hydrostatic relations of quasigeostrophy. The
vorticity of the Lagrangian-mean flow is then

ζ
L

= vLx − uLy = 4ψL
, (3.9)

where 4 = ∂2x + ∂2y is the horizontal Laplacian. We emphasise that ψ
L

and ζ
L

are the

streamfunction and vorticity corresponding the Lagrangian-mean velocity (uL, vL) but
are not themselves Lagrangian means of any specific fields. This is evident from the factor

1/2 in (3.7) and the fact that ζ
L 6= ζ + ξ′ · ∇ζ ′ (the difference is related to the curl of

the pseudomomentum, see e.g. Bühler (2014) or Gilbert & Vanneste (2018)).

3.2. Wave-averaged balance with near-inertial waves

The horizontal velocity (u′, v′) of the vertically planar NIWs can be written in the
complex form

u′(x, y, z, t) + i v′(x, y, z, t) = φ(x, y, t) ei(mz−ft), (3.10)

where φ is a slowly-varying complex amplitude, known as the back-rotated velocity. The
form in (3.10) is an excellent approximation for the waves in our simulation. It makes
clear that vertical averaging is equivalent to time averaging over the fast wave timescale.
The wave kinetic energy is (u′

2
+ v′

2
)/2 = |φ|2/2 and thus the top row of figure 1

shows the evolution of |φ|2/2. The back-rotated velocity φ evolves on the slow time scale
ε−2t, where ε is the order parameter in the strong-wave expansion (3.2). This long-term
evolution is obtained by proceeding beyond the leading-order wave equation in (3.3)
so that mean-flow effects, such as advection and ζ-refraction, are revealed in the YBJ
equation (Asselin & Young 2019, 2020; Young & Ben Jelloul 1997).

Using the back-rotated velocity φ dramatically simplifies the wave-averaged balance
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(1.1). First, p′ ≈ 0 for NIWs, so π = p and taking the horizontal divergence of (1.1) gives

fζ
L

= 4p. (3.11)

Second, for vertically planar NIWs the horizontal part of the Stokes velocity can be
computed as

(uS, vS) = (Ay,−Ax), where A = |φ|2/(2f) (3.12)

is the wave action density, whose negative plays the role of a streamfunction for the
Stokes velocity (see Rocha et al. 2018, and Appendix A). Combining (3.11) and (3.12)
relates the Eulerian-mean vertical vorticity to the pressure according to

f
(
ζ −4A

)
= 4p. (3.13)

This is the form of wave-averaged geostrophy that we test in our numerical simulation.
Figure 2 shows radial profiles (obtained by azimuthal averaging) of the Eulerian-mean

vorticity ζ, vorticity of the Lagrangian-mean flow ζ
L

and horizontal Laplacian of mean
pressure 4p evaluated from the simulation. Figure 2 shows snapshots at two times
corresponding to a maximum in the wave-energy concentration (left) and to a nearly
uniform wave field (right). It is clear from that when the wave energy is non-uniform
(left), geostrophic balance holds to a much better accuracy in the wave-averaged sense
(3.11) than in the conventional sense: it is the Lagrangian-mean velocity, rather than the
Eulerian-mean velocity, that is in geostrophic balance.

We have verified that the small difference between ζ
L

and4p in figure 2 results from the
cyclostrophic correction to vortex geostrophy (not shown): one restriction on the utility
of wave-averaged balance is that the Stokes–Coriolis force, proportional to fuS, should
be larger than non-wave ageostrophic terms such as the aforementioned cyclostrophic
correction. The formal justification of this restriction is in (3.2): the Stokes–Coriolis force
is of order ε2 while the non-wave ageostrophic terms are of order ε4. For the numerical
solution summarized in table 1 there is not a large difference between the mean and NIW
kinetic energies e.g. the maximum vortex velocity is only a factor of about two smaller
than the maximum NIW velocity attained at t = 43.2. Nonetheless, in this numerical
solution the wave-averaged correction to geostrophic balance is much more important
than cyclostrophic effects and other higher order non-wave corrections to balance.

3.3. Potential vorticity

We can go beyond the diagnostic relation (3.8) and make dynamical predictions using
the conservation of potential vorticity (PV hereafter). After removing the constant
contribution N2f and scaling by N2, the PV can be written as

q = vx − uy + fbz/N
2 + (∇× u) · ∇b/N2. (3.14)

Because the linearised inertia-gravity wave equations (3.3) imply that v′x−u′y+fb′z/N
2 =

0, the PV is an O(ε2) quantity. Its material conservation ∂tq + u · ∇q = 0 shows that
its leading-order approximation is evolving on the slow, O(ε−2f−1) time scale and hence
that it can be approximated by its time average. Using this we obtain, to leading order,

q = ζ
L

+ f2ψ
L

zz/N
2−vSx + uSy − fb

S

z/N
2 + (∇× u′) · ∇b′/N2︸ ︷︷ ︸
qw

, (3.15)

where (3.8) has been used. The first two terms on the right of (3.15) make up the familiar
quasi-geostrophic PV, here involving the streamfunction of the Lagrangian-mean flow.
The remaining terms constitute the wave PV denoted qw. We note that the wave-averaged
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Figure 3: Comparison of mean-vorticity change ζ − ζ0 (◦) with 4A/2 (solid line) along
a radial line and for t = 12.7 (left), 30 (middle) and 43.2 (right) inertial periods.

geostrophic balance and PV conservation under advection by uL also follow directly from
GLM theory (Andrews & McIntyre 1978; Bühler & McIntyre 1998; Holmes-Cerfon et al.
2011; Xie & Vanneste 2015; Gilbert & Vanneste 2018).

For NIWs, qw can be expressed in terms of the back-rotated velocity φ; retaining only
leading-order terms in the small Burger number the result is

q = ζ
L

+ f2ψ
L

zz/N
2 +4|φ|2/(4f) + i∂(φ, φ∗)/(2f), (3.16)

where ∂(·, ·) denotes the Jacobian operator (see Xie & Vanneste 2015; Wagner & Young
2016). For an axisymmetric wave field φ(r, t) and barotropic mean flow (3.16) reduces to

q = ζ
L

+4A/2 , (3.17)

where 4(·) = r−1∂r(r∂r·). For waves that are initially uniform in the horizontal, as in
the initial condition (2.4), the Stokes drift and horizontal Laplacian vanish initially, so
the conservation of q – which holds pointwise since q is axisymmetric and uL has no
radial component – implies that

ζ
L

= ζ0 −4A/2 , (3.18)

where ζ0(r) is the initial Gaussian vertical vorticity in (2.1). Using the expression for the
Stokes velocity in (3.12), the Eulerian-mean vorticity is

ζ = ζ0 +4A/2. (3.19)

This result explains the correlation between the evolution of the wave kinetic energy (u′
2
+

v′
2
)/2 = fA and ζ observed in figure 1. We test the prediction in (3.19) quantitatively

in figure 3 by comparing the change in mean vorticity, ζ − ζ0, with 4A/2 at three
different times corresponding to different phases in the oscillation of wave energy. The
good match between the two quantities confirms the validity of (3.19). Thus conservation
of wave-averaged PV predicts the dynamics of the mean flow in the presence of waves
with substantial amplitude.
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4. Discussion

This paper examines the way geostrophic balance – a cornerstone of geophysical fluid
dynamics – is altered in the presence of inertia-gravity waves to become a balance
between the Coriolis force associated with the Lagrangian-mean velocity and a wave-
modified mean pressure. The wave-induced correction to geostrophy has long been known
(e.g. Moore 1970) but it has received much less attention than the issue of non-wave
finite-Rossby-number corrections associated with higher-order balance (e.g. Machenhauer
1977; Leith 1980; Allen & Newberger 1993; Warn et al. 1995; McIntyre & Norton 2000;
Mohebalhojeh & Dritschel 2001; Vanneste 2013; Kafiabad & Bartello 2018, 2017). By
focusing on numerical simulations in a very simple setup, in which vertically planar NIW
waves are superimposed on a barotropic vortex, we are able to show unambiguously that
the wave-induced correction matters and, for NIWs, can be estimated from the wave
energy, consistent with theoretical predictions, at least in the simple case considered
here. We further show that the material conservation of a wave-averaged PV can be
exploited to predict mean-flow changes from the wave energy. We emphasise that the
concepts of wave-averaged balance and wave-averaged PV are not limited to the present
case of vertically planar NIWs propagating through a barotropic mean flow. They apply
in the presence of vertically sheared mean flows, as in the numerical NIW simulations in
Asselin & Young (2020), Thomas & Arun (2020) and Thomas & Daniel (2020), and to
generic inertia-gravity waves. In the case of baroclinic mean flows, however, the waves
cannot be extracted by removing the vertical average as done here. The standard normal-
mode decomposition (e.g. Bartello 1995) also falls short for this task: in the case of strong
waves, because of the importance of the Stokes–Coriolis force fz × uS, balanced flow is
poorly approximated by the linearised part of PV, and an appropriate form of time
filtering is required to separate waves from balanced flow.

To assess the importance of wave-induced corrections to geostrophic balance in an
oceanic context, we need to compare the size of the Stokes velocity induced by inertia-
gravity waves to typical mean-flow velocities. We focus here on the case of NIWs in the
ocean’s mixed layer represented, as is standard, by a slab model (e.g. Alford et al. 2016).
We note that the relation uS = (−Ay,Ax) applies to (vertically independent) waves in
a slab model as well as to the vertically planar waves considered so far. We estimate A
from the values of inertial-wave kinetic energy inferred by Chaigneau et al. (2008) from
drifter data. In parts of the ocean with strong wind forcing, they found this kinetic energy
to be of the order of 103 J m−2. This corresponds to (u′

2
+ v′

2
)/2 = 103/(ρh) ≈ 10−2

m2 s−2, taking the water density ρ = 103 kg m−3 and mixed-layer depth h = 100 m,
and hence A ≈ 102 m2 s−1 for f = 10−4 s−1. Using a spatial scale of 10 km based on
recent simulations of NIWs (Asselin & Young 2020), we finally estimate |uS| ≈ 10−2 m
s−1, a substantial fraction of typical geostrophic velocities at the ocean surface. Larger
values are obtained for smaller f (lower latitudes) and a shallower mixed layer. The NIW
Stokes velocity is also comparable in magnitude to the Stokes drift of surface gravity
waves. However, unlike the latter, near-inertial Stokes drift extends across the mixed
layer and into the ocean interior, hence it is potentially more important for transport.
The contribution from other types of inertia-gravity waves, including internal tides, also
deserves attention.

Our order-of-magnitude estimate raises the possibility that wave-averaged corrections
to geostrophic balance affect the inference of sea-surface geostrophic velocity from satel-
lite altimetric measurements. Assuming that sea-surface-height measurements provide an
approximation to the Eulerian-mean height and hence, for NIWs, also of the Lagrangian-
mean height (since NIWs have little effect on the sea-surface height), the surface velocity
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inferred by standard geostrophy is a Lagrangian mean rather than an Eulerian mean as
normally assumed. It would be useful to examine whether and how this difference can
be accounted for.

We conclude by noting that, while the present paper concentrates on the relation
between wave energy and wave-induced mean flow, it is also desirable to analyse the
mechanism that leads to the slow wave-energy oscillations seen in figure 1. We leave this
analysis for another publication (Kafiabad et al. 2020).
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Appendix A. Derivation details

We establish (3.6) by rewriting the wave momentum equation (3.3a) as

∇p′ = Lξ′, where L =

−∂2t f∂t 0
−f∂t −∂2t 0

0 0 −∂2t −N2

 . (A 1)

The linear operator L is self-adjoint in the sense that a · Lb = b · La for arbitrary time-
periodic vectors a and b. Using this we compute

∂i(ξ′ · ∇p′) = ∂i(ξ′ · Lξ′) = 2ξ′ · L∂iξ′ = 2ξ′ · ∂i∇p′ = 2(ξ′ · ∇)∂ip′ (A 2)

and (3.6) follows.
We now turn to (3.12). The unaveraged Stokes velocity is

(ξ′ · ∇)u′ = ∂t
[
1
2 (ξ′ · ∇)ξ′

]
− 1

2∇×h, (A 3)

where h = ξ′×u′ contributes to the absolute angular momentum density, and we used the
standard vector identity for the curl of a cross product and that ∇·ξ′ =∇·u′ = 0. The
time average of (A 3) gives the explicit solenoidal representation of the Stokes velocity

uS = − 1
2∇×h. (A 4)

For vertically planar waves, ∂zh = 0 hence

(uS, vS) = 1
2 (−hy, hx) (A 5)

where h = ξ′v′ − η′u′ is the vertical component of h. For NIWs, u′t− fv′ = v′t + fu′ = 0,

so h = (ξ′u′t + η′v′t)/f = −(u′2 + v′2)/f = −A and (A 5) gives (3.12).
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