

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

U-Pb geochronology of detrital and igneous zircon grains from the Águilas Arc in the Internal Betics (SE Spain): Implications for Carboniferous-Permian paleogeography of Pangea

Citation for published version:

Jabaloy-sánchez, A, Talavera, C, Rodríguez-peces, MJ, Vázquez-vílchez, M & Evans, NJ 2020, 'U-Pb geochronology of detrital and igneous zircon grains from the Águilas Arc in the Internal Betics (SE Spain): Implications for Carboniferous-Permian paleogeography of Pangea', *Gondwana Research*. https://doi.org/10.1016/j.gr.2020.10.013

Digital Object Identifier (DOI):

10.1016/j.gr.2020.10.013

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Gondwana Research

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Gondwana Research

U-Pb geochronology of detrital and igneous zircon grains from the Águilas Arc in the Internal Betics (SE Spain): implications for Carboniferous-Permian paleogeography of Pangea --Manuscript Draft--

Manuscript Number:	GR-D-20-00209R1			
Article Type:	Research Paper			
Keywords:	Detrital zircon ages Maximum depositional ages Betic Chain Carboniferous foreland basins			
Corresponding Author:	ANTONIO JABALOY, Ph. D. Universidad de Granada Granada, Granada SPAIN			
First Author:	ANTONIO JABALOY, Ph. D.			
Order of Authors:	ANTONIO JABALOY, Ph. D.			
	Cristina Talavera, Ph. D.			
	Martín J Rodríguez-Peces, Ph. D.			
	Mercedes Vázquez-Vílchez, Ph. D.			
	Noreen J Evans, Ph. D.			
Abstract:	New U-Pb detrital zircon and U-Pb zircon ages of metaigneous rocks in the Águilas Arc (Betic Chain, SE Spain) allow us to determine the maximum depositional ages of the rocks. Within the Nevado-Filábride Complex, a Late Carboniferous depositional age for the Lomo de Bas schists and quartzites, and a Permian-Triassic maximum depositional age for the Tahal Fm are determined. Within the Alpujárride Complex, the maximum depositional age of the Micaschists and Quartzite Fm is Late Carboniferous and the Meta-detrital Fm was deposited in the Early Permian. Furthermore, the maximum depositional age of the Saladilla Fm in the Maláguide Complex is also Early Permian. The age distribution patterns for the Carboniferous rocks of the Nevado-Filábride and Alpujárride complexes are similar to those from the Cantabrian Zone of the Iberian Massif, suggesting deposition in Carboniferous foreland basins located eastwards of the Iberian Massif. However, age patterns in Maláguide and samples from the Northeastern Iberian Peninsula and South France show strong similarities suggesting that it can be located near those areas in the Late Carboniferous times. The samples with Early Permian maximum depositional ages from the three complexes contain more Paleozoic zircon grains relative to the older Carboniferous samples, but have similar age distribution patterns, suggesting that they were deposited in the same basin. Samples from unconformable Middle Miocene sediments have Early Permian youngest zircon populations and age distribution patterns corresponding to a mixing of detrital zircon grains from the Alpujárride and Maláguide complexes. Furthermore, there is no record of any major felsic rocks formation and/or exhumation event after the Early Permian in those two complexes.			
Response to Reviewers:	We have aswered to all the comments and annotations of the reviewers in the "Detailed response to reviewers". The response for the specific comments for Reviewer2 are: We have corrected the inaccuracies found in the Geological setting, shortened it and added a new Table 1 with the lihostratigraphic units of the three tectonic complexes. We have added references to the age of the different units when they are known. We have rewritten the presentation of the results, adding age ranges and /or percentages of the main age groups. We have rewritten the Discussion and Conclusions, deleted four figures, and revised the statements referred to works from other authors. Antonio Jabaloy Sánchez			

To: Joseph G Meert, Ph.D Associate Editor Gondwana Research From: Professor Antonio Jabaloy Sánchez Departamento de Geodinámica Facultad de Ciencias Universidad de Granada Campus Fuentenueva s/n 18071 Granada (Granada)

Subject: Revised manuscript GR-D-20-00209

Granada, September 2nd, 2020

Dear Associated Editor,

With this letter we are submitting a revised version of the manuscript GR-D-20-00209, entitled "U-Pb geochronology of detrital and igneous zircon grains from the Águilas Arc in the Internal Betics (SE Spain): implications for Carboniferous-Permian paleogeography of Pangea" by Antonio Jabaloy-Sánchez, Cristina Talavera, Martín Jesús Rodríguez-Peces, Mercedes Vázquez-Vílchez, Noreen Joyce Evans.

As requested, we have revised the manuscript, taking into account all comments from the Reviewers. We provide a more detailed explanation in the accompanying Response to Reviewers and greatly appreciate the time invested by each in improving our work. As most of the suggestions from both reviewers were in the annotated PDFs, we quote the location of our revision using the line numbering in the submitted manuscript. However, in our detailed response to the reviewers in red below, we refer to line numbers in the revised manuscript "changes not marked".

All authors have seen and approved the present version of the manuscript and consent to the submission. Thank you very much for your attention to this matter.

Yours sincerely,

Antonio Jabaloy Sánchez Corresponding Author

Response to Reviewers:

Reviewer #1 comments: Manuscript Number: GR-D-20-00209

"The paper "U-Pb geochronology of detrital and igneous zircons from the Águilas Arc in the Internal Betics (SE Spain): implications for Carboniferous-Permian paleogeography of Pangea" present a large, solid dataset of detrital zircon ages that improves greately the understanding of the controversial paleogeography of the Betic chain in southern Iberia. According to the data presented, the interpretations are solid and properly constructed and discussed (some minor comments in the annotated PDF). The conclusions are innovative and to some extent provoking. The correlation, aided with paleontological criteria, with the Cantabrian zone in northern Iberia sets new constraints not only to the understanding of the Variscan evolution of Western Europe, but also to the complex Mesozoic tertiary evolution of the western Thethyan-Mediterranean realms.

In my opinion, this paper is highly recommended for publication in GR as minor aspects (i.e. duplication of information in the text and figures) are taken into account. All my suggestions can be found in the attached annotated PDF."

Gabriel Gutiérrez-Alonso

General questions:

First page, no numbering: "This link does not work...."

The Reviewer G. Gutiérrez Alonso refers to the link to the Mendeley datasets. We have improved the link, and also uploaded all Supplementary Material in the submitted revision, using the item category 'e-component'.

Line 1- "Although we all have sometime used the word "zircons" in English it is not correct. Zircon has no plural, it is like bread, you do not buy two "breads", but to bread loafs for example. Use either zircon grains or zircon crystals throughout the whole text."

Reviewer #1 is correct, and we have revised the ms so that "zircons" are now referred to as "zircon grains". Thus the title of the manuscript now is: "U-Pb geochronology of

detrital and igneous zircon grains from the Águilas Arc in the Internal Betics (SE Spain): implications for Carboniferous-Permian paleogeography of Pangea".

Line 27- There are not rocks of similar age in the WALZ and the CIZ, so it might not be appropriate to compare those zones with the Betics.

We have deleted the parts of the text that compare our samples with the WALZ and CIZ. The text now reads: "The age distribution patterns for the Carboniferous rocks of the Nevado-Filábride and Alpujárride complexes are similar to those from the Cantabrian Zone of the Iberian Massif" (lines 25 to 27 in the revised manuscript changes not marked).

Line 86- "overriden? subducted implies the existence of oceanic tracts..."

We have changed the text to read:" which was overridden below the Alborán Domain at 18 to 15 Ma..." (lines 90 to 91 in the revised manuscript changes not marked).

Line 107- "sequence? member implies it is part of a formation, if it is describe it beforehand."

Dr. G. Gutiérrez Alonso is correct and we have deleted the reference to "members" in the description of the lithologies of these rocks. The text now reads:"and its succession begins with 600 to 800 m thick graphite-bearing micaschists, quartz schists, and phyllites, which are intercalated with ferruginous quartzite beds (Laborda-López et al., 2015a, b)..." (lines 114 to 116 in the revised manuscript changes not marked).

Line 180- "All this Section could be summarized in Table 1 as it is purely descriptive. See comments in the figure. And provide samples coordinates somewhere!!!"

We have summarized this Section in new Tables 1 and 2, and provided the coordinates of the samples in the new Table 2. As the text in this Section 3 is now reduced to only one sentence, we have combined it with text in the old Section 4.

Line 226- "Supplementary material is not accessible"

We have uploaded all the Supplementary Material in the submitted revision, using the item category 'e-component'.

Lines 243 to 246- "This can be said in the methods"

We have changed this sentence accordingly, and it is now in Section **3. Sampling localities and analytical methods**: in lines 231 to 2346 in the revised manuscript changes not marked.

Lines 263 and 264- "If samples are collected in the Upper Carboniferous (Fig. 4) they should not have Permian zircon grains....

As you have said before the errors are 1sigma. It is quite standard to use 2sigma, which would bring the 284 age error to 10% (28 My) which could fit into the Carboniferous. That makes the data quite difficult to use in order to make any interpretation."

Dr. G. Gutiérrez-Alonso makes a good point, and the problem originates in the analytical methods section where we stated at lines 235 and 236 that: "Errors used in the calculation are at the 1σ level." This sentence is confusing as the reader can suppose that the errors within the entire manuscript and in the figures are at the 1σ level. In fact, all data and figure errors are given at the 2σ level, and we have only used 1σ errors during the calculations for the KDE graphics. We have changed the writing in this paragraph, and now it reads (lines 219 to 226 in the revised manuscript changes not marked):

"Ages in the text and figures are quoted as 206 Pb/ 238 U dates for zircon analysis younger than 1500 Ma and as 207 Pb/ 206 Pb dates for zircon analysis older than 1500 Ma, while errors are at the 2 σ level. Distribution of detrital zircon ages were calculated using DensityPlotter 8.5 (Vermeesch, 2012), with a bin of 40 Ma. An adaptive bandwidth of 40 Ma was applied for the Kernel Density Estimators (KDE); except in the zoom windows from the group of ages younger than c. 541 Ma Ma, where a bin of 10 Ma and an adaptive bandwidth of 10 Ma were applied. Errors used in these KDE calculations are at the 1 σ level. (Figs. 5, 6, 9, 10, 13 and 14)."

Dr. G. Gutiérrez-Alonso indicates that the younger zircon age of 284 ± 14 Ma (line 263) is Permian, but as we explain in the next response, we have tried to minimize the risk of using dates from grains with Pb loss using a very conservative calculation for youngest population (see next answer).

Line 264- "is correct here to use mean ages? It is highly dependent on an arbitrary choice of what is the "youngest population"

We have added a paragraph within the new Section 3. Sampling localities and analytical methods: lines 235 to 247 in the revised manuscript changes not marked. This new paragraph defines the youngest population in the sense of Dickinson and Gehrels (2009), and justifies our choice of this method to determine the Maximum Depositional Age (MDA) of a sample:

"Among the different strategies to estimate the Maximum Depositional Age (MDA) of a sample, we have chosen a more conservative approach where the youngest population is defined as the weighted mean of the youngest cluster of grains with overlapping 2σ uncertainty (see Dickinson and Gehrels, 2009, for the method, and Sharman and Malkowski; 2020, for a discussion). The original method contemplates the use of three or more grains, however, we have worked with four or more grains in the calculation. Our samples are metadetrital with grains mostly < 400 Ma. The limited curvature of concordia at these young ages combined with the imprecision of the ²⁰⁷Pb/²³⁵U age, limits the identification of discordance, and, in fact, any level of Pb loss is masked by the uncertainty of the analysis (Bowring and Schmitz, 2003; Ireland and Williams, 2003; Spencer et al., 2016). Therefore, we have tried to minimize the risk of including dates from grains with Pb loss by applying a very conservative youngest population calculation, calculated using Isoplot software (Ludwig, 2003, 2009)."

Line 271- "Statistically, AG-17 is quite different"

Dr. G. Gutiérrez-Alonso is correct and we have changed the text accordingly. The new text reads (lines 281 to 290 in the revised manuscript changes not marked):

"Samples AG-12, AG-14, and AG-18 also have similar age distribution patterns showing a very noticeable Ediacaran component with peak ages between ca. 557 and ca. 618 Ma (between 17.3% and 24.3%, Fig. 5). There are also significant Mesoproterozoic (between 7% and 12%) and Paleoproterozoic (between 17% and 26%) contributions. The Mesoproterozoic population clearly stands out in samples AG-12 and AG-18 with ages clustering at ca. 1001 (7.2%) and 1025 Ma (6.3%), respectively, and the Paleoproterozoic population is clearly identified in sample AG-14 with ages grouping at

ca. 1893 and 2032 Ma (13.2%) (Fig. 5). There is a noteworthy difference in sample AG-17; the percentage of Paleozoic ages (36%) in this sample is twice as high as that in the other three samples (15% to 19%) (Fig. 5)."

Line 276- "In order to combine samples, it would be necessary to check their statistical similarity first... (not only by visual inspection of the PDPs or KDEs.

So K-S statistics and/or MDS plots would be very useful to check if the combination of them is significant or not."

Following the suggestion of Dr. G. Gutiérrez-Alonso, we have used the Kolmogorov-Smirnov test (K-S test) and the Multi-Dimensional Scaling methods (MDS) to check the statistical similarity between samples. In order to avoid over-lengthening the revised manuscript, we have added the methodology and results of the K-S test to the Supplementary material, and left only the MDS method in the main manuscript.

When observing the results of both tests, we found that Reviewer#1 is correct and we now only combine samples AG-12, AG-14 and AG-18 from the Lomo de Bas quartzites, and we have changed the text and figures to specify use of that sample combination.

Line 276- "What means nearly? state the concordance percentage used to filter the data."

We have stated the concordance percentage used to filter the data: in the lines 291 and 292 in the revised manuscript changes not marked: "(Concordia ranging between 90% and 110%, Table S1 in Supplementary material)".

Lines 278 to 280- "This is repeated in the pie charts in Figure 9, so it is not necessary to include here (tedious to read)"

We have deleted this sentence, and other similar sentences within Section 4. Results.

Line 281- "this means 2 grains... and if the errors are as large as the permian zircon described before.... they are of no use at all."

We agree with Dr. G. Gutiérrez-Alonso, but we have to include them in the description of the results, if not in the interpretation.

Lines 291 to 292- "You say before the youngest is Jurassic"

We have slightly changed these sentences in order to make clear the differences between the age of the youngest zircon grain, and the age of the youngest zircon population. They read now in lines 305 to 309 in the revised manuscript changes not marked: "Individually, samples AG-1 and AG-2 contain Jurassic zircon grains with the youngest zircon grains yielding 206 Pb/ 238 U dates of 195 ± 8 Ma, and 179 ± 5 Ma, respectively. Both samples also have youngest zircon populations with Permian ages at 275 ± 8 Ma (MSWD = 1.4 and probability = 0.25) and 277 ± 4 Ma (MSWD = 1.12 and probability = 0.35), respectively."

Line 301- PDD or KDE?

We have stated now that it is a KDE age distribution at line 317 in the revised manuscript changes not marked.

Line 302- Already included in the figure

This is similar to comment on Lines 278 to 280, and we have deleted this sentence.

Line 318- Do they provide a concordia age? If so... that age might be significant

As we have stated previously in the answer to the annotation at Line 264, a problem within the younger-than-400-Ma zircon grains is that the limited curvature of concordia, combined with the imprecision of the ²⁰⁷Pb/²³⁵U age, limits the identification of discordance, and, in fact, any level of Pb loss is masked by the uncertainty of the analysis (Bowring and Schmitz, 2003; Ireland and Williams, 2003; Spencer et al., 2016). Therefore, we can have perfectly concordant ages with any level of Pb loss in those young zircon grains. A method to determine if Pb loss that is undetectable with a discordance filter is occurring is to note the presence of a tail negatively skewed towards younger ages (see Spencer et al., 2016).

To clarify this problem, we have changed this sentence, and now it reads (lines 335 to 337 in the revised manuscript changes not marked): "There are also 7 slightly younger dates between 264 and 286 Ma defining a tail negatively skewed towards younger ages (Fig. 7), which may relate to Pb loss undetectable with a discordance filter (see Spencer et al., 2016)."

Line 326- which one?

The only known event at this age is the intrusion of Early Jurassic mafic rocks (Puga et al., 2011). Therefore, we have changed the sentence and now it reads (line 346 in the revised manuscript changes not marked): "…linked to the intrusion of Early Jurassic mafic rocks (Puga et al., 2011)."

Line 340- Why not a concordia age?

The Concordia age is within uncertainty of the mean age $(287.3 \pm 3.4 \text{ Ma})$. The MSWD of the Concordia age is around 13 while the 207 corrected mean age is down to 1.4 and that is why we used the weighted mean.

Line 367- Same as above

Reviewer#1 refers to the comment at Line 276- "In order to combine samples, it would be necessary to check their statistical similarity first... (not only by visual inspection of the PDPs or KDEs. So K-S statistics and/or MDS plots would be very useful to check if the combination of them is significant or not."

We have performed the Kolmogorov-Smirnov test (K-S test) and added its methodology and results in the Supplementary material (Texts S1 and S2, Tables S2 and S3). We have added a last sentence in the Section 3. **Sampling localities and analytical methods**: "Methodology and results of the Kolmogorov-Smirnov test are given in the Supplementary material (Texts S1 and S2, Tables S2 and S3)."

Furthermore, we have added a reference to the K-S test in Table S2 in the Supplementary material, where the values of the similarity are recorded (lines 373 and 375 in the revised manuscript changes not marked): "The age distribution patterns of these 4 aforementioned samples show some similarities (Fig. 9, and see Kolmogorov-Smirnov test-S in table S2 in the Supplementary material).

Line 434-Mean age or concordia age?

As for sample AG-13, we have choosen the mean age and not the Concordia age because of the lower MSWD (0.76 versus 1.9). Both ages are within uncertainty. The Concordia age is 282.3 ± 1.9 Ma.

Line 493- In general the discussion is quite tedious and difficult to follow. The comparisons made based in estimated relative abundances, number of grains and percentages is too complicated to really appreciate the differences. New statistical tools to make this comparisons based in K-S statistics are nowadays available and provide efficient quantitative comparison tools. The use of this tools (MDS) would be of great benefit and help in understanding and following this discussion. (e.g. Vermeesch, P. (2018). Dissimilarity measures in detrital geochronology. Earth-Science Reviews, 178, 310-321.

We thank Dr. G. Gutiérrez-Alonso for this suggestion, which have improved the discussion. We have reduced the comparison between estimated relative abundances and used the Multi-Dimensional Scaling method (MDS) to make a comparison between samples. We have also added the similarity values of the comparison obtained using the K-S test in the Supplementary material.

Dr. G. Gutiérrez-Alonso makes a good point...the old comparisons were too complicated to really appreciate the differences. When we have applied the K-S and MDS methods, the similarity between the Maláguide Complex and Ossa-Morena Zone is no longer supported. The values of the tests indicate that the MC samples are more similar to the samples of NE Iberia and South France. We have changed accordingly the paleogeographic location of the Maláguide realm during the Late Carboniferous in new Figure 16 and in the graphical abstract.

Line 500- Check criteria according to: https://doi.org/10.1016/j.earscirev.2020.103109

In the methodology and discussion, we have added a definition of youngest population and a justification for why we have used it (see answer to comment in Line 264). Specifically, in the beginning of the discussion, we have added in lines 535 to 537 in the revised manuscript changes not marked: "As previously stated, we also provide the youngest populations (see Dickinson and Gehrels, 2009 for the method, and Sharman and Malkowski; 2020 for a discussion)."

Line 521- What criteria is used to discern populations vs. single zircon grains usage. Please explain

Please see our response to the comment at lines 264 and 500.

Line 531- including the variscan remnants in the Betics (Reference to the paper with granite ages)

We have included a reference to the works on the Variscan remnants in the Betics in lines 580 to 582 in the revised manuscript changes not marked: "Furthermore, they could have been sourced from the oldest granitoids within the Variscan remnants in the Betic Chain, essentially the older orthogneisses in the NFC with U-Pb ages of ca. 301 Ma (Gómez-Pugnaire et al., 2004, 2012)."

Line 536-They are also found in Carboniferous rocks from the Cantabrian Zone, see Pastor-Galán et al. 2013 (Gond Res) where the sources are explored. Ordovician zircons may come from the Ollo de Sapo magmatic event, and devonian from the volcanic event that is now starting to be recognized in the Central Iberian Zone (Gutiérrez-Alonso, G., Murphy, J. B., Fernández-Suárez, J., & Hamilton, M. A. (2008). Rifting along the northern Gondwana margin and the evolution of the Rheic Ocean: A Devonian age for the El Castillo volcanic rocks (Salamanca, Central Iberian Zone) . Tectonophysics, 461(1-4), 157-165.) (or in Almadén, sorry, no ref) or from the allochthonous complexes where rocks with silurian and devonian zircons are relatively abundant.

Dr. G. Gutiérrez-Alonso is correct and we have changed the text of the first paragraph in **subSection 5.2. Provenance of zircon in Late Carboniferous samples**, to include those sources.

Line 550- See above

We have deleted this paragraph.

Line 588- It would be necessary also to compare with the data from the Pyrenees (Martínez et al., 2015, GSA Bull, doi: 10.1130/B31316.1)

The reference for this work is Martínez et al. (2016). We have processed their data and compared it to the other Late Carboniferous samples from the Betic Cordillera and the Iberian Massif in a new paragraph in **subSection 5.2. Provenance of zircon in Late Carboniferous samples** (lines 573 to 703 in the revised manuscript changes not marked).

Line 595-Reference

We have added a reference to this statement at line 620 in the revised manuscript changes not marked: "(Jabaloy-Sánchez et al., 2018)"

Line 635- See above

This is similar to the comments at line 536 and line 550, and we have deleted this statement.

Line 805- I would add another line of correlation using the ages of the intrusive rocks reported here and in other previous work. The Permian ages of the intrusives (which are volumetrically minor) are similar to those granites in the CZ, while the WALZ and the CIZ the granite ages are, in general older and the granites significantly more abundant)

Thanks for this suggestion. We have added several sentences at the end of the discussion (lines 864 to 870) in the revised manuscript changes not marked: "Another line of correlation is the age of the felsic intrusive rocks reported here and in previous works (Gómez-Pugnaire et al., 2014; 2012). The Permian age of the volumetrically minor intrusive bodies (301 to 282 Ma, Gómez-Pugnaire et al., 2004, 2012; this work) is similar to granites in the CZ (286 to 297 Ma; Gutiérrez-Alonso et al., 2011), while the significantly more abundant granites in the WALZ and the CIZ are, in general, older (321 to 290 Ma, Martins et al., 2019, and references therein)."

Figure 2- Location (white dot) of Granada is missing

We have added the location of Granada and deleted the two red rectangles in old Figs. 6 and 7.

Figure 3-Make the dots and sample numbers more prominent and provide coordinates of the collected samples in Table 1.

We have made the dots and sample numbers bigger, and also added the coordinates in Table 2.

Figs. 4, 5 and 8- Provide a legend with the lithological symbols, there is plenty of space and the chosen patterns are quite confusing. Same for Fig. 5 and Fig. 8

Figures 4, 5 and 8 could be combined into a single figure (landscape) where it is easier to see the similarities and differences in the different domains

We have provided a legend with the lithological symbols and combined the old Figs. 4, 5 and 8 into a new Figure 4.

Figs 6 and 7 -Is this figure necessary? Same for Fig. 7. Local maps do not provide information regarding detrital zircon ages. They are useful for structural or tectonic purposes, but this paper does not deal with any local geology.

We have deleted the old Figs. 6 and 7.

Table 1- Include number of zircon grains used.

Include in the table the age of the sample (or at least, its putative age)

We have included the putative age of the samples and the Total number of analyses/Conc. Analyses in the new Table 2.

We have also followed the minor suggestions marked in the PDF file by Reviewer #1 including the comments on Figures 1, 2 and 4 that we have changed accordingly.

Reviewer #2 comments: Manuscript Number: GR-D-20-00209

Reviewer #2: This study by Jabaloy-Sánchez and co-authors on U-Pb geochronology in metamorphosed siliciclastic and igneous rocks from the Betic Chains is of relevant scientific interest.

The objective of this study and the volume of U-Pb zircon data and its quality is a very strong point of this contribution.

However, I noticed several weak points that deserve to be corrected and improved. The first concerns some inaccuracies found in the Geological setting (see attached pdf with my annotations). This Section is very long and confusing and it is advisable to present a table with the lithostratigraphy of the three metamorphic complexes. Many references are missing on the ages of the different units.

We have corrected the inaccuracies found in the Geological setting, shortened it and added a new Table 1 with the lihostratigraphic units of the three tectonic complexes. We have added references to the age of the different units when they are known.

The second weak point concerns the presentation of results. This presentation is confusing, lacking age ranges and/or percentages of the main age groups for each sample. The model of presentation of the results that is used for one sample must be kept for the others to facilitate the understanding by the reader.

We have rewritten the presentation of the results, adding age ranges and /or percentages of the main age groups.

Finally, the Discussion and the Conclusions can be improved (see attached pdf with my annotations). Some statements regarding works by other authors are incorrect. The figures are too many and some of them can be merged.

We have rewritten the Discussion and Conclusions, deleted four figures, and revised the statements referred to works from other authors.

I believe that the authors are able to improve this version to make it more interesting for the readers.

Annotations in the pdf:

Line 40- detrital zircon grains

We have added the correction to lines 40 and 41 in the revised manuscript changes not marked: "...corresponding to a mixing of detrital zircon grains".

Lines 68, 69, 72, 74, 75, 77, 86, 89- time-constraints are necessary...

We have added the known constraint ages to the text at lines 70 to 96 in the revised manuscript changes not marked: "The Alpine Betic-Rif orogen is an arcuate Alpine mountain belt outcropping in both South Spain and North Morocco and formed essentially during Late Paleogene-Neogene times (e.g. Platt et al., 2003; Chaluan et al., 2008) (Fig. 1). According to Balanyá and García-Dueñas (1987), this belt comprises: i) a central allochthonous terrain, the so-called Alborán Domain, ii) the South Iberian Domain, which includes the Triassic to Neogene rocks deposited at the southern paleomargin of the Iberian Peninsula, iii) the North African Domain, comprising Triassic to Neogene rocks deposited at the north-western paleomargin of Africa, and iv) the Flysch Trough units with Cretaceous to Neogene slope/rise and abyssal plain deposits (e.g. Chalouan et al., 2008, and references therein). Furthermore, the Alborán Domain, as originally defined by Balanyá and García-Dueñas (1987), included three metamorphic complexes, namely (from bottom to top): the Paleozoic to Mesozoic Nevado-Filábride Complex (NFC), the Paleozoic to Mesozoic Alpujárride Complex (AC) and the Paleozoic to Paleogene Maláguide Complex (MC) (Fig. 1).

Recently this subdivision has been redefined and a new tectonic framework with only three major domains is emerging. Pratt et al. (2015) and Azdimousa et al. (2019) have indicated that the whole Maghrebian Flysch Domain was part of the North African Domain. Moreover, the Alborán Domain has been redefined and now only comprises two tectonic complexes: the lower AC and the upper MC (see Gómez-Pugnaire et al., 2012, and references therein). Accordingly, the NFC is now considered part of the southern paleomargin of the Iberian Peninsula, which was overridden below the Alborán Domain at 18 to 15 Ma (see López-Sánchez Vizcaino et al., 2001; Gómez-Pugnaire et al., 2004; 2012; Platt et al., 2006; Kirchner et al., 2016).

In the Central part of the Betic-Chain, the previously mentioned metamorphic complexes were deformed by three major E-W trending Tortonian antiforms, but

eastwards, left-lateral, roughly N-S trending strike-slip faults rotated and translated the folds towards the North to form the Águilas tectonic Arc (Figs. 1, 2)."

Line 93- Will be useful to present a table with the different units from each complex and available ages...

Figs 4, 5 and 8 can be merged

We have made a new Table 1 with the different units from each complex, and also merged the old Figs. 4, 5 and 8 into a new Fig. 4

Line 105-age?

The age of these rocks was unknown before we did the first datation of them, although other orthogneisses in the CNF have yielded Late Carboniferous-Early Permian ages. We have accordingly changed the sentence to read (lines 109 to 113 in the revised manuscript changes not marked): "...rocks include orthogneiss bodies derived from metamorphosed, felsic rocks of unknown age (Álvarez and Aldaya, 1985; Álvarez, 1987), although other orthogneiss bodies within the CNF have yielded Late Carboniferous to Early Permian U-Pb ages (Gómez-Pugnaire et al., 2004, 2012, and references therein)."

Line 118- age?

This comment refers to the age of the Metaevaporite Fm, for which different authors have proposed ages ranging from Permian to Paleogene. We have changed the sentence and now it reads (lines 124 and 125 in the revised manuscript changes not marked): "Moving up section is the Metaevaporite Fm, attributed Permian-Triassic (Leine, 1968; Vissers, 1981) to Paleogene ages (Puga et al., 1996),…"

Line 119- ages?

As outlined above, this comment refers to the age of the Marbles and Calc-Schists Fms, for which different authors have proposed ages varying from Paleozoic to Cretaceous. We have changed the sentence and now it reads (lines 127 and 129 in the revised manuscript changes not marked): "for which pre-Permian to Cretaceous ages have been proposed (Tendero et al., 1993; Gómez-Pugnaire et al., 2012) (Fig. 4, Table 1)."

Lines 181 to 183- or 21??? 8+9+2+2

Thank you for catching this error. The correct total is 21. We have corrected this error at the beginning of **Section 3. Sampling localities and analytical methods**, in line 197 in the revised manuscript changes not marked.

Lines 185 to 211- this information (lines 185-211) could be included in table 1

This comment agrees with Reviewer#1, we have deleted these three paragraphs and included this information in the new Table2 and new Figure 4

Line 234- he group of ages younger than c. 541 Ma

We have changed the sentence and now it reads (lines 223 and 224 in the revised manuscript changes not marked): "...except in the zoom windows of the group of ages younger than c. 541 Ma,"

Line 240- zircon grains

Changed.

Lines 268, 269, 272, 386 to 388, and also lines 479 to 480- %?

We have added the percentages of the components in the description.

Line 277- ???, and Lines 278 to 283- age range for all age groups?

After the suggestion of Reviewer#1, we have changed this paragraph. We have also added the range of ages for all groups. The paragraph now reads (lines 291 to 299 in the revised manuscript changes not marked): "Combining a total of 406 dates (Concordia ranging between 90% and 110%, Table S1 in Supplementary material) obtained from the most similar samples (AG12, AG14 and AG18 of Lomo de Bas quartzites; see Kolmogorov-Smirnov test-S in table S2 in the Supplementary material), the age distribution pattern is characterised by dates ranging from 283 to 3195 Ma (Fig. 5). Within the 67 Paleozoic zircon grains, there are Early Permian (one grain, 283 \pm 14, 1.5% with respect to the total amount of Paleozoic grains), Carboniferous (306 \pm 4 to 359 \pm 8 Ma, 40%), Devonian (368 \pm 6 to 405 \pm 6 Ma, 9%), Silurian (442 \pm 10 Ma,

1.5%), Ordovician (460 ± 12 to 484 ± 8 Ma, 9%) and Cambrian dates (486 ± 7 to 540 ± 7 Ma, 39%) (Fig. 5)."

Lines 302 to 307, 367 to 374, 391 to 393, 396 to 401, 408 to 413, 449 to 451, and also lines 456 to 459- age range for all age groups?

We have added the range of ages from all groups.

Lines 481 to 491-This is not the best way to present the results ... there are no age ranges or percentages ...

Reviewer#2 is correct, and we have added the age ranges and percentages in this paragraph.

Line 497- zircon grains

We have changed the word zircons to zircon grains

Line 497- How many?.

We have rewritten the sentence and now it reads (line 536 in the revised manuscript changes not marked): "...with 4 dates between 284 ± 14 and 323 ± 5 Ma"

Lines 497 and 498, and also lines 499 to 505, 519 to 521- what is the difference between youngest grains and youngest population??? do you mean youngest individual grains?

Lines 499 to 505- you must explain this better...

Reviewer G. Gutiérrez-Alonso also had the same query. We have added a paragraph to explain the difference between the youngest grains and youngest population, and why we have used the latter method. In addition, we have added a sentence in the first paragraph in subsection 5.1. (lines 536 to 538 in the revised manuscript changes not marked): "As previously stated, we also provide the youngest populations (see Dickinson and Gehrels, 2009, for the method, and Sharman and Malkowski; 2020, for a discussion).

Line 506- ????

We have deleted the beginning of this sentence.

Line 5010- Are you considering these orthogneisses as volcanic or plutonic protoliths??? they represent volcanism coeval with deposition or they are intrusive plutons post-deposition?

We have rewritten this second paragraph in subsection 5.1. (lines 548 to 556 in the revised manuscript changes not marked). In this paragraph we discuss how, regardless of whether the orthogneisses is of volcanic or plutonic origin, it is located in the uppermost part of the succession and can help to constrain the depositional age of the rocks: "…are strongly deformed and metamorphosed, making it difficult to determine whether they represent volcanic rocks or intrusive plutons. However, in either case, these units can help define the minimum depositional age of the Lomo de Bas rocks, as they are located in the uppermost part of the succession (see Fig. 4). If they are volcanic rocks coeval with deposition, they indicate the age of the uppermost layers, and if they are plutons which were intruded post-deposition, they constrain the minimum depositional age of the Lomo de Bas rocks."

Lines 524 and 525- in this case you are not preferring a more conservative approach, why?

We do not understand this question, as in this sentence we are using the youngest population of sample AG-5 with a Late Carboniferous age (308 Ma) to determine the Maximum Depositional Age (MDA) as we did with the rest of the samples.

Line 529- %???

We added the percentages at lines 576 and 577 in the revised manuscript changes not marked.

Line 530- Why only felsic rocks??? there also zircon grains in gabbro-dioritic rocks; see Pereira et al 2017- Geologica Acta; Orejana et al., 2020- Geoscience Frontiers

We have corrected this statement and now it reads igneous rocks (line 578 in the revised manuscript changes not marked).

Line 531-could you be more specific???

We have described the sources at lines 578 to 583 in the revised manuscript changes not marked: "...occupying more than one third of the outcrops of the whole Iberian Massif, and essentially, ca. one half of the Central Iberian Zone (e.g. Arranz and Lago, 2004; Bea, 2004; Casquet and Galindo, 2004; Gallastegui et al., 2004; Ribeiro et al., 2019). Furthermore, they could have been sourced from the oldest granitoids within the Variscan remnants in the Betic Chain, essentially the older orthogneisses in the NFC with U-Pb ages of ca. 301 Ma (Gómez-Pugnaire et al., 2004, 2012)."

Line 534-%?

We have added the percentages of the components in the description.

Line 535-This is not correct... there are important Ordovician (see Montero et al., 2008. Geological Magazine; Rubio-Ordonez et al. 2012. Geological Magazine; Pereira et al., 2018. Journal of Iberian Geology) and also Devonian magmatism in the CIZ (Gutierrez-Alonso et al., 2008- Tectonophysics)

Line 538- of what??

Line 540- You must be cation with this kind of statement because you can have sources of Devonian grains that derived from primary sources and/or from intermediate sediment repositories (as result of several cycles of recycling)...

We have rewritten the whole subsection 5.2 Provenance of zircon in Late

Carboniferous samples, in order to the comment of both reviewers. This rewriting included: correction of inaccuracies, adding the suggested references, reordering the paragraphs within the text, and adding the suggested MDS plots and results. The later included adding new Figures 15 and 17, while the old figures comparing the KDEs (old Figures 19 and 21) are now in the Supplementary material as Figures S5 and S6. The results of the K-S test and MDS study demonstrated that we were wrong when we proposed the similarity of the Maláguide Complex and the Ossa-Morena Zone. We have corrected this, and changed our interpretation accordingly in new Figure 16 (paleogeography during the Late Carboniferous), and in the Graphical abstract.

Line 554- which rocks??? too vague..

This paragraph has been deleted.

Lines 558 to 561, and 565 to 566- %????

We have added the percentages of the components in the text.

Line 562- these sources for Neoproterozoic grains are also present in the Meguma and West Avalonia terranes (Nova Scotia)

We have added to the text at lines 607 and 608 in the revised manuscript changes not marked: "...in Gondwana and the peri-Gondwanan terranes, as in the Meguma and West Avalonia terranes in Gondwana and the peri-Gondwanan terranes, like the Meguma and West Avalonia terranes."

Line 590-???

We have added to the text in lines 614 to 616 in the revised manuscript changes not marked: "...and surrounding areas, as the Pyrenees, Montagne Noire and Mouthoumet massifs (Martínez et al., 2016) (Fig. S5 in the Supplementary material)."

Line 605 and 606- delete

We have deleted the references.

Lines 612 to 617- These works on the Late Carboniferous basins of the Ossa-Morena and South-Portuguese zones do not show what is mentioned here ... I advise you to reread the text of these publications more carefully ...

We have rewritten the whole paragraph. It now reads in lines 656 to 671 in the revised manuscript changes not marked: "Dinis et al. (2018) and Pereira et al. (in press) studied the Late Carboniferous sediments from the Ossa-Morena (Santa Susana Fm: samples StSz2 and StSz4 from Dinis et al., 2018, and SS-1 and SS-2 from Pereira et al., in press). In the MDS plot, they do not show any similarity with the samples from NFC, AC or the Cantabrian Zone, except in the case of the comparison between AG-17 and SS-2 and StSz4 samples. The Santa Susana Fm samples plot far from the other two clusters on the MDS diagram. (Fig. 15). The main difference is the lack of the Stenian and Neoarchean populations in the latter samples. Furthermore, Pereira et al. (2014) studied the South Portuguese Zone of the Iberian Massif (Fig. S5 in Supplementary material), where Late Carboniferous sediments were deposited in the Mira Fm

(Serpukhovian-Bashkirian, samples ST-8 and SC-6 from Pereira et al., 2014) and in the Brejeira Fm (Bashkirian-Moscovian, samples AJ-1, AM-3, and TH-5 from Pereira et al., 2014). Samples from both the Mira and Brejeira Fms essentially show no similarity with the samples from the NFC, AC and Cantabrian Zone in the MDS plot, although the AM-3, and TH-5 samples show some similarity with the cluster from sample AG-17 and those from NE Iberian Peninsula and South France (Martinez et al., 2016) (Fig. 15)."

Lines 672, 694, 709, and 723 - I suggest to merge Sections 6.3-6.5

We have merged them into the new Section 5.3. Permian to Triassic samples from the NFC, AC and MC.

Line 731- It would be very interesting to discuss what tectonic processes will have induced these differences ... would it have been tectonic movements that conditioned the exposure to erosion of different blocks?

In order to discuss the processes after the unroofing of the Late Variscan granitoids, we have added a last paragraph (lines 821 to 829 in the revised manuscript changes not marked): "A major question is what tectonic process induced these differences. Vissers (1992) found an Upper Carboniferous to Permian extensional event in the Pyrenees synchronous with uplift and emergence of large parts of the crust and deposition of continental sediments in fault-bounded extensional half-grabens. Subsequently, García-Navarro and Fernández (2004) found an Early Permian faulting event in the SW Iberian Peninsula where strike-slip and normal faults generated the intracontinental, Early Permian El Viar basin. Those data suggest that during the Permian to Early Triassic breakup of Pangea, tectonic uplift along major normal faults may have exposed different levels of Variscan crust, including the Late-Variscan granitoids, to erosion."

Lines 733 and 735- age range???

We have added the age ranges in the text.

Line 777- ages???

We have added the ages in the text.

Line 780- ?????

We have rewritten the sentence and now it reads (lines 836 to 839 in the revised manuscript changes not marked): "...confirming that after experiencing HP metamorphism during Oligocene-Early Miocene times (Zindler et al., 1983; Blichert-Toft et al., 1999; Sánchez-Rodriguez and Gebauer, 2000; Platt et al., 2003; Esteban et al., 2007), the AC rocks were exhumated and eroded at the surface during the Middle Miocene."

Line 781- which ones??

We have changed the sentence and it now reads (lines 839 and 840 in the revised manuscript changes not marked): "It is noteworthy that these unconformable Middle Miocene sediments were formed ..."

Line 792- age???

We have added the age of the late Variscan event in lines 850 and 851 in the revised manuscript changes not marked: "...by the Late Carboniferous-Early Permian Late Variscan magmatic event"

Line 792- When???

We have added the age of the metamorphism in lines 852 and 853 in the revised manuscript changes not marked: "...was metamorphosed from Oligocene to Middle Miocene times to form..."

Line 805-????

We have changed Line 865 in the revised manuscript changes not marked: "... partially melt, leading to the formation of migmatites."

Line 809-...Ma ???

you must explain if these igneous rocks represent volcanic rocks contemporaneous with deposition or post-deposition intrusive rocks...

We have changed this sentence, and now it reads (lines 875 to 878 in the revised manuscript changes not marked): "Orthogneisses in the NFC may have volcanic or

plutonic parent rocks, but as they are located in the uppermost part of the Lomo de Bas succession, they can indicate a minimum depositional age for these rocks (Sakmarian-Artinskian, 294 ± 2 Ma and 289 ± 3 Ma), regardless of their igneous classification."

Lines 827 to 829- How do you explain this difference???

We have modified the text to explain the difference. Lines 899 to 901 in the revised manuscript changes not marked reads: "This data can be explained if zircon grains from the main Variscan orogenic relief were recycled, while unroofing of footwalls of faults also exposed Late Variscan granitoids at the surface. It is possible that these zircon grains ..."

Line 833- why felsic rocks???

Because there are Jurassic mafic rocks in the area that are not the source of zircon grains.

Figure 3- difficult to read

We have changed the size of the text and dots in Figure 3.

Figure 5- schists

We have changed the word in the new Figure 4.

Figure 6 and 7-these basaltic dikes are from the Alpujarride Complex? or they are intrusions on the Piar Group??? and thus belong to the Malaguide Complex???

We have deleted these figures according to Reviewer#1. However, these basalt dikes intruded in both complexes during Paleogene-Early Neogene times.

Figures 9, 10, 13, 14, 17 and 18-difficult to read

???

We have changed all the pies with the percentages of the zircon data in old Figures 9, 10, 13, 14, 17 and 18: we have changed their sizes and their colours in order to make them easier to read. We have also deleted mention of 0 to 541 Ma in all the figures.

Figure 10- this one is concordant??

Yes, it is. It corresponds to Analysis AG13z6c (see table S1 in the Supplementary material)

Ages					Concordia	
207Pb/206Pb	1σ	207Pb/235U	1σ	206Pb/238U	1σ	
2346	13	2274	13	2196	23	97

Figure 15- ???

We have changed maximum, for population at ca. 16 Ma in the new Figure 11.

Figure 16-???

We have changed main population, for population at ca. 283 Ma in the new Figure 12.

Table 1- geographic coordinates???

We have added the coordinates in the new Table 2.

We have also followed the minor questions marked in the PDF file by the Reviewer#2 and changed them accordingly.

Yours sincerely,

Antonio Jabaloy Sánchez Corresponding Author

Elements of the Variscan Belt

Axis of rifting in -Triassic -Early Jurassic times

Maximum depositional ages of graphite rich rocks of the Nevado-Filábride and Alpujárride complexes are Late Carboniferous

Graphite-rich rocks of the Nevado-Filábride and Alpujárride complexes were likely deposited in Carboniferous foreland basins eastwards of the Iberian Massif

The Maláguide Complex located near the NE Iberian Peninsula

Maximum depositional age of Tahal, Meta-detrital and Saladilla Fms are Early Permian

1	1	U-Pb geochronology of detrital and igneous zircons from the Águilas Arc in the					
1 2 3	2	Internal Betics (SE Spain): implications for Carboniferous-Permian					
4 5	3 paleogeography of Pangea						
6 7 0	4						
8 9 10	5	Antonio Jabaloy-Sánchez ¹ , Cristina Talavera ² , Martín Jesús Rodríguez-Peces ³ ,					
11 12 12	6	Mercedes Vázquez-Vílchez ⁴ , Noreen Joyce Evans ⁵					
14 15	7	¹ Departamento de Geodinámica, Universidad de Granada, 18002 Granada, Spain.					
16 17	8	² School of Geosciences, University of Edinburgh, The King's Building, James Hutton Road, EH9 3FE					
18 19	9	Edinburgh, UK.					
20 21	10	³ Departamento de Geodinamica, Estratigrafía y Paleontología, Universidad Complutense de Madrid,					
22 23	11	Madrid, Spain.					
24 25	12	⁴ Departmento de Didáctica de las Ciencias Experimentales, Universidad de Granada, Granada, Spain.					
26 27	13	⁵ School of Earth and Planetary Sciences/John de Laeter Center, Curtin University, Bentley 6845,					
28 29	14	Australia.					
30 31 22	15						
33 34	16	Abstract					
35 36	17	The Águilas Arc (SE Spain) comprises the three tectonic complexes of the					
37 38 39	18	Internal Betic Chain. New U-Pb detrital zircon and U-Pb zircon ages of metaigneous					
40 41	19	rocks in the Nevado-Filábride Complex provide a Late Carboniferous depositional age					
42 43 44	20	for the Lomo de Bas schists and quartzites, while the maximum depositional age of the					
45 46	21	Tahal Fm is confirmed as Permian-Triassic. In the Alpujárride Complex, the maximum					
47 48 40	22	depositional age of the Micaschists and Quartzite Fm is Late Carboniferous and the					
49 50 51	23	Meta-detrital Fm was deposited in the Early Permian. Furthermore, the maximum					
52 53	24	depositional age of the Saladilla Fm in the Maláguide Complex is also Early Permian.					
54 55 56	25	The age distribution patterns for the Carboniferous rocks of the Nevado-Filábride and					
57 58	26	Alpujárride complexes are similar to those from the Cantabrian, West Asturian-					
59 60 61	27	Leonese, and Central-Iberian zones of the Iberian Massif, suggesting deposition in					
62 63 64 65		1					

Carboniferous foreland basins located eastwards of the Iberian Massif. However, the zircon age distribution patterns for the Nevado-Filábride and Alpujárride complexes show differences to those of the Carboniferous rocks from the Maláguide Complex, and the South Portuguese and Ossa-Morena zones of the Iberian Massif, while patterns in Maláguide and Ossa-Morena samples show some similarities. Thus, the paleogeographic location of the Maláguide Complex seems different from that of the Nevado-Filábride and Alpujárride complexes, and it was probably located near the Ossa-Morena Zone.

The samples with Early Permian maximum depositional ages from the three complexes contain more Paleozoic zircons relative to the older Carboniferous samples, but have similar age distribution patterns, suggesting that they were deposited in the same basin. Samples from unconformable Middle Miocene sediments have Early Permian youngest zircon populations and age distribution patterns corresponding to a mixing of zircons from the Alpujárride and Maláguide complexes. Furthermore, there is no record of any major felsic rocks formation event after the Early Permian in those two complexes.

1. Introduction

The Variscan-Alleghanian belt (i.e. Martínez Catalán et al., 1997; Matte, 2001; Simancas, 2019) was formed during the Late Paleozoic collision of two major continents: Laurussia (Laurentia-Baltica) and Gondwana. The southern front of the Variscan segment of this orogenic belt is poorly understood due to Pangea break-up (e.g. Wilson, 1997; Marzoli et al., 1999) and Alpine reworking (Simancas, 2019). Numerous fragments resulting from Gondwana break-up were dispersed and recycled during the Alpine orogeny, and superposition of metamorphic and deformational Alpine events overprinted most Variscan features.

Several of these fragments are included now within the Internal Zones of the Betic-Rif orogen as tectono-metamorphic complexes. These complexes hold clues to the Variscan and Late-Variscan evolution of the southern domains of the Variscan belt and its relationship with the Gondwanan foreland (i.e. Gómez-Pugnaire et al., 2004, 2012; Sánchez-Navas et al., 2014, 2017; Jabaloy-Sánchez et al., 2018; Rodríguez-Cañero et al., 2018). Zircon U-Pb dating of metamorphosed sedimentary sequences and igneous rocks can provide temporal constraints on this evolution, especially in an area where detrital zircon geochronological data are scarce.

Here, we present U-Pb zircon data from metasedimentary and metaigneous rocks of the Águilas Arc in the eastern Betic Chain, in an effort to provide maximum depositional ages for these rocks, paleogeographic information about the possible sources and, hence, paleolocation of the different tectonic complexes of the Betic-Rif orogenic system. We will then discuss the implication of these data for both the Variscan and Alpine evolution of this orogenic system.

2. Geological setting

The Betic-Rif orogen is an arcuate Alpine mountain belt outcropping in both South Spain and North Morocco (Fig. 1). According to Balanyá and García-Dueñas (1987), this belt comprises: i) a central allochthonous terrain, the so-called Alborán Domain, ii) the South Iberian Domain, which includes the rocks deposited at the southern paleomargin of the Iberian Peninsula, iii) the North African Domain, comprising rocks deposited at the northwestern paleomargin of Africa, and iv) the Flysch Trough units with slope/rise and abyssal plain deposits (e.g. Chalouan et al., 2008, and references therein). Furthermore, the Alborán Domain, as was originally defined by Balanyá and García-Dueñas (1987), included three metamorphic complexes,

namely (from bottom to top): the Nevado-Filábride Complex (NFC), the Alpujárride
Complex (AC) and the Maláguide Complex (MC) (Fig. 1).

Recently this subdivision has been redefined and a new tectonic frame with only three major domains is emerging. Pratt et al. (2015) and Azdimousa et al. (2019) have indicated that the whole Maghrebian Flysch Domain was part of the North African Domain. Moreover, the Alborán Domain has been redefined and now only comprises two tectonic complexes: the lower AC and the upper MC (see Gómez-Pugnaire et al., 2012, and references therein). Accordingly, the NFC is now considered part of the southern paleomargin of the Iberian Peninsula, which was subducted below the Alborán Domain (Gómez-Pugnaire et al., 2012).

In the Central part of the Betic-Chain, the previously mentioned metamorphic complexes were deformed by three mayor E-W trending antiforms, but eastwards, lefthanded, roughly N-S trending strike-slip faults rotated and translated the folds towards the North to form the Águilas tectonic Arc (Figs. 1, 2).

2.1. Nevado-Filábride Complex

The NFC is composed of the upper Mulhacén tectonic units (Puga et al., 2002),
which underwent Alpine HP metamorphism at 18-15 Ma (López Sánchez-Vizcaíno et al., 2001; Gómez-Pugnaire et al., 2004, 2012; Platt et al., 2006; Kirchner et al., 2016),
and the lower Veleta tectonic units (Gómez-Pugnaire and Franz, 1988; Puga et al., 2002; Rodríguez-Cañero et al., 2018) (Fig. 2).

Within the Águilas tectonic Arc, the lower Veleta units are represented by the
Lomo de Bas units (Fig. 3), which are tectonically overlaid by the Mulhacén units
(Álvarez and Aldaya, 1985; Álvarez, 1987). The Lomo de Bas units comprise a lower
tectonic unit made of ca. 1000 m of alternating graphite-bearing grey and black quartz-

schists, garnet and chloritoid-bearing micaschists, and ferruginous quarzitic levels (Laborda-López et al., 2013, 2015a, b) (Fig. 4). These rocks include orthogneiss bodies derived from metamorphosed, acidic volcanic rocks (Álvarez and Aldaya, 1985; Álvarez, 1987). An upper tectonic unit tectonically overlays the lower unit, and its succession begins with a 600 to 800 m thick lower member of fine-grained metamorphic rocks. These are mostly graphite-bearing micaschists, quartz schists, and phyllites, which are intercalated with ferruginous quartzite beds (Laborda-López et al., 2015a, b). These rocks are overlaid by 80 to 140 m thick low-grade black marbles, with abundant fossils of Early-Middle Devonian age (Emsian-Eifelian, c.f. Lafuste and Pavillon, 1976; Laborda-López et al., 2013, 2015a, b). The succession ends with 130 to 500 m thick graphitic schists, phyllites, and quartzites (Laborda-López et al., 2015a, b) (Fig. 4).

In the studied area, the Mulhacén unit succession (Álvarez and Aldaya, 1985;
Álvarez, 1987) begins with grey schists and metapsammites of the Permian-Triassic
Tahal Fm (Voet, 1967; Jabaloy-Sánchez et al., 2018; Santamaría-López and Sanz de
Galdeano, 2018). Moving up section is the Metaevaporite Fm, and marbles, calc-schists,
micaschists, and quartzites of the Marbles and Calc-Schists Fms (see Voet, 1967; López
Sánchez-Vizcaino et al., 1997) (Fig. 4). The succession includes metabasite bodies.

2.2. Alpujárride Complex

In the studied area, the AC includes a thin lower Miñarros unit, which overlies the brittle-ductile extensional shear zone developed at the NFC/AC contact (Figs. 3 and 5) (Álvarez and Aldaya, 1985; Álvarez, 1987; Booth-Rea et al., 2009). The Miñarros unit has ca. 15 m of thickness and comprises brecciaed ferruginous marbles and white quartzitic mylonites with unknown ages (Álvarez, 1987) (Fig. 5).

Álvarez and Aldaya (1985) and Álvarez (1987) identified several AC tectonic units thrusting over the Miñarros mylonites and breccias (i.e. the Talayón unit, Águilas unit and Las Palomas unit), and Booth-Rea et al. (2009) grouped them into only one tectonic unit, the so-called Las Estancias-Talayón-Palomas unit. Hereafter, and for simplicity, we call it Las Palomas unit. Las Palomas unit has the most complete succession in the area, which begins with ca. 300 m of graphite-bearing micaschists and phyllites alternating with micaceous quartzites from the Micaschists and Quartzite Fm, with a probable Late Paleozoic age (Álvarez and Aldaya, 1985; Álvarez, 1987) (Fig. 5). The succession follows up with ca. 600 m of phyllites and quartzites from the Meta-detrital Fm made of a quartzite-rich lower member and a phyllite-rich upper member with Permian to Middle Triassic ages (Martín-Rojas et al., 2010; García-Tortosa et al., 2012) (Fig. 5). The Middle to Late Triassic Meta-carbonate Fm overlays the previous rocks and is composed of ca. 50 m of marbles and calc-schists (García-Tortosa et al., 2012) with (Fig. 5). The Ramonete unit crops out above the Las Palomas unit (Figs. 3, 5) (Álvarez

142 The Ramonete unit crops out above the Las Palomas unit (Figs. 3, 5) (Alvarez
143 and Aldaya, 1985; Álvarez, 1987; Booth-Rea et al., 2009) and contains only Mesozoic
144 rocks: phyllites and quartzites of the Middle Triassic Meta-detrital Fm (see Simon and
145 Visscher, 1983; Maate et al., 1993; García-Tortosa et al., 2002; Martín-Rojas et al.,
146 2010), and calcitic and dolomitic marbles and calcschists from the Middle-Upper
147 Triassic Meta-carbonate Fm (García-Tortosa et al., 2002).

Álvarez and Aldaya (1985), and Álvarez (1987) defined the Cantal unit as an
AC tectonic unit thrusting over the Las Palomas unit, or limited by left-handed strikeslip faults (Figs. 3, 5 and 6). However, García-Tortosa et al. (2000) included this unit
within the NFC and discussed its adscription to the AC. The Cantal unit is composed of
ca. 330 m of migmatitic and felsic gneisses with kyanite and sillimanite bearing schists,

graphite bearing schist with staurolite and black marbles and quartzites (see Álvarez and
Aldaya, 1985; Álvarez, 1987; Booth-Rea et al., 2009) (Fig. 5).

156 2.3. Maláguide Complex

The MC occurs as small outcrops on top of the AC (Figs. 3 and 6). Towards the east, in the Vélez Rubio area (Fig. 7), the MC succession includes ca. 1000 m of greywackes, slates, conglomerates and lesser marbles and black cherts of the Ordovician to Carboniferous Piar Group (see Martín-Algarra, 1987) overlain by a detached Mesozoic to Cenozoic cover of ca. 500 m of red conglomerates, sandstones, and pelites, with gypsum of the Middle-Late Triassic Saladilla Fm (Perri et al., 2013) (Fig. 8). The succession follows up with ca. 300 m of Late Triassic to Early Cretaceous limestones, dolostones and marls (Geel, 1973), unconformably overlaid by ca. 200 m of Eocene Nummulite-rich limestones and marls (Geel, 1973) (Fig. 8).

In the Águilas Arc area, this succession is usually incomplete and thinned by normal faults, omitting the thick Paleozoic succession of the Piar Group, (see Aldaya et al., 1991) (Fig. 8). The main outcrops of this complex correspond to the Cabo Cope and Albaida areas (Álvarez and Aldaya, 1985; Álvarez, 1987; García-Tortosa, 2002) (Figs. 3 and 8), with a succession beginning with ca. 40 m of red pelites, sandstones and gypsum of the Middle-Late Triassic Saladilla Fm. Following up section there are ca. 130 m of Late Triassic to Jurassic dolostones, marls, and oolitic limestones (García-Tortosa, 2002, and references therein) (Fig. 8). On top, there is an unconformity overlain by ca. 50 m of Oligocene conglomerates and calcarenites (Durand-Delga et al., 1962: Álvarez, 1987).

Unconformably overlying both the MC and AC, there are Middle Miocene
sedimentary rocks with a succession that includes red Langhian-Early Serravallian
conglomerates and sandstones with clasts from both complexes (Figs. 3 and 6).

3. Sampling localities

181 Seventeen samples from the Águilas Arc were studied. Eight samples were
182 collected from the NFC, nine from the AC, two from the MC, and two from the Middle
183 Miocene sedimentary rocks (Table 1).

The samples collected from the NFC were located in both the Lomo de Bas units and in the Mulhacen units. Samples AG-12 and AG-14 come from quartzites of the lower Lomo de Bas unit, while samples AG-17 and AG-18 are from the uppermost quartzite intercalations within the upper Lomo de Bas unit (Fig. 4, Table 1). Samples AG-13 and AG-16 originate from two orthogneiss bodies within this lower tectonic unit (Fig. 4), and samples AG-1 and AG-2 are from two quartzites of the upper part of the Tahal Fm within the Mulhacén tectonic ensemble (Figs. 3 and 4).

Nine samples were collected from the tectonic units of the AC: six samples come from the Las Palomas unit (AG-4, AG-5, AG-6, AG-7, AG-9 and AG-11) (Figs. 3 and 5, Table 1). Samples AG-4 and AG-5 are from quartities at the base of the Micaschists and Quartzite Fm attributed to the Upper Paleozoic (Álvarez and Aldaya, 1985; Álvarez, 1987) (Fig. 5). Samples AG-6, and AG-7 come from quartzites near the upper levels of the same Micaschists and Quartzite Fm (Fig. 5). Samples AG-9 and AG-11 are from quartzites within the Middle Triassic Meta-detrital Fm of the Las Palomas unit (Martin-Rojas et al., 2010; García Tortosa, 2002) (Fig. 5). Sample AG-15 is from the Middle Triassic Meta-detrital Fm of the Ramonete unit, and sample AG-19 comes from the quartzitic mylonites of the Miñarros unit (Figs. 3 and 5).
Sample AG-26 comes from the Cabezo Blanco orthogneiss body (Fig. 6), within
the migmatitic and felsic gneisses with kyanite and sillimanite bearing schists, graphite
bearing schist with staurolite and black marbles and quartzites of the Cantal unit (see
Álvarez and Aldaya, 1985; Álvarez, 1987; Booth-Rea et al., 2009) (Fig. 5).
Two samples from the Middle-Late Triassic Saladilla Fm of the MC (LP-16-AZ
and AG-10) were also collected (Figs. 3 and 7, Table 1). Sample AG-10 is a quartzite
from the Cabo Cope area of the Águilas Arc (Fig. 3), and sample LP-16-AZ comes from

a quartzite from a lower Maláguide unit of the las Estancias Range near Vélez Rubio
(Fig. 7). Two samples (AG-3 and AG-20) were collected from the Middle Miocene red
conglomerates and sandstones unconformably covering both the AC and the MC (Fig.
3, Table 1).

4. Analytical methods

Zircon grains were separated using standard heavy-liquid and magnetic techniques in the Department of Geodynamics of the University of Granada. Grains were handpicked and mounted in epoxy, polished, cleaned and gold coated for cathodoluminescence (CL) imaging on a Mira3 FESEM instrument at the John de Laeter Centre (JdLC), Curtin University, Perth, Australia and a Carl Zeiss SIGMA HD VP Field Emission SEM at the School of Geosciences, the University of Edinburgh, Scotland, the United Kingdom. Representative CL images have been selected and interpreted in the results section. In CL images, the lower-U regions are brightly illuminated and higher-U regions are dark, or even black, poorly illuminated regions. U-Th-Pb geochronological analyses of samples AG-16 and AG-26 were carried out on the SHRIMP IIe/mc instrument of the IBERSIMS lab, University of Granada, Spain, and sample AG-13 was analysed on the Cameca IMS1270 at the NERC Ion Micro-

Probe Facility, the University of Edinburgh, United Kingdom (see S1 Supplementary material for a detailed description of the methodologies). Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) data collection on the remaining samples was performed at the GeoHistory Facility, JdLC, Curtin University, Perth, Australia. Ages in the text and figures are quoted as ²⁰⁶Pb/²³⁸U dates for zircons younger than 1500 Ma and as ²⁰⁷Pb/²⁰⁶Pb dates for zircons older than 1500 Ma. Distribution of detrital zircon ages were calculated using DensityPlotter 8.5 (Vermeesch, 2012), with a bin of 40 Ma. An adaptive bandwidth of 40 Ma was applied for the Kernel Density Estimators (KDE); except in the zoom windows from 0 to 541 Ma, where a bin of 10 Ma and an adaptive bandwidth of 10 Ma were applied. Errors used in the calculation are at the 1σ level.

5. Results

In this section, we present the distribution histograms and KDE diagrams with the U-Pb results from the detrital zircons of the three different complexes (NFC, AC, and MC). For each complex, we have combined and described the U-Pb data for each formation and/or unit. A synthesis of the analyses and the results is listed in Tables S1 in the Supplementary material. The full description, CL images for representative zircon grains, representative Concordia plots, youngest zircon populations and detailed U-Pb analytical datasets of each individual sample are also provided in the supplementary information (Figs. 1 to 10 in S3 and Table S1 in the Supplementary material). Furthermore, we present the Concordia plots and KDE diagrams with the U-Pb results from the igneous zircon cores and metamorphic rims from the studied orthogneisses. CL images for representative zircon grains, and detailed U-Pb analytical

datasets of each individual sample are also provided in the supplementary information(Figs. x 1 to x 10 in S3 and Table S1 in the Supplementary material).

- 253 5.1. Nevado-Filábride Complex

254 5.1.1. LA-ICPMS results from metadetrital samples

The CL images for samples AG-12, AG-14, AG-17 and AG-18 mostly show zircon grains with continuous oscillatory zoning (Fig. 1 in S3 Supplementary material). There are also some composite grains with cores overgrown by low or high U rims and a few grains with sector zoning and grains that are structureless (Fig. 1 in S3 Supplementary material).

Independent of their location within the upper or lower Lomo de Bas tectonic unit, samples AG-12, AG-14, AG-17 and AG-18 yielded similar ages for the youngest zircon analysed, and similar youngest zircon population ages. The youngest zircons have ${}^{206}Pb/{}^{238}U$ dates between 284 ± 14 Ma (sample AG-12) and 323 ± 5 Ma (sample AG-18), while the youngest populations show ${}^{206}Pb/{}^{238}U$ mean ages between 321 ± 2 Ma (sample AG-17, MSWD = 0.55 and probability = 0.65) and 336 ± 2 Ma (sample AG-14, MSWD = 1.10 and probability = 0.36).

These samples also have similar age distribution patterns showing a very
noticeable Ediacaran component with peak ages between ca. 557 and ca. 618 Ma (Fig.
9). There are also significant Mesoproterozoic and Paleoproterozoic contributions. The
former clearly stands out in samples AG-12 and AG-18 with ages clustering at ca. 1001
and 1025 Ma, respectively, and the latter in samples AG-14 and AG-17 with ages
grouping at ca. 1893 and 2032 Ma, and ca. 2011 Ma, respectively (Fig. 9). Despite
having similar age distribution patterns, there is a noteworthy difference; the percentage

of Paleozoic dates in sample AG-17 (36%) is twice as high as that in the other three
samples (15% to 19%) (Fig. 9).

Combining a total of 522 concordant or nearly concordant dates obtained from these four samples of Lomo de Bas quartzites, a new age distribution pattern with dates ranging from 284 to 3195 Ma is shown in Fig. 9. These dates are Paleozoic (21%), Neoproterozoic (45%), Mesoproterozoic (9%), Paleoproterozoic (20%), Neoarchean (5%) and Mesoarchean (1%) (Fig. 9). Within the 111 Paleozoic zircon grains, there are Early Permian (2% with respect to the total amount of Paleozoic grains), Carboniferous (44%), Devonian (12%), Silurian (2%), Ordovician (7%) and Cambrian dates (33%) (Fig. 9).

The CL imaging of zircons from the Tahal Fm of the Mulhacén tectonic ensemble (samples AG-1 and AG-2) shows grains with continuous oscillatory zoning and partially resorbed cores overgrown by low and high U rims (Fig. 2 in S3 Supplementary material). There are also grains with sector zoning and structureless grains (Fig. 1 in S3 Supplementary material).

Individually, samples AG-1 and AG-2 contain Jurassic zircons with the youngest zircon grains yielding 206 Pb/ 238 U dates of 195 ± 8 Ma, and 179 ± 5 Ma, respectively. They also have a Permian age, within uncertainty, for the youngest zircon population at 275 ± 8 Ma (MSWD = 1.4 and probability = 0.25) and 277 ± 4 Ma (MSWD = 1.12 and probability = 0.35), respectively. Their age distribution patterns are also comparable with Carboniferous and Ediacaran peaks at ca. 334 and 331 Ma, and ca. 610 and 598 Ma, respectively (Fig. 10). However, there are some differences: i) a minor Early Tonian peak in sample AG-1 at ca. 939 Ma; ii) a higher percentage of Mesozoic and Paleozoic dates in sample AG-2; iii) greater percentage of

Mesoproterozoic and Paleoproterozoic zircons in sample AG-1; and iv) lack of
Mesoarchean dates in sample AG-2 (Fig. 10).

The 259 concordant or nearly concordant dates from samples AG-1 and AG-2 were combined in an age distribution pattern with dates from 179 to 2811 Ma, which are mainly Neoproterozoic (43.5%), Paleozoic (32%) and Paleoproterozoic (13%), with minor Mesozoic (2%), Mesoproterozoic (7%), Neoarchean (2%) and Mesoarchean dates (0.5%) (Fig. 10). The 83 Paleozoic zircon grains have Permian (23% with respect to the total amount of Paleozoic grains), Carboniferous (52%), Devonian (7%), Silurian (2%), Ordovician (7%) and Cambrian dates (9%), while the six Mesozoic zircon grains have two Jurassic and four Triassic dates (Fig. 10).

309 5.1.2. SIMS results of sample AG-13 (orthogneiss) – Lower Lomo de Bas tectonic unit

Twenty-six grains from this orthogneiss were analysed and 27 of the 31 analyses yielded concordant or nearly concordant dates between 191 and 2345 Ma (Fig. 11). Eleven dates plot in a single population with a ²⁰⁴Pb corrected ²⁰⁶Pb/²³⁸U mean age of 294 ± 2 Ma (MSWD = 0.75 and probability = 0.68) (Fig. 11). These dates are from zircons with continuous oscillatory zoning, Th/U ratios between 0.030 and 0.615 and common Pb content from 0.05% to 0.26% (Table S1 in Supplementary material). Therefore, this mean age could represent the best estimate of the crystallization age of the protolith.

There are also seven 7 slightly younger dates between 264 and 286 Ma (Fig. 12). These dates are from grains with continuous oscillatory zoning (Fig. 3 in S3 Supplementary material), and one rim from a composite grain, Th/U ratios between 0.062 and 0.692 and much higher common Pb content up to 0.35% (Table S1 in 322 Supplementary material). Thus, they were not taking into account for the age323 calculation.

The youngest 204 Pb corrected 206 Pb/ 238 U date for this dataset is 191 ± 3 Ma (Table S1 in Supplementary material). This date is from the rim of a composite grain, has a Th/U ratio of 0.011 and could be related to a metamorphic event in this area.

328 5.1.3. SHRIMP IIe/mc datations on zircons from sample AG-16 (orthogneiss) –

Lower Lomo de Bas tectonic unit

330 Sample AG-16 provided scarce euhedral bipyramidal prismatic zircons with
331 dimensions between 80 and 200 µm. The CL imaging shows partially resorbed cores
332 overgrown by low or high U rims with well-defined oscillatory zoning and a few grains
333 with continuous oscillatory zoning (Fig. 4 in S3 Supplementary material).

Twenty-one U-Pb analyses on 18 different crystals yielded 15 concordant or nearly concordant dates (discordance <5%) ranging from 284 to 674 Ma (Fig. 11). Eight of those 13 analyses plotted as a single population with a 207 Pb corrected 206 Pb/ 238 U mean age of 289 ± 3 Ma (MSWD = 1.4 and probability = 0.20) (Fig. 12) and were from grains with continuous oscillatory zoning, U and Th contents of 205-1415 and 53-426 ppm, respectively, and Th/U ratios between 0.07 and 1.03 (Table S1 in Supplementary material). This mean age is therefore considered the best estimate of the crystallization age of the protolith for the orthogneiss. The remaining dates (330 to 674 Ma) were from cores of composite grains and grains with continuous oscillatory zoning and are considered inherited cores and xenocrysts, respectively (Fig. 12).

5.2. Alpujárride Complex

345 5.2.1. LA-ICPMS results from samples from the Micaschists and Quartzite Fm

The CL images of zircons of samples AG-4, AG-5, AG-6 and AG-7 from the Micaschists and Quartzite Fm show grains with continuous oscillatory zoning and complex grains with a partially resorbed core overgrown by low or high U rim. There are also a few grains with sector zoning and structureless grains (Fig. 5 in S3 Supplementary material). Some similarities are distinguished on the age distribution patterns of these four samples (Fig. 13). There are two main peaks: i) a main Ediacaran peak with ages between ca. 600 and 631 Ma; and ii) a secondary Early Tonian-Late Stenian peak with ages between ca. 996 and 1040 Ma. However, some differences are noteworthy: i) samples AG-6 and AG-7, located at the top of the formation, have an Early Orosirian-Late Rhyacian population at ca. 2055 and 2033 Ma, respectively, that is absent in samples AG-4 and AG-5 at the base of the formation (Fig. 13); ii) samples from the top of the formation also have a

Paleoarchean component that is lacking at the bottom; iii) there were no Mesoarchean dates found in sample AG-6; iv) the age of the youngest zircon grains decreases from the bottom to the top of the formation; that is, from 328 ± 10 Ma and 306 ± 6 Ma in samples AG-4 and AG-5, respectively, to 296 ± 4 Ma and 299 ± 7 Ma in samples AG-6 and AG-7, respectively; and finally, v) the youngest zircon population in sample AG-5 is Late Carboniferous (308 ± 4 Ma) contrasting with those from the other three samples

that are Cambrian-Early Ediacaran (sample AG-4, 551 ± 5 Ma; sample AG-6, 507 ± 10

366 Ma; and sample AG-7; 558 ± 7 Ma (Text S2 and Fig. S4 in Supplementary material).

367 Combining the 562 concordant or nearly concordant U-Pb data for the four
368 samples of Micaschits and Quartzite Fm produces an age distribution pattern composed
369 of Paleozoic (11%), Neoproterozoic (51%), Mesoproterozoic (11%), Paleoproterozoic
370 (17%), Neoarchean (8%), Mesoarchean (1.5%) and Paleoarchean dates (0.5%) (Fig. 13).

These cluster into five main peaks at ca. 309, 602, 1039, 2054 and 2547 Ma (Fig. 13).
Within the 63 Paleozoic zircon grains, there are: Permian (5% with respect to the total amount of Paleozoic grains), Carboniferous (32%), Devonian (9%), Ordovician (14%)
and Cambrian dates (40%) (Fig. 13).

5.2.2. LA-ICPMS results from samples from the Middle Triassic Meta-detrital Fm

The CL imaging of zircons from samples AG-9, AG-11, and AG-15 shows grains with continuous oscillatory zoning and some partially resorbed cores with low or high U overgrowths. There are also grains with sector zoning (Fig. 6 in S3

380 Supplementary material).

Their youngest zircon grains have ${}^{206}\text{Pb}/{}^{238}\text{U}$ dates ranging between 214 ± 2 and 288 ± 4 Ma, while their youngest zircon populations have ${}^{206}\text{Pb}/{}^{238}\text{U}$ mean ages varying between 287 ± 1 Ma (sample AG-11, MSWD = 1.11 and probability = 0.35) and 474 \pm 3Ma (sample AG-15, MSWD = 0.71 and probability = 0.54).

The age distribution pattern from these samples displays two or three main
populations: a Permian-Late Carboniferous peak (ca. 287 Ma in samples AG-9, and
AG-11), one or two Ediacaran-Cryogenian peaks (from ca. 546 to ca. 661 Ma, in all
samples) and a Tonian-Stenian peak (from ca. 963 to ca. 1016 Ma in samples AG-9 and

389 AG-15) (Fig. 14).

The dates of samples AG-9, AG-11, and AG-15 from the Meta-detrital Fm range from 214 Ma to 2941 Ma, and are Paleozoic (17% to 39%), Neoproterozoic (34% to 57%), Mesoproterozoic (6% to 13%), Paleoproterozoic (7% to 13%) and Neoarchean (4% to 7%) in age. It is worthy to note that only sample AG-15 yielded a few Mesoarchean dates (1%) (Fig. 14). When we combine the 392 concordant or nearly concordant U-Pb data AG-9, AG-11, and AG-15, we obtain an age distribution pattern

composed of Mesozoic (0.5%), Paleozoic (30%), Neoproterozoic (44%), Mesoproterozoic (9%), Paleoproterozoic (11%), Neoarchean (5%), and Mesoarchean dates (0.5%) (Fig. 14). These cluster into five main peaks at ca. 316, 588, 990, 7960, and 2610 Ma (Fig. 14). Within the 119 Paleozoic zircon grains, there are: Permian (33% with respect to the total amount of Paleozoic grains), Carboniferous (28%), Devonian (3%), Silurian (3%), Ordovician (17%), and Cambrian dates (16%) (Fig. 14). 5.2.3. LA-ICPMS results from samples from the Miñarros quartz mylonites The CL images of zircon grains from the Miñarros quartz mylonites (sample AG-19) show grains with continuous oscillatory zoning and composite grains with cores overgrown by low and high U rims (Fig. 7 in S3 Supplementary material). One hundred and fifty one analyses were performed on selected zircons and 145 yielded concordant or nearly concordant dates between 297 and 3105 Ma. Those dates are Palaeozoic (30%), Neoproterozoic (42%), Mesoproterozoic (7%), Paleoproterozoic (15%), Neoarchean (5%) and Mesoarchean (1%), and cluster into six main populations at ca. 300, 305, 550, 566, 622 and 986 Ma (Fig. 14). The 43 Paleozoic zircon grains include Permian (7% with respect to the total amount of Paleozoic grains), Carboniferous (46%), Devonian (5%), Ordovician (19%), and Cambrian dates (23%) (Fig. 14). The youngest zircon 206 Pb/ 238 U date is 297 ± 5 Ma and the youngest zircon population, comprising 10 dates, has a mean ${}^{206}\text{Pb}/{}^{238}\text{U}$ age of 300 ± 1 Ma (MSWD = 0.64 and probability = 0.76). 5.2.4. SHRIMP IIe/mc datations on zircons from sample AG-26 (orthogneiss) Zircon grains from AG-26 are abundant and euhedral bipyramidal prisms with lengths of about 250 to 80 µm and widths of 100 to 50 µm. Most are brownish

translucent crystals. CL imaging shows composite grains with partially resorbed cores overgrown by thick high U rims. Most of the cores show continuous oscillatory zoning truncated by the dark rims (Fig. 8 in S3 Supplementary material). Both domains were targeted for the analysis. Sixteen U-Pb measurements on 16 different dark rims yielded 14 concordant or nearly concordant dates ranging from 14 to 250 Ma (Fig. 15). Six dates plot in a single population with a 207 Pb corrected 206 Pb/ 238 U age of 15.8 ± 0.2 Ma (MSWD = 0.69, probability = 0.63) (Fig. 15). These dates are from zircon with U and Th contents between 4006 and 7413, and 6 and 14 ppm, respectively, and Th/U between 0.001 and

Thirty analyses were performed on 30 cores from different crystals and all these analyses yielded concordant or nearly concordant dates between 30 and 288 Ma (Fig. 16). Fifteen analyses plot in a single population with a 207 Pb corrected 206 Pb/ 238 U age of 283 ± 2 Ma (MSWD = 0.76 and probability = 0.71) (Fig. 16). These analyses are from zircons with U and Th contents between 377 and 1919, and 32 and 137 ppm, respectively, and Th/U between 0.05 and 0.21 (Table S1 in Supplementary material).

0.004 (Table S1 in Supplementary material).

438 5.3. Maláguide Complex and unconformable Middle Miocene red conglomerates 439 and sandstones

Samples LP-16-AZ and AG-10 contained zircon grains displaying either
continuous oscillatory zoning, partially resorbed cores overgrown by low or high U
rims, or sector zoning. There were also a few structureless zircon grains (Fig. 9 in S3
Supplementary material)

444 The youngest zircon grains in these two samples have ${}^{206}\text{Pb}/{}^{238}\text{U}$ ages of 277 ± 7 445 and 283 ± 15 Ma, respectively, while the youngest zircon populations have mean

 206 Pb/ 238 U ages of 279 ± 3 Ma (MSWD = 0.57 and probability = 0.63) and 492 ± 8 Ma (MSWD = 1.3 and probability = 0.28), respectively. The age distribution patterns of samples AG-10 and LP-16-AZ are significantly different (Fig. 17). The two main populations in sample AG-10 are Ediacaran (ca. 602 Ma) and Stenian (ca. 1074 Ma), while in sample LP-16-AZ, they are Carboniferous (ca. 305 Ma) and Ediacaran (ca. 608 Ma). The percentage of Paleozoic grains in sample LP-16AZ is also almost four times higher than that in sample AG-10, while the Neoproterozoic component in sample AG-10 is almost double that in sample LP-16-AZ. Furthermore, Mesoarchean and Neoarchean dates are lacking in sample LP-16-AZ, which does contain a Paleoarchean population. The dates from the two samples (Fig. 17) include Paleozoic (14 to 52%), Neoproterozoic (33 to 50%), Mesoproterozoic (5 to 9%), and Paleoproterozoic (9 to 20%). Sample AG-10 also includes Neoarchean (6%), and Mesoarchean (1%) zircon grains, while sample LP-16-AZ also includes Paleoarchean (1%) zircon grains. Within the Paleozoic zircon population, the main difference is the increase (by one order of magnitude) in the number of Carboniferous and Permian grains from 3 and 2 in sample AG-10 to 33 and 18 in sample LP-16-AZ, respectively. The character of the remaining Paleozoic grains is similar in AG-10 and LP-16-AZ (3 and 2 Devonian grains, 1 and 1 Silurian grains, 2 and 10 Ordovician grains, and 7 and 6 Cambrian grains in each sample, respectively). Samples AG-3 and AG-20 from the unconformable Middle Miocene red

460 samples AG-3 and AG-20 from the unconformable fundule fun

471 AG-20 also includes a few structureless zircon grains (Fig. 10 in S3 Supplementary472 material)

473	The youngest zircons from samples AG-3 and AG-20 have ²⁰⁶ Pb/ ²³⁸ U dates of
474	248 ± 8 and 177 ± 7 Ma, respectively, while their youngest zircon populations have
475	mean $^{206}\text{Pb}/^{238}\text{U}$ ages of 582 \pm 7 Ma (MSWD = 1.3 and probability = 0.23) and 292 \pm 3
476	Ma (MSWD = 0.91 and probability = 0.47), respectively.

The age distribution patterns of AG-3 and AG-20 are slightly different (Fig. 18). There is only one main population in sample AG-3 (Early Ediacaran: ca. 605 Ma), while there are three main populations in sample AG-20 (Late Ediacaran: ca. 574 Ma; Cryogenian: ca. 691 Ma; Orosirian: ca. 2007 Ma). Moreover, the percentage of Paleozoic zircon grains in sample AG-20 is almost three times higher than that in AG-3. The Mesoarchean component in sample AG-3 is fourteen times greater than that in sample AG-20. Paleoarchean zircons are absent in sample AG-20 (Fig. 18). Regarding the Mesozoic component, sample AG-3 contains one Triassic zircon grain, while sample AG-20 contains one Jurassic zircon grain. The number of Paleozoic grains also differs, with 11 and 31 grains in samples AG-3 and AG-20, respectively. The main difference in the Paleozoic component is the lack of Permian grains in sample AG-3 and the content of Carboniferous grains (three in AG-3 to eight in AG-20). Samples AG-3 and AG-20 contain the same number of number of Devonian grains (4), and a similar number of Silurian (1 and 3, respectively), Ordovician (1 and 5, respectively), and Cambrian grains (2 and 4, respectively).

6. Discussion

494 6.1. Depositional age of the graphite-bearing formations of the Nevado-Filábride
495 and Alpujárride complexes

Within the upper or lower Lomo de Bas units, the four studied samples yielded youngest zircons with dates between 284 ± 14 and 323 ± 5 Ma, while their youngest populations vary between 321 ± 2 and 336 ± 2 Ma (see text S2 and Fig. S4 in Supplementary material). Therefore, the youngest dates point towards Early Permian-Late Carboniferous maximum depositional ages (MDA). However, as data from the orthogneisses samples AG-13 and AG-26 highlight, some of the youngest zircon dates can be related to Mesozoic metamorphic events and/or Pb loss. Therefore, we prefer the more conservative approach of using the youngest detrital zircon populations, and thus, we propose a MDA between 321 ± 2 and 336 ± 2 Ma for the quartzites of the Lomo de Bas (i.e., Carboniferous).

The minimum depositional age of these rocks is defined by samples AG-13 and AG-16, the orthogneiss bodies within the Lomo de Bas blacks schists and quartzites (Álvarez and Aldaya, 1985; Álvarez, 1987) with ²⁰⁶Pb/²³⁸U ages for the protoliths of 294 ± 2 Ma (MSWD = 0.75 and probability = 0.68) and 289 ± 3 Ma (MSWD = 1.4 and probability = 0.20), respectively. The ages of both orthogneisses just overlap within uncertainty and, together with the previous MDA, define a depositional age for the quartzitic rocks of the Lomo de Bas units between Bashkirian (Late Carboniferous) and Artinskian-Sakmarian (Early Permian).

514 This Late Carboniferous age agrees with the presence of Early-Middle
515 Devonian fossils in the dark marbles below the quartzites of the upper tectonic unit
516 (Eifelian-Emsian, c.f. Lafuste and Pavillon, 1976; Laborda-López et al., 2013, 2015a,
517 b), and also supports the presence of several superposed tectonic units as suggested by
518 Laborda-López et al. (2013, 2015a, b).

519 The youngest ²⁰⁶Pb/²³⁸U zircon dates in samples from the Micaschists and
520 Quartzite Fm of the AC (AG-4, AG-5, AG-6 and AG-7) are Early Permian-Late

521 Carboniferous (328 ± 10 Ma and 296 ± 4 Ma), but the youngest populations in these 522 samples are highly variable; Cambrian-Late Ediacaran (between 507 and 558 Ma) in 523 samples AG-4, AG-6 and AG-7, and Late Carboniferous (Ma) in sample AG-5 at 524 the base of the Micaschists and Quartzite Fm. A MDA of Late Pennsylvanian age is 525 proposed for the AC Micaschists and Quartzite Fm.

6.2. Provenance of zircon in Late Carboniferous samples

The studied samples from both the Lomo de Bas rocks and the Micaschists and Quartzite Fm include Carboniferous grains (49 grains in the NFC, and 20 grains in the AC) that could have been sourced from Late-Variscan and Variscan felsic rocks, widely distributed within the whole Iberian Massif and surrounding areas (e.g. Arranz and Lago, 2004; Bea, 2004; Casquet and Galindo, 2004; Gallastegui et al., 2004; Ribeiro et al., 2019). The Carboniferous rocks of both the NFC and AC also include a number of Early Ordovician, Silurian and Devonian dates (23 grains in the NFC and 15 grains in the AC with dates between 484 and 365 Ma), which have no known source in pre-Carboniferous rocks from the Central Iberian, Cantabrian, and West Asturian-Leonese zones of the Iberian Massif. The nearest source of these zircon grains could be in the Avalonian terranes. In fact, felsic magmatism was developed during rifting, spreading, and later subduction of the Rheic Ocean (e.g. Sánchez Martínez et al., 2007, 2012). In the surrounding Variscan terranes, Devonian zircon source rocks are only found within the Sehoul Block in the Western Moroccan Meseta (Tahiri et al., 2010). However, metasediments containing those Devonian grains have also been described: i) in the Late Devonian Debdou-Mekkam Metasediments in the Eastern Moroccan Meseta (Accotto et al., 2020), ii) in Late Paleozoic metasediments from both the South Portuguese and Ossa-Morena zones (Pereira et al., 2012, 2014, 2017; Pérez-Cáceres et

al., 2017), iii) in the Carboniferous rocks from the Cantabrian Zone (Pastor-Galán et al.,
2013), and, iv) in the syn-orogenic rocks below the allochthonous complexes of the
Galicia-Tras-Os-Montes (Martínez Catalan et al., 2008).

As previously mentioned, these Devonian grains are interpreted as having been derived from Avalonian terranes, based on two slightly different hypotheses. The first is that they were sourced from an unexposed magmatic arc along the Avalonian convergent margin during Middle-Late Devonian subduction of the Rheic Ocean (Pereira et al., 2012, 2017; Pérez-Cáceres et al., 2017; Accotto et al., 2020). The second possibility is that they were directly sourced from eroded rocks within the Rheic Ocean suture zone, where zircon grains of these ages occur (e.g. Fernandez-Suarez et al., 2002; Sánchez-Martínez et al., 2007; Martínez Catalán et al., 2008; Pastor-Galán et al., 2013). However, the main detrital zircon component in the Carboniferous rocks of both

the NFC and AC is pre-Cambrian, with two main populations: i) an Early Neoproterozoic population between ca. 574 and 602 Ma (Ediacaran-Cryogenian) (Text S2 in Supplementary material), and ii) a Mesoproterozoic population between ca. 1014 and 1039 Ma (Stenian) (Fig. 19; Text S2 in Supplementary material). These populations represent the Cadomian-Pan-African orogeny developed in Gondwana and the Tonian-Stenian magmatic event that took place in the Arabian Shield (see Bea et al., 2010), respectively. Furthermore, the NFC and AC Carboniferous rock also contain an Orosirian (ca. 2.0-2.1 Ga), recording the Eburnean orogeny, and a Neoarchean (ca. 2.5-2.7 Ga) population. Similar age patterns with these four peaks are found within the Carboniferous and older rocks from the Central Iberian, Cantabrian, and West Asturian-Leonese zones of the Iberian Massif (see Talavera et al., 2012, 2015; Pastor-Galán et al., 2013; Fernández-Suárez et al., 2014; Shaw et al., 2014; Gutierrez-Alonso et al., 2015) (Fig. 19). If we focus on the Pre-Carboniferous rocks, Fernandez Suarez et al.

(2014) studied the age of zircon from Ediacaran and Early Cambrian rocks of the Cantabrian and Central Iberian zones and found two populations ca. 0.55-0.75 Ga and ca. 0.85-1.15 Ga, and also minor Paleoproterozoic (ca. 1.9-2.1 Ga) and Archean (ca. 2.4–2.6 Ga) populations (Fig. 19D). Talavera et al. (2012, 2015) also determined similar age patterns in Ediacaran to Early Ordovician rocks of the Central Iberian Zone. Shaw et al. (2014) sampled and studied the Lower Ordovician Armorican quartzite trough the Central Iberian, Cantabrian, and West Asturian-Leonese zones, and their age pattern (n=1173) also shows the above-mentioned peaks with Ediacaran-Cryogenian (ca. 617 Ma), Tonian-Stenian (ca. 1.21 Ga), Orosirian (ca. 2.0 Ga), and Neoarchean (ca. 2.6 Ga) populations (Fig. 19D). Furthermore, Gutierrez-Alonso et al. (2015) studied Silurian-Devonian sedimentary rocks from the same two paleogeographic zones and found also the same four populations: Ediacaran–Cryogenian (c. 0.55–0.8 Ga), Tonian–Stenian (0.85–1.2 Ga), Palaeoproterozoic (c. 1.8–2.2 Ga) and Archaean (c. 2.5–3.3 Ga) (Fig.19C). In summary, the same four age peaks were found in all these works, albeit with differences in the proportion of grains in each population (Fig. 19). Stephan et al. (2019) include those areas with similar pre-Ediacaran age patterns to their East African-Arabian zircon province, and included the Central Iberian, Cantabrian, and West Asturian-Leonese zones of the Iberian Massif. We can also compare the results presented here with those obtained on samples of a similar age from the Betic Cordillera, Iberian massif and surrounding areas. In the

592 Veleta units of the NFC (i.e. Álvarez and Aldaya, 1985; Álvarez, 1987), and their

Betic Cordilleras, the Lomo de Bas units have usually been interpreted as part of the

593 quartzites correlated with the Late Carboniferous Aulago Fm in the Sierra de Filabres

area (Jabaloy-Sanchez et al., 2018; Rodríguez-Cañero et al., 2018), which also include

595 the Ediacaran-Cryogenian and Stenian populations mentioned above (Fig. 19A). The

main difference is a larger proportion of Devonian and Carboniferous zircon grains within the Lomo the Bas rocks (13 and 49 grains, respectively), when compared to those from the Aulago Fm (7 and 4 grains, respectively; Jabaloy-Sánchez et al., 2018) (Fig. 19A). Furthermore, the age pattern of sample Ri119 from the Paleozoic basement of a tectonic unit of the Sebtide/Alpujárride Complex in the Internal Rif (n=144 analyses, Azdimousa et al., 2019) also yields a similar pattern to that in Late Carboniferous samples from the AC and NFC with two main populations at ca. 532 and 992 Ma (Fig. 19B).

Pereira et al. (2014, 2020) studied the Late Carboniferous sediments from the Ossa-Morena and South Portuguese zones of the Iberian Massif (see Pereira et al., 2012, 2014, 2020, and references therein) (Fig. 19H). Within these rocks, those from the Ossa-Morena Zone were deposited in a continental environment (Santa Susana Fm Pereira et al., 2020), with an age pattern that includes a main Early Carboniferous population at ca. 354 Ma, but also Cryogenian (ca. 647 Ma) and Rhyacian (ca. 2128 Ma) secondary populations (Pereira et al., 2020) (Fig. 19H). However, the age patterns lack the Stenian and Neoarchean populations present in the NFC and AC samples (Fig. 19). Furthermore, marine detritic sediments were also deposited in the South-Portuguese Zone, and their age patterns are very similar to those of the Ossa-Morena Zone. Those marine detritic sediments from the South-Portuguese Zone include the Devonian (ca. 405 Ma), Ediacaran-Cryogenian (ca. 639 Ma), and Orosirian populations (ca. 2068 Ma), and they lack the Stenian and Neoarchean ones (Brejeira and Mira Fms from Pereira et al., 2014) (Fig. 19).

On the other hand, Upper Carboniferous samples from the Cantabrian Zone
studied by Pastor-Galán et al. (2013) yield very similar age distribution patterns to those
of the Lomo de Bas (NFC) and Micaschists and quartzites Fm (AC), with the only

difference being the existence of an Early Carboniferous peak (ca. 335 Ma, "Variscan") in the rocks from the Betic Cordillera (Fig. 19C). Martínez et al. (2016) analyzed Late Carboniferous rocks from the NE Iberian Peninsula and South France, including samples from the Catalonian Massif, Minorca, Montagne Noire Massif, Mouthoumet Massif, Pyrenees, and Priorat, but the age patterns show differences only in the Stenian and Neoarchean populations. The samples from Martinez et al (2016) usually lack a Stenian peak (Montagne Noire Massif, Mouthoumet Massif, Pyrenees, and Priorat Massif) or it is a minor one (Catalonian Massif and Minorca), and the Neoarchean population is also absent in the Catalonian Massif, Mouthoumet Massif, Pyrenees, and Priorat Massif areas, but not in the samples from Minorca and Montagne Noire Massif (Fig. 19E and F).

All these data suggest that the Late Carboniferous sediments of both the NFC and the AC were sourced from Variscan rocks containing zircon grains from the Cantabrian, West Asturian-Leonese, and Central-Iberian zones of the Iberian Massif, but they also include a small amount of zircons derived from the Avalonian terranes. Furthermore, the sediments incorporated a small number of zircon grains derived from the Late-Variscan felsic rocks. The sediments were mainly pelites rich in organic material, quartz-rich sandstones (quartzwackes in the case of the NFC, Jabaloy, 1993; Rodríguez-Cañero et al., 2018), and black limestones (with conodonts in the case of the NFC rocks; Rodríguez-Cañero et al., 2018) suggesting deposition in open marine anoxic environments (Rodríguez-Cañero et al., 2018). This points to the Carboniferous foreland basins developed in the Cantabrian Zone of the Iberian Massif (see Matte, 2001, Rodríguez-Cañero et al., 2018; Jabaloy-Sánchez et al., 2018) as the most likely paleogeographic location of both complexes (Fig. 20).

In Late Carboniferous times, the Variscan belt was already formed in Western and Central Europe (e.g. Matte, 2001), and most of the rocks of the Cantabrian, West Asturian-Leonese, Central-Iberian zones were deformed and stacked with the rocks of the Rheic Ocean suture zone (i.e. Pastor-Galán et al., 2013). Rocks from the Variscan belt, including rocks from those three stacked zones, were being eroded at Late Carboniferous, and their zircons had been stored within the coetaneous sediments in the Cantabrian Zone (see Pastor-Galán et al., 2013), and NFC (Jabaloy-Sánchez et al., 2018). Our data indicate the same case for the rocks of the AC (Fig. 20). On the other hand, the published data from the samples from the MC with Carboniferous-Early Permian ages have Early Carboniferous (at ca. 329 and 347 Ma respectively), Early Ordovician-Cambrian (ca. 445 and 491 Ma), Ediacaran-Cryogenian (ca. 589 and 649 Ma), Tonian (ca. 932 Ma), and Orosirian populations (ca. 2002 and 2080 Ma) (Marbella conglomerate from Esteban et al., 2017, Fig. 19A; sample Ri121 from Azdimousa et al., 2019, Fig 19G). However, they show a difference in the number of Neoarchean zircon grains (ca. 2.6 Ga), which are more abundant in the sample Ri121 from Azdimousa et al., 2019, Fig. 19G). The age distribution patterns for both samples also include a small number of Devonian zircons, most likely sourced in the Avalonian terranes, such as the Schoul block (Accotto et al., 2020). Those data suggest that the main source area for the Marbella conglomerate described in Esteban et al. (2017) was the West African Craton and derived terranes (i.e. Ossa-Morena Zone according to Esteban et al., 2017). However, the age pattern of sample Ri121 from Azdimousa et al. (2019) is very similar to that found in the NFC and AC Carboniferous rocks, suggesting the same source areas. Therefore, the paleogeographic location of the MC seems slightly different from that of the NFC and AC, and in this location the sediments were

sourced from the Cantabrian, West Asturian-Leonese, Central-Iberian zones, or the
Ossa Morena Zone (Esteban et al., 2017) and/or the Moroccan Variscides (Figs. 19, 20).

6.3. Lower Permian orthogneisses from the NFC (Cantal unit)

The sample AG-26 from the Cabezo Blanco orthogneiss within the Cantal unit yielded zircons with textures similar to those described by Gómez-Pugnaire et al., (2004, 2012) in the NFC. The CL imaging of these grains shows cores with continuous oscillatory zoning truncated by dark U-rich rims. These cores yielded a ²⁰⁷Pb corrected 206 Pb/ 238 U age of 283 ± 2 Ma while the dark overgrowths have yielded a 207 Pb corrected 206 Pb/ 238 U age of 15.8 ± 0.2 Ma. We propose the former age as the age of the igneous protolith of the Cabezo Blanco orthogneiss and the latter age as the age of a metamorphic event affecting this orthogneiss. Similar metamorphic ages have been determined within zircons from the NFC (López Sánchez-Vizcaíno et al., 2001, $15.0 \pm$ 0.6 Ma; Gómez-Pugnaire et al., 2004, 2012, 16.5 ± 0.4 Ma and 17.3 ± 0.4 Ma respectively). Furthermore, similar ages were also determined from Lu-Hf on garnets (Platt et al., 2006, between 18 and 14 Ma) and multimineral isochrons on samples of this complex (Kirchner et al., 2016; three ages of 20.1 ± 1.1 , 16.0 ± 0.3 , and 13.3 ± 1.3 Ma). However, the metamorphic zircons from the AC typically have slightly older ages (Sánchez-Rodriguez and Gebauer, 2000, 19.9 ± 1.7 Ma.; Platt et al., 2003, ages between 22.7 and 21.3 Ma, Esteban et al., 2007, 19.2 ± 1.1 Ma), and the AC has yielded additional older ages including a garnet Lu-Hf age of 25 ± 1 Ma (Blichert-Toft et al., 1999), and a garnet and clinopyroxene Sm-Nd age of 21.5 ± 1.8 Ma (Zindler et al., 1983). Therefore, we propose that the Cantal unit is part of the NFC as already proposed by García-Tortosa (2002).

694 6.4. Permian to Triassic metadetrital samples from the NFC

Samples AG-1 and AG-2 come from two quartzites in the upper part of the Tahal Fm within the Mulhacén units. They yielded very similar zircon age patterns, the voungest zircon 206 Pb/ 238 U dates being Jurassic (195 ± 8 Ma and 179 ± 5 Ma, respectively) and the youngest zircon population being Early Permian (275 \pm 8 Ma and 277 ± 4 Ma, respectively). These data match the 259 concordant-nearly concordant analyses from the Tahal Fm published by Jabaloy-Sánchez et al. (2018), in which youngest zircon population was Early Permian (275 ± 2 Ma) as well (Fig. 21C). An estimate of the MDA for the sources of the Tahal Fm based on the youngest zircons points to Jurassic. However, our preference is a more conservative estimate for the MDA based on the youngest populations and our proposal is an age younger than Early Permian (275 ± 8 Ma), in agreement with the data provided by Jabaloy-Sánchez et al. (2018), and Santamaría-López and Sanz de Galdeano (2018) for the same rocks in Sierra Nevada and Sierra de los Filabres. 6.5. Permian to Triassic metadetrital samples from the AC The youngest zircon dates for samples AG-9, AG-11, and AG-15 from the Meta-detrital Fm of the AC are Triassic-Early Permian (between 214 ± 2 Ma and $288 \pm$

712 4 Ma) and the youngest zircon populations are Early Permian (287 ± 2 , AG-9, and 287

 ± 1 , AG-11) to Early Ordovician (474 ± 3 Ma, AG-15). We have used the same

approach described above to estimate the MDA of the Meta-detrital Fm, proposing an

715Early Permian (Artinskian) MDA for this formation, older than the Middle Triassic

stratigraphic age (247 to ca. 237 Ma, see Simon and Visscher, 1983; Maate et al., 1993;

717 García Tortosa et al., 2002; Martín-Rojas et al., 2010). Furthermore, the youngest zircon

718 ²⁰⁶Pb/²³⁸U date and the youngest zircon population in sample AG-19 from the Miñarros

719	unit are 297 \pm 5 Ma and 300 \pm 1 Ma, respectively, indicating an older MDA (Gzhelian,
720	Late Pennsylvanian). Samples AG-9, AG-11, AG-15 and AG-19 have similar age
721	patterns to the samples from the Tahal Fm (NFC).
722	
723	6.6. Permian to Triassic metadetrital samples from the MC
724	The youngest zircon grains from samples AG-10 and LP-16-AZ from the
725	Saladilla Fm of the MC yielded $^{206}\text{Pb}/^{238}\text{U}$ dates between 277 \pm 7 and 282 \pm 15 Ma.
726	Moreover, the youngest zircon populations were 492 \pm 8 Ma and 279 \pm 3 Ma,
727	respectively, pointing to an Early Permian MDA.
728	
729	6.7. Provenance for zircon of the the Permian to Triassic meta-detrital samples
730	A common feature of the samples with a Permian MDA from the three
731	complexes (NFC, AC and MC) is an increase in the number of Paleozoic zircons with
732	respect to the older Carboniferous samples (Fig. 21). In fact, the Permian MDA samples
733	show an increase in the number of Permian and Carboniferous zircon grains indicating
734	erosion of Variscan and Late-Variscan felsic rocks in the source areas. In the NFC, the
735	Tahal Fm contains 21% to 27 % Permian-Carboniferous grains (the values are the
736	percentage of the total number of analyses of each sample), while the Carboniferous
737	Lomo de Bas quartzites have 5% to 18% Carboniferous grains, with only two Permian
738	grains. Within the AC, the Meta-detrital Fm has variable contents of Permian-
739	Carboniferous grains (from 3 to 31%, the values are the percentage of the total number
740	of analyses of each sample), while the Carboniferous Micaschists and Quartzite Fm has
741	3% to 6%. Furthermore, in the MC, the Saladilla Fm also displays a variable content of
742	Permian-Carboniferous grains (from 4% to 38%); while the Lower Carboniferous
743	Morales Fm (sample Ri121 from Azdimousa et al., 2019) has 6% Carboniferous grains,
	30

and the Permian Marbella Conglomerate (Esteban et al., 2017) has 12 % Permian andCarboniferous grains.

Samples from the Tahal Fm (NFC) have Carboniferous populations between ca.
331 and ca. 334 Ma ("Variscan"), Ediacaran populations between ca. 598 and ca. 610
Ma ("Cadomian"-"Pan-African"), and a Tonian population at ca. 939 Ma (Fig. 21). If
the "Variscan grains" are excluded (i.e. post- Late Devonian grains which are younger
than 370 Ma), the age distribution pattern is similar to that of the Aulago Fm (JabaloySánchez et al., 2018) and of the Lomo de Bas quartzites, except for a lower number of
Tonian-Stenian (ca. 1.0 Ga) and Neoarchean (ca. 2.61 Ga) grains (Fig. 20).

The age distribution patterns for samples from the Meta-detrital Fm (AC) are similar to those in the above mentioned samples from the Tahal Fm (NFC) (Fig. 21). Samples from the Meta-detrital Fm also have Permian ("Late-Variscan" at 287Ma), Ediacaran-Cryogenian ("Pan-African", from ca. 546 to ca. 660 Ma) populations, with minor Tonian-Stenian (from ca. 963 to ca. 1016 Ma) and Rhyacian ("Eburnean", ca. 2060 Ma) populations (Fig. 21). If the <370 Ma zircon grains are excluded, the age distribution pattern is similar to that obtained by combining the Micaschists and Quartzite Fm (AC) datasets (Fig. 21).

In the Saladilla Fm (MC), there are Permian ("Late-Variscan" between ca. 279
and 305 Ma), and Ediacaran-Cryogenian populations ("Pan-African", from ca. 602 to
677 Ma), with minor Stenian (ca. 1074 Ma), Orosirian ("Eburnean", ca. 1937 Ma) and
Neoarchean (ca. 2106 Ma) peaks (Fig. 21). They differ from the data of the
Carboniferous-Early Permian samples from the same MC (Esteban et al., 2017;
Azdimousa et al., 2019), not only in the presence of the Early Permian population, but
also in the Stenian and Neoarchean peaks. This distinction in the age patterns is due to

the erosion and incorporation of material from Late-Variscan felsic rocks and the

increasing number of zircons sourced from the Cantabrian, West Asturian-Leonese andCentral-Iberian zones.

The similarity between the age patterns of samples with Early Permian MDA from the three complexes and those of the Permian-Early Triassic from the Iberian ranges (Sánchez Martínez et al., 2012) suggests that they were deposited in the same Permian-Triassic basins.

6.8. Unconformable Middle Miocene red conglomerates and sandstones

The samples from Middle Miocene sediments have only two Mesozoic zircon grains and their youngest zircon population has a mean $^{206}Pb/^{238}U$ age of 292 ± 3 Ma, pointing to an Early Permian MDA. Their age distribution patterns correspond to mixing of zircons from the AC and MC that were eroded at the surface during the Middle Miocene. It is noteworthy that those sediments were formed at the surface at the same time that the Cantal unit (sample AG-26) and the NFC were experiencing metamorphism in depth. However, the most important conclusions is that there is no record of any major felsic rock formation event after the Early Permian times in the AC or MC, although several stages of continental rifting and the subduction of the AC took place during this period (e.g. Jabaloy-Sánchez et al., 2019).

The U-Pb zircon data presented here have implications for the evolution of both
the Variscan and Alpine chains in the western Mediterranean area. The main
implications for the Variscan chain is the existence of Late Carboniferous sedimentary
basins eastwards of the Iberian Massif, which recorded the erosion of the Variscan
Chain formed during the Late-Devonian Carboniferous, and were also affected by the
Late Variscan magmatic event. The sediment in these basins was metamorphosed to
form the graphite-rich successions of the NFC and AC during the Alpine orogeny.

During the Permian-Triassic, the break-up of Pangea took place and resulted inthe formation of three different paleogeographic realms:

i) the Nevado-Filábride realm continued near the Iberian Massif
southeastern paleomargin,

ii) the Alpujárride realm separated from the Iberian Massif by rifting
during the Triassic-Jurassic (Martín Rojas et al. 2009; Puga et al., 2011),

800 iii) the Maláguide realm separated from the southern paleomargin of Iberia
801 (Esteban et al., 2107) during the Jurassic (e.g., Martín-Martín et al. 2006).

Those three realms amalgamated during the Cenozoic; first, the AC subducted below the MC, and later, the NFC subducted below the two previously amalgamated complexes at Early Middle Miocene times. During these processes, the Cantal unit was partially fused, leading to the formation of migmatites.

807 7. Conclusions

New U-Pb detrital zircon ages in rocks from the Águilas Arc provide maximum depositional ages for their protoliths. U-Pb zircon ages of orthogneisses help to constrain their true depositional ages. In the NFC, the true depositional age of the Lomo de Bas schists and quartzites is Late Carboniferous (ranging between 321 ± 2 and 293 ± 2 2 Ma), while the MDA of the Tahal Fm is confirmed as Early Permian. In the AC, the MDA of the Micaschists and Quartzite Fm is also Late Carboniferous (308 ± 4 Ma), and that of the Meta-detrital Fm is Early Permian (287 ± 1 Ma). Furthermore, the MDA of the Saladilla Fm (Maláguide Complex) is also Early Permian (279 ± 3 Ma). The age patterns from the Upper Carboniferous rocks of the NFC and AC are

817 similar, and also similar to those from Upper Carboniferous of the Cantabrian Zone of818 the Iberian Massif, suggesting similar source areas. The most likely paleogeographical

location of both complexes was in Late Carboniferous marine basins located eastwards of the Iberian Massif. However, the age patterns show differences compared with those from the Upper Carboniferous rocks of the MC, and from the South Portuguese and Ossa-Morena zones of the Iberian Massif. On the other hand, age patterns from Upper Carboniferous rocks of the MC show some similarities with those from the Ossa-Morena Zone. Therefore, the paleogeographic location of the MC could have been different from that of the NFC and AC, and it was probably located near the Ossa-Morena Zone and the other rocks derived from the West African Craton.

The samples with Early Permian MDA from the three complexes (NFC, AC, and MC) have more Paleozoic zircons than the Late Carboniferous samples, and similar age patterns, suggesting that they were deposited in the same basin, likely the long-lived liberian Permian-Triassic depositional basins. Samples from the unconformable Middle Miocene sediments have Early Permian MDA (292 ± 3 Ma) and age distribution patterns corresponding to a mixing of zircons from the AC and MC, and thus, do not record formation of felsic rocks since the Early Permian.

835 Acknowledgements

We are indebted to Mike Hall and Brad McDonald for their technical support on sample preparation and LA-ICPMS, respectively. The CL imaging was carried out in Curtin University's Microscopy & Microanalysis Facility, whose instrumentation has been partially funded by the University, State and Commonwealth Governments, and the Scanning Electron Microscope (SEM) Facility at the University of Edinburgh. Analysis in the John de Laeter Centre GeoHistory Facility was enabled by AuScope (auscope.org.au) and the Australian Government via the National Collaborative Research Infrastructure Strategy (NCRIS). This work is supported by

845 RNM	-208 (Junta de Andalucía, Spain). This is the IBERSIMS Publication No. 70.
846	
847 Refer	ences
848 Accot	to, C., Martínez Povatos, D.J., Azor, A., Jabalov-Sánchez, A., Talavera, C.,
849	Evans N I Azdimousa A 2020 Tectonic evolution of the Eastern Moroccan
850	Lvais, 10.5., Azumousa, A., 2020. Tectome evolution of the Eastern Morocean Monoto: from Lata Davonian fora are sadimentation to Eastly Carboniferous
850	Meseta: from Late Devoluan fore-arc sedimentation to Early Cardonnerous
851	collision of an Avalonian promontory. Tectonics
852 Accot	to, C., Martínez Poyatos, D.J., Azor, A., Talavera, C., Evans, N.J., Jabaloy-
853	Sánchez, A., Azdimousa, A., Tahiri, A.; El Hadi, H., 2019. Mixed and recycled
854	detrital zircons in the Paleozoic rocks of the Eastern Moroccan Meseta:
855	paleogeographic inferences. Lithos 338-339, 73-86. Doi:
856	10.1016/j.lithos.2019.04.011
857 Alday	a, F., Álvarez, F., Galindo-Zaldívar, J., González-Lodeiro, F., Jabaloy, A.,
858	Navarro-Vilá, F., 1991. The Maláguide-Alpujárride contact (Betic Cordilleras,
859	Spain): a brittle extensional detachment, Comptes Rendus de l'Académie des
860	Sciences de Paris 313, 1447-1453.
861 Álvar	ez, F., 1987. Subhorizontal shear zones and their relation to nappe movements in
862	the Cantal and Miñarros units. Eastern Betic Zone (Spain). Geologie en
863	Mijnbouw 66, 101-110.
864 Álvar	ez, F., Aldaya, F., 1985. Las unidades de la Zona Bética en la región de Águilas-
865	Mazarrón (Prov. de Murcia). Estudios Geológicos 41, 139-146.
866 Arran	z, E., Lago, M., 2004. El plutonismo sin- y tardi-varisco en los Pirineos. In: Vera,
867	J.A., (Ed.) Geología de España, SGE-IGME, Madrid, 263-266.
	25
	33

-	868	Azdimousa, A., Jabaloy-Sánchez, A., Talavera, C., Asebriy, L., González-Lodeiro, F.,
1 2 3	869	Evans, N.J. 2019. Detrital zircon U-Pb ages in the Rif Belt (northern Morocco):
4 5 6	870	Paleogeographic implications. Gondwana Research 70, 133-150. Doi
6 7 8	871	10.1016/j.gr.2018.12.008
9 10	872	Balanyá, J.C., García-Dueñas, V., 1987. Les directions structurales dans le Domaine
11 12 13	873	d'Alborán de part et d'autre du Détroit de Gibraltar. Comptes Rendus de
14 15	874	l'Académie des Sciences de Paris 304, 929-932.
16 17 10	875	Bea, F., 2004. La naturaleza del magmatismo de la Zona Centroibérica: consideraciones
19 20	876	generales y ensayo de correlación. In: Vera, J.A., (Ed.) Geología de España,
21 22	877	SGE-IGME, Madrid, 128-133.
23 24 25	878	Bea, F., Montero, P., Talavera, C., Abu Anbar, M., Scarrow, J., Molina, J.F., Moreno,
26 27 28 29 30 31 32	879	J.A., 2010. The palaeogeographic position of Central Iberia in Gondwana during
	880	the Ordovician: evidence from zircon geochronology and Nd isotopes. Terra
	881	Nova 22, 341-346.
33 34 35	882	Booth-Rea, G., Silva Barroso, P.G., (2008). Mapa Geológico de España escala
36 37	883	1:50.000. Edición Digital. Hoja 975, Puerto Lumbreras. Instituto Geológico y
38 39	884	Minero de España, Madrid.
40 41 42	885	Blichert-Toft, J., Albarède, F., Kornprobst, J., 1999, Lu-Hf isotope systematics of garnet
43 44	886	pyroxenites from Beni Bousera, Morocco: Implications for basalt origin. Science
45 46 47	887	283, 1303-1306
48 49	888	Booth-Rea, G., Silva Barroso, P.G., Bardají Azcárate, T., Martín Serrano, A., (2009).
50 51 52	889	Mapa Geológico de España escala 1:50.000. Edición Digital. Hoja 997, Águilas.
53 54	890	Instituto Geológico y Minero de España, Madrid.
55 56		
57 58 59		
60 61		
62 63 64		36
65		

_	891	Casquet, C., Galindo, C., 2004. Magmatismo varisco y postvarisco en la Zona de Ossa-
1 2 3	892	Morena. In: Vera, J.A., (Ed.) Geología de España, SGE-IGME, Madrid, 194-
4 5	893	198.
6 7 8	894	Chalouan, A., Michard, A., El Kadiri, K., Negro, F., Frizon de Lamotte, D., Soto J.I.,
9 0	895	Saddiqi, O., 2008. The Rif Belt. In: Michard, A., Frizon de Lamotte, D., Saddiqi,
1 2 3	896	O., Chalouan, A., (Eds.) Continental Evolution: The Geology of Morocco.
4 5	897	Lecture Notes in Earth Sciences, vol 116, pp. 203-302, Springer-Verlag, Berlin
6 7 0	898	Heidelberg.
o 9 0	899	Dallmeyer, R.D., Martínez Catalán, J.R., Arenas, R., Gil Ibarguchi, J.I., Gutiérrez-
1 2	900	Alonso, G., Farias, P., Aller, J., Bastida, F., 1997. Diachronous Variscan
3 4 5	901	tectonothermal activity in the NW Iberian Massif: Evidence from 40Ar/39Ar
6 7	902	dating of regional fabrics. Tectonophysics 277, 307-337. Doi:10.1016/s0040-
8 9 0	903	1951(97)00035-8
0 1 2	904	Durand-Delga, M.; Escalier des Orres, P., Fernex, F., 1962. Sur la présence de
3 4	905	Jurassique et d'Oligocène a l'ouest de Carthagene (Espagne méridionale)".
5 6 7	906	Comptes Rendus de l'Académie des Sciences de Paris 255, 1755-1753.
8 9	907	Espinosa Godoy, J., Herrera López, J.L., Pérez Rojas, A., 1972. Mapa Geológico de
0 1 2	908	España escala 1:50.000. Hoja 997bis, Cope. Instituto Geológico y Minero de
2 3 4	909	España, Madrid
5 6 7	910	Esteban, J.J., Cuevas, J., Tubía, J.M., Liati, A., Seward, D., Gebauer, D., 2007. Timing
, 8 9	911	and origin of zircon-bearing chlorite schists in the Ronda peridotites (Betic
0 1	912	Cordilleras, Southern Spain). Lithos 99, 121-135.
2 3 4	913	Esteban, J.J., Cuevas, J., Tubía, J.M., Gutiérrez-Alonso, G., Larionov, A., Sergeev, S.,
5 6	914	Hofmann, M., 2017. U-Pb detrital zircon ages from the Paleozoic Marbella
7 8 0		
9 0 1		
2 3		37
4		

_	915	Conglomerate of the Malaguide Complex (Betic Cordilleras, Spain). Implications
⊥ 2 3	916	on Paleotethyan evolution. Lithos 290-291, 34-47.
4 5	917	Fernández-Fernández, E.M., Jabaloy-Sánchez, A., Nieto, F., González-Lodeiro, F., 2007.
6 7 8	918	Structure of the Maláguide Complex near Vélez Rubio (Eastern Betic Cordillera,
9	919	SE Spain). Tectonics 26, TC4008, doi:10.1029/2006TC002019
.1 .2 .3	920	Fernández-Suárez, J., Gutiérrez-Alonso, G., Jeffries, T.E., 2002. The importance of
.4	921	along-margin terrane transport in northern Gondwana: insights from detrital
.6 .7 8	922	zircon parentage in Neoproterozoic rocks from Iberia and Brittany. Earth and
.9 :0	923	Planetary Science Letters 204, 75-88.
1 2 3	924	Fernández-Suárez, J., Gutiérrez-Alonso, G., Pastor-Galán, D., Hofmann, M., Murphy,
4 5	925	J.B., Linnemann, U., 2014. The Ediacaran–Early Cambrian detrital zircon record
6 7	926	of NW Iberia: possible sources and paleogeographic constraints. International
9	927	Journal of Earth Sciences 103, 1335–1357. Doi: 10.1007/s00531-013-0923-3
1	928	Gallastegui et al., 2004. Magmatismo. In: Vera, J.A., (Ed.) Geología de España, SGE-
4 5	929	IGME, Madrid, 63-68
6	930	García Tortosa, F.J., Leyva Cabello, F., Bardaji Azcárate, T., 2012. Mapa Geológico de
8 9 :0	931	España escala 1:50.000. Edición Digital. Hoja 976, Mazarrón. Instituto
:1 :2	932	Geológico y Minero de España, Madrid.
:3 :4 .5	933	García Tortosa, F.J., López-Garrido, A.C., Sanz de Galdeano, C., 2000. Présence du
:6 :7	934	complexe tectonique Malaguide à l'ouest de Carthagéne (zone interne Bétique,
:8 :9	935	Espagne). Comptes Rendus de l'Académie des Sciences de Paris 330, 139-146.
1	936	García-Tortosa, F.J., 2002. Los Complejos Tectónicos Alpujárride y Maláguide en el
3 4	937	sector oriental de la Zona Interna Bética. Estratigrafía, relaciones tectónicas y
6 7	938	evolución paleogeográfica durante el Triásico. PhD Thesis, Universidad de
8	939	Granada.
0 1 2 3		38

Geel, T., 1973. The geology of the Betic of Malaga, the Subbetic and the zone between
these two units in the Velez Rubio area (Southern, Spain). GUA Papers of
Geology.

Gómez-Pugnaire, M.T., Franz, G., 1988. Metamorphic evolution of the Paleozoic series
of the Betic Cordilleras (Nevado-Filabride complex, SE Spain) and its relationship
with the Alpine orogeny. Geologische Rundschau 77, 619-640.

Gómez-Pugnaire, M.T., Galindo-Zaldívar, J., Rubatto, D., González-Lodeiro, F., López
Sánchez-Vizcaíno, V., Jabaloy, A., 2004. A reinterpretation of the NevadoFilábride and Alpujárride Complex (Betic Cordillera): field, petrography and UPb ages from orthogneisses western Sierra Nevada, S Spain). Schweizerische
Mineralogische und Petrographische Mitteilungen 84, 303-322.

951 Gómez-Pugnaire, M.T., Rubatto, D., Fernández-Soler, J.M., Jabaloy, A., López Sánchez952 Vizcaíno, V., González-Lodeiro, F., Galindo-Zaldívar, J., Padrón-Navarta, J.A.,
953 2012. U–Pb geochronology of Nevado–Filábride gneisses: evidence for the
954 Variscan nature of the deepest Betic complex (SE Spain). Lithos 146-147, 93-111.
955 Jabaloy, A., 1993. La estructura de la región occidental de la Sierra de los Filabres

956 (Cordilleras Béticas). Tierras del Sur, Universidad de Granada, Granada, Spain
957 9, pp. 1-261.

Jabaloy-Sánchez, A., Talavera, C., Gómez-Pugnaire, M.T., López Sánchez-Vizcaíno,
V., Vázquez, M., Rodríguez-Peces, M.J., Evans, N.J., 2018, U-Pb ages of
detrital zircons from the Internal Betics: A key to deciphering paleogeographic
provenance and tectonostratigraphic evolution. Lithos 318–319, 244–266. Doi:

962 10.1016/j.lithos.2018.07.026

Kirchner, K.L., Behr, W.M., Loewy, S., Stockli, D.F., 2016. Early Miocene subduction
in the western Mediterranean: Constraints from Rb-Sr multimineral isochron

geochronology. Geochemistry, Geophysics, Geosystems 17. Doi: 10.1002/2015GC006208 5 Kroner, U., Romer, R.L., 2013. Two plates - Many subduction zones: The Variscan 7 8 9 10 orogeny reconsidered. Gondwana Research 24, 298-329. Laborda-López, C., Aguirre, J., Donovan, S.K., 2013. Asociaciones de macrofósiles en rocas metamórficas del Complejo Nevado-Filábride (Zonas Internas de la en Águilas, Murcia (SE España). Cordillera Bética) Tafonomía y biocronoestratigrafía, XXIX Jornadas de Paleontología, Abstracts, pp 83-84. Laborda-López, C., Aguirre, J., Donovan, S.K., 2015a. Surviving metamorphism: taphonomy of fossil assemblages in marble and calc-silicate schist. Palaios 30, 668-679. Laborda-López, C., Aguirre, J., Donovan, S.K., Navas-Parejo, P., Rodríguez, S., 2015b. Fossil assemblages and biochronology of metamorphic carbonates of the Nevado-Filábride Complex from the Águilas tectonic arc (SE Spain). Spanish Journal of Palaeontology 30, 275-292. Lafuste, M.L.J., Pavillon, M.J., 1976. Mise en évidence d'Eifélien daté au sein des terrains métamorphiques des zones internes des Cordillères bétiques. Intérêt de ce nouveau repère stratigraphique: Comptes Rendus de l'Académie des Sciences de Paris 283, 1015-1018. López Sánchez-Vizcaino, V., Connolly, J.A.D., Gómez-Pugnaire, M.T., 1997. Metamorphism and phase relations in carbonate rocks from the Nevado-Filábride Complex (Cordilleras Béticas, Spain): application of the Ttn + Rt + Cal + Qtz + Gr buffer. Contributions to Mineralogy and Petrology 126, 292-302. López Sánchez-Vizcaíno, V., Rubatto, D., Gómez-Pugnaire, M.T., Tommsdorff, V, Müntener, O., 2001. Middle Miocene high-pressure metamorphism and fast

exhumation of the Nevado-Filábride Complex, SE Spain, Terra Nova 13, 327-332. Maate, A., Sole De Porta, A.N., Martín-Algarra, A., 1993. Données paléontologiques б 8 9 10 nouvelles sur le Carnien des séries rouges des Maghrébides (Ghomarides et Dorsale calcaire du Rif septentrional, Maroc). Comptes Rendus de l'Académie des Sciences de Paris 316, 137-143. Martín-Algarra, A., 1987. Evolución geológica alpina del contacto entre las Zonas Internas y las Zonas Externas de la (Cordillera Bética). Ph D Thesis, Universidad de Granada Martin-Algarra, 1987. Martínez Catalán, J.R., Arenas, R., Díaz García, F., Abati, J., 1997. Variscan accretionary complex of northwest Iberia: Terrane correlation and succession of tectonothermal events. Geology 25, 1103-1106. Martínez Catalán, J.R., Fernández-Suárez, J., Meireles, C., González clavijo, E., Belousova, E., Saeed, A., 2008, U-Pb detrital zircon ages in synorogenic deposits of the NW Iberian Massif (Variscan belt): interplay of Devonian-Carboniferous sedimentation and thrust tectonics. Journal of the Geological Society 165, 687-698. Martínez Catalán, J.R. 2012. The Central Iberian arc, an orocline centered in the Iberian Massif and some implications for the Variscan belt. International Journal of Earth Sciences 101, 1299-1314. Martínez Catalán, J.R., 2011. Are the oroclines of the Variscan belt related to late Variscan strike-slip tectonics? Terra Nova 23(4), 241-247. Martínez-Catalán, J.R., Arenas, R., Díaz-García, F., Abati, J., 1997. Variscan accretionary complex of NW Iberia: terrane correlation and succession of tectonothermal events. Geology 25,1103-1106.

-	1015	Martín-Martín, M., Martin-Rojas, I., Caracuel, J.E., Estevez-Rubio, A., Martin-Algarra,
⊥ 2 3	1016	A., Sandoval, J., 2006. Tectonic framework and extensional pattern of the
4 5	1017	Malaguide Complex from Sierra Espuña (Internal Betic Zone) during Jurassic-
6 7 8	1018	Cretaceous: implications for the Westernmost Tethys geodynamic evolution.
9 10	1019	International Journal of Earth Sciences 95, 815-826.
11 12 13	1020	Martín-Rojas, I., Somma, R., Delgado, F., Estévez, A., Iannace, A., Perrone, V.,
14 15	1021	Zamparelli, V., 2010. Role of sea-level change and synsedimentary extensional
16 17 18	1022	tectonics on facies and architecture of Ladinian-Carnian carbonate depositional
19 20	1023	systems (Alpujarride complex, Betic Internal Zone, SE Spain). Geogaceta 48,
21 22 22	1024	63-66.
23 24 25	1025	Martín-Rojas, I., Somma, R., Delgado, F., Estevez, A., Iannace, A., Perrone, V.,
26 27	1026	Zamparelli, V., 2009. Triassic continental rifting of Pangea: evidence from the
28 29 30	1027	Alpujarride carbonates (Betic Cordillera, SE Spain). Journal of the Geological
31 32	1028	Society, London 166, 447-458.
33 34 35	1029	Marzoli, A., Renne, P., Piccirillo, E.M., Ernesto, M., DeMin, A., 1999. Extensive 200
36 37	1030	million-year-old continental flood basalts of the Central Atlantic Magmatic
38 39 40	1031	Province. Science 284, 616-618.
40 41 42	1032	Matte, Ph., 1991. Accretionary history and crustal evolution of the Variscan belt in
43 44	1033	Western Europe. Tectonophysics 196, 309-337.
45 46 47	1034	Matte, Ph., 2002. Variscides between the Appalachians and the Urals: Similarities and
48 49	1035	differences between Paleozoic subduction and collision belts. In: Martínez
50 51 52	1036	Catalán, J.R., Hatcher, R.D. Jr, Arenas, R., Díaz García, F. (eds), Variscan-
53 54	1037	Appalachian dynamics: The building of the late Paleozoic basement: Boulder,
55 56 57	1038	Colorado, Geological Society of America Special Paper 364, 239-251.
58 59		
60 61		
o⊿ 63		42
ь4 65		

1	1039	Matte, P., 2001. The Variscan collage and orogeny (480-290 Ma) and the tectonic
1 2 3	1040	definition of the Armorica microplate: a review. Terra Nov. 13, 122–128.
4 5	1041	doi:10.1046/j.1365-3121.2001.00327.x
6 7 8	1042	Murphy, J.B., Gutierrez-Alonso, G., Nance, R.D., Fernandez-Suarez, J., Keppie, J.D.,
9 10	1043	Quesada, C., Strachan, R.A., Dostal, J., 2006. Origin of the Rheic Ocean: rifting
11 12 13	1044	along a Neoproterozoic suture? Geology 34, 325-328.
14 15	1045	Murphy, J.B., Nance, R.D., Cawood, P.A., 2009. Contrasting modes of supercontinent
16 17 10	1046	formation and the conundrum of Pangea. Gondwana Research 15, 408-420.
18 19 20	1047	Nance et al., 2010 Nance, R.D, Gutiérrez-Alonso, G., Keppie, J.D., Linnemann, U.,
21 22	1048	Murphy, J.B., Quesada, C., Strachan, R.A., Woodcock, N.H., 2010. Evolution of
23 24 25	1049	the Rheic Ocean. Gondwana Research 17, 194-222.
26 27	1050	Doi:10.1016/j.gr.2009.08.001
28 29 30	1051	Pastor-Galán, D., Gutiérrez-Alonso, G., Murphy, J.B., Fernández-Suárez, J., Hofmann,
31 32	1052	M., Linnemann, U., 2013a. Provenance analysis of the Paleozoic sequences of
33 34 25	1053	the northern Gondwana margin in NW Iberia: Passive margin to Variscan
35 36 37	1054	collision and orocline development. Gondwana Res. 23, 1089-1103.
38 39	1055	doi:10.1016/j.gr.2012.06.015
40 41 42	1056	Pereira, M.F., Gutiérrez-Alonso, G., Murphy, J.B., Drost, K., Gama, C., Silva, J.B.,
43 44	1057	2017. Birth and demise of the Rheic Ocean magmatic arc(s): Combined U-Pb
45 46 47	1058	and Hf isotope analyses in detrital zircon from SW Iberia siliciclastic strata.
48 49	1059	Lithos 278-281, 383-399.
50 51	1060	Pereira, M.F., Chichorro, M., Johnston, S.T., Gutiérrez-Alonso, G., Silva, J.B.,
52 53 54	1061	Linnemann, U., Hofmann, M., Drost, K., 2012. The missing Rheic Ocean
55 56	1062	magmatic arcs: provenance analysis of Late Paleozoic sedimentary clastic rocks
57 58 59	1063	of SW Iberia. Gondwana Research 3–4(22), 882-891.
60 61 62 63		43
65		

1	1064	Pereira, M.F., Ribeiro, C., Vilallonga, F., Chichorro, M., Drost, K., Silva, J.B.,
1 2 3	1065	Albardeiro, L., Hofmann, M., Linnemann, U., 2014. Variability over time in the
4 5	1066	sources of South Portuguese Zone turbidites: evidence of denudation of different
6 7 8	1067	crustal blocks during the assembly of Pangaea. International Journal of Earth
9	1068	Sciences 103, 1453-1470.
.1 .2 .3	1069	Pérez-Cáceres, I., Martínez Poyatos, D., Simancas, J.F., Azor, A., 2017. Testing the
.4	1070	Avalonian affinity of the South Portuguese Zone and the Neoproterozoic
.6 .7 .8	1071	evolution of SW Iberia through detrital zircon populations. Gondwana Res. 42,
.9 20	1072	177–192. doi:10.1016/j.gr.2016.10.010
21 22	1073	Perri, F., Critelli, S., Martín-Algarra, A., Martín-Martín, M., Perrone, V., Mongelli, G.,
24 25	1074	Zattin, G., 2013. Triassic redbeds in the Malaguide Complex (Betic Cordillera-
26 27	1075	Spain): Petrography, geochemistry and geodynamic implications. Earth-Science
28 29 30	1076	Reviews 117, 1-28.
81 82	1077	Platt, J.P., Whitehouse, M.J., Kelley, S.P., Carter, A., Hollick, L., 2003. Simultaneous
33 34 35	1078	extensional exhumation across the Alboran Basin: Implications for the causes of
36 37	1079	late orogenic extension. Geology 31 31, 251-254.
88 89	1080	Platt, J.P., Anczkiewicz, R., Soto, J.I., Kelley, S.P., Thirlwall, M., 2006. Early Miocene
1 1 1 1	1081	continental subduction and rapid exhumation in the western Mediterranean.
13 14	1082	Geology 34, 981-984.
15 16 17	1083	Pratt, J.R., Barbeau, D.L., Garver, J.I., Emran, A., Izykowski, T.M., 2015. Detrital
18 19	1084	Zircon Geochronology of Mesozoic Sediments in the Rif and Middle Atlas Belts
50 51 52	1085	of Morocco: Provenance Constraints and Refinement of the West African
53 54	1086	Signature. J. Geol. 123, 177–200. doi:10.1086/681218
55 56	1087	Puga, E., Fanning, M., Díaz de Federico, A., Nieto, J.M., Beccaluva, L., Bianchini, G.,
57 58 59	1088	Díaz-Puga, M.A., 2011. Petrology, geochemistry and U-Pb geochronology of
50 51		
52 53 54		44
55		
-	1089	the Betic Ophiolites: Inferences for Pangaea break-up and birth of the
--	------	---
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\9\\20\\21\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\$	1090	westernmost Tethys Ocean. Lithos 124, 255-272.
	1091	Puga, E., Díaz de Federico, A., Nieto, J.M., 2002. Tectonostratigraphic subdivision and
	1092	petrological characterisation of the deepest complexes of the Betic zone: a
	1093	review. Geodinamica Acta 15, 23-43.
	1094	Ribeiro, M.L., Castro, A., Almeida, A., González Menéndez, L., Jesus, A. Lains, J.A.,
	1095	Lopes, J.C., Martins, H.C.B., Mata, J., Mateus, A., Moita, P., Neiva, A.M.R.,
	1096	Ribeiro, M.A., Santos, J.F., Solá, A.R., 2019, Variscan magmatism. In: Quesada,
	1097	C., Oliveira, J.T. (Eds.), The Geology of Iberia: A Geodynamic Approach,
	1098	Regional Geology Reviews 2, 497-526.
23 24 25	1099	Rodriguez-Cañero, R., Jabaloy-Sánchez, A., Navas-Parejo P, Martín-Algarra, A., 2018.
26 27 28 29 30 31 32	1100	Linking Palaeozoic palaeogeography of the Betic Cordillera to the Variscan
	1101	Iberian Massif: new insight through the first conodonts of the Nevado-Filábride
	1102	Complex. International Journal of Earth Sciences (Geologische Rundschau)
33 34 35	1103	107(5), 1791-1806. Doi: 10.1007/s00531-017-1572-8
36 37	1104	Sánchez Martínez, S., De la Horra, R., Arenas, R., Gerdes, A., Galán-Abellán, A.B.,
38 39 40	1105	López-Gómez, J., Barrenechea, J.F., Arche, A., 2012. U-Pb Ages of Detrital
40 41 42	1106	Zircons from the Permo-Triassic Series of the Iberian Ranges: A Record of
43 44	1107	Variable Provenance during Rift Propagation. The Journal of Geology 120, 135-
45 46 47 48 49 50 51 52 53 54	1108	154.
	1109	Sánchez-Martínez, S., Arenas, R., García, F.D., Martínez Catalán, J.R., Gómez-Barreiro,
	1110	J., Pearce, J.A., 2007. Careon ophiolite, NW Spain: suprasubduction zone setting
	1111	for the youngest Rheic Ocean floor. Geology 35, 53-56.
55 56 57	1112	Sánchez-Rodriguez, L., Gebauer, D., 2000, Mesozoic formation of pyroxenites and
58 59	1113	gabbros in the Ronda area (southern Spain), followed by early Miocene
60 61 62 63 64 65		45

1	1114	subduction metamorphism and emplacement into the middle crust: U-Pb
1 2 3	1115	sensitive high-resolution ion microprobe dating of zircon: Tectonophysics 316,
4 5	1116	19-44.
6 7 8	1117	Sánchez-Navas, A., García-Casco, A., Martín-Algarra, A., 2014. Pre-Alpine discordant
8 9 10 11 12	1118	granitic dikes in the metamorphic core of the Betic Cordillera: tectonic
	1119	implications. Terra Nova 26, 477-486. Doi :10.1111/ter.12123
14 15	1120	Sánchez-Navas, A., García-Casco, A., Mazzoli, S., Martín-Algarra, A., 2017.
16 17	1121	Polymetamorphism in the Alpujarride Complex, Betic Cordillera, South Spain.
18 19 20	1122	The Journal of Geology 125, 637-657.
21 22	1123	Santamaría-López, A., Sanz de Galdeano, C., 2018. SHRIMP U-Pb detrital zircon
23 24 25	1124	dating to check subdivisions in metamorphic complexes: a case of study in the
26 27	1125	Nevado-Filábride complex (Betic Cordillera, Spain). International Journal of
28 29 30	1126	Earth Sciences, doi: https://doi.org/10.1007/s00531-018-1613-y
31 32	1127	Shaw, J., Gutierrez-Alonso, G., Johnston, S.T., Galan, D.P., Pastor-Galan, D., 2014.
33 34 25	1128	Provenance variability along the Early Ordovician north Gondwana margin:
35 36 37	1129	Paleogeographic and tectonic implications of U-Pb detrital zircon ages from the
38 39	1130	Armorican Quartzite of the Iberian Variscan belt. Geological Society of America
40 41 42	1131	Bulletin 126, 702-719. Doi:10.1130/B30935.1
43 44	1132	Shaw, J., Johnston, S.T., Gutiérrez-Alonso, G., Weil, A.B., 2012. Oroclines of the
45 46 47	1133	Variscan orogen of Iberia: paleocurrent analysis and paleogeographic
48 49	1134	implications. Earth and Planetary Science Letters 329-330, 60-70.
50 51	1135	Simancas, F., 2019. Variscan Cycle. In: Quesada, C., Oliveira, J.T. (Eds.), The Geology
52 53 54	1136	of Iberia: A Geodynamic Approach, Regional Geology Reviews 2, 1-26.
55 56		
57 58 59		
60 61		
62 63		46
64 65		

-	1137	Simon, O., Visscher, H., 1983. El Pérmico de las Cordilleras Béticas. In: Martínez-Diaz
1 2 3	1138	C (Ed.), Carbonífero y Pérmico de España: Actas X Congreso Internacional
4 5	1139	Carbonífero. IGME, Madrid 453-499.
6 7 8	1140	Stephan, T., Kroner, U., Romer, R.L., 2019. The pre-orogenic detrital zircon record of
9 10	1141	the Peri-Gondwanan crust. Geological Magazine 156, 281-307. Doi:
11 12 13	1142	10.1017/S0016756818000031
14 15	1143	Tahiri, A., Montero, P., El Hadi, H., Martínez Poyatos, D., Azor, A., Bea, F., Simancas,
16 17 18	1144	J.F., González Lodeiro, F., 2010. Geochronological data on the Rabat-Tiflet
19 20	1145	granitoids: their bearing on the tectonics of the Moroccan Variscides. J. African
21 22 22	1146	Earth Sci. 57, 1–13. doi:10.1016/j.jafrearsci.2009.07.005
24 25 25	1147	Talavera, C., Montero, P., Martínez Poyatos, D., Williams, I.S., 2012. Ediacaran to
26 27	1148	Lower Ordovician age for rocks ascribed to the Schist–Graywacke Complex
28 29 30	1149	(Iberian Massif, Spain): Evidence from detrital zircon SHRIMP U-Pb
31 32	1150	geochronology. Gondwana Res. 22, 928–942. doi:10.1016/j.gr.2012.03.008
33 34 35	1151	Vermeesch, P., 2012. On the visualisation of detrital age distributions. Chemical
36 37	1152	Geology, v.312-313, 190-194, doi: 10.1016/j.chemgeo.2012.04.021 0
38 39 40	1153	Voet, H.W., 1967. Geological investigations in the Northern Sierra de Los Filabres
41 42	1154	around Macael and Cóbdar, southeastern Spain. Ph.D. Thesis, Amsterdam
43 44	1155	University, The Netherlands.
45 46 47	1156	Williams, J.R., Platt, J.P., 2017. Superposed and refolded metamorphic isograds, and
48 49	1157	superposed directions of shear during late-orogenic extension in the Alborán
50 51 52	1158	Domain, southern Spain. Tectonics 36, 756-786. Doi:10.1002/ 2016TC004358
53 54	1159	Wilson, M., 1997. Thermal evolution of the Central Atlantic passive margins:
55 56 57	1160	continental break-up above a Mesozoic super-plume. Journal of the Geological
58 59	1161	Society of London 154, 491-495.
60 61		
62 63 64		47
65		

1	1162	Zindler, A., Staudigel, H., Hart, S.R., Endres, R., Goldstein, S., 1983, Nd and Sm
⊥ 2 3	1163	isotopic study of a mafic layer from Ronda ultramafic complex. Nature 304,
4 5 6	1164	226.
7 8	1165	
9 0 1	1166	Figure and Table captions:
⊥ 2 3	1167	Figure 1 (A) Tectonic sketch of the Southwestern Mediterranean Sea; (B) Tectonic
4 5	1168	map of the Betic Cordillera.
6 7 9	1169	
9 0	1170	Figure 2 Geological map of the south-eastern Betic Chain with outcrops of the three
1 2	1171	tectonic complexes of the Internal zones and the location of the Águilas Arc marked
3 4 5	1172	(see Fig. 1B for location).
6 7	1173	
8 9 0	1174	Figure 3 Geological map of the central area of the Águilas Arc (modified from
1 2	1175	Espinosa Godoy et al., 1972; Booth-Rea and Silva-Barroso, 2008; Booth-Rea et al.,
3 4 5	1176	2009; García-Tortosa et al., 2012), with the location of the studied samples. See location
5 6 7	1177	in Fig. 2.
8 9	1178	
0 1 2	1179	Figure 4 Lithological columns of the studied successions in the NFC with the location
3 4	1180	of the studied samples. Yellow stars: meta-detrital samples; red stars: meta-igneous
5 6 7	1181	samples. Both lithological columns have the same vertical scale. Successions for the
, 8 9	1182	Lomo de Bas units were compiled from Laborda-López et al. (2013, 2015a, b) and
0 1 2	1183	Booth-Rea et al (2009). The succession of the Mulhacén units compiled from Booth-
2 3 4	1184	Rea and Silva-Barroso (2008), and Booth-Rea et al. (2009).
5 6	1185	
7 8 9		
) 0 1		
2 3		48
4		

Figure 5.- Lithological columns of the studied successions in the AC with the location of the studied samples. Yellow stars: meta-detrital samples; red stars: meta-igneous samples. All lithological columns have the same vertical scale. Successions were compiled with data from Booth-Rea and Silva-Barroso (2008), Booth-Rea et al. (2009), and García-Tortosa et al. (2012). Figure 6.- Geological map of the southern area of the Águilas Arc, near san Juan de los Terreros village, with the location of the Cabezo Blanco orthogneiss and the AG-26 sample (modified from Booth-Rea et al., 2009). See location in Fig. 2. Figure 7.- Geological map of the northeastern area of the Sierra de las Estancias with the location of sample LP-16-AZ (modified from Fernández-Fernández et al., 2007). See location in Fig. 2. Figure 8.- Lithological columns of the studied successions in the MC with the location of the studied samples. Yellow stars: meta-detrital samples. All lithological columns have the same vertical scale. The succession from the Sierra de las Estancias area was compiled from Fernández-Fernández et al. (2007). The succession of the Cabo Cope unit is from Espinosa Godoy et al. (1972), and García-Tortosa et al. (2012). Figure 9.- Results of U-Pb analyses on detrital zircons from Lomo de Bás units (NFC): combination of Kernel Density Estimates plots (KDE, black lines), frequency (grey bars), and relative abundance of age groups based on 206 Pb/ 238 U (for dates < 1.5 Ga) and 207 Pb/ 206 Pb (for dates > 1.5 Ga) ages. (A) sample AG-12; (B) sample AG-14; (C) sample AG-17, (D) sample AG-18, (E) Cumulative KDE (blue line) and frequency

(grey bars) for the Lomo de Bás samples; (F) zoom for the ages ranging from 0 to 541 Ma. Figure 10.- Results of U-Pb analyses of detrital zircons from Tahal Fm samples (Mulhacén units, NFC): combination of Kernel Density Estimates plots (KDE, black lines), frequency (grey bars), and relative abundance of age groups based on ²⁰⁶Pb/²³⁸U (for dates < 1.5 Ga) and 207 Pb/ 206 Pb (for dates > 1.5 Ga) ages. (A) sample AG-1; (B) sample AG-2; (C) Cumulative KDE (blue line) and frequency (grey bars) for the samples of the Tahal Fm; (D) zoom for the ages ranging from 0 to 541 Ma. Figure 11.- Results of U-Pb analyses on the core of zircons from orthogneiss AG-13 (Lomo de Bas units, NFC): (A) conventional Concordia diagram, ²⁰⁴Pb corrected, with the concordant data (95% > Concordia > 105%); (B) conventional Concordia diagram, ²⁰⁴Pb corrected, with the most concordant data; (C) probability density plots (red line) and frequency (blue bars) for the concordant data (95% > Concordia > 105%); (D) weighted average of the most concordant data. Figure 12.- Results of U-Pb analyses on the core of zircons from the orthogneiss AG-16 (Lomo de Bas units, NFC): (A) conventional Concordia diagram with all the data; (B) conventional Concordia diagram, 207 Pb corrected, with the most concordant data (90% > Concordia > 110%); (C) probability density plots (red line) and frequency (blue bars) for the most concordant data; (D) weighted average of the most concordant data. Figure 13.- Results of U-Pb analyses on detrital zircons from samples from the Micaschists and Quartzite Fm (AC): combination of Kernel Density Estimates plots

(KDE, black lines), frequency (grey bars), and relative abundance of age groups based on $^{206}\text{Pb}/^{238}\text{U}$ (for dates <1.5 Ga) and $^{207}\text{Pb}/^{206}\text{Pb}$ (for dates >1.5 Ga) ages. (A) sample AG-4; (B) sample AG-5; (C) sample AG-6, (D) sample AG-7, (E) Cumulative KDE (blue line) and frequency (grey bars) for the samples from the Micaschists and Ouartzite Fm ; (F) zoom for the ages ranging from 0 to 541 Ma. Figure 14.- Results of U-Pb analyses on detrital zircons from samples from the Meta-detritic Fm (AC: AG-9, AG-11, and AG-15), and from the Miñarros mylonites and breccias (AC: AG-19): combination of Kernel Density Estimates plots (KDE, black lines), frequency (grey bars), and relative abundance of age groups based on ²⁰⁶Pb/²³⁸U (for dates < 1.5 Ga) and ²⁰⁷Pb/²⁰⁶Pb (for dates > 1.5 Ga) ages. (A) sample AG-9; (B) sample AG-11; (C) sample AG-15, (D) sample AG-19, (E) Cumulative KDE (blue line) and frequency (grey bars) for the samples from the Meta-detritic Fm (AG-9, AG-11, and AG-15); (F) zoom for the ages ranging from 0 to 541 Ma. Figure 15.- Results of U-Pb analyses on the black rims of zircon from the Cabezo Blanco orthogneiss AG-26 (Cantal unit): (A) conventional Concordia diagram with all the data; (B) conventional Concordia diagram, ²⁰⁷Pb corrected, with the maximum at ca. 16 Ma; (C) probability density plots (red line) and frequency (blue bars) for all then data; (D) weighted average of the ca. 16 Ma age. Figure 16.- Results of U-Pb analyses on the cores of zircon from the Cabezo Blanco orthogneiss AG-26 (Cantal unit): (A) conventional Concordia diagram with all the data; (B) conventional Concordia diagram, ²⁰⁷Pb corrected, with the main population; (C)

probability density plots (red line) and frequency (blue bars) for all then data; (D)weighted average of the main population.

Figure 17.- Results of U-Pb analyses on detrital zircons from samples from the Saladilla Fm (MC): combination of Kernel Density Estimates plots (KDE, black lines), frequency (grev bars), and relative abundance of age groups based on 206 Pb/ 238 U (for dates < 1.5 Ga) and ²⁰⁷Pb/²⁰⁶Pb (for dates > 1.5 Ga) ages. (A) sample AG-10; (B) sample LP-16-AZ; (C) Cumulative KDE (blue line) and frequency (grey bars) for the samples of the Saladilla Fm; (D) zoom for the ages ranging from 0 to 541 Ma. Figure 18.- Results of U-Pb analyses on detrital zircons from samples from the unconformable Middle Miocene rocks: combination of Kernel Density Estimates plots (KDE, black lines), frequency (grey bars), and relative abundance of age groups based on ${}^{206}Pb/{}^{238}U$ (for dates < 1.5 Ga) and ${}^{207}Pb/{}^{206}Pb$ (for dates > 1.5 Ga) ages. (A) sample AG-3; (B) sample AG-20; (C) Cumulative KDE (blue line) and frequency (grey bars)

1275 for the samples of the Middle Miocene rocks; (D) zoom for the ages ranging from 0 to1276 541 Ma.

Figure 19.- Comparison between the combined KDE plots determined in Paleozoic
samples of the studied area and other regions of the Iberian Peninsula and South France:
(A) Lomo de Bas units vs Aulago Fm (Jabaloy-Sánchez et al., 2018); (B) Micaschists
and Quartzite Fm vs sample Ri-119 from the Sebtide Complex (Azdimousa et al.,
2019); (C) Silurian-Devonian rocks from the Cantabrian and Central Iberian zones
(Gutíerrez-Alonso et al., 2015) vs Late Carboniferous rocks from the Cantabrian Zone
(Pastor-Galán et al., 2013); (D) Lower Ordovician Armorican Quartzite (Shaw et al.,

1285	2014) vs Ediacaran and Early Cambrian rocks from the Cantabrian and Central Iberian
1286	zones (Fernandez-Suarez et al., 2014); (E) Upper Carboniferous rocks from the
1287	Pyrenees (Martínez et al., 2016) vs Upper Carboniferous rocks from the Catalonian
1288	Massif (Martínez et al., 2016); (F) Upper Carboniferous rocks from the Montagne Noire
1289	and Mouthoumet massifs (Martínez et al., 2016), vs Upper Carboniferous rocks from
1290	the Priorat Massif (Martínez et al., 2016), vs Upper Carboniferous rocks from Minorca
1291	(Martínez et al., 2016); (G) Upper Carboniferous rocks from MC (sample 121,
1292	Azdimousa et al., 2019) vs Early Permian Marbella Conglomerate (Esteban et al.,
1293	2017); (H) Upper Carboniferous Mira and Brejeira Fms from the South Portuguesse
1294	Zone (Pereira et al., 2014) vs Upper Carboniferous Santa Susana Fm from the Ossa
1295	Morena Zone (Pereira et al., 2020).
1296	
1297	Figure 20 Paleogeographic reconstruction of the eastern Variscan belt at Early
1298	Bashkirian times (modified from Simancas et al. (2005) for NW Africa and from
1299	Martínez-Catalán (2011) and Rodríguez-Cañero et al. (2017) for Europe). The proposed
1300	location of the NFC, AC and MC with respect to other Variscan Iberian Terranes is
1301	included. CIZ, Central Iberian; CZ, Cantabrian; GTMZ, Galicia-Trás-os-Montes;
1302	MGCZ, Mid-German Crystalline; MZ, Moldanubian; OMZ, Ossa-Morena; RHZ,
1303	Rheno-Hercynian; SPZ, South Portuguese; STZ, Saxo-Thuringian; TBZ, Teplá-
1304	Barrandian; WALZ, West Asturian-Leonese.
1305	
1306	Figure 21 Comparison between the combined KDE plots determined in Permian
1307	Triassic rocks of the studied area with those from older rocks from the same complexes.
1308	Combined KDE from Permian-Triassic samples from the Iberian Massif and Iberian
1309	Chain are also included: (A) Samples from the MC: Upper Carboniferous rocks from
	53

1310	MC (sample 121, Azdimousa et al., 2019), vs Early Permian Marbella Conglomerate
1311	(Esteban et al., 2017), vs Middle Triassic Saladilla Fm; (B) Samples from the AC:
1312	Micaschists and Quartzite Fm, vs sample Ri-119 from the Sebtide Complex
1313	(Azdimousa et al., 2019), vs Early-Middle Triassic Meta-detritic Fm; (C) Samples from
1314	the NFC: Aulago Fm (Jabaloy-Sánchez et al., 2018), vs Lomo de Bas units, vs Tahal
1315	Fm (combination of the data from Jabaloy-Sánchez et al., 2018 and this work); (D)
1316	Permian rocks from the Cantabrian Zone (Pastor-Galán et al., 2013), vs Permian rocks
1317	from the Iberian Chain (Sánchez-Martínez et al., 2012), vs Lower Triassic rocks from
1318	the Iberian Chain (Sánchez-Martínez et al., 2012).
1319	
1320	Table 1 Details of the samples and the analyses carried out; (*) UTM coordinates,
1321	ED_1950 ellipsoid, zone 30 S.
1322	
	54

-	1	U-Pb geochronology of detrital and igneous zircon grains from the Águilas Arc in
1 2 3	2	the Internal Betics (SE Spain): implications for Carboniferous-Permian
4 5	3	paleogeography of Pangea
6 7	4	
8 9 10	5	Antonio Jabaloy-Sánchez ¹ , Cristina Talavera ² , Martín Jesús Rodríguez-Peces ³ ,
11 12	6	Mercedes Vázquez-Vílchez ⁴ , Noreen Joyce Evans ⁵
13 14 15	7	¹ Departamento de Geodinámica, Universidad de Granada, 18002 Granada, Spain.
15 16	8	² School of Geosciences, University of Edinburgh, The King's Building, James Hutton Road, EH9 3FE,
17 18	9	Edinburgh, UK.
20 21	10	³ Departamento de Geodinámica, Estratigrafía y Paleontología, Universidad Complutense de Madrid,
22 23	11	Madrid, Spain.
24 25	12	⁴ Departmento de Didáctica de las Ciencias Experimentales, Universidad de Granada, Granada, Spain.
26 27	13	⁵ School of Earth and Planetary Sciences/John de Laeter Center, Curtin University, Bentley 6845,
28 29	14	Australia.
30 31	15	
32 33 34	16	Abstract
35 36	17	
37 38 39	18	New U-Pb detrital zircon and U-Pb zircon ages of metaigneous rocks in the
40 41	19	Águilas Arc (Betic Chain, SE Spain) allow us to determine the maximum depositional
42 43	20	ages of the rocks. Within the Nevado-Filábride Complex, a Late Carboniferous
44 45 46	21	depositional age for the Lomo de Bas schists and quartzites, and a Permian-Triassic
47 48	22	maximum depositional age for the Tahal Fm are determined. Within the Alpujárride
49 50 51	23	Complex, the maximum depositional age of the Micaschists and Quartzite Fm is Late
52 53	24	Carboniferous and the Meta-detrital Fm was deposited in the Early Permian.
54 55 56	25	Furthermore, the maximum depositional age of the Saladilla Fm in the Maláguide
57 58	26	Complex is also Early Permian. The age distribution patterns for the Carboniferous
59 60	27	rocks of the Nevado-Filábride and Alpujárride complexes are similar to those from the
61 62 63		1
64 65		

Cantabrian Zone of the Iberian Massif, suggesting deposition in Carboniferous foreland
basins located eastwards of the Iberian Massif. However, age patterns in Maláguide and
samples from the North-eastern Iberian Peninsula and South France show strong
similarities suggesting that it can be located near those areas in the Late Carboniferous
times.

The samples with Early Permian maximum depositional ages from the three complexes contain more Paleozoic zircon grains relative to the older Carboniferous samples, but have similar age distribution patterns, suggesting that they were deposited in the same basin. Samples from unconformable Middle Miocene sediments have Early Permian youngest zircon populations and age distribution patterns corresponding to a mixing of detrital zircon grains from the Alpujárride and Maláguide complexes. Furthermore, there is no record of any major felsic rocks formation and/or exhumation event after the Early Permian in those two complexes.

1. Introduction

The Variscan-Alleghanian belt (i.e. Martínez Catalán et al., 1997; Matte, 2001; Simancas, 2019) was formed during the Late Paleozoic collision of two major continents: Laurussia (Laurentia-Baltica) and Gondwana. The southern front of the Variscan segment of this orogenic belt is poorly understood due to post-variscan oroclinal bending, Pangea break-up (e.g. Wilson, 1997; Marzoli et al., 1999) and Alpine reworking (Simancas, 2019). Numerous fragments resulting from Gondwana break-up were dispersed and recycled during the Alpine orogeny, and superposition of metamorphic and deformational Alpine events overprinted most Variscan features. Several of these fragments are interpreted to be currently included within the Internal Zones of the Betic-Rif orogen as tectono-metamorphic complexes. These

complexes hold clues to the Variscan and Late-Variscan evolution of the southern domains of the Variscan belt and its relationship with the Gondwanan foreland (i.e. Gómez-Pugnaire et al., 2004, 2012; Sánchez-Navas et al., 2014, 2017; Jabaloy-Sánchez et al., 2018; Rodríguez-Cañero et al., 2018). Zircon U-Pb dating of metamorphosed sedimentary sequences and igneous rocks can provide temporal constraints on this evolution, especially in an area where detrital zircon geochronological data are scarce. Here, we present U-Pb zircon data from metasedimentary and metaigneous rocks of the Águilas Arc in the eastern Betic Chain, in an effort to provide maximum depositional ages for these rocks, paleogeographic information about the possible sources and, hence, the paleolocation of the different tectonic complexes of the Betic-Rif orogenic system. We will then discuss the implication of these data for both the

Variscan and Alpine evolution of this orogenic system.

2. Geological setting

The Alpine Betic-Rif orogen is an arcuate Alpine mountain belt outcropping in both South Spain and North Morocco and formed essentially during Late Paleogene-Neogene times (e.g. Platt et al., 2003; Chaluan et al., 2008) (Fig. 1). According to Balanyá and García-Dueñas (1987), this belt comprises: i) a central allochthonous terrain, the so-called Alborán Domain, ii) the South Iberian Domain, which includes the Triassic to Neogene rocks deposited at the southern paleomargin of the Iberian Peninsula, iii) the North African Domain, comprising Triassic to Neogene rocks deposited at the north-western paleomargin of Africa, and iv) the Flysch Trough units with Cretaceous to Neogene slope/rise and abyssal plain deposits (e.g. Chalouan et al., 2008, and references therein). Furthermore, the Alborán Domain, as originally defined by Balanyá and García-Dueñas (1987), included three metamorphic complexes, namely

(from bottom to top): the Paleozoic to Mesozoic Nevado-Filábride Complex (NFC), the
Paleozoic to Mesozoic Alpujárride Complex (AC) and the Paleozoic to Paleogene
Maláguide Complex (MC) (Fig. 1).

Recently this subdivision has been redefined and a new tectonic framework with only three major domains is emerging. Pratt et al. (2015) and Azdimousa et al. (2019) have indicated that the whole Maghrebian Flysch Domain was part of the North African Domain. Moreover, the Alborán Domain has been redefined and now only comprises two tectonic complexes: the lower AC and the upper MC (see Gómez-Pugnaire et al., 2012, and references therein). Accordingly, the NFC is now considered part of the southern paleomargin of the Iberian Peninsula, which was overridden below the Alborán Domain at 18 to 15 Ma (see López-Sánchez Vizcaino et al., 2001; Gómez-Pugnaire et al., 2004; 2012; Platt et al., 2006; Kirchner et al., 2016).

In the Central part of the Betic-Chain, the previously mentioned metamorphic
complexes were deformed by three major E-W trending Tortonian antiforms, but
eastwards, left-lateral, roughly N-S trending strike-slip faults rotated and translated the
folds towards the North to form the Águilas tectonic Arc (Figs. 1, 2).

2.1. Nevado-Filábride Complex

The NFC is composed of the upper Mulhacén tectonic units (Puga et al., 2002),
which underwent Alpine HP (ca. 1.8 GPa) metamorphism at ca. 18-15 Ma (López
Sánchez-Vizcaíno et al., 2001; Gómez-Pugnaire et al., 2004, 2012; Platt et al., 2006;
Kirchner et al., 2016), and the lower Veleta tectonic units (Gómez-Pugnaire and Franz,
1988; Puga et al., 2002; Rodríguez-Cañero et al., 2018) (Fig. 2, Table 1).
Within the Águilas tectonic Arc, the lower Veleta units are represented by the
Lomo de Bas units (Fig. 3, Table 1), which are tectonically overlain by the Mulhacén

103	units (Álvarez and Aldaya, 1985; Álvarez, 1987). The Lomo de Bas units comprise a
104	lower tectonic unit made of ca. 1000 m of alternating graphite-bearing grey and black
105	quartz-schists, garnet and chloritoid-bearing micaschists, and ferruginous quarzitic
106	levels of unknown ages (Laborda-López et al., 2013, 2015a, b) (Fig. 4, Table 1). These
107	rocks include orthogneiss bodies derived from metamorphosed, felsic rocks of unknown
108	age (Álvarez and Aldaya, 1985; Álvarez, 1987), although other orthogneiss bodies
109	within the CNF have yielded Late Carboniferous to Early Permian U-Pb ages (Gómez-
110	Pugnaire et al., 2004, 2012, and references therein). An upper unit tectonically overlays
111	the lower unit, and its succession begins with 600 to 800 m thick graphite-bearing
112	micaschists, quartz schists, and phyllites, which are intercalated with ferruginous
113	quartzite beds (Laborda-López et al., 2015a, b). These rocks are overlain by 80 to 140 m
114	thick low-grade black marbles, with abundant fossils of Early-Middle Devonian age
115	(Emsian-Eifelian, c.f. Lafuste and Pavillon, 1976; Laborda-López et al., 2013, 2015a,
116	b). The succession ends with 130 to 500 m thick graphitic schists, phyllites, and
117	quartzites (Laborda-López et al., 2015a, b) (Fig. 4, Table 1).
118	In the studied area, the Mulhacén unit succession (Álvarez and Aldaya, 1985;
119	Álvarez, 1987) begins with grey schists and metapsammites of the Permian-Triassic
120	Tahal Fm (Voet, 1967; Jabaloy-Sánchez et al., 2018; Santamaría-López and Sanz de
121	Galdeano, 2018) (Table 1). Moving up section is the Metaevaporite Fm, attributed
122	Permian-Triassic (Leine, 1968; Vissers, 1981) to Paleogene ages (Puga et al., 1996),
123	followed by the marbles, calc-schists, micaschists and quartzites of the Marbles and
124	Calc-Schists Fm (see Voet, 1967; López Sánchez-Vizcaino et al., 1997), for which pre-
125	Permian to Cretaceous ages have been proposed (Tendero et al., 1993; Gómez-Pugnaire
126	et al., 2012) (Fig. 4, Table 1). The succession includes Jurassic metabasite bodies (Puga
127	et al., 2011).

129 2.2. Alpujárride Complex

In the studied area, the AC includes a thin lower Miñarros unit, which overlies the brittle-ductile extensional shear zone developed at the NFC/AC contact (Figs. 3 and 5) (Álvarez and Aldaya, 1985; Álvarez, 1987; Booth-Rea et al., 2009). At the base of this Complex, the Miñarros unit is ca. 15 m thick and comprises brecciated ferruginous marbles and white quartzitic mylonites of unknown age (Álvarez, 1987) (Fig. 4, Table 1).

Álvarez and Aldaya (1985) and Álvarez (1987) identified several AC tectonic units thrusting over the Miñarros mylonites and breccias (i.e. the Talayón unit, Águilas unit and Las Palomas unit), and Booth-Rea et al. (2009) grouped them into only one tectonic unit, the so-called Las Estancias-Talayón-Palomas unit. Hereafter, and for simplicity, we call it Las Palomas unit (Table 1). The Las Palomas unit has the most complete succession in the area, beginning with ca. 300 m of graphite-bearing micaschists and phyllites alternating with micaceous quartzites from the Micaschists and Quartzite Fm, with an attributed Late Paleozoic age based on correlation with Paleozoic rocks of the MC (Álvarez and Aldaya, 1985; Álvarez, 1987) (Fig. 4, Table 1). The succession follows up with ca. 600 m of phyllites and quartzites from the Meta-detrital Fm made of a quartzite-rich lower member and a phyllite-rich upper member with Permian to Middle Triassic ages (Martín-Rojas et al., 2010; García-Tortosa et al., 2012) (Fig. 4, Table 1). The Middle to Late Triassic Meta-carbonate Fm overlays this succession and is composed of ca. 50 m of marbles and calc-schists (García-Tortosa et al., 2012) with (Fig. 4, Table 1).

Above the Las Palomas unit, the Ramonete unit crops out (Figs. 3, 4) (Álvarez
and Aldaya, 1985; Álvarez, 1987; Booth-Rea et al., 2009) and consists of Mesozoic

rocks: phyllites and quartzites of the Middle Triassic Meta-detrital Fm (see Simon and Visscher, 1983; Maate et al., 1993; García-Tortosa et al., 2002; Martín-Rojas et al., 2010), and calcitic and dolomitic marbles and calc-schists from the Middle-Upper Triassic Meta-carbonate Fm (García-Tortosa et al., 2002) (Table 1). Álvarez and Aldaya (1985), and Álvarez (1987) also defined the Cantal unit as an AC tectonic unit thrusting over the Las Palomas unit, or limited by left-lateral strike-slip faults (Figs. 3 and 4, Table 1). However, García-Tortosa et al. (2000) included this unit within the NFC and discussed its adscription to the AC. The Cantal unit is composed of ca. 330 m of migmatitic and felsic gneisses with kyanite and sillimanite bearing schists, graphite bearing schist with staurolite and black marbles and quartzites (see Álvarez and Aldaya, 1985; Álvarez, 1987; Booth-Rea et al., 2009) (Fig. 4, Table 1). 2.3. Maláguide Complex The MC occurs as relatively small outcrops tectonically emplaced on top of the AC (Figs. 3 and 4). Towards the east, in the Vélez Rubio area (Figs. 2 and 4, Table 1), the MC succession includes ca. 1000 m of greywackes, slates, conglomerates and lesser marbles and black cherts of the pre-Ordovician to Late Carboniferous Piar Group (see Martín-Algarra, 1987) overlain by detached Mesozoic to Cenozoic cover ca. 500 m thick, consisting of red conglomerates, sandstones, pelites, and gypsum of the Middle-Late Triassic Saladilla Fm (see Perri et al., 2013, and references therein) (Fig. 4, Table

limestones, dolostones and marls (Castillón Fm, Geel, 1973), unconformably overlain

1). The succession follows up with ca. 300 m of Late Triassic to Early Cretaceous

by ca. 200 m of Eocene Nummulite-rich limestones and marls (Xiquena Fm, Geel,

1973) (Fig. 4, Table 1).

In the Águilas Arc area, this succession is usually incomplete and thinned by normal faults, lacking outcrops of the thick Paleozoic succession of the Piar Group, (see Aldaya et al., 1991) (Fig. 4, Table 1). The main outcrops of this complex correspond to the Cabo Cope and Albaida areas (Álvarez and Aldaya, 1985; Álvarez, 1987; García-Tortosa, 2002) (Figs. 3 and 4, Table 1), where a succession beginning with ca. 40 m of red pelites, sandstones and gypsum of the Middle-Late Triassic Saladilla Fm crops out. Following up section, there is ca. 130 m of Late Triassic to Jurassic dolostones, marls, and oolitic limestones of the Castillon Fm (García-Tortosa, 2002, and references therein) (Fig. 4. Table 1). On top, there is an unconformity overlain by ca. 50 m of Oligocene conglomerates and calcarenites (Durand-Delga et al., 1962; Álvarez, 1987). Unconformably overlying both the MC and AC, there are Middle Miocene sedimentary rocks with a succession that includes red Langhian-Early Serravallian conglomerates and sandstones with clasts derived from rocks present in both complexes (Figs. 3 and 4).

3. Sampling localities and analytical methods

Twenty one samples from the Águilas Arc were studied. Eight samples were collected from the NFC, nine from the AC, two from the MC, and two from the Middle Miocene sedimentary rocks (Table 2, Figs. 3 and 4).

197 Zircon grains were separated using standard heavy-liquid and magnetic
198 techniques in the Department of Geodynamics of the University of Granada. Grains
199 were handpicked and mounted in epoxy, polished, cleaned and gold coated for
200 cathodoluminescence (CL) imaging on a Mira3 FESEM instrument at the John de
201 Laeter Centre (JdLC), Curtin University, Perth (Australia) and a Carl Zeiss SIGMA HD
202 VP Field Emission SEM at the School of Geosciences, the University of Edinburgh,

Scotland (the United Kingdom). Representative CL images have been selected and
interpreted in the results section (Figs. 1 to 10 in S3 Supplementary material). In CL
images, the lower-U regions are brightly illuminated and higher-U regions are dark, or
even black, poorly illuminated regions.

U-Th-Pb geochronological analyses of samples AG-16 and AG-26 were carried out on the SHRIMP IIe/mc instrument of the IBERSIMS lab, University of Granada, Spain, and sample AG-13 was analysed on the Cameca IMS1270 at the NERC Ion Micro-Probe Facility, the University of Edinburgh, United Kingdom (see S1 Supplementary material for a detailed description of the methodologies). Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) data collection on the remaining samples was performed at the GeoHistory Facility, JdLC, Curtin University, Perth, Australia. A more detailed description of the methodology is provided within Text S1 in the Supplementary material.

Ages in the text and figures are quoted as ²⁰⁶Pb/²³⁸U dates for zircon analysis younger than 1500 Ma and as ²⁰⁷Pb/²⁰⁶Pb dates for zircon analysis older than 1500 Ma, while errors are at the 2σ level. The distribution of detrital zircon ages were calculated using DensityPlotter 8.5 (Vermeesch, 2012), with a bin of 40 Ma. An adaptive bandwidth of 40 Ma was applied for the Kernel Density Estimators (KDE); except in the zoom windows of the group of ages younger than c. 541 Ma, where a bin of 10 Ma and an adaptive bandwidth of 10 Ma were applied. Errors used in these KDE calculations are at the 1σ level (Figs. 5, 6, 9, 10, 13 and 14). Mixture Models were used as a first approach to the age distribution plots in order to obtain the age of the main populations, however, the accuracy of these models in unsharpened peaks of the KDE was low (i.e. the age esd off-peak), and so the age of main populations was calculated using a weighted mean and assessed by the mean square weighted deviation (MSWD).

The full description, CL images for representative zircon grains, representative Concordia plots, youngest zircon populations and detailed U-Pb analytical datasets of each individual sample are also provided in the supplementary information (Text S2, Figs. 1 to 10 in S3 and Table S1 in the Supplementary material).

Among the different strategies to estimate the Maximum Depositional Age (MDA) of a sample, we have chosen a more conservative approach where the youngest population is defined as the weighted mean of the youngest cluster of grains with overlapping 2σ uncertainty (see Dickinson and Gehrels, 2009, for the method, and Sharman and Malkowski; 2020, for a discussion). The original method contemplates the use of three or more grains, however, we have worked with four or more grains in the calculation. Most of our samples are metadetrital with grains mostly < 400 Ma. The limited curvature of concordia at these young ages combined with the imprecision of the ²⁰⁷Pb/²³⁵U age, limits the identification of discordance, and, in fact, any level of Pb loss is masked by the uncertainty of the analysis (Bowring and Schmitz, 2003; Ireland and Williams, 2003; Spencer et al., 2016). Therefore, we have tried to minimize the risk of including dates from grains with Pb loss by applying a very conservative youngest population calculation, calculated using Isoplot software (Ludwig, 2003, 2009).

The Multidimensional Scaling (MDS) technique was used to compare the age patterns for our samples with those of previously published samples from the NFC, AC, MC and the Variscan chain. The MDS is a mean of visualizing the level of similarity of individual datasets in two dimensions. In detrital zircon geochronology MDS is used to graphically represent a quantified comparison between the age patterns of two samples: greater distances between samples represent a greater degree of dissimilarity between points on MDS diagrams (Vermeesch, 2013; Spencer and Kirkland, 2015; Wissink et al., 2018). MDS diagrams were produced using the software Provenance, with a

Kolmogorov-Smirnov test for the measurement of the dissimilarity (Vermeesch et al., 2016). Methodology and results of the Kolmogorov-Smirnov test are given in the Supplementary material (Texts S1 and S2, Tables S2 and S3). 4. Results In this section, we present the distribution histograms and KDE diagrams with the U-Pb results from the detrital zircon grains from the three different complexes (NFC, AC, and MC). For each complex, we have combined and described the U-Pb data for each formation and/or unit. 4.1. Nevado-Filábride Complex 4.1.1. LA-ICPMS results from metadetrital samples The CL images for samples AG-12, AG-14, AG-17 and AG-18 mostly show zircon grains with continuous oscillatory zoning (Fig. 1 in S3 Supplementary material). There are also some composite grains with cores overgrown by low or high U rims, a few grains with sector zoning, and grains that are structureless (Fig. 1 in S3 Supplementary material). Independent of their location within the upper or lower Lomo de Bas tectonic unit, putative Upper Carboniferous samples AG-12, AG-14, AG-17 and AG-18 yielded similar ages for the youngest zircon analysed, and similar youngest zircon population ages. The youngest zircon grains have 206 Pb/ 238 U dates between 284 ± 14 Ma (sample AG-12) and 323 ± 5 Ma (sample AG-18), while the youngest populations show 206 Pb/ 238 U mean ages between 321 ± 2 Ma (sample AG-17, MSWD = 0.55 and probability = 0.65) and 336 ± 2 Ma (sample AG-14, MSWD = 1.10 and probability =

0.36).

Samples AG-12, AG-14, and AG-18 also have similar age distribution patterns
showing a very noticeable Ediacaran component with peak ages between ca. 557 and ca.
618 Ma (between 17.3% and 24.3%, Fig. 5). There are also significant Mesoproterozoic
(between 7% and 12%) and Paleoproterozoic (between 17% and 26%) contributions.
The Mesoproterozoic population clearly stands out in samples AG-12 and AG-18 with
ages clustering at ca. 1001 (7.2%) and 1025 Ma (6.3%), respectively, and the
Paleoproterozoic population is clearly identified in sample AG-14 with ages grouping at
ca. 1893 and 2032 Ma (13.2%) (Fig. 5). There is a noteworthy difference in sample AG-17; the percentage of Paleozoic ages (36%) in this sample is twice as high as that in the
other three samples (15% to 19%) (Fig. 5).

Combining a total of 406 dates (Concordia ranging between 90% and 110%, Table S1 in Supplementary material) obtained from the most similar samples (AG12, AG14 and AG18 of Lomo de Bas quartzites; see Kolmogorov-Smirnov test-S in table S2 in the Supplementary material), the age distribution pattern is characterised by dates ranging from 283 to 3195 Ma (Fig. 5). Within the 67 Paleozoic zircon grains, there are Early Permian (one grain, 283 \pm 14, 1.5% with respect to the total amount of Paleozoic grains), Carboniferous (306 \pm 4 to 359 \pm 8 Ma, 40%), Devonian (368 \pm 6 to 405 \pm 6 Ma, 9%), Silurian (442 \pm 10 Ma, 1.5%), Ordovician (460 \pm 12 to 484 \pm 8 Ma, 9%) and Cambrian dates (486 \pm 7 to 540 \pm 7 Ma, 39%) (Fig. 5).

The CL imaging of zircon grains from the Tahal Fm of the Mulhacén units
(samples AG-1 and AG-2) shows grains with continuous oscillatory zoning and
partially resorbed cores overgrown by low and high U rims (Fig. 2 in S3 Supplementary
material). There are also grains with sector zoning and structureless grains (Fig. 1 in S3
Supplementary material).

Individually, samples AG-1 and AG-2 contain Jurassic zircon grains with the youngest zircon grains yielding 206 Pb/ 238 U dates of 195 ± 8 Ma, and 179 ± 5 Ma, respectively. Both samples also have youngest zircon populations with Permian ages at 275 ± 8 Ma (MSWD = 1.4 and probability = 0.25) and 277 ± 4 Ma (MSWD = 1.12 and probability = 0.35), respectively. Their age distribution patterns are also comparable, with Carboniferous and Ediacaran peaks at ca. 334 and 331 Ma, and ca. 610 and 598 Ma, respectively (Fig. 6). However, there are some differences: i) a minor Early Tonian peak in sample AG-1 at ca. 939 Ma; ii) a higher percentage of Mesozoic and Paleozoic dates in sample AG-2; iii) greater percentage of Mesoproterozoic and Paleoproterozoic zircon grains in sample AG-1; and iv) lack of Mesoarchean dates in sample AG-2 (Fig. 6). The 259 dates from samples AG-1 and AG-2 (Concordia ranging between 90% and 110%, Table S1 in Supplementary material) were combined in a KDE age distribution with dates from 179 to 2811 Ma (Fig. 6). The 83 Paleozoic zircon grains have Permian (254 ± 11 to 298 ± 8 Ma, 23% with respect to the total amount of Paleozoic grains), Carboniferous (305 ± 9 to 355 ± 10 Ma, 52%), Devonian (363 ± 11 to 410 ± 12 Ma, 7%), Silurian (424 ± 12 to 428 ± 13 Ma, 2%), Ordovician (454 ± 13 to 482 ± 14 Ma, 7%) and Cambrian dates (506 ± 14 to 540 ± 23 Ma, 9%), while the six

320 Mesozoic zircon grains have two Jurassic (179 ± 5 to 195 ± 8 Ma) and four Triassic

- $(209 \pm 9 \text{ to } 239 \pm 9 \text{ Ma})$ dates (Fig. 6).

4.1.2. SIMS results of sample AG-13 (orthogneiss) – Lower Lomo de Bas tectonic unit
Twenty-six grains from this orthogneiss were analysed and 27 of the 31 analyses
yielded concordant or nearly concordant dates between 191 and 2345 Ma (Fig. 7).
Eleven dates plot in a single population with a ²⁰⁴Pb corrected ²⁰⁶Pb/²³⁸U mean age of

 294 ± 2 Ma (MSWD = 0.75 and probability = 0.68) (Fig. 7). These dates are from 328 zircon grains with continuous oscillatory zoning, Th/U ratios between 0.030 and 0.615 329 and common Pb content from 0.05% to 0.26% (Table S1 in Supplementary material). 330 Therefore, this mean age could represent the best estimate of the crystallization age of 331 the protolith.

There are also 7 slightly younger dates between 264 and 286 Ma defining a tail negatively skewed towards younger ages (Fig. 7), which may relate to Pb loss undetectable with a discordance filter (see Spencer et al., 2016). These dates are from grains with continuous oscillatory zoning (Fig. 3 in S3 Supplementary material), one rim from a composite grain, Th/U ratios between 0.062 and 0.692 and much higher common Pb contents (up to 0.35%; Table S1 in Supplementary material). Thus, they were not taken into account for the age calculation in order to avoid including dates from grains with possible Pb loss.

The youngest 204 Pb corrected 206 Pb/ 238 U date for this dataset is 191 ± 3 Ma (Table S1 in Supplementary material). This date is from the rim of a composite grain, has a Th/U ratio of 0.011 and could be related to a metamorphic event in this area, linked to the intrusion of Early Jurassic mafic rocks (Puga et al., 2011).

345 4.1.3. SHRIMP IIe/mc analysis on zircon grains from sample AG-16 (orthogneiss)
346 - Lower Lomo de Bas tectonic unit

347 Sample AG-16 provided scarce euhedral bipyramidal prismatic zircon crystals
348 with dimensions between 80 and 200 µm. The CL imaging shows partially resorbed
349 cores overgrown by low or high U rims with well-defined oscillatory zoning and a few
350 grains with continuous oscillatory zoning (Fig. 4 in S3 Supplementary material).

Twenty-one U-Pb analyses on 18 different crystals yielded 15 concordant or nearly concordant dates (discordance <5%) ranging from 284 to 674 Ma (Fig. 8). Eight of those 13 analyses plotted as a single population with a ²⁰⁷Pb corrected ²⁰⁶Pb/²³⁸U mean age of 289 ± 3 Ma (MSWD = 1.4 and probability = 0.20) (Fig. 8). All these analysis were performed in grains with continuous oscillatory zoning, U and Th contents of 205-1415 and 53-426 ppm, respectively, and Th/U ratios between 0.07 and 1.03 (Table S1 in Supplementary material). The obtained mean age is therefore considered the best estimate of the crystallization age of the parent rocks for the orthogneiss. The remaining dates (330 to 674 Ma) were from cores of composite grains and grains with continuous oscillatory zoning and are considered inherited cores and xenocrysts, respectively (Fig. 8).

363 4.2. Alpujárride Complex

364 4.2.1. LA-ICPMS results from samples from the Micaschists and Quartzite Fm

The CL images of zircon grains of samples AG-4, AG-5, AG-6 and AG-7 from the Micaschists and Quartzite Fm show grains with continuous oscillatory zoning and complex grains with a partially resorbed core overgrown by low or high U rim. There are also a few grains with sector zoning and structureless grains (Fig. 5 in S3 Supplementary material).

The age distribution patterns of the 4 aforementioned samples show some
similarities (Fig. 9, and see Kolmogorov-Smirnov test-S in table S2 in the
Supplementary material). There are two main peaks: i) a main Ediacaran peak with ages
between ca. 600 and 631 Ma; and ii) a secondary Early Tonian-Late Stenian peak with
ages between ca. 996 and 1040 Ma.

However, some differences are also noteworthy: i) samples AG-6 and AG-7, located at the top of the formation, have an Early Orosirian-Late Rhyacian population at ca. 2055 and 2033 Ma, respectively, that is absent in samples AG-4 and AG-5 at the base of the formation (Fig. 9); ii) samples from the top of the formation also have a Paleoarchean component that is lacking at the bottom; iii) there were no Mesoarchean dates found in sample AG-6; iv) the age of the youngest zircon grains decreases from the bottom to the top of the formation; that is, from 328 ± 10 Ma and 306 ± 6 Ma in samples AG-4 and AG-5, respectively, to 296 ± 4 Ma and 299 ± 7 Ma in samples AG-6 and AG-7, respectively; and finally, v) the youngest zircon population in sample AG-5 is Late Carboniferous $(308 \pm 4 \text{ Ma})$ contrasting with those from the other three samples that are Cambrian-Early Ediacaran (sample AG-4, 551 ± 5 Ma; sample AG-6, 507 ± 10 Ma; and sample AG-7; 558 ± 7 Ma (Text S2 and Fig. S4 in Supplementary material).

Combining the 562 U-Pb data (Concordia ranging between 90% and 110%, Table S1 in Supplementary material) for the four samples of Micaschits and Quartzite Fm produces an age distribution pattern (Fig. 9). These data cluster into five main peaks at ca. 309, 602, 1039, 2054 and 2547 Ma (Fig. 9). Within the 63 Paleozoic zircon grains, there are: Permian (296 \pm 4 to 298 \pm 7 Ma, 5% with respect to the total amount of Paleozoic grains), Carboniferous (304 ± 5 to 359 ± 9 Ma, 32%), Devonian (365 ± 8 to 390 ± 7 Ma, 9%), Ordovician (448 ± 13 to 482 ± 10 Ma, 14%) and Cambrian dates $(460 \pm 17 \text{ to } 541 \pm 9 \text{ Ma}, 40\%)$ (Fig. 9).

395 4.2.2. LA-ICPMS results from samples from the Middle Triassic Meta-detrital Fm

The CL imaging of zircon grains from samples AG-9, AG-11, and AG-15 shows grains with continuous oscillatory zoning and some partially resorbed cores with low or high U overgrowths. There are also grains with sector zoning (Fig. 6 in S3 Supplementary material).

400	The youngest zircon grains in these samples have ²⁰⁶ Pb/ ²³⁸ U dates ranging from
401	214 ± 2 and 288 ± 4 Ma, while their youngest zircon populations have $^{206}\text{Pb}/^{238}\text{U}$ mean
402	ages varying between 287 ± 1 Ma (sample AG-11, MSWD = 1.11 and probability =
403	0.35) and 474 ± 3 Ma (sample AG-15, MSWD = 0.71 and probability = 0.54).
404	The age distribution patterns from these samples display two or three main
405	populations: a Permian-Late Carboniferous peak (ca. 287 Ma in samples AG-9: 16.2%,
406	and AG-11: 6.0%), one or two Ediacaran-Cryogenian peaks (from ca. 546 to ca. 661
407	Ma, in all samples: 4.4%, 12.0%, and 7.3%) and a Tonian-Stenian peak (from ca. 963 to
408	ca. 1016 Ma in samples AG-9: 19.1% and AG-15: 6.5%) (Fig. 10).
409	The dates of samples AG-9, AG-11, and AG-15 from the Meta-detrital Fm range
410	from 214 Ma to 2941 Ma, and are Paleozoic (275 \pm 3 to 541 \pm 7 Ma, 17% to 39%),
411	Neoproterozoic (542 \pm 8 to 998 \pm 13 Ma, 34% to 57%), Mesoproterozoic (1004 \pm 13 to
412	1552 \pm 37 Ma, 6% to 13%), Paleoproterozoic (1655 \pm 26 to 2451 \pm 24 Ma, 7% to 13%)
413	and Neoarchean (2503 \pm 28 to 2762 \pm 47 Ma, 4% to 7%) in age. It is worth noting that
414	only sample AG-15 yielded one Mesoarchean date (2941 \pm 15 Ma, 1%) and sample
415	AG-11 yielded one Triassic date (214 ± 2 Ma, 1%), (Fig. 10). When we combine the
416	392 U-Pb data (Concordia ranging between 90% and 110%, Table S1 in Supplementary
417	material) from samples AG-9, AG-11, and AG-15, we obtain a cumulate age
418	distribution pattern (Fig. 10). These data cluster into three main peaks at ca. 287, 570,
419	964Ma (Fig. 10). Within the 119 Paleozoic zircon grains, there are: Permian (275 \pm 3 to
420	298 ± 8.0 Ma, 32% with respect to the total amount of Paleozoic grains), Carboniferous
421	(299 \pm 7 to 356 \pm 3 Ma, 29%), Devonian (366 \pm 4 to 417 \pm 4 Ma, 3%), Silurian (434 \pm
422	11 to 443 \pm 4 Ma, 3%), Ordovician (445 \pm 6 to 482 \pm 7 Ma, 17%), and Cambrian dates
423	$(490 \pm 7 \text{ to } 541 \pm 7 \text{ Ma}, 16\%)$ (Fig. 10).
424	4.2.3. LA-ICPMS results from samples from the Miñarros quartz mylonites

-	120	The CL II
1 2 _ 3	426	AG-19) show gra
4 5	427	overgrown by low
6 7 2 8	428	and fifty one anal
9 10	429	concordant or nea
11 12 4	430	Palaeozoic (297 :
14 15	431	42%), Mesoprote
16 17 4	432	to 2431 ± 20 Ma,
18 19 20	433	Mesoarchean (29
21 22	434	ca. 300, 305, 550
23 24 _ 25	435	include Permian
26 27	436	Paleozoic grains)
28 29 4 30	437	413 ± 8 Ma, 5%)
31 32	438	6 to 535 ± 8 Ma,
33 34 4 35	439	the youngest zirc
36 37	440	1 Ma (MSWD =
38 39 4	441	
40 41 _2 42	442	4.2.4. SHRIMP I
43 44	443	Zircon gra
45 46 4 47	444	with lengths of al
48 49	445	translucent crysta
50 51 4 52	446	cores overgrown
53 54	447	oscillatory zoning
55 56 4 57	448	material). Both d
58 59		
60 61		
62		
63		
ь4 65		
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	446 447 448	cores overgrowr oscillatory zonir material). Both o

25	The CL images of zircon grains from the Miñarros quartz mylonites (sample
26	AG-19) show grains with continuous oscillatory zoning and composite grains with cores
27	overgrown by low and high U rims (Fig. 7 in S3 Supplementary material). One hundred
28	and fifty one analyses were performed on selected zircon grains and 145 yielded
.9	concordant or nearly concordant dates between 297 and 3105 Ma. Those dates are
80	Palaeozoic (297 \pm 5 to 535 \pm 8 Ma, 30%), Neoproterozoic (545 \pm 6 to 992 \pm 13 Ma,
1	42%), Mesoproterozoic (1002 \pm 10 to 1201 \pm 12 Ma, 7%), Paleoproterozoic (1707 \pm 69
32	to 2431 \pm 20 Ma, 15%), Neoarchean (2528 \pm 18 to 2696 \pm 21 Ma, 5%) and
3	Mesoarchean (2974 \pm 18 to 3105 \pm 23 Ma, 1%), and cluster into six main populations at
34	ca. 300, 305, 550, 566, 622 and 986 Ma (Fig. 10). The 43 Paleozoic zircon grains
5	include Permian (297 \pm 5 to 298 \pm 4 Ma, 7% with respect to the total amount of
6	Paleozoic grains), Carboniferous (299 \pm 4 to 320 \pm 4 Ma, 46%), Devonian (386 \pm 5 to
57	413 \pm 8 Ma, 5%), Ordovician (463 \pm 6 to 483 \pm 5 Ma, 19%), and Cambrian dates (495 \pm
8	6 to 535 \pm 8 Ma, 23%) (Fig. 10). The youngest zircon $^{206}\text{Pb}/^{238}\text{U}$ date is 297 \pm 5 Ma and
9	the youngest zircon population, comprising 10 dates, has a mean $^{206}\text{Pb}/^{238}\text{U}$ age of 300 \pm
0	1 Ma (MSWD = 0.64 and probability = 0.76).
1	
2	4.2.4. SHRIMP IIe/mc datations on zircon grains from sample AG-26 (orthogneiss)

Zircon grains from AG-26 are abundant and euhedral bipyramidal prisms
with lengths of about 250 to 80 µm and widths of 100 to 50 µm. Most are brownish
translucent crystals. CL imaging shows composite grains with partially resorbed
cores overgrown by thick high U rims. Most of the cores show continuous
oscillatory zoning truncated by the dark rims (Fig. 8 in S3 Supplementary
material). Both domains were targeted for the analysis.

Sixteen U-Pb measurements on 16 different dark rims yielded 14 concordant or nearly concordant dates ranging from 14 to 250 Ma (Fig. 11). Six dates plot in a single 5 population with a 207 Pb corrected 206 Pb/ 238 U mean age of 15.8 ± 0.2 Ma (MSWD = 0.69, 7 8 9 10 probability = 0.63) (Fig. 11). These dates are from zircon with U and Th contents between 4006 and 7413, and 6 and 14 ppm, respectively, and Th/U between 0.001 and 0.004 (Table S1 in Supplementary material). Thirty analyses were performed on 30 cores from different crystals and all these analyses yielded concordant or nearly concordant dates between 30 and 288 Ma (Fig. 12). Fifteen analyses plot in a single population with a 207 Pb corrected 206 Pb/ 238 U mean age of 283 ± 2 Ma (MSWD = 0.76 and probability = 0.71) (Fig. 12). These analyses are from zircon grains with U and Th contents between 377 and 1919, and 32 and 137 ppm, respectively, and Th/U between 0.05 and 0.21 (Table S1 in Supplementary material). 4.3. Maláguide Complex and unconformable Middle Miocene red conglomerates and sandstones Samples LP-16-AZ and AG-10 contained zircon grains displaying either continuous oscillatory zoning, partially resorbed cores overgrown by low or high U rims, or sector zoning. There were also a few structureless zircon grains (Fig. 9 in S3 Supplementary material) The youngest zircon grains in these two samples have ${}^{206}\text{Pb}/{}^{238}\text{U}$ ages of 277 ± 7 and 283 ± 15 Ma, respectively, while the youngest zircon populations have mean 206 Pb/ 238 U ages of 279 ± 3 Ma (MSWD = 0.57 and probability = 0.63) and 492 ± 8 Ma (MSWD = 1.3 and probability = 0.28), respectively. The age distribution patterns of samples AG-10 and LP-16-AZ are significantly different (Fig. 13). The two main populations in sample AG-10 are Ediacaran

474	(population between 587 \pm 14 and 615 \pm 16 Ma, mean at ca. 602 Ma: 12.8%) and
475	Stenian (population between 1064 \pm 30 and 1085 \pm 22 Ma, mean at ca. 1074 Ma: 4.0%),
476	while in sample LP-16-AZ, they are Carboniferous (population between 299 \pm 7 and
477	310 ± 8 Ma, mean at ca. 305 Ma 17.8%) and Ediacaran (population between 597 \pm 14
478	and 618 ± 16 Ma, mean at ca. 608 Ma: 4.4%). The percentage of Paleozoic grains in
479	sample LP-16-AZ is also almost four times higher than that in sample AG-10, while the
480	Neoproterozoic component in sample AG-10 is almost double that in sample LP-16-AZ.
481	Furthermore, Mesoarchean and Neoarchean dates are lacking in sample LP-16-AZ,
482	which does contain a Paleoarchean component.
483	The dates from the two samples (Fig. 13) include Paleozoic (277 \pm 7 to 528 \pm 13
484	Ma, 14 to 52%), Neoproterozoic (546 \pm 12 to 992 \pm 21 Ma, 33 to 50%),
485	Mesoproterozoic (1002 \pm 26 to 1588 \pm 21 Ma, 5 to 9 %), and Paleoproterozoic (1793 \pm
486	43 to 2499 \pm 33 Ma, 9 to 20%). Sample AG-10 also includes Neoarchean (2515 \pm 15 to
487	2605 \pm 32 Ma, 6%), and Mesoarchean (3000 \pm 17 Ma, 1%) zircon grains, while sample
488	LP-16-AZ also includes one Paleoarchean (3375 \pm 18 Ma, 1%) zircon grain. Within the
489	Paleozoic zircon population, the main difference is the increase (by one order of
490	magnitude) in the number of Carboniferous and Permian grains from 3 and 2 in sample
491	AG-10 to 33 and 18 in sample LP-16-AZ, respectively. The character of the remaining
492	Paleozoic grains is similar in AG-10 and LP-16-AZ (3 and 2 Devonian grains, 1 and 1
493	Silurian grains, 2 and 10 Ordovician grains, and 7 and 6 Cambrian grains in each
494	sample, respectively).
495	Samples AG-3 and AG-20 from the unconformable Middle Miocene red
496	conglomerates and sandstones contain zircon grains with either continuous oscillatory

498 composite grains with a partially resorbed core overgrown by a thick rim, very similar

zoning or sector zoning (Fig. 10 in S3 Supplementary material). There are also some

to those previously described in the Micaschists and Quartzite Fm of the AC. Sample
AG-20 also includes a few structureless zircon grains (Fig. 10 in S3 Supplementary
material)

The youngest zircons from samples AG-3 and AG-20 have ${}^{206}\text{Pb}/{}^{238}\text{U}$ dates of 248 ± 8 and 177 ± 7 Ma, respectively, while their youngest zircon populations have mean ${}^{206}\text{Pb}/{}^{238}\text{U}$ ages of 582 ± 7 Ma (MSWD = 1.3 and probability = 0.23) and 292 ± 3 Ma (MSWD = 0.91 and probability = 0.47), respectively.

The age distribution patterns of AG-3 and AG-20 are slightly different (Fig. 14). There is only one main population in sample AG-3 (Early Ediacaran: ca. 605 Ma: 12.8%), while there are three main populations in sample AG-20 (Late Ediacaran: ca. 574 Ma, 8.5%; Cryogenian: ca. 691 Ma, 6.4%; Orosirian: ca. 2007 Ma: 6.4%). Moreover, the percentage of Paleozoic $(270 \pm 6 \text{ to } 535 \pm 12 \text{ Ma})$ zircon grains in sample AG-20 (22%) is almost three times higher than that in AG-3 (300 ± 7 to 508 ± 13 , 8%). The Mesoarchean component (2848 ± 31 to 3119 ± 28 Ma) in sample AG-3 (5%) is ten times greater than that in sample AG-20 (with only one grain at 3081 ± 35 Ma, ca. 0.5%). Paleoarchean zircon grains are absent in sample AG-20, but present in sample AG-3 (3205 ± 24 Ma) (Fig. 14). Regarding the Mesozoic component (177 to 249 Ma), sample AG-3 contains one Triassic zircon grain with 248 ± 8 Ma, while sample AG-20 contains one Jurassic zircon grain with 177 ± 7 Ma.

The main difference in the Paleozoic component is the lack of Permian grains in sample AG-3, while sample AG-20 contains 7 grains with dates ranging between 270 ± 6 and 298 ± 7 Ma. They also differ in the content of Carboniferous (3 grains in AG-3; 300 ± 7 to 309 ± 7 Ma, and to 8 grains in AG-20; 304 ± 8 to 334 ± 7 Ma), Silurian (1 grain, 435 ± 17 Ma in AG-3, and 3 grains, from 428 ± 12 to 440 ± 10 Ma in AG-20),

523 Ordovician (1 grain, 446 \pm 11 Ma in AG-3, and 5 grains, from 453 \pm 10 to 485 \pm 10 Ma

in AG-20) and Cambrian grains (2 grains, 504 ± 14 to 508 ± 13 Ma in AG-3, and 4 grains, from 487 ± 11 to 535 ± 12 Ma, in AG-20). Samples AG-3 and AG-20 contain the same number of number of Devonian grains (4 grains, 368 ± 10 to 412 ± 11 Ma in AG-3, and 360 ± 9 to 368 ± 10 Ma in AG-20).

5. Discussion

5.1. Depositional age of the graphite-bearing formations of the Nevado-Filábride531 and Alpujárride complexes

Within the upper or lower Lomo de Bas units, the 4 studied samples yielded youngest zircon grains with 4 dates between 284 ± 14 and 323 ± 5 Ma. As previously stated, we also provide youngest populations (see Dickinson and Gehrels, 2009 for the method, and Sharman and Malkowski; 2020 for a discussion). Their youngest populations vary between 321 ± 2 and 336 ± 2 Ma (see text S2 and Fig. S4 in Supplementary material). Therefore, the youngest dates point towards Early Permian-Late Carboniferous maximum depositional ages (MDA). However, as data from the orthogneisses samples AG-13 and AG-26 highlight, some of the youngest zircon dates can be related to Mesozoic metamorphic events and/or lead loss. Therefore, we prefer the more conservative approach of using the youngest detrital zircon populations. Therefore, we propose a MDA between 321 ± 2 and 336 ± 2 Ma for the quartzites of the Lomo de Bas (i.e., Carboniferous).

The orthogneiss bodies within the Lomo de Bas black schists and quartzites (Álvarez and Aldaya, 1985; Álvarez, 1987) are strongly deformed and metamorphosed, making it difficult to determine whether they represent volcanic rocks or intrusive plutons. However, in either case, these units can help define the minimum depositional age of the Lomo de Bas rocks, as they are located in the uppermost part of the

succession (see Fig. 4). If they are volcanic rocks coeval with deposition, they indicate the age of the uppermost layers, and if they are plutons which were intruded post-deposition, they constrain the minimum depositional age of the Lomo de Bas rocks. Samples AG-13 and AG-16 yield 206 Pb/ 238 U ages for the parent rocks of 294 ± 2 Ma (MSWD = 0.75 and probability = 0.68) and 289 ± 3 Ma (MSWD = 1.4 and probability = 0.20), respectively. The age of both orthogneisses just overlap within uncertainty and, together with the previous MDA, defines a depositional age for the quartzitic rocks of the Lomo de Bas units between Bashkirian (Late Carboniferous) and Artinskian-Sakmarian (Early Permian). This Late Carboniferous age is compatible with the presence of Early-Middle Devonian fossils in the dark marbles below the quartities of the upper tectonic unit (Eifelian-Emsian, c.f. Lafuste and Pavillon, 1976; Laborda-López et al., 2013, 2015a,

b), and also supports the presence of several superposed tectonic units as suggested by
Laborda-López et al. (2013, 2015a, b).

The youngest 206 Pb/ 238 U zircon dates in samples from the Micaschists and Quartzite Fm of the AC (AG-4, AG-5, AG-6 and AG-7) are Early Permian-Late Carboniferous (328 ± 10 Ma and 296 ± 4 Ma), but the youngest populations in these samples are highly variable; Cambrian-Late Ediacaran (between 507 and 558 Ma) in samples AG-4, AG-6 and AG-7, and Late Carboniferous (Ma) in sample AG-5 at the base of the Micaschists and Quartzite Fm. Sample AG-5 indicates a MDA of Late Pennsylvanian age for the AC Micaschists and Quartzite Fm.

5.2. Provenance of zircon in Late Carboniferous samples

572 The studied samples from both the Lomo de Bas rocks and the Micaschists and
573 Quartzite Fm include Carboniferous grains (8.9% of total grains in the NFC, and 3.6%

574	of grains in the AC) that could have been sourced from Late-Variscan and Variscan
575	igneous rocks, occupying more than one third of the outcrops of the whole Iberian
576	Massif, and essentially, ca. one half of the Central Iberian Zone (e.g. Arranz and Lago,
577	2004; Bea, 2004; Casquet and Galindo, 2004; Gallastegui et al., 2004; Ribeiro et al.,
578	2019). Furthermore, they could have been sourced from the oldest granitoids within the
579	Variscan remnants in the Betic Chain, essentially the older orthogneisses in the NFC
580	with U-Pb ages of ca. 301 Ma (Gómez-Pugnaire et al., 2004, 2012). The Carboniferous
581	rocks of both the NFC and AC also include a number of Early Ordovician, Silurian and
582	Devonian dates (4.4% of grains in the NFC and 2.7% of grains in the AC with dates
583	between 484 and 365 Ma). Ordovician zircon grains may have come from the Ollo de
584	Sapo magmatic event (Montero et al., 2007, 2009, Díez-Montes et al., 2010) or other
585	igneous bodies (Rubio-Ordóñez et al. 2012; Talavera et al., 2013; Pereira et al., 2018),
586	while Silurian and Devonian grains may have originated from the volcanic event that is
587	now starting to be recognized in the Central Iberian Zone (Gutiérrez-Alonso et al.,
588	2008), or from the allochthonous complexes where rocks with Silurian and Devonian
589	grains are relatively abundant (see Pastor-Galán et al., 2013, where their sources are
590	explored). For example, they are found within granites in the the Sehoul Block in the
591	Western Moroccan Meseta (Tahiri et al., 2010), and also within metasediments: i) in the
592	Late Devonian Debdou-Mekkam Metasediments in the Eastern Moroccan Meseta
593	(Accotto et al., 2020), ii) in Late Paleozoic metasediments from both the South
594	Portuguese and Ossa-Morena zones (Pereira et al., 2012, 2014, 2017a; Pérez-Cáceres et
595	al., 2017) and iii) in the syn-orogenic rocks below the allochthonous complexes of the
596	Galicia-Tras-Os-Montes (Martínez Catalan et al., 2008).
597	However, the main detrital zircon component in the Carboniferous rocks of both

598 the NFC and AC is pre-Cambrian, and includes 4 zircon age populations: Ediacaran-

Cryogenian (39.4% in the NFC at ca. 574 Ma, and 5.2% in the AC at ca. 602 Ma), Tonian-Stenian (3.6% in the NFC at ca. 1014 Ma, 5.3% in the AC at ca. 1039 Ma), Orosirian (3.8% in the NFC at ca. 2024 Ma, and 4.8% in the AC at ca. 2054 Ma), and Neoarchean (1.7% in the NFC at ca. 2659 Ma, and 1.6% in the AC at ca. 2547 Ma). The first of these four populations represents the Cadomian-Pan-African orogeny, developed in Gondwana and the peri-Gondwanan terranes, like the Meguma and West Avalonia terranes. The second one represents the Tonian-Stenian magmatic event in the Arabian Shield at ca. 1.0 Ga (see Bea et al., 2010; Fernández-Suárez et al., 2014; Meinhold et al., 2014). The Orosirian population represents the Eburnean orogeny, and the ages of the basement in the cratonic areas of the Saharan Metacraton (see Meinhold et al., 2014).

We can also compare the results presented here with those obtained on samples of a similar age from the Betic Cordillera, Iberian Massif and surrounding areas, as the Pyrenees, Montagne Noire and Mouthoumet massifs (Martínez et al., 2016) (Fig. S5 in the Supplementary material). In the Betic Cordilleras, the Lomo de Bas units have usually been interpreted as part of the Veleta units of the NFC (i.e. Álvarez and Aldaya, 1985; Álvarez, 1987), and their quartzites correlated with the Late Carboniferous Aulago Fm in the Sierra de Filabres area (Jabaloy-Sánchez et al., 2018; Rodríguez-Cañero et al., 2018), which also include the Ediacaran-Cryogenian and Stenian populations mentioned above (Jabaloy-Sánchez et al., 2018) (Fig. S5 in Supplementary material). The main difference is a larger proportion of Devonian and Carboniferous zircon grains within the Lomo the Bas rocks (13 and 49 grains, respectively), when compared to those from the Aulago Fm (7 and 4 grains, respectively; Jabaloy-Sánchez et al., 2018) (Fig. S5 in Supplementary material). Furthermore, the age pattern of sample Ri119 from the Paleozoic basement of a tectonic unit of the Sebtide/Alpujárride

Complex in the Internal Rif (n=144 analyses, Azdimousa et al., 2019) also yields a
similar pattern to that in Late Carboniferous samples from the AC and NFC with two
main populations at ca. 532 and 992 Ma (Fig. S5 in Supplementary material).

Similar age patterns with these four peaks are found within the Carboniferous
and older rocks from the Central Iberian, Cantabrian, and West Asturian-Leonese zones
of the Iberian Massif (see Talavera et al., 2012, 2015; Pastor-Galán et al., 2013;
Fernández-Suárez et al., 2014; Shaw et al., 2014; Gutierrez-Alonso et al., 2015) (Fig. S5
in Supplementary material).

If we compare the studied samples with the previously discussed age patterns using the MDS plot, we found that all the samples from the Late Carboniferous rocks from the NFC (Jabaloy-Sánchez et al., 2018; this work), AC (Azdimousa et al., 2109; this work) and the Cantabrian Zone (Pastor-Galán et al., 2013) are very similar except for sample AG-17 (Fig. 15). This similarity is indicated by a clustering of all samples from the NFC, AC and the Cantabrian Zone to the upper left of the plot, while sample AG-17 plots near the centre (Fig. 15),

Martínez et al. (2016) analyzed Late Carboniferous rocks from the NE Iberian Peninsula and South France, including samples from the Catalonian Massif, Minorca, Montagne Noire Massif, Mouthoumet Massif, Pyrenees, and Priorat Massif. In order to compare these samples with our data, we have calculated discordance for their dataset, and selected the 780 ages with Concordia between 90% and 110%. The MDS plot shows no similarity with the previously discussed data except for sample AG-17, which together with the samples from Martínez et al. (2016), grouped in a different cluster to those of the NFC, AC and the Cantabrian Zone (Fig. 15). The main differences that explain the observed dissimilarity between these Late Carboniferous samples are the lack of a Stenian peak (Montagne Noire Massif, Mouthoumet Massif, Pyrenees, and
Priorat Massif), or , if present, it is a minor one (Catalonian Massif and Minorca) in the
samples from Martinez et al (2016). Furthermore, the Neoarchean population is also
absent in the Catalonian Massif, Mouthoumet Massif, Pyrenees, and Priorat Massif
areas, but not in the samples from Minorca and Montagne Noire Massif.

Dinis et al. (2018) and Pereira et al. (in press) studied the Late Carboniferous sediments from the Ossa-Morena (Santa Susana Fm: samples StSz2 and StSz4 from Dinis et al., 2018, and SS-1 and SS-2 from Pereira et al., in press). In the MDS plot, they do not show any similarity with the samples from NFC, AC or the Cantabrian Zone, except in the case of the comparison between AG-17 and SS-2 and StSz4 samples. The Santa Susana Fm samples plot far from the other two clusters on the MDS diagram. (Fig. 15). The main difference is the lack of the Stenian and Neoarchean populations in the latter samples. Furthermore, Pereira et al. (2014) studied the South Portuguese Zone of the Iberian Massif (Fig. S5 in Supplementary material), where Late Carboniferous sediments were deposited in the Mira Fm (Serpukhovian-Bashkirian, samples ST-8 and SC-6 from Pereira et al., 2014) and in the Brejeira Fm (Bashkirian-Moscovian, samples AJ-1, AM-3, and TH-5 from Pereira et al., 2014). Samples from both the Mira and Brejeira Fms essentially show no similarity with the samples from the NFC, AC and Cantabrian Zone in the MDS plot, although the AM-3, and TH-5 samples show some similarity with the cluster from sample AG-17 and those from NE Iberian Peninsula and South France (Martinez et al., 2016) (Fig. 15).

All these data suggest that the Late Carboniferous sediments of both the NFC
and the AC were sourced and recycled from Variscan rocks containing zircon grains
from the Cantabrian, West Asturian-Leonese, and Central-Iberian zones of the Iberian
Massif. Furthermore, the sediments incorporated a small number of zircon grains
derived from the Late-Variscan felsic rocks. The sediments were mainly pelites rich in

organic material, quartz-rich sandstones (quartzwackes in the case of the NFC, Jabaloy, 1993; Rodríguez-Cañero et al., 2018), and black limestones (with conodonts in the case of the NFC rocks; Rodríguez-Cañero et al., 2018) suggesting deposition in open marine anoxic environments (Rodríguez-Cañero et al., 2018). This points to an environment similar to the Carboniferous foreland basins developed in the Cantabrian Zone of the Iberian Massif (see Matte, 2001, Rodríguez-Cañero et al., 2018; Jabaloy-Sánchez et al., 2018) as the most likely paleogeographic location of both complexes (Fig. 16). In Late Carboniferous times, the Variscan belt was already formed in Western and Central Europe (e.g. Matte, 2001), and most of the rocks of the Cantabrian, West Asturian-Leonese, Central-Iberian zones were deformed and stacked with the rocks of the Rheic Ocean suture zone (i.e. Pastor-Galán et al., 2013). Rocks from the Variscan belt, including rocks from those three stacked zones, were being eroded at Late Carboniferous, and their zircon grains had been stored within the coetaneous sediments in the Cantabrian Zone (see Pastor-Galán et al., 2013), and NFC (Jabaloy-Sánchez et al., 2018). Our data indicate the same case for the rocks of the AC (Fig. 16). On the other hand, the published data from the samples from the MC with Carboniferous-Early Permian ages have Early Carboniferous (at ca. 329 and 347 Ma respectively), Early Ordovician-Cambrian (ca. 445 and 491 Ma), Ediacaran-Cryogenian (ca. 589 and 649 Ma), Tonian (ca. 932 Ma), and Orosirian populations (ca. 2002 and 2080 Ma) (sample CM-10 from the Marbella Conglomerate from Esteban et al., 2017, and sample Ri121 from Azdimousa et al., 2019, Fig S5 in Supplementary material). However, they show a difference in the number of Neoarchean zircon grains (ca. 2.6 Ga), which are more abundant in sample Ri121 from Azdimousa et al., 2019, Fig. S5 in Supplementary material). In the MDS plot, they are located within the same cluster as sample AG-17 and those from North-eastern Iberian Peninsula and South France.

Therefore, the most likely location of the MC realm was not at the southernpaleomargin of Iberia (Esteban et al., 2107), but in the same paleomargin as the North-

701 eastern Iberian Peninsula and South France rocks.

5.3. Permian to Triassic samples from the NFC, AC and MC

Sample AG-26 from the Cabezo Blanco orthogneiss within the Cantal unit yielded zircon grains with textures similar to those described by Gómez-Pugnaire et al., (2004, 2012) in the NFC. The CL imaging of these grains shows cores with continuous oscillatory zoning truncated by dark U-rich rims. These cores yielded a ²⁰⁷Pb corrected 206 Pb/ 238 U age of 283 ± 2 Ma, while the dark overgrowths have yielded a 207 Pb corrected 206 Pb/ 238 U age of 15.8 ± 0.2 Ma. We propose the former age as the age of the igneous parent rocks of the Cabezo Blanco orthogneiss and the latter age as the age of a metamorphic event affecting this orthogneiss. Similar metamorphic ages have been determined within zircon grains from the NFC (López Sánchez-Vizcaíno et al., 2001, 15.0 ± 0.6 Ma; Gómez-Pugnaire et al., 2004, 2012; 16.5 ± 0.4 Ma and 17.3 ± 0.4 Ma respectively). Furthermore, similar ages were also determined from Lu-Hf on garnets (Platt et al., 2006, between 18 and 14 Ma) and multimineral isochrons on samples of this complex (Kirchner et al., 2016; three ages of 20.1 ± 1.1 , 16.0 ± 0.3 , and 13.3 ± 1.3 Ma). However, the metamorphic zircon grains from the AC typically have slightly older ages (Sánchez-Rodriguez and Gebauer, 2000, 19.9 ± 1.7 Ma.; Platt et al., 2003; ages between 22.7 and 21.3 Ma; Esteban et al., 2007, 19.2 ± 1.1 Ma), and the AC has yielded additional older ages including a garnet Lu-Hf age of 25 ± 1 Ma (Blichert-Toft et al., 1999), and a garnet and clinopyroxene Sm-Nd age of 21.5 ± 1.8 Ma (Zindler et al., 1983). Therefore, we propose that the Cantal unit is part of the NFC as already proposed by García-Tortosa (2002).

Samples AG-1 and AG-2 come from two quartzites in the upper part of the Tahal Fm within the Mulhacén units. They yielded very similar zircon age patterns, the youngest zircon 206 Pb/ 238 U dates being Jurassic (195 ± 8 Ma and 179 ± 5 Ma, respectively) and the youngest zircon population being Early Permian (275 ± 8 Ma and 277 ± 4 Ma, respectively). These data match the 259 concordant-nearly concordant analyses from the Tahal Fm published by Jabaloy-Sánchez et al. (2018), in which the youngest zircon population was Early Permian (275 ± 2 Ma) as well (Fig. S6 in Supplementary material).

An estimate of the MDA for the sources of the Tahal Fm based on the youngest zircon grains points to Jurassic. However, our preference is a more conservative estimate for the MDA based on the youngest populations and our proposal is an age younger than Early Permian (275 ± 8 Ma), in agreement with the data provided by Jabaloy-Sánchez et al. (2018), and Santamaría-López and Sanz de Galdeano (2018) for the same rocks in Sierra Nevada and Sierra de los Filabres.

738The youngest zircon dates for samples AG-9, AG-11, and AG-15 from the739Meta-detrital Fm of the AC are Triassic-Early Permian (between 214 ± 2 Ma and $288 \pm$ 7404 Ma) and the youngest zircon populations are Early Permian (287 ± 2 , AG-9, and 287741 ± 1 , AG-11) to Early Ordovician (474 ± 3 Ma, AG-15). We have used the same742approach described above to estimate the MDA of the Meta-detrital Fm, proposing an743Early Permian (Artinskian) MDA for this formation, older than the Middle Triassic744stratigraphic age (ca. 247 to ca. 237 Ma, see Simon and Visscher, 1983; Maate et al.,7451993; García Tortosa et al., 2002; Martín-Rojas et al., 2010). Furthermore, the youngest746zircon 206 Pb/ 238 U date and the youngest zircon population in sample AG-19 from the747Miñarros unit are 297 ± 5 Ma and 300 ± 1 Ma, respectively, indicating an older MDA

(Gzhelian, Late Pennsylvanian). Samples AG-9, AG-11, AG-15 and AG-19 have
similar age patterns to the samples from the Tahal Fm (NFC).

The youngest zircon grains from samples AG-10 and LP-16-AZ from the Saladilla Fm of the MC yielded 206 Pb/ 238 U dates between 277 ± 7 and 282 ± 15 Ma. Moreover, the youngest zircon populations were 492 ± 8 Ma and 279 ± 3 Ma,

respectively, pointing to an Early Permian MDA.

755 5.4. Provenance for zircon of the Permian to Triassic meta-detrital samples

A common feature of the samples with a Permian MDA from the three complexes (NFC, AC and MC) is an increase in the number of Paleozoic zircon grains with respect to the older Carboniferous samples (Fig. S6 in Supplementary material). The Permian MDA samples show an increase in the number of Permian and Carboniferous zircon grains indicating erosion of Variscan and Late-Variscan felsic rocks in the source areas. In the NFC, the Tahal Fm contains 21% to 27 % Permian-Carboniferous grains (the values are the percentage of the total number of analyses of each sample) (254 to 355Ma), while the Late Carboniferous Lomo de Bas quartzites have 5% to 18% Carboniferous grains, with only two Permian grains. Within the AC, the Meta-detrital Fm has variable contents of Permian-Carboniferous grains (from 3 to 31%, the values are the percentage of the total number of analyses of each sample), while the Late Carboniferous Micaschists and Quartzite Fm has 3% to 6%. Furthermore, in the MC, the Saladilla Fm also displays a variable content of Permian-Carboniferous grains (from 4% to 38%); while the Lower Carboniferous Morales Fm (sample Ri121 from Azdimousa et al., 2019) has 6% Carboniferous grains, and the Permian Marbella Conglomerate (Esteban et al., 2017) has 12 % Permian and Carboniferous grains.

Samples from the Tahal Fm (NFC) have Carboniferous populations between ca.
331 and ca. 334 Ma ("Variscan"), Ediacaran populations between ca. 598 and ca. 610
Ma ("Cadomian"-"Pan-African"), and a Tonian population at ca. 939 Ma (Fig. S6 in
Supplementary material). If the "Variscan grains" are excluded (i.e. post- Late
Devonian grains which are younger than 370 Ma), the age distribution pattern is similar
to that of the Aulago Fm (Jabaloy-Sánchez et al., 2018) and of the Lomo de Bas
quartzites, except for a lower number of Tonian-Stenian (ca. 1.0 Ga) and Neoarchean
(ca. 2.61 Ga) grains (Figs. S5 and S6 in Supplementary material).

The age distribution patterns for samples from the Meta-detrital Fm (AC) are similar to those in the above mentioned samples from the Tahal Fm (NFC) (Fig. S6 in Supplementary material). Samples from the Meta-detrital Fm also have Permian ("Late-Variscan" at 287Ma), Ediacaran-Cryogenian ("Pan-African", from ca. 546 to ca. 660 Ma) populations, with minor Tonian-Stenian (from ca. 963 to ca. 1016 Ma) and Rhyacian ("Eburnean", ca. 2060 Ma) populations (Fig. S6 in Supplementary material). If the <370 Ma zircon grains are excluded, the age distribution pattern is similar to that obtained by combining the Micaschists and Quartzite Fm (AC) datasets (Fig. S6 in Supplementary material).

In the Saladilla Fm (MC), there are Permian ("Late-Variscan" between ca. 279
and 305 Ma), and Ediacaran-Cryogenian populations ("Pan-African", from ca. 602 to
677 Ma), with minor Stenian (ca. 1074 Ma), Orosirian ("Eburnean", ca. 1937 Ma) and
Neoarchean (ca. 2106 Ma) peaks (Fig. S6 in Supplementary material). They differ from
the data of the Carboniferous-Early Permian samples from the same MC (Esteban et al.,
2017; Azdimousa et al., 2019), not only in the presence of the Early Permian
population, but also in the Stenian and Neoarchean peaks. This distinction in the age
patterns is due to the erosion and incorporation of material from Late-Variscan felsic

 rocks and the increasing number of zircon grains sourced from the Cantabrian, WestAsturian-Leonese and Central-Iberian zones.

Comparing these samples with Permian MDA with Permian and Triassic samples from the Iberian Peninsula (Sánchez Martínez et al., 2012; Pastor-Galán et al., 2013; Pereira et al. 2016; Dinis et al., 2018; Gama et al., in press) using the MDS plot, we found that samples from the Tahal Fm (NFC), Meta-detrital Fm (AC) and Saladilla Fm are quite similar, and they project towards the centre of the figure (Fig. 17), while sample LP-16-AZ is slightly separated, thus suggesting that all these samples have the same source area. Furthermore, all show similarities with most of the samples from the Iberian Chain (Sánchez Martínez et al., 2012), Cantabrian Zone (Pastor-Galán et al., 2013), Permian El Viar Basin (Dinis et al., 2018), Triassic Lusitanian Basin (Pereira et al., 2016; Dinis et al., 2018), Triassic Alentejo Basin (Pereira et al., 2017b; Dinis et al., 2018), and Triassic Algarve Basin (Pereira et al., 2017b; Dinis et al., 2018; Gama et al., in press). These similarities can be seen in the MDS plot in which samples PT2, PT4 and PT5 from the Iberian Chain (Sánchez-Martínez et al., 2012), PG2 and PG3 from the Cantabrian Zone (Pastor-Galán et al., 2013), V152 and V154 from the Viar Basin (Dinis et al,., 2018), CM2, SBM-6 and SBM-7 from the Algarve Basin (Pereira et al 2017b; Gama et al., in press), SC-4 from the Alentejo Basin (Pereira et al 2017b), and SO and CO from the Lusitania Basin (Pereira et al., 2016; Dinis et al., 2018) cluster together with the samples from the Betic Cordillera (Fig. 17). A major question is what tectonic process induced these differences. Vissers

(1992) found an Upper Carboniferous to Permian extensional event in the Pyrenees
synchronous with uplift and emergence of large parts of the crust and deposition of
continental sediments in fault-bounded extensional half-grabens. Subsequently, GarcíaNavarro and Fernández (2004) found an Early Permian faulting event in the SW Iberian

Peninsula where strike-slip and normal faults generated the intracontinental, Early
Permian El Viar basin. Those data suggest that during the Permian to Early Triassic
breakup of Pangea, tectonic uplift along major normal faults may have exposed
different levels of Variscan crust, including the Late-Variscan granitoids, to erosion.

5.5. Unconformable Middle Miocene red conglomerates and sandstones

The samples from Middle Miocene sediments have only two Mesozoic zircon grains (248 \pm 8 and 177 \pm 7 Ma), and their youngest zircon population has a mean 206 Pb/ 238 U age of 292 ± 3 Ma, pointing to an Early Permian MDA. Their age distribution patterns correspond to mixing of zircon grains from the AC and MC, confirming that after experiencing HP metamorphism during Oligocene-Early Miocene times (Zindler et al., 1983; Blichert-Toft et al., 1999; Sánchez-Rodriguez and Gebauer, 2000; Platt et al., 2003; Esteban et al., 2007), the AC rocks were exhumated and eroded at the surface during the Middle Miocene. It is noteworthy that these unconformable Middle Miocene sediments were formed at the surface at the same time that the Cantal unit (sample AG-26) and the NFC was experiencing metamorphism in depth. However, the most important conclusions is that there is no record of any major felsic rock formation event after the Early Permian times in the AC or MC, although several stages of continental rifting and the subduction of the AC took place during this period (e.g. Jabaloy-Sánchez et al., 2019).

The U-Pb zircon data presented here have implications for the evolution of both the Variscan and Alpine chains in the western Mediterranean area. The main implications for the Variscan chain is the existence of Late Carboniferous sedimentary basins eastwards of the Iberian Massif, which recorded the erosion of the Variscan Chain formed during the Late Devonian-Carboniferous, and were also affected by the

Late Carboniferous-Early Permian Late Variscan magmatic event. The sedimentary record in these basins was metamorphosed from Oligocene to Middle Miocene times to form the graphite-rich successions of the NFC and AC during the Alpine orogeny.

During the Permian-Triassic, the break-up of Pangea took place and resulted in the formation of three different paleogeographic realms:

i) the Nevado-Filábride realm continued near the Iberian Massif southeastern paleomargin,

ii) the Alpujárride realm separated from the Iberian Massif by rifting during the Triassic-Jurassic (Martín Rojas et al. 2009; Puga et al., 2011),

iii) the Maláguide realm separated from the North-eastern paleomargin of Iberia (Esteban et al., 2107) during the Jurassic (e.g., Martín-Martín et al. 2006).

Those three realms amalgamated during the Cenozoic; first, the AC subducted below the MC, and later, the NFC subducted below the two previously amalgamated complexes at Early Middle Miocene times. During these processes, the Cantal unit was partially melt, leading to the formation of migmatites. Another line of correlation is the age of the felsic intrusive rocks reported here and in previous works (Gómez-Pugnaire et al., 2014; 2012). The Permian age of the volumetrically minor intrusive bodies (301 to 282 Ma, Gómez-Pugnaire et al., 2004, 2012; this work) is similar to granites in the CZ (286 to 297 Ma; Gutiérrez-Alonso et al., 2011), while the significantly more abundant granites in the WALZ and the CIZ are, in general, older (321 to 290 Ma, Martins et al., 2019, and references therein).

7. Conclusions

New U-Pb detrital zircon ages in rocks from the Águilas Arc provide maximum depositional ages for their parent rocks. Orthogneisses in the NFC may have volcanic or plutonic parent rocks, but as they are located in the uppermost part of the Lomo de Bas succession, they can indicate a minimum depositional age for these rocks (Sakmarian-Artinskian, 294 ± 2 Ma and 289 ± 3 Ma), regardless of their igneous classification. In the NFC, the true depositional age of the Lomo de Bas schists and quartzites is Late Carboniferous to Early Permian (ranging between 321 ± 2 and 289 ± 3 Ma), while the MDA of the Tahal Fm is confirmed as Early Permian. In the AC, the MDA of the Micaschists and Quartzite Fm is also Late Carboniferous (308 ± 4 Ma), and that of the Meta-detrital Fm is Early Permian (287 ± 1 Ma). Furthermore, the MDA of the Saladilla Fm (Maláguide Complex) is also Early Permian (279 ± 3 Ma).

The age patterns from the Upper Carboniferous rocks of the NFC and AC are similar, and also similar to those from Upper Carboniferous of the Cantabrian Zone of the Iberian Massif, suggesting similar source areas. The most likely paleogeographical location of both complexes was in Late Carboniferous marine basins located eastwards of the Iberian Massif. However, the age patterns show differences compared with those from the Upper Carboniferous rocks of the MC, and from the South Portuguese and Ossa-Morena zones of the Iberian Massif. On the other hand, age patterns from Upper Carboniferous rocks of the MC show some similarities with those from the North-eastern Iberian Peninsula and South Francia. Therefore, the paleogeographic location of the MC could have been different from that of the NFC and AC, and it was probably located near the Ossa-Morena Zone and the other rocks derived from the West African Craton.

The samples with Early Permian MDA from the three complexes (NFC, AC, and MC) have more Paleozoic zircon grains than the Late Carboniferous samples, and similar age patterns. This data can be explained if zircon grains from the main Variscan orogenic relief were recycled, while unroofing of footwalls of faults also exposed Late

898 Variscan granitoids at the surface. It is possible that these zircon grains were deposited 899 in the same basin, likely the long-lived Iberian Permian-Triassic depositional basins. 900 Samples from the unconformable Middle Miocene sediments have Early Permian MDA 901 $(292 \pm 3 \text{ Ma})$ and age distribution patterns corresponding to a mixing of zircon grains 902 from the AC and MC, and thus, do not record formation of felsic rocks since the Early 903 Permian.

905 Acknowledgements

This paper is dedicated to the memory of Dr. Fernando Álvarez Lobato, who passed away while this contribution was written. We are indebted to Mike Hall and Brad McDonald for their technical support on sample preparation and LA-ICPMS, respectively. The CL imaging was carried out in Curtin University's Microscopy & Microanalysis Facility, of which instrumentation has been partially funded by the University, State and Commonwealth Governments, and the Scanning Electron Microscope (SEM) Facility at the University of Edinburgh. Analysis in the John de Laeter Centre GeoHistory Facility was enabled by AuScope (auscope.org.au) and the Australian Government via the National Collaborative Research Infrastructure Strategy (NCRIS). This work is supported by grants CGL2016-75224-R, and CGL2015-71692-P (MINECO/FEDER, Spain) and RNM-208 (Junta de Andalucía, Spain). This is the **IBERSIMS** Publication No. 70.

References

920 Accotto, C., Martínez Poyatos, D.J., Azor, A., Jabaloy-Sánchez, A., Talavera, C.,

921 Evans, N.J., Azdimousa, A., 2020. Tectonic evolution of the Eastern Moroccan
922 Meseta: from Late Devonian fore-arc sedimentation to Early Carboniferous

-	923	collision of an Avalonian promontory. Tectonics, 38,
1 2 3	924	e2019TC005976,https://doi.org/10.1029/2019TC005976
4 5	925	Accotto, C., Martínez Poyatos, D.J., Azor, A., Talavera, C., Evans, N.J., Jabaloy-
6 7 8	926	Sánchez, A., Azdimousa, A., Tahiri, A.; El Hadi, H., 2019. Mixed and recycled
9 10	927	detrital zircons in the Paleozoic rocks of the Eastern Moroccan Meseta:
11 12 12	928	paleogeographic inferences. Lithos 338-339, 73-86,
14 15	929	https://doi.org/10.1016/j.lithos.2019.04.011
16 17	930	Aldaya, F., Álvarez, F., Galindo-Zaldívar, J., González-Lodeiro, F., Jabaloy, A.,
18 19 20	931	Navarro-Vilá, F., 1991. The Maláguide-Alpujárride contact (Betic Cordilleras,
21 22	932	Spain): a brittle extensional detachment, Comptes Rendus de l'Académie des
23 24 25	933	Sciences de Paris 313, 1447-1453.
26 27	934	Álvarez, F., 1987. Subhorizontal shear zones and their relation to nappe movements in
28 29 30	935	the Cantal and Miñarros units. Eastern Betic Zone (Spain). Geologie en
31 32	936	Mijnbouw 66, 101-110.
33 34 25	937	Álvarez, F., Aldaya, F., 1985. Las unidades de la Zona Bética en la región de Águilas-
36 37	938	Mazarrón (Prov. de Murcia). Estudios Geológicos 41, 139-146.
38 39	939	Arranz, E., Lago, M., 2004. El plutonismo sin- y tardi-varisco en los Pirineos. In: Vera,
40 41 42	940	J.A., (Ed.) Geología de España, SGE-IGME, Madrid, 263-266.
43 44	941	Azdimousa, A., Jabaloy-Sánchez, A., Talavera, C., Asebriy, L., González-Lodeiro, F.,
45 46 47	942	Evans, N.J. 2019. Detrital zircon U-Pb ages in the Rif Belt (northern Morocco):
48 49	943	Paleogeographic implications. Gondwana Research 70, 133-150,
50 51	944	https://doi.org/10.1016/j.gr.2018.12.008
52 53 54	945	Balanyá, J.C., García-Dueñas, V., 1987. Les directions structurales dans le Domaine
55 56	946	d'Alborán de part et d'autre du Détroit de Gibraltar. Comptes Rendus de
57 58 59	947	l'Académie des Sciences de Paris 304, 929-932.
60 61 62 63 64		38
65		

	948	Bea, F., 2004. La naturaleza del magmatismo de la Zona Centroibérica: consideraciones
1 2 3	949	generales y ensayo de correlación. In: Vera, J.A., (Ed.) Geología de España,
4 5	950	SGE-IGME, Madrid, 128-133.
6 7 8	951	Bea, F., Montero, P., Talavera, C., Abu Anbar, M., Scarrow, J., Molina, J.F., Moreno,
9 10	952	J.A., 2010. The palaeogeographic position of Central Iberia in Gondwana during
11 12 13	953	the Ordovician: evidence from zircon geochronology and Nd isotopes. Terra
14 15	954	Nova 22, 341-346.
16 17 18	955	Booth-Rea, G., Silva Barroso, P.G., (2008). Mapa Geológico de España escala
19 20	956	1:50.000. Edición Digital. Hoja 975, Puerto Lumbreras. Instituto Geológico y
21 22	957	Minero de España, Madrid.
23 24 25	958	Blichert-Toft, J., Albarède, F., Kornprobst, J., 1999, Lu-Hf isotope systematics of garnet
26 27	959	pyroxenites from Beni Bousera, Morocco: Implications for basalt origin. Science
28 29 30	960	283, 1303-1306
31 32	961	Booth-Rea, G., Silva Barroso, P.G., Bardají Azcárate, T., Martín Serrano, A., (2009).
33 34 35	962	Mapa Geológico de España escala 1:50.000. Edición Digital. Hoja 997, Águilas.
36 37	963	Instituto Geológico y Minero de España, Madrid.
38 39 40	964	Bowring, S.A., Schmitz, M.D., 2003. High-precision U-Pb zircon geochronology and
40 41 42	965	the stratigraphic record. Reviews in Mineralogy and Geochemistry 53, 305-326,
43 44	966	https://doi.org/10.2113/0530305
45 46 47	967	Casquet, C., Galindo, C., 2004. Magmatismo varisco y postvarisco en la Zona de Ossa-
48 49	968	Morena. In: Vera, J.A., (Ed.) Geología de España, SGE-IGME, Madrid, 194-
50 51 52	969	198.
53 54	970	Chalouan, A., Michard, A., El Kadiri, K., Negro, F., Frizon de Lamotte, D., Soto J.I.,
55 56 57	971	Saddiqi, O., 2008. The Rif Belt. In: Michard, A., Frizon de Lamotte, D., Saddiqi,
58 59	972	O., Chalouan, A., (Eds.) Continental Evolution: The Geology of Morocco.
60 61		
62 63 64		39
65		

1	973	Lecture Notes in Earth Sciences, vol 116, pp. 203-302, Springer-Verlag, Berlin
1 2 3	974	Heidelberg.
4 5	975	Dallmeyer, R.D., Martínez Catalán, J.R., Arenas, R., Gil Ibarguchi, J.I., Gutiérrez-
6 7 8	976	Alonso, G., Farias, P., Aller, J., Bastida, F., 1997. Diachronous Variscan
9 10	977	tectonothermal activity in the NW Iberian Massif: Evidence from 40Ar/39Ar
11 12 13	978	dating of regional fabrics. Tectonophysics 277, 307–337,
14 15	979	https://doi.org/10.1016/s0040-1951(97)00035-8
16 17	980	Dickinson, W.R., Gehrels, G.E., 2009. Use of U-Pb ages of detrital zircons to infer
18 19 20	981	maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic
21 22	982	database. Earth and Planetary Science Letters 288 (1-2), 115-125,
23 24 25	983	https://doi.org/10.1016/j.epsl.2009.09.013
26 27	984	Díez-Montes, A., Martínez-Catalán, J.R., Bellido Mulas, F., 2010. Role of the Ollo de
28 29 30	985	Sapo massive felsic volcanism of NW Iberia in the Early Ordovician dynamics
31 32	986	of northern Gondwana. Gondwana Research 17, 363-376,
33 34 35	987	https://doi.org/10.1016/j.gr.2009.09.001
36 37	988	Dinis, P.A., Fernandes, P., Jorge, R.C.G.S., Rodrigues, B., Chew, D.M., Tassinari, C.G.,
38 39	989	2018. The transition from Pangea amalgamation to fragmentation: constraints
40 41 42	990	from detrital zircon geochronology on West Iberia paleogeography and sediment
43 44	991	sources. Sedimentary Geology 375, 172-187.
45 46 47	992	Durand-Delga, M., Escalier des Orres, P., Fernex, F., 1962. Sur la présence de
48 49	993	Jurassique et d'Oligocène a l'ouest de Carthagene (Espagne méridionale)".
50 51 52	994	Comptes Rendus de l'Académie des Sciences de Paris 255, 1755-1753.
53 54	995	Espinosa Godoy, J., Herrera López, J.L., Pérez Rojas, A., 1972. Mapa Geológico de
55 56 57	996	España escala 1:50.000. Hoja 997bis, Cope. Instituto Geológico y Minero de
57 58 59	997	España, Madrid
60 61		
62 63 64		40
65		

-	998	Esteban, J.J., Cuevas, J., Tubía, J.M., Liati, A., Seward, D., Gebauer, D., 2007. Timing
1 2 3	999	and origin of zircon-bearing chlorite schists in the Ronda peridotites (Betic
4 5	1000	Cordilleras, Southern Spain). Lithos 99, 121-135.
6 7 8	1001	Esteban, J.J., Cuevas, J., Tubía, J.M., Gutiérrez-Alonso, G., Larionov, A., Sergeev, S.,
9 10	1002	Hofmann, M., 2017. U-Pb detrital zircon ages from the Paleozoic Marbella
11 12 12	1003	Conglomerate of the Malaguide Complex (Betic Cordilleras, Spain).
13 14 15	1004	Implications on Paleotethyan evolution. Lithos 290-291, 34-47.
16 17	1005	Fernández-Fernández, E.M., Jabaloy-Sánchez, A., Nieto, F., González-Lodeiro, F.,
18 19 20	1006	2007. Structure of the Maláguide Complex near Vélez Rubio (Eastern Betic
21 22	1007	Cordillera, SE Spain). Tectonics 26, TC4008,
23 24 25	1008	https://doi.org/10.1029/2006TC002019
26 27	1009	Fernández-Suárez, J., Gutiérrez-Alonso, G., Jeffries, T.E., 2002. The importance of
28 29 30	1010	along-margin terrane transport in northern Gondwana: insights from detrital
31 32	1011	zircon parentage in Neoproterozoic rocks from Iberia and Brittany. Earth and
33 34	1012	Planetary Science Letters 204, 75-88.
35 36 37	1013	Fernández-Suárez, J., Gutiérrez-Alonso, G., Pastor-Galán, D., Hofmann, M., Murphy,
38 39	1014	J.B., Linnemann, U., 2014. The Ediacaran–Early Cambrian detrital zircon record
40 41 42	1015	of NW Iberia: possible sources and paleogeographic constraints. International
43 44	1016	Journal of Earth Sciences 103, 1335–1357. https://doi.org/10.1007/s00531-013-
45 46 47	1017	0923-3
48 49	1018	Gallastegui et al., 2004. Magmatismo. In: Vera, J.A., (Ed.) Geología de España, SGE-
50 51	1019	IGME, Madrid, 63-68.
52 53 54	1020	Gama, C., Pereira, M.F., Crowley, Q.G., Dias da Silva, Í., Silva, J.B., in press. Detrital
55 56	1021	zircon provenance of Triassic sandstone of the Algarve Basin (SW Iberia):
57 58 59		
60 61		
62 63 64		41
65		

1022	Evidence of Gondwanan- and Laurussian-type sources of sediment. Geological
1023	Magazine. https://doi.org/10.1017/S0016756820000370
1024	García-Navarro, E., Fernández, C., 2004. Final stages of the Variscan orogeny at the
1025	southern Iberian Massif: lateral extrusion and rotation of continental blocks.
1026	Tectonics, 23:TC6001. https://doi.org/10.1029/2004TC001646
1027	García Tortosa, F.J., Leyva Cabello, F., Bardaji Azcárate, T., 2012. Mapa Geológico de
1028	España escala 1:50.000. Edición Digital. Hoja 976, Mazarrón. Instituto
1029	Geológico y Minero de España, Madrid.
1030	García Tortosa, F.J., López-Garrido, A.C., Sanz de Galdeano, C., 2000. Présence du
1031	complexe tectonique Malaguide à l'ouest de Carthagéne (zone interne Bétique,
1032	Espagne). Comptes Rendus de l'Académie des Sciences de Paris 330, 139-146.
1033	García-Tortosa, F.J., 2002. Los Complejos Tectónicos Alpujárride y Maláguide en el
1034	sector oriental de la Zona Interna Bética. Estratigrafía, relaciones tectónicas y
1035	evolución paleogeográfica durante el Triásico. PhD Thesis, Universidad de
1036	Granada.
1037	Geel, T., 1973. The geology of the Betic of Malaga, the Subbetic and the zone between
1038	these two units in the Velez Rubio area (Southern, Spain). GUA Papers of
1039	Geology.
1040	Gómez-Pugnaire, M.T., Franz, G., 1988. Metamorphic evolution of the Paleozoic series
1041	of the Betic Cordilleras (Nevado-Filabride complex, SE Spain) and its
1042	relationship with the Alpine orogeny. Geologische Rundschau 77, 619-640.
1043	Gómez-Pugnaire, M.T., Galindo-Zaldívar, J., Rubatto, D., González-Lodeiro, F., López
1044	Sánchez-Vizcaíno, V., Jabaloy, A., 2004. A reinterpretation of the Nevado-
1045	Filábride and Alpujárride Complex (Betic Cordillera): field, petrography and U-
1046	Pb ages from orthogneisses western Sierra Nevada, S Spain). Schweizerische
	42
	1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

Mineralogische und Petrographische Mitteilungen 84, 303-322.

- Gómez-Pugnaire, M.T., Rubatto, D., Fernández-Soler, J.M., Jabaloy, A., López Sánchez-Vizcaíno, V., González-Lodeiro, F., Galindo-Zaldívar, J., Padrón-Navarta, J.A., 2012. U-Pb geochronology of Nevado-Filábride gneisses: evidence for the Variscan nature of the deepest Betic complex (SE Spain). Lithos 146-147, 93-111.
- Gutiérrez-Alonso, G., Murphy, J.B., Fernández-Suárez, J., Hamilton, M.A., 2008. Rifting along the northern, Gondwana margin and the evolution of the Rheic, Ocean: a Devonian age for the El Castillo volcanic, rocks (Salamanca, Central Iberian Zone). Tectonophysics 461. 157-65, https://doi.org/10.1016/j.tecto.2008.01.013
- Gutiérrez-Alonso, G., Fernández-Suárez, J., Jeffries, T.E., Johnston, S.T., Pastor-Galán, D., Murphy, J.B., Franco, M.P., Gonzalo, J.C., 2011. Diachronous post-orogenic magmatism within a developing orocline in Iberia, European Variscides. Tectonics 30, TC5008. http://dx.doi.org/10.1029/2010TC002845
- Ireland, T.R., Williams, I.S., 2003. Considerations in zircon geochronology by SIMS. Reviews in Mineralogy Geochemistry 53, and 215-241, https://doi.org/10.2113/0530215

Jabalov, A., 1993. La estructura de la región occidental de la Sierra de los Filabres (Cordilleras Béticas). Tierras del Sur, Universidad de Granada, Granada, Spain 9, pp. 1-261.

- Jabaloy-Sánchez, A., Talavera, C., Gómez-Pugnaire, M.T., López Sánchez-Vizcaíno, V., Vázquez, M., Rodríguez-Peces, M.J., Evans, N.J., 2018, U-Pb ages of
- detrital zircons from the Internal Betics: A key to deciphering paleogeographic

provenance and tectonostratigraphic evolution. Lithos 318–319, 244–266, https://doi.org/10.1016/j.lithos.2018.07.026 5 6 7 8 Kirchner, K.L., Behr, W.M., Loewy, S., Stockli, D.F., 2016. Early Miocene subduction in the western Mediterranean: Constraints from Rb-Sr multimineral isochron 10 geochronology. Geochemistry, Geophysics, Geosystems 17, https://doi.org/10.1002/2015GC006208 Kroner, U., Romer, R.L., 2013. Two plates - Many subduction zones: The Variscan orogeny reconsidered. Gondwana Research 24, 298-329. Laborda-López, C., Aguirre, J., Donovan, S.K., 2013. Asociaciones de macrofósiles en rocas metamórficas del Complejo Nevado-Filábride (Zonas Internas de la Águilas, Murcia (SE España). Cordillera Bética) en Tafonomía y biocronoestratigrafía, XXIX Jornadas de Paleontología, Abstracts, pp 83-84. Laborda-López, C., Aguirre, J., Donovan, S.K., 2015a. Surviving metamorphism: taphonomy of fossil assemblages in marble and calc-silicate schist. Palaios 30, 668-679. Laborda-López, C., Aguirre, J., Donovan, S.K., Navas-Parejo, P., Rodríguez, S., 2015b. Fossil assemblages and biochronology of metamorphic carbonates of the Nevado-Filábride Complex from the Águilas tectonic arc (SE Spain). Spanish Journal of Palaeontology 30, 275-292. Lafuste, M.L.J., Pavillon, M.J., 1976. Mise en évidence d'Eifélien daté au sein des terrains métamorphiques des zones internes des Cordillères bétiques. Intérêt de ce nouveau repère stratigraphique: Comptes Rendus de l'Académie des Sciences de Paris 283, 1015-1018. Leine, L., 1968. Rauhwackes in the Betic Cordilleras, Spain: Nomenclature, description and genesis of weathered carbonate breccias of tectonics origin. PhD Thesis

University of Amsterdam 112 p.

López Sánchez-Vizcaino, V., Connolly, J.A.D., Gómez-Pugnaire, M.T., 1997. Metamorphism and phase relations in carbonate rocks from the Nevado-Filábride Complex (Cordilleras Béticas, Spain): application of the Ttn + Rt + Cal + Qtz + Gr buffer. Contributions to Mineralogy and Petrology 126, 292-302. López Sánchez-Vizcaíno, V., Rubatto, D., Gómez-Pugnaire, M.T., Tommsdorff, V, Müntener, O., 2001. Middle Miocene high-pressure metamorphism and fast exhumation of the Nevado-Filábride Complex, SE Spain, Terra Nova 13, 327-332. Ludwig, K.R., 2003, User's Manual for Isoplot 3.00: a Geochronological Toolkit for Microsoft Excel Berkeley Geochronology Center Special Publication 4, p. 4. Ludwig, K.R., 2009. SQUID II., a user's manual, Berkeley Geochronology Center Special Publication 2, 2455 Ridge Road, Berkeley, CA 94709, USA 22. Maate, A., Sole De Porta, A.N., Martín-Algarra, A., 1993. Données paléontologiques nouvelles sur le Carnien des séries rouges des Maghrébides (Ghomarides et Dorsale calcaire du Rif septentrional, Maroc). Comptes Rendus de l'Académie des Sciences de Paris 316, 137-143. Martín-Algarra, A., 1987. Evolución geológica alpina del contacto entre las Zonas Internas y las Zonas Externas de la (Cordillera Bética). Ph D Thesis, Universidad de Granada Martin-Algarra, 1987. Martínez Catalán, J.R., Arenas, R., Díaz García, F., Abati, J., 1997. Variscan accretionary complex of northwest Iberia: Terrane correlation and succession of tectonothermal events. Geology 25, 1103-1106. Martínez Catalán, J.R., Fernández-Suárez, J., Meireles, C., González clavijo, E., Belousova, E., Saeed, A., 2008, U-Pb detrital zircon ages in synorogenic

	1121	deposits of the NW Iberian Massif (Variscan belt): interplay of Devonian-
1 2 3	1122	Carboniferous sedimentation and thrust tectonics. Journal of the Geological
4 5	1123	Society 165, 687-698.
6 7 8	1124	Martínez Catalán, J.R. 2012. The Central Iberian arc, an orocline centered in the Iberian
9 10	1125	Massif and some implications for the Variscan belt. International Journal of
11 12 13	1126	Earth Sciences 101, 1299-1314.
14 15	1127	Martínez Catalán, J.R., 2011. Are the oroclines of the Variscan belt related to late
16 17 10	1128	Variscan strike-slip tectonics? Terra Nova 23(4), 241-247.
19 20	1129	Martínez-Catalán, J.R., Arenas, R., Díaz-García, F., Abati, J., 1997. Variscan
21 22	1130	accretionary complex of NW Iberia: terrane correlation and succession of
23 24 25	1131	tectonothermal events. Geology 25,1103-1106.
26 27	1132	Martín-Martín, M., Martin-Rojas, I., Caracuel, J.E., Estevez-Rubio, A., Martin-Algarra,
28 29 30	1133	A., Sandoval, J., 2006. Tectonic framework and extensional pattern of the
31 32	1134	Malaguide Complex from Sierra Espuña (Internal Betic Zone) during Jurassic-
33 34 35	1135	Cretaceous: implications for the Westernmost Tethys geodynamic evolution.
36 37	1136	International Journal of Earth Sciences 95, 815-826.
38 39 40	1137	Martín-Rojas, I., Somma, R., Delgado, F., Estévez, A., Iannace, A., Perrone, V.,
40 41 42	1138	Zamparelli, V., 2010. Role of sea-level change and synsedimentary extensional
43 44	1139	tectonics on facies and architecture of Ladinian-Carnian carbonate depositional
45 46 47	1140	systems (Alpujarride complex, Betic Internal Zone, SE Spain). Geogaceta 48,
48 49	1141	63-66.
50 51 52	1142	Martín-Rojas, I., Somma, R., Delgado, F., Estevez, A., Iannace, A., Perrone, V.,
53 54	1143	Zamparelli, V., 2009. Triassic continental rifting of Pangea: evidence from the
55 56 57	1144	Alpujarride carbonates (Betic Cordillera, SE Spain). Journal of the Geological
58 59	1145	Society, London 166, 447-458.
60 61 62 63 64 65		46

-	1146	Martins, H.C.B., Ribeiro, M.A., Almeida, A., 2019. Variscan Magmatism at the Central
⊥ 2 3	1147	Iberian Zone, the Central and Northern Border. In: C. Quesada, Oliveira, J.T.
4 5	1148	(eds.), The Geology of Iberia: A Geodynamic Approach, Regional Geology
6 7 8	1149	Reviews, Vol. 2, 510-513. https://doi.org/10.1007/978-3-030-10519-8_13
9 10	1150	Marzoli, A., Renne, P., Piccirillo, E.M., Ernesto, M., DeMin, A., 1999. Extensive 200
11 12 13	1151	million-year-old continental flood basalts of the Central Atlantic Magmatic
14 15	1152	Province. Science 284, 616-618.
16 17 10	1153	Matte, Ph., 1991. Accretionary history and crustal evolution of the Variscan belt in
18 19 20	1154	Western Europe. Tectonophysics 196, 309-337.
21 22	1155	Matte, Ph., 2002. Variscides between the Appalachians and the Urals: Similarities and
23 24 25	1156	differences between Paleozoic subduction and collision belts. In: Martínez
26 27	1157	Catalán, J.R., Hatcher, R.D. Jr, Arenas, R., Díaz García, F. (eds), Variscan-
28 29 30	1158	Appalachian dynamics: The building of the late Paleozoic basement: Boulder,
31 32	1159	Colorado, Geological Society of America Special Paper 364, 239-251.
33 34 35	1160	Matte, P., 2001. The Variscan collage and orogeny (480-290 Ma) and the tectonic
36 37	1161	definition of the Armorica microplate: a review. Terra Nov. 13, 122–128,
38 39	1162	https://doi.org/10.1046/j.1365-3121.2001.00327.x
40 41 42	1163	Meinhold, G., Morton, A.C., Mark Fanning, C., Howard, J.P., Phillips, R.J., Strogen,
43 44	1164	D., Whitham, A.G., 2014. Insights into crust formation and recycling in North
45 46 47	1165	Africa from combined U-Pb, Lu-Hf and O isotope data of detrital zircons from
48 49	1166	Devonian sandstone of southern Libya. Geological Society, London, Special
50 51 52	1167	Publications 386, 281-292, https://doi.org/10.1144/SP386.1
52 53 54	1168	Murphy, J.B., Gutierrez-Alonso, G., Nance, R.D., Fernandez-Suarez, J., Keppie, J.D.,
55 56	1169	Quesada, C., Strachan, R.A., Dostal, J., 2006. Origin of the Rheic Ocean: rifting
57 58 59	1170	along a Neoproterozoic suture? Geology 34, 325-328.
60 61 62 63 64 65		47

1	1171	Montero, P., Bea, F., González-Lodeiro, F., Talavera, C., Whitehouse, M.J., 2007.
1 2 3	1172	Zircon ages of the metavolcanic rocks and metagranites of the Ollo de Sapo
4 5	1173	Domain in central Spain: Implications for the Neoproterozoic to Early
6 7 8	1174	Palaeozoic evolution of Iberia. Geological Magazine 144, 963–976.
9 10	1175	Montero, M.P., Talavera, C., Bea, F., González Lodeiro, F., Whitehouse, M. J., 2009.
11 12 13	1176	Zircon geochronology of the Ollo de Sapo Formation and the age of the
14 15	1177	Cambro–Ordovician rifting in Iberia. Journal of Geology 117, 174–191.
16 17 18	1178	Murphy, J.B., Nance, R.D., Cawood, P.A., 2009. Contrasting modes of supercontinent
19 20	1179	formation and the conundrum of Pangea. Gondwana Research 15, 408-420.
21 22 22	1180	Nance et al., 2010 Nance, R.D, Gutiérrez-Alonso, G., Keppie, J.D., Linnemann, U.,
23 24 25	1181	Murphy, J.B., Quesada, C., Strachan, R.A., Woodcock, N.H., 2010. Evolution of
26 27	1182	the Rheic Ocean. Gondwana Research 17, 194-222,
28 29 30	1183	https://doi.org/10.1016/j.gr.2009.08.001
31 32	1184	Pastor-Galán, D., Gutiérrez-Alonso, G., Murphy, J.B., Fernández-Suárez, J., Hofmann,
33 34 35	1185	M., Linnemann, U., 2013. Provenance analysis of the Paleozoic sequences of the
36 37	1186	northern Gondwana margin in NW Iberia: Passive margin to Variscan collision
38 39 40	1187	and orocline development. Gondwana Research 23, 1089-1103,
41 42	1188	https://doi.org/10.1016/j.gr.2012.06.015
43 44	1189	Pereira, M.F., Castro, A., Fernández, C., Rodríguez, C., 2018. Multiple Paleozoic
45 46 47	1190	magmatic-orogenic events in the Central Extremadura batholith (Iberian
48 49	1191	Variscan belt, Spain). Journal of Iberian Geology 44, 309-333.
50 51 52	1192	Pereira, M.F., Chichorro, M., Johnston, S.T., Gutiérrez-Alonso, G., Silva, J.B.,
53 54	1193	Linnemann, U., Hofmann, M., Drost, K., 2012. The missing Rheic Ocean
55 56 57	1194	magmatic arcs: provenance analysis of Late Paleozoic sedimentary clastic rocks
58 59	1195	of SW Iberia. Gondwana Research 3–4(22), 882-891.
60 61 62 63 64 65		48

_	1196	Pereira, M.F., Gama, C., Chichorro, M., Silva, J.B., Gutiérrez-Alonso, G., Hofmann,
1 2 3	1197	M., Linnemann, U., Gärtner, A., 2016. Evidence for multi-cycle sedimentation
4 5	1198	and provenance constraints from detrital zircon U-Pb ages: Triassic strata of the
6 7 8	1199	Lusitanian basin (western Iberia). Tectonophysics 681, 318-331.
9 10	1200	Pereira, M.F., Gama, C., Dias da Silva, I., Silva, J.B., Hofmann, M., Linnemann, U.,
11 12 13	1201	Gärtner, A., in press. Chronostratigraphic framework and provenance of the
14 15	1202	Ossa-Morena Zone Carboniferous basins (SW Iberia). Solid Earth Discussions,
16 17 10	1203	https://doi.org/10.5194/se-2020-26
19 20	1204	Pereira, M.F., Gutiérrez-Alonso, G., Murphy, J.B., Drost, K., Gama, C., Silva, J.B.,
21 22	1205	2017a. Birth and demise of the Rheic Ocean magmatic arc(s): Combined U-Pb
23 24 25	1206	and Hf isotope analyses in detrital zircon from SW Iberia siliciclastic strata.
26 27	1207	Lithos 278-281, 383-399.
28 29 30	1208	Pereira, M.F., Ribeiro, C., Gama, C., Drost, K., Chichorro, M., Vilallonga, F.,
31 32	1209	Hofmann, M., Linnemann, U., 2017b. Provenance of upper Triassic sandstone,
33 34 25	1210	southwest Iberia (Alentejo and Algarve basins): tracing variability in the
36 37	1211	sources. International Journal of Earth Sciences 106, 43-57.
38 39	1212	https://doi.org/10.1007/s00531-016-1295-2
40 41 42	1213	Pereira, M.F., Ribeiro, C., Vilallonga, F., Chichorro, M., Drost, K., Silva, J.B.,
43 44	1214	Albardeiro, L., Hofmann, M., Linnemann, U., 2014. Variability over time in the
45 46 47	1215	sources of South Portuguese Zone turbidites: evidence of denudation of different
48 49	1216	crustal blocks during the assembly of Pangaea. International Journal of Earth
50 51 52	1217	Sciences 103, 1453-1470.
52 53 54	1218	Pérez-Cáceres, I., Martínez Poyatos, D., Simancas, J.F., Azor, A., 2017. Testing the
55 56	1219	Avalonian affinity of the South Portuguese Zone and the Neoproterozoic
57 58 59		
60 61		
62 63		49
64 65		

1	1220	evolution of SW Iberia through detrital zircon populations. Gondwana Res. 42,
1 2 3	1221	177-192, https://doi.org/10.1016/j.gr.2016.10.010
4 5 6	1222	Perri, F., Critelli, S., Martín-Algarra, A., Martín-Martín, M., Perrone, V., Mongelli, G.,
0 7 8	1223	Zattin, G., 2013. Triassic redbeds in the Malaguide Complex (Betic Cordillera-
9 10 11	1224	Spain): Petrography, geochemistry and geodynamic implications. Earth-Science
12 13	1225	Reviews 117, 1-28.
14 15	1226	Platt, J.P., Whitehouse, M.J., Kelley, S.P., Carter, A., Hollick, L., 2003. Simultaneous
16 17 18	1227	extensional exhumation across the Alboran Basin: Implications for the causes of
19 20	1228	late orogenic extension. Geology 31 31, 251-254.
21 22 23	1229	Platt, J.P., Anczkiewicz, R., Soto, J.I., Kelley, S.P., Thirlwall, M., 2006. Early Miocene
23 24 25	1230	continental subduction and rapid exhumation in the western Mediterranean.
26 27	1231	Geology 34, 981-984.
28 29 30	1232	Pratt, J.R., Barbeau, D.L., Garver, J.I., Emran, A., Izykowski, T.M., 2015. Detrital
31 32	1233	Zircon Geochronology of Mesozoic Sediments in the Rif and Middle Atlas Belts
33 34 35	1234	of Morocco: Provenance Constraints and Refinement of the West African
36 37	1235	Signature. J. Geol. 123, 177-200, https://doi.org/10.1086/681218
38 39 40	1236	Puga, E., Nieto, J.M., Diaz de Federico, A., Portugal, E., Reyes, E., 1996. The intra-
41 42	1237	orogenic Soportujar Formation of the Mulhacén Complex; evidence for the
43 44 45	1238	polyciclic character of the Alpine orogeny in the Betic Cordilleras. Eclogae
46 47	1239	Geologicae Helvetiae 89, 129-162.
48 49 50	1240	Puga, E., Fanning, M., Díaz de Federico, A., Nieto, J.M., Beccaluva, L., Bianchini, G.,
50 51 52	1241	Díaz-Puga, M.A., 2011. Petrology, geochemistry and U-Pb geochronology of
53 54	1242	the Betic Ophiolites: Inferences for Pangaea break-up and birth of the
55 56 57	1243	westernmost Tethys Ocean. Lithos 124, 255-272.
58 59 60 61 62		
63 64 65		50

1	1244	Puga, E., Díaz de Federico, A., Nieto, J.M., 2002. Tectonostratigraphic subdivision and
1 2 3	1245	petrological characterisation of the deepest complexes of the Betic zone: a
4 5	1246	review. Geodinamica Acta 15, 23-43.
6 7 8	1247	Ribeiro, M.L., Castro, A., Almeida, A., González Menéndez, L., Jesus, A. Lains, J.A.,
9 10	1248	Lopes, J.C., Martins, H.C.B., Mata, J., Mateus, A., Moita, P., Neiva, A.M.R.,
11 12 13	1249	Ribeiro, M.A., Santos, J.F., Solá, A.R., 2019, Variscan magmatism. In: Quesada,
14 15	1250	C., Oliveira, J.T. (Eds.), The Geology of Iberia: A Geodynamic Approach,
16 17 10	1251	Regional Geology Reviews 2, 497-526.
19 20	1252	Rodriguez-Cañero, R., Jabaloy-Sánchez, A., Navas-Parejo P, Martín-Algarra, A., 2018.
21 22	1253	Linking Palaeozoic palaeogeography of the Betic Cordillera to the Variscan
23 24 25	1254	Iberian Massif: new insight through the first conodonts of the Nevado-Filábride
26 27	1255	Complex. International Journal of Earth Sciences (Geologische Rundschau)
28 29 30	1256	107(5), 1791-1806, https://doi.org/10.1007/s00531-017-1572-8
31 32	1257	Rubio-Ordóñez, A., Valverde-Vaquero, P., Corretgé, L.G., Cuesta-Fernández,
33 34 35	1258	A., Gallastegui, G., Fernández-González, M., Gerdes, A., 2012. An early
36 37	1259	Ordovician tonalitic-granodioritic belt along the Schistose-Greywacke Domain
38 39 40	1260	of the Central Iberian zone (Iberian Massif, Variscan belt). Geological Magazine
40 41 42	1261	149(5), 927-939, https://doi.org/10.1017/S0016756811001129
43 44	1262	Sánchez Martínez, S., De la Horra, R., Arenas, R., Gerdes, A., Galán-Abellán, A.B.,
45 46 47	1263	López-Gómez, J., Barrenechea, J.F., Arche, A., 2012. U-Pb Ages of Detrital
48 49	1264	Zircons from the Permo-Triassic Series of the Iberian Ranges: A Record of
50 51 52	1265	Variable Provenance during Rift Propagation. The Journal of Geology 120, 135-
53 54	1266	154.
55 56 57 58 59 60 61 62 63 64 65		51

-	1267	Sánchez-Martínez, S., Arenas, R., García, F.D., Martínez Catalán, J.R., Gómez-
1 2 3	1268	Barreiro, J., Pearce, J.A., 2007. Careon ophiolite, NW Spain: suprasubduction
4 5	1269	zone setting for the youngest Rheic Ocean floor. Geology 35, 53-56.
6 7 8	1270	Sánchez-Navas, A., García-Casco, A., Martín-Algarra, A., 2014. Pre-Alpine discordant
9 10	1271	granitic dikes in the metamorphic core of the Betic Cordillera: tectonic
11 12 13	1272	implications. Terra Nova 26, 477-486, https://doi.org/10.1111/ter.12123
14 15	1273	Sánchez-Navas, A., García-Casco, A., Mazzoli, S., Martín-Algarra, A., 2017.
16 17 19	1274	Polymetamorphism in the Alpujarride Complex, Betic Cordillera, South Spain.
18 19 20	1275	The Journal of Geology 125, 637-657.
21 22	1276	Sánchez-Rodriguez, L., Gebauer, D., 2000, Mesozoic formation of pyroxenites and
23 24 25	1277	gabbros in the Ronda area (southern Spain), followed by early Miocene
26 27	1278	subduction metamorphism and emplacement into the middle crust: U-Pb
28 29 30	1279	sensitive high-resolution ion microprobe dating of zircon: Tectonophysics 316,
31 32	1280	19-44.
33 34 35	1281	Santamaría-López, A., Sanz de Galdeano, C., 2018. SHRIMP U-Pb detrital zircon
36 37	1282	dating to check subdivisions in metamorphic complexes: a case of study in the
38 39 40	1283	Nevado-Filábride complex (Betic Cordillera, Spain). International Journal of
40 41 42	1284	Earth Sciences, https://doi.org/10.1007/s00531-018-1613-y
43 44	1285	Sharman, G.R., Malkowski, M.A., 2020, Needles in a haystack: Detrital zircon UePb
45 46 47	1286	ages and the maximum depositional age of modern global sediment. Earth-
48 49	1287	Science Reviews 203, 103109, https://doi.org/10.1016/j.earscirev.2020.103109
50 51 52	1288	Shaw, J., Gutierrez-Alonso, G., Johnston, S.T., Galan, D.P., Pastor-Galan, D., 2014.
53 54	1289	Provenance variability along the Early Ordovician north Gondwana margin:
55 56 57	1290	Paleogeographic and tectonic implications of U-Pb detrital zircon ages from the
58 59		
60 61 62 63		52
64 65		

-	1291	Armorican Quartzite of the Iberian Variscan belt. Geological Society of America
1 2 3 4 5	1292	Bulletin 126, 702-719, https://doi.org/10.1130/B30935.1
	1293	Shaw, J., Johnston, S.T., Gutiérrez-Alonso, G., Weil, A.B., 2012. Oroclines of the
6 7 8	1294	Variscan orogen of Iberia: paleocurrent analysis and paleogeographic
9 10	1295	implications. Earth and Planetary Science Letters 329-330, 60-70.
11 12 13	1296	Simancas, F., 2019. Variscan Cycle. In: Quesada, C., Oliveira, J.T. (Eds.), The Geology
14 15	1297	of Iberia: A Geodynamic Approach, Regional Geology Reviews 2, 1-26.
16 17 18	1298	Simon, O., Visscher, H., 1983. El Pérmico de las Cordilleras Béticas. In: Martínez-Diaz
19 20	1299	C (Ed.), Carbonífero y Pérmico de España: Actas X Congreso Internacional
21 22	1300	Carbonífero. IGME, Madrid 453-499.
23 24 25	1301	Spencer, C.J., Kirkland, C.L., 2016. Visualizing the sedimentary response through the
26 27	1302	orogenic cycle: a multidimensional scaling approach. Lithosphere 8, 29-37,
28 29 30	1303	https://doi.org/10.1130/L479.1
31 32	1304	Spencer, C.J., Kirkland, C.L., Taylor, R.J.M., 2016. Strategies towards statistically
33 34 35	1305	robust interpretations of in situ U-Pb zircon geochronology. Geoscience
36 37	1306	Frontiers 7, 581-589, http://dx.doi.org/10.1016/j.gsf.2015.11.006
38 39 40	1307	Stephan, T., Kroner, U., Romer, R.L., 2019. The pre-orogenic detrital zircon record of
40 41 42	1308	the Peri-Gondwanan crust. Geological Magazine 156, 281-307,
43 44	1309	https://doi.org/10.1017/S0016756818000031
45 46 47	1310	Tahiri, A., Montero, P., El Hadi, H., Martínez Poyatos, D., Azor, A., Bea, F., Simancas,
48 49	1311	J.F., González Lodeiro, F., 2010. Geochronological data on the Rabat-Tiflet
50 51 52	1312	granitoids: their bearing on the tectonics of the Moroccan Variscides. J. African
53 54	1313	Earth Sci. 57, 1–13, https://doi.org/10.1016/j.jafrearsci.2009.07.005
55 56	1314	Talavera, C., Montero, P., Bea, F., González Lodeiro, F., Whitehouse, M., 2013. U-Pb
57 58 59	1315	zircon geochronology of the Cambro-Ordovician metagranites and metavolcanic
60 61 62 63 64 65		53

1	1316	rocks of central and NW Iberia. International Journal of Earth Sciences 102, 1-
1 2 3	1317	23.
4 5	1318	Tendero, J.A., Martín-Algarra, A., Puga, E., Díaz de Federico, A., 1993.
6 7 8	1319	Lithostratigraphie des métasédiments de l'association ophiolitique Nevado-
9 10	1320	Filabride (SE Espagne) et mise en evidence d'objets ankéritiques évoquant des
11 12 13	1321	foraminiféres planctoniques du Crétacé: conséquences paléogéographiques.
14 15	1322	Comptes Rendus de l'Académie des Sciences Paris 316, 1115-1122.
16 17	1323	Vermeesch, P., 2012. On the visualisation of detrital age distributions. Chemical
19 20	1324	Geology, v.312-313, 190-194, https://doi.org/10.1016/j.chemgeo.2012.04.021
21 22	1325	Vermeesch, P., 2013. Multi-sample comparison of detrital age distributions. Chemical
23 24 25	1326	Geology 341, 140-146, https://doi.org/10.1016/j.chemgeo.2013.01.010
26 27	1327	Vissers, R.L.M., 1981. A structural study of the Central Sierra de los Filabres (Betic
28 29 30	1328	Zone, SE Spain), with emphasis on deformational processes and their relation to
31 32	1329	the Alpine Metamorphism. GUA Papers of Geology 15, 1-154.
33 34 25	1330	Vissers, R.L.M., 1992. Variscan extension in the Pyrenees. Tectonics 11(6), 1369-1384.
36 37	1331	https://doi.org/10.1029/92TC00823
38 39	1332	Voet, H.W., 1967. Geological investigations in the Northern Sierra de Los Filabres
±0 41 42	1333	around Macael and Cóbdar, southeastern Spain. Ph.D. Thesis, Amsterdam
43 44	1334	University, The Netherlands.
45 46 47	1335	Williams, J.R., Platt, J.P., 2017. Superposed and refolded metamorphic isograds, and
48 49	1336	superposed directions of shear during late-orogenic extension in the Alborán
50 51 52	1337	Domain, southern Spain. Tectonics 36, 756-786, https://doi.org/10.1002/
53 54	1338	2016TC004358
55 56		
58 59		
50 51		
o∠ 53 54		54
65		

1	1339	Wilson, M., 1997. Thermal evolution of the Central Atlantic passive margins:
⊥ 2 3	1340	continental break-up above a Mesozoic super-plume. Journal of the Geological
4 5	1341	Society of London 154, 491-495.
6 7 8	1342	Wissink, G.K., Wilkinson, B.H., Hoke, G.D., 2018. Pairwise sample comparisons and
9 0	1343	multidimensional scaling of detrital zircon ages with examples from the North
1 2 3	1344	American platform, basin, and passive margin settings. Lithosphere 10, 478-491,
4 5	1345	https://doi.org/ 10.1130/L700.1
б 7 8	1346	Zindler, A., Staudigel, H., Hart, S.R., Endres, R., Goldstein, S., 1983, Nd and Sm
9 0	1347	isotopic study of a mafic layer from Ronda ultramafic complex. Nature 304,
1 2 2	1348	226.
3 4 5	1349	
6 7	1350	Figure and Table captions:
8 9 0	1351	Figure 1 (A) Tectonic sketch of the Southwestern Mediterranean Sea; (B) Tectonic
1 2	1352	map of the Betic Cordillera.
3 4 5	1353	
6 7	1354	Figure 2 Geological map of the south-eastern Betic Chain with outcrops of the three
8 9 0	1355	tectonic complexes of the Internal zones and the location of the Águilas Arc marked
1 2	1356	(see Fig. 1B for location).
3 4	1357	
5 6 7	1358	Figure 3 Geological map of the central area of the Águilas Arc (modified from
8 9	1359	Espinosa Godoy et al., 1972; Booth-Rea and Silva-Barroso, 2008; Booth-Rea et al.,
0 1 2	1360	2009; García-Tortosa et al., 2012), with the location of the studied samples. See location
3 4	1361	in Fig. 2.
5 6 7	1362	
7 8 9		
0 1		
2 3 4		55
-		

1363	Figure 4 Lithological columns of the studied successions in the NFC, AC and MC
1364	with the location of the studied samples. Yellow stars: meta-detrital samples; red stars:
1365	meta-igneous samples. Successions for the NFC Lomo de Bas units were compiled from
1366	Laborda-López et al. (2013, 2015a, b) and Booth-Rea et al (2009). The succession of
1367	the NFC Mulhacén units compiled from Booth-Rea and Silva-Barroso (2008), and
1368	Booth-Rea et al. (2009). Successions for the AC were compiled with data from Booth-
1369	Rea and Silva-Barroso (2008), Booth-Rea et al. (2009), and García-Tortosa et al.
1370	(2012). Succession from the MC Sierra de las Estancias area was compiled from
1371	Fernández-Fernández et al. (2007), while the succession of the MC Cabo Cope unit is
1372	from Espinosa Godoy et al. (1972), and García-Tortosa et al. (2012).
1373	
1374	Figure 5 Results of U-Pb analyses on detrital zircon grains from Lomo de Bás units
1375	(NFC): combination of Kernel Density Estimates plots (KDE, black lines), frequency
1376	(grey bars), and relative abundance of age groups based on 206 Pb/ 238 U (for dates < 1.5
1377	Ga) and 207 Pb/ 206 Pb (for dates > 1.5 Ga) ages. (A) sample AG-12; (B) sample AG-14;
1378	(C) sample AG-17, (D) sample AG-18, (E) Cumulative KDE (blue line) and frequency
1379	(grey bars) for the Lomo de Bás samples; (F) zoom for the ages ranging from 0 to 541
1380	Ma.
1381	
1382	Figure 6 Results of U-Pb analyses of detrital zircon grains from Tahal Fm samples
1383	(Mulhacén units, NFC): combination of Kernel Density Estimates plots (KDE, black
1384	lines), frequency (grey bars), and relative abundance of age groups based on 206 Pb/ 238 U
1385	(for dates < 1.5 Ga) and ²⁰⁷ Pb/ ²⁰⁶ Pb (for dates > 1.5 Ga) ages. (A) sample AG-1; (B)
1386	sample AG-2; (C) Cumulative KDE (blue line) and frequency (grey bars) for the
1387	samples of the Tahal Fm; (D) zoom for the ages ranging from 0 to 541 Ma.
	56

Figure 7.- Results of U-Pb analyses on the core of zircon grains from orthogneiss AG13 (Lomo de Bas units, NFC): (A) conventional Concordia diagram, ²⁰⁴Pb corrected,
with the concordant data (95% > Concordia > 105%); (B) conventional Concordia
diagram, ²⁰⁴Pb corrected, with the most concordant data; (C) probability density plots
(red line) and frequency (blue bars) for the concordant data (95% > Concordia > 105%);
(D) weighted average of the most concordant data.

1396Figure 8.- Results of U-Pb analyses on the core of zircon grains from the orthogneiss1397AG-16 (Lomo de Bas units, NFC): (A) conventional Concordia diagram with all the1398data; (B) conventional Concordia diagram, 207 Pb corrected, with the most concordant1399data (90% > Concordia > 110%); (C) probability density plots (red line) and frequency1400(blue bars) for the most concordant data; (D) weighted average of the most concordant1401data.

Figure 9.- Results of U-Pb analyses on detrital zircon grains from samples from the
Micaschists and Quartzite Fm (AC): combination of Kernel Density Estimates plots
(KDE, black lines), frequency (grey bars), and relative abundance of age groups based
on ²⁰⁶Pb/²³⁸U (for dates < 1.5 Ga) and ²⁰⁷Pb/²⁰⁶Pb (for dates > 1.5 Ga) ages. (A) sample
AG-4; (B) sample AG-5; (C) sample AG-6, (D) sample AG-7, (E) Cumulative KDE
(blue line) and frequency (grey bars) for the samples from the Micaschists and Quartzite
Fm ; (F) zoom for the ages ranging from 0 to 541 Ma.

Figure 10.- Results of U-Pb analyses on detrital zircon grains from samples from the
Meta-detrital Fm (AC: AG-9, AG-11, and AG-15), and from the Miñarros mylonites

and breccias (AC: AG-19): combination of Kernel Density Estimates plots (KDE, black lines), frequency (grey bars), and relative abundance of age groups based on $^{206}Pb/^{238}U$ (for dates < 1.5 Ga) and ²⁰⁷Pb/²⁰⁶Pb (for dates > 1.5 Ga) ages. (A) sample AG-9; (B) sample AG-11; (C) sample AG-15, (D) sample AG-19, (E) Cumulative KDE (blue line) and frequency (grey bars) for the samples from the Meta-detrital Fm (AG-9, AG-11, and AG-15); (F) zoom for the ages ranging from 0 to 541 Ma. Figure 11.- Results of U-Pb analyses on the black rims of zircon from the Cabezo Blanco orthogneiss AG-26 (Cantal unit): (A) conventional Concordia diagram with all the data; (B) conventional Concordia diagram, ²⁰⁷Pb corrected, with the maximum at ca. 16 Ma; (C) probability density plots (red line) and frequency (blue bars) for all then data; (D) weighted average of the ca. 16 Ma age. Figure 12.- Results of U-Pb analyses on the cores of zircon from the Cabezo Blanco orthogneiss AG-26 (Cantal unit): (A) conventional Concordia diagram with all the data; (B) conventional Concordia diagram, ²⁰⁷Pb corrected, with the main population; (C) probability density plots (red line) and frequency (blue bars) for all then data; (D) weighted average of the main population. Figure 13.- Results of U-Pb analyses on detrital zircon grains from samples from the Saladilla Fm (MC): combination of Kernel Density Estimates plots (KDE, black lines), frequency (grey bars), and relative abundance of age groups based on 206 Pb/ 238 U (for dates < 1.5 Ga) and ²⁰⁷Pb/²⁰⁶Pb (for dates > 1.5 Ga) ages. (A) sample AG-10; (B) sample LP-16-AZ; (C) Cumulative KDE (blue line) and frequency (grey bars) for the samples of the Saladilla Fm; (D) zoom for the ages ranging from 0 to 541 Ma.

Figure 14.- Results of U-Pb analyses on detrital zircon grains from samples from the unconformable Middle Miocene rocks: combination of Kernel Density Estimates plots (KDE, black lines), frequency (grey bars), and relative abundance of age groups based on ${}^{206}Pb/{}^{238}U$ (for dates < 1.5 Ga) and ${}^{207}Pb/{}^{206}Pb$ (for dates > 1.5 Ga) ages. (A) sample AG-3; (B) sample AG-20; (C) Cumulative KDE (blue line) and frequency (grey bars) for the samples of the Middle Miocene rocks; (D) zoom for the ages ranging from 0 to 541 Ma. Figure 15.- A) Multidimensional scaling (MDS) plot of the Late Carboniferous samples from the Betic Cordillera (NFC, AC and MC), Iberian Massif and South France. B) Shepard plot for the MDS. Figure 16.- Paleogeographic reconstruction of the eastern Variscan belt at Early Bashkirian times (modified from Martínez-Catalán (2011) and Rodríguez-Cañero et al. (2017) for Europe). The proposed location of the NFC, AC and MC with respect to other Variscan Iberian Terranes is included. CIZ, Central Iberian; CZ, Cantabrian; GTMZ, Galicia-Trás-os-Montes; MGCZ, Mid-German Crystalline; MZ, Moldanubian; OMZ, Ossa-Morena; RHZ, Rheno-Hercynian; SPZ, South Portuguese; STZ, Saxo-Thuringian; TBZ, Teplá-Barrandian; WALZ, West Asturian-Leonese. Figure 17.- A) Multidimensional scaling (MDS) plot of the Permian Triassic samples from the Betic Cordillera (NFC, AC and MC), Iberian Massif and Iberian Chain. B) Shepard plot for the MDS.

1	1463	Table 1 Sketch of the Tectonic complexes and units mentioned in the text and
⊥ 2 3	1464	available ages from every lithological formation.
4 5	1465	
6 7 0	1466	Table 2 Details of the samples and the analyses carried out; (*) UTM
9 10	1467	coordinates,ED_1950 ellipsoid, zone 30 S.
11 12		
13 14		
15 16		
17 18		
19 20		
21 22		
23		
25		
26 27		
28 29		
30 31		
32 33		
34 25		
36		
37 38		
39 40		
41 42		
43 44		
45		
47		
48 49		
50 51		
52 53		
54 55		
56		
57		
59 60		
61 62		60
63 64		00

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Credit Author Statement

Antonio Jabaloy-Sánchez: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Supervision; Validation; Visualization; Writing - original draft; Writing - review & editing.

Cristina Talavera: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Resources; Software; Supervision; Validation; Visualization; Writing - original draft; Writing - review & editing.

Martín Jesús Rodríguez-Peces: Conceptualization; Data curation; Investigation; Methodology.

Mercedes Vázquez-Vílchez: Conceptualization; Data curation; Investigation; Methodology; Writing - review & editing.

Noreen Joyce Evans: Formal analysis; Investigation; Methodology; Resources; Software; Supervision; Validation; Writing - review & editing.
1			
2 3			
4			
5			
7	1	U-Pb geochronology of detrital and igneous zircons<u>zircon grains</u> from the Águilas	Style Definition: Comment Text
8 9	2	Arc in the Internal Betics (SE Spain): implications for Carboniferous-Permian	
10 11	3	paleogeography of Pangea	
12 13	4		
14 15	5	Antonio Jabaloy-Sánchez ¹ , Cristina Talavera ² , Martín Jesús Rodríguez-Peces ³ ,	
16 17	6	Mercedes Vázquez-Vílchez ⁴ , Noreen Joyce Evans ⁵	
18	7	¹ Departamento de Geodinámica, Universidad de Granada, 18002 Granada, Spain.	
19 20	8	² School of Geosciences, University of Edinburgh, The King's Building, James Hutton Road, EH9 3FE,	
21	9	Edinburgh, UK.	
22 23	10	³ Departamento de Geodinamica Geodinámica, Estratigrafía y Paleontología, Universidad Complutense de	
24 25	11	Madrid, Madrid, Spain.	
26	12	⁴ Departmento de Didáctica de las Ciencias Experimentales, Universidad de Granada, Granada, Spain.	
27 28	13	⁵ School of Earth and Planetary Sciences/John de Laeter Center, Curtin University, Bentley 6845,	
29	14	Australia.	
30 31	15		
32 33	16	Abstract	
34 35	17	The Águilas Are (SE Spain) comprises the three tectonic complexes of the	
36 37	18	Internal Betic Chain.	
38	19	New U-Pb detrital zircon and U-Pb zircon ages of metaigneous rocks in the	Formatted: Indent: First line: 0.5"
40	20	Águilas Arc (Betic Chain, SE Spain) allow us to determine the maximum depositional	
41 42	21	ages of the rocks. Within the Nevado-Filábride Complex-provide, a Late Carboniferous	
43 44	22	depositional age for the Lomo de Bas schists and quartzites, while the and a Permian-	
45 46	23	<u>Triassic</u> maximum depositional age of <u>for</u> the Tahal Fm is confirmed as Permian-	
47 48	24	Triassic. Inare determined. Within the Alpujárride Complex, the maximum depositional	
49 50	25	age of the Micaschists and Quartzite Fm is Late Carboniferous and the Meta-detrital Fm	
51 52	26	was deposited in the Early Permian. Furthermore, the maximum depositional age of the	
53	27	Saladilla Fm in the Maláguide Complex is also Early Permian. The age distribution	
54 55		1	
56			
57 58			
59			
60			
ь⊥ 62			

28	patterns for the Carboniferous rocks of the Nevado-Filábride and Alpujárride complexes
29	are similar to those from the Cantabrian, West Asturian Leonese, and Central-Iberian
30	zones Zone of the Iberian Massif, suggesting deposition in Carboniferous foreland
31	basins located eastwards of the Iberian Massif. However, the zircon age distribution
32	patterns for the Nevado-Filábride and Alpujárride complexes show differences to those
33	of the Carboniferous rocks from the Maláguide Complex, and the South Portuguese and
34	Ossa Morena zones of the Iberian Massif, while patterns in Maláguide and Ossa-
35	Morena-samples show some from the North-eastern Iberian Peninsula and South France
36	show strong similarities. Thus, the paleogeographic location of the Maláguide Complex
37	seems different from suggesting that of the Nevado Filábride and Alpujárride
38	complexes, and it was probably can be located near the Ossa Morena Zonethose areas in
39	the Late Carboniferous times.
40	The samples with Early Permian maximum depositional ages from the three
41	complexes contain more Paleozoic zirconszircon grains relative to the older
42	Carboniferous samples, but have similar age distribution patterns, suggesting that they
43	were deposited in the same basin. Samples from unconformable Middle Miocene
44	sediments have Early Permian youngest zircon populations and age distribution patterns
45	corresponding to a mixing of zirconsdetrital zircon grains from the Alpujárride and
46	Maláguide complexes. Furthermore, there is no record of any major felsic rocks
47	formation and/or exhumation event after the Early Permian in those two complexes.
48	
49	1. Introduction
50	The Variscan-Alleghanian belt (i.e. Martínez Catalán et al., 1997; Matte, 2001;
51	Simancas, 2019) was formed during the Late Paleozoic collision of two major
52	continents: Laurussia (Laurentia-Baltica) and Gondwana. The southern front of the
	2

53	Variscan segment of this orogenic belt is poorly understood due to post-variscan
54	oroclinal bending, Pangea break-up (e.g. Wilson, 1997; Marzoli et al., 1999) and Alpine
55	reworking (Simancas, 2019). Numerous fragments resulting from Gondwana break-up
56	were dispersed and recycled during the Alpine orogeny, and superposition of
57	metamorphic and deformational Alpine events overprinted most Variscan features.
58	Several of these fragments are interpreted to be currently included now within
59	the Internal Zones of the Betic-Rif orogen as tectono-metamorphic complexes. These
60	complexes hold clues to the Variscan and Late-Variscan evolution of the southern
61	domains of the Variscan belt and its relationship with the Gondwanan foreland (i.e.
62	Gómez-Pugnaire et al., 2004, 2012; Sánchez-Navas et al., 2014, 2017; Jabaloy-Sánchez
63	et al., 2018; Rodríguez-Cañero et al., 2018). Zircon U-Pb dating of metamorphosed
64	sedimentary sequences and igneous rocks can provide temporal constraints on this
65	evolution, especially in an area where detrital zircon geochronological data are scarce.
66	Here, we present U-Pb zircon data from metasedimentary and metaigneous
67	rocks of the Águilas Arc in the eastern Betic Chain, in an effort to provide maximum
68	depositional ages for these rocks, paleogeographic information about the possible
69	sources and, hence, the paleolocation of the different tectonic complexes of the Betic-
70	Rif orogenic system. We will then discuss the implication of these data for both the
71	Variscan and Alpine evolution of this orogenic system.
72	
73	2. Geological setting
74	The Alpine Betic-Rif orogen is an arcuate Alpine mountain belt outcropping in
75	both South Spain and North Morocco (Fig. 1): and formed essentially during Late

Paleogene-Neogene times (e.g. Platt et al., 2003; Chaluan et al., 2008) (Fig. 1).

According to Balanyá and García-Dueñas (1987), this belt comprises: i) a central

allochthonous terrain, the so-called Alborán Domain, ii) the South Iberian Domain, which includes the Triassic to Neogene rocks deposited at the southern paleomargin of the Iberian Peninsula, iii) the North African Domain, comprising Triassic to Neogene rocks deposited at the northwesternnorth-western paleomargin of Africa, and iv) the Flysch Trough units with Cretaceous to Neogene slope/rise and abyssal plain deposits (e.g. Chalouan et al., 2008, and references therein). Furthermore, the Alborán Domain, as was-originally defined by Balanyá and García-Dueñas (1987), included three metamorphic complexes, -namely (from bottom to top): the Paleozoic to Mesozoic Nevado-Filábride Complex (NFC), the Paleozoic to Mesozoic Alpujárride Complex (AC) and the Paleozoic to Paleogene Maláguide Complex (MC) (Fig. 1). Recently this subdivision has been redefined and a new tectonic frameframework with only three major domains is emerging. Pratt et al. (2015) and Azdimousa et al. (2019) have indicated that the whole Maghrebian Flysch Domain was part of the North African Domain. Moreover, the Alborán Domain has been redefined and now only comprises two tectonic complexes: the lower AC and the upper MC (see Gómez-Pugnaire et al., 2012, and references therein). Accordingly, the NFC is now considered part of the southern paleomargin of the Iberian Peninsula, which was subductedoverridden below the Alborán Domain (at 18 to 15 Ma (see López-Sánchez Vizcaino et al., 2001; Gómez-Pugnaire et al., 2004; 2012; Platt et al., 2006; Kirchner et <u>al., 2016</u>). In the Central part of the Betic-Chain, the previously mentioned metamorphic complexes were deformed by three mayormajor E-W trending Tortonian antiforms, but eastwards, left-handedlateral, roughly N-S trending strike-slip faults rotated and translated the folds towards the North to form the Águilas tectonic Arc (Figs. 1, 2).

б 2.1. Nevado-Filábride Complex The NFC is composed of the upper Mulhacén tectonic units (Puga et al., 2002), which underwent Alpine HP (ca. 1.8 GPa) metamorphism at ca. 18-15 Ma (López Sánchez-Vizcaíno et al., 2001; Gómez-Pugnaire et al., 2004, 2012; Platt et al., 2006; Kirchner et al., 2016), and the lower Veleta tectonic units (Gómez-Pugnaire and Franz, 1988; Puga et al., 2002; Rodríguez-Cañero et al., 2018) (Fig. 2, Table 1). Within the Águilas tectonic Arc, the lower Veleta units are represented by the Lomo de Bas units (Fig. 3, Table 1), which are tectonically overlaid overlain by the Mulhacén units (Álvarez and Aldaya, 1985; Álvarez, 1987). The Lomo de Bas units comprise a lower tectonic unit made of ca. 1000 m of alternating graphite-bearing grey and black quartz-schists, garnet and chloritoid-bearing micaschists, and ferruginous quarzitic levels of unknown ages (Laborda-López et al., 2013, 2015a, b) (Fig. 4, Table 1). These rocks include orthogneiss bodies derived from metamorphosed, acidic volcaniefelsic rocks of unknown age (Álvarez and Aldaya, 1985; Álvarez, 1987).), although other orthogneiss bodies within the CNF have yielded Late Carboniferous to Early Permian U-Pb ages (Gómez-Pugnaire et al., 2004, 2012, and references therein). An upper tectonic-unit tectonically overlays the lower unit, and its succession begins with a-600 to 800 m thick-lower member of fine-grained metamorphic rocks. These are mostly graphite-bearing micaschists, quartz schists, and phyllites, which are intercalated with ferruginous quartzite beds (Laborda-López et al., 2015a, b). These rocks are overlaidoverlain by 80 to 140 m thick low-grade black marbles, with abundant fossils of Early-Middle Devonian age (Emsian-Eifelian, c.f. Lafuste and Pavillon, 1976; Laborda-López et al., 2013, 2015a, b). The succession ends with 130 to 500 m thick graphitic schists, phyllites, and quartzites (Laborda-López et al., 2015a, b) (Fig. 4, Table 1).

In the studied area, the Mulhacén unit succession (Álvarez and Aldaya, 1985; Álvarez, 1987) begins with grey schists and metapsammites of the Permian-Triassic Tahal Fm (Voet, 1967; Jabaloy-Sánchez et al., 2018; Santamaría-López and Sanz de Galdeano, 2018) (Table 1). Moving up section is the Metaevaporite Fm, and attributed Permian-Triassic (Leine, 1968; Vissers, 1981) to Paleogene ages (Puga et al., 1996), followed by the marbles, calc-schists, micaschists, and quartzites of the Marbles and Calc-Schists FmsFm (see Voet, 1967; López Sánchez-Vizcaino et al., 1997), for which pre-Permian to Cretaceous ages have been proposed (Tendero et al., 1993; Gómez-Pugnaire et al., 2012) (Fig. 4, Table 1). The succession includes Jurassic metabasite bodies- (Puga et al., 2011).

2.2. Alpujárride Complex

In the studied area, the AC includes a thin lower Miñarros unit, which overlies the brittle-ductile extensional shear zone developed at the NFC/AC contact (Figs. 3 and 5) (Álvarez and Aldaya, 1985; Álvarez, 1987; Booth-Rea et al., 2009). The At the base of this Complex, the Miñarros unit hasis ca. 15 m of thicknessthick and comprises brecciaedbrecciated ferruginous marbles and white quartzitic mylonites withof unknown agesage (Álvarez, 1987) (Fig. 54, Table 1).

Álvarez and Aldaya (1985) and Álvarez (1987) identified several AC tectonic units thrusting over the Miñarros mylonites and breccias (i.e. the Talayón unit, Águilas unit and Las Palomas unit), and Booth-Rea et al. (2009) grouped them into only one tectonic unit, the so-called Las Estancias-Talayón-Palomas unit. Hereafter, and for simplicity, we call it Las Palomas unit- (Table 1). The Las Palomas unit has the most complete succession in the area, which beginsbeginning with ca. 300 m of graphite-bearing micaschists and phyllites alternating with micaceous quartzites from the

Micaschists and Quartzite Fm, with a probablean attributed Late Paleozoic age based on correlation with Paleozoic rocks of the MC (Álvarez and Aldaya, 1985; Álvarez, 1987) (Fig. <u>54, Table 1</u>). The succession follows up with ca. 600 m of phyllites and quartzites from the Meta-detrital Fm made of a quartzite-rich lower member and a phyllite-rich upper member with Permian to Middle Triassic ages (Martín-Rojas et al., 2010; García-Tortosa et al., 2012) (Fig. 54, Table 1). The Middle to Late Triassic Meta-carbonate Fm overlays the previous rocksthis succession and is composed of ca. 50 m of marbles and calc-schists (García-Tortosa et al., 2012) with (Fig. 54, Table 1). TheAbove the Las Palomas unit, the Ramonete unit crops out above the Las Palomas unit (Figs. 3, 54) (Álvarez and Aldaya, 1985; Álvarez, 1987; Booth-Rea et al., 2009) and contains onlyconsists of Mesozoic rocks: phyllites and quartzites of the Middle Triassic Meta-detrital Fm (see Simon and Visscher, 1983; Maate et al., 1993; García-Tortosa et al., 2002; Martín-Rojas et al., 2010), and calcitic and dolomitic marbles and caleschistscalc-schists from the Middle-Upper Triassic Meta-carbonate Fm (García-Tortosa et al., 2002) (Table 1). Álvarez and Aldaya (1985), and Álvarez (1987)<u>also</u> defined the Cantal unit as an AC tectonic unit thrusting over the Las Palomas unit, or limited by left-handedlateral strike-slip faults (Figs. 3, 5 and 64, Table 1). However, García-Tortosa et al. (2000) included this unit within the NFC and discussed its adscription to the AC. The Cantal unit is composed of ca. 330 m of migmatitic and felsic gneisses with kyanite and sillimanite bearing schists, graphite bearing schist with staurolite and black marbles and quartzites (see Álvarez and Aldaya, 1985; Álvarez, 1987; Booth-Rea et al., 2009) (Fig. 5<u>4, Table 1</u>). 2.3. Maláguide Complex

The MC occurs as relatively small outcrops tectonically emplaced on top of the AC (Figs. 3 and 64). Towards the east, in the Vélez Rubio area (Fig. 7Figs. 2 and 4, Table 1), the MC succession includes ca. 1000 m of greywackes, slates, conglomerates and lesser marbles and black cherts of the pre-Ordovician to Late Carboniferous Piar Group (see Martín-Algarra, 1987) overlain by a-detached Mesozoic to Cenozoic cover of ca. 500 m thick, consisting of red conglomerates, sandstones, and pelites, with and gypsum of the Middle-Late Triassic Saladilla Fm (see Perri et al., 2013, and references therein) (Fig. 84, Table 1). The succession follows up with ca. 300 m of Late Triassic to Early Cretaceous limestones, dolostones and marls (Castillón Fm, Geel, 1973), unconformably overlaidoverlain by ca. 200 m of Eocene Nummulite-rich limestones and marls (Xiquena Fm, Geel, 1973) (Fig. 84, Table 1). In the Águilas Arc area, this succession is usually incomplete and thinned by normal faults, omittinglacking outcrops of the thick Paleozoic succession of the Piar Group, (see Aldaya et al., 1991) (Fig. <u>84, Table 1</u>). The main outcrops of this complex correspond to the Cabo Cope and Albaida areas (Álvarez and Aldaya, 1985; Álvarez, 1987; García-Tortosa, 2002) (Figs. 3 and 8), with4, Table 1), where a succession beginning with ca. 40 m of red pelites, sandstones and gypsum of the Middle-Late Triassic Saladilla Fmccrops out. Following up section, there areis ca. 130 m of Late Triassic to Jurassic dolostones, marls, and oolitic limestones of the Castillon Fm (García-Tortosa, 2002, and references therein) (Fig. 84. Table 1). On top, there is an unconformity overlain by ca. 50 m of Oligocene conglomerates and calcarenites (Durand-Delga et al., 1962; Álvarez, 1987). Unconformably overlying both the MC and AC, there are Middle Miocene sedimentary rocks with a succession that includes red Langhian-Early Serravallian

conglomerates and sandstones with clasts <u>derived</u> from <u>rocks present in</u> both complexes (Figs. 3 and <u>64</u>).

3. Sampling localities and analytical methods

Seventeen <u>Twenty one</u> samples from the Águilas Arc were studied. Eight samples were collected from the NFC, nine from the AC, two from the MC, and two from the Middle Miocene sedimentary rocks (Table 12, Figs. 3 and 4). -The samples collected from the NFC were located in both the Lomo de Bas units and in the Mulhacen units. Samples AG-12 and AG-14 come from quartzites of the lower Lomo de Bas unit, while samples AG-17 and AG-18 are from the uppermost quartzite intercalations within the upper Lomo de Bas unit (Fig. 4, Table 1). Samples AG-13 and AG-16 originate from two orthogneiss bodies within this lower tectonic unit (Fig. 4), and samples AG-1 and AG-2 are from two quartzites of the upper part of the Tahal Fm within the Mulhacén tectonic ensemble (Figs. 3 and 4). Nine samples were collected from the tectonic units of the AC: six samples come from the Las Palomas unit (AG-4, AG-5, AG-6, AG-7, AG-9 and AG-11) (Figs. 3 and 5, Table 1). Samples AG-4 and AG-5 are from quartzites at the base of the Micaschists and Quartzite Fm attributed to the Upper Paleozoic (Álvarez and Aldaya, 1985; Álvarez, 1987) (Fig. 5). Samples AG-6, and AG-7 come from quartzites near the upper levels of the same Micaschists and Quartzite Fm (Fig. 5). Samples AG-9 and AG-11 are from quartzites within the Middle Triassic Meta detrital Fm of the Las Palomas unit (Martin-Rojas et al., 2010; García Tortosa, 2002) (Fig. 5). Sample AG-15 is from the Middle Triassic Meta detrital Fm of the Ramonete unit, and sample AG-19 comes from the quartzitic mylonites of the Miñarros unit (Figs. 3 and 5).

Sample AG-26 comes from the Cabezo Blanco orthogneiss body (Fig. 6), within the migmatitic and felsic gneisses with kyanite and sillimanite bearing schists, graphite bearing schist with staurolite and black marbles and quartzites of the Cantal unit (see Álvarez and Aldaya, 1985; Álvarez, 1987; Booth Rea et al., 2009) (Fig. 5). Two samples from the Middle Late Triassic Saladilla Fm of the MC (LP-16 AZ and AG-10) were also collected (Figs. 3 and 7, Table 1). Sample AG-10 is a quartzite from the Cabo Cope area of the Águilas Are_(Fig=3), and sample LP-16 AZ comes from a quartzite from a lower Maláguide unit of the las Estancias Range near Vélez Rubio (Fig. 7). Two samples (AG-3 and AG-20) were collected from the Middle Miocene red conglomerates and sandstones unconformably covering both the AC and the MC (Fig. 3, Table 1).

4. Analytical methods

Zircon grains were separated using standard heavy-liquid and magnetic techniques in the Department of Geodynamics of the University of Granada. Grains were handpicked and mounted in epoxy, polished, cleaned and gold coated for cathodoluminescence (CL) imaging on a Mira3 FESEM instrument at the John de Laeter Centre (JdLC), Curtin University, Perth, (Australia) and a Carl Zeiss SIGMA HD VP Field Emission SEM at the School of Geosciences, the University of Edinburgh, Scotland, (the United Kingdom). Representative CL images have been selected and interpreted in the results section- (Figs. 1 to 10 in S3 Supplementary material). In CL images, the lower-U regions are brightly illuminated and higher-U regions are dark, or even black, poorly illuminated regions.

U-Th-Pb geochronological analyses of samples AG-16 and AG-26 were carried
out on the SHRIMP IIe/mc instrument of the IBERSIMS lab, University of Granada,

50	Spain, and sample AG-13 was analysed on the Cameca IMS1270 at the NERC Ion	
51	Micro-Probe Facility, the University of Edinburgh, United Kingdom (see S1	
52	Supplementary material for a detailed description of the methodologies). Laser ablation	
53	inductively coupled plasma mass spectrometry (LA-ICPMS) data collection on the	
54	remaining samples was performed at the GeoHistory Facility, JdLC, Curtin University,	
55	Perth, Australia. A more detailed description of the methodology is provided within	
56	Text S1 in the Supplementary material.	
57	Ages in the text and figures are quoted as ²⁰⁶ Pb/ ²³⁸ U dates for zirconszircon	Formatted: Indent: First line: 0.49"
58	analysis younger than 1500 Ma and as ²⁰⁷ Pb/ ²⁰⁶ Pb dates for zirconszircon analysis older	
59	than 1500 Ma. Distribution, while errors are at the 2σ level. The distribution of detrital	
60	zircon ages were calculated using DensityPlotter 8.5 (Vermeesch, 2012), with a bin of	
61	40 Ma. An adaptive bandwidth of 40 Ma was applied for the Kernel Density Estimators	
62	(KDE); except in the zoom windows from 0 toof the group of ages younger than c. 541	
63	Ma, where a bin of 10 Ma and an adaptive bandwidth of 10 Ma were applied. Errors	
64	used in the calculation these KDE calculations are at the 1σ level- (Figs. 5, 6, 9, 10, 13)	
65	and 14). Mixture Models were used as a first approach to the age distribution plots in	
66	order to obtain the age of the main populations, however, the accuracy of these models	
67	in unsharpened peaks of the KDE was low (i.e. the age esd off-peak), and so the age of	
68	main populations was calculated using a weighted mean and assessed by the mean	
69	square weighted deviation (MSWD).	Formatted: Font: Not Bold, No underline
70		
71	5. Results	
72	In this section, we present the distribution histograms and KDE diagrams with $\$	Formatted: Indent: First line: 0.49"
73	the U-Pb results from the detrital-zircons of the three different complexes (NFC, AC,	
74	and MC). For each complex, we have combined and described the U Pb data for each	
	11	

formation and/or unit. A synthesis of the analyses and the results is listed in Tables S1 in the Supplementary material. The full description, CL images for representative zircon grains, representative Concordia plots, youngest zircon populations and detailed U-Pb analytical datasets of each individual sample are also provided in the supplementary information (Text S2, Figs. 1 to 10 in S3 and Table S1 in the Supplementary material).

Among the different strategies to estimate the Maximum Depositional Age (MDA) of a sample, we have chosen a more conservative approach where the youngest population is defined as the weighted mean of the youngest cluster of grains with overlapping 20 uncertainty (see Dickinson and Gehrels, 2009, for the method, and Sharman and Malkowski; 2020, for a discussion). The original method contemplates the use of three or more grains, however, we have worked with four or more grains in the calculation. Most of our samples are metadetrital with grains mostly < 400 Ma. The limited curvature of concordia at these young ages combined with the imprecision of the ²⁰⁷Pb/²³⁵U age, limits the identification of discordance, and, in fact, any level of Pb loss is masked by the uncertainty of the analysis (Bowring and Schmitz, 2003; Ireland and Williams, 2003; Spencer et al., 2016). Therefore, we have tried to minimize the risk of including dates from grains with Pb loss by applying a very conservative youngest population calculation, calculated using Isoplot software (Ludwig, 2003, 2009). The Multidimensional Scaling (MDS) technique was used to compare the age patterns for our samples with those of previously published samples from the NFC, AC, MC and the Variscan chain. The MDS is a mean of visualizing the level of similarity of individual datasets in two dimensions. In detrital zircon geochronology MDS is used to graphically represent a quantified comparison between the age patterns of two samples: greater distances between samples represent a greater degree of dissimilarity between

points on MDS diagrams (Vermeesch, 2013; Spencer and Kirkland, 2015; Wissink et			
al., 2018). MDS diagrams were produced using the software Provenance, with a			
Kolmogorov-Smirnov test for the measurement of the dissimilarity (Vermeesch et al.,			
2016). Methodology and results of the Kolmogorov-Smirnov test are given in the			
Supplementary material (Texts S1 and S2, Tables S2 and S3).			
4. Results			
In this section, we present the distribution histograms and KDE diagrams with			
the U-Pb results from the detrital zircon grains from the three different complexes			
(NFC, AC, and MC). For each complex, we have combined and described the U-Pb			
data for each formation and/or unit. Furthermore, we present the Concordia plots and			
KDE diagrams with the U-Pb results from the igneous zircon cores and metamorphic			
rims from the studied orthogneisses. CL images for representative zircon grains, and			
detailed U-Pb analytical datasets of each individual sample are also provided in the			
supplementary information (Figs. x 1 to x 10 in S3 and Table S1 in the Supplementary			
material).			
5			
<u>4</u>.1. Nevado-Filábride Complex			
54.1.1. LA-ICPMS results from metadetrital samples			
The CL images for samples AG-12, AG-14, AG-17 and AG-18 mostly show			
zircon grains with continuous oscillatory zoning (Fig. 1 in S3 Supplementary material).			
There are also some composite grains with cores overgrown by low or high U rims-and,			

324	a few grains with sector zoning, and grains that are structureless (Fig. 1 in S3	
325	Supplementary material).	
326	Independent of their location within the upper or lower Lomo de Bas tectonic	
327	unit, putative Upper Carboniferous samples AG-12, AG-14, AG-17 and AG-18 yielded	
328	similar ages for the youngest zircon analysed, and similar youngest zircon population	
329	ages. The youngest $\frac{1}{2}$ zirconszircon grains have 206 Pb/ 238 U dates between 284 ± 14 Ma	
330	(sample AG-12) and 323 ± 5 Ma (sample AG-18), while the youngest populations show	
331	206 Pb/ 238 U mean ages between 321 ± 2 Ma (sample AG-17, MSWD = 0.55 and	
332	probability = 0.65) and 336 \pm 2 Ma (sample AG-14, MSWD = 1.10 and probability =	
333	0.36).	
334	These samples Samples AG-12, AG-14, and AG-18 also have similar age	Formatted: Font color: Auto
335	distribution patterns showing a very noticeable Ediacaran component with peak ages	
336	between ca. 557 and ca. 618 Ma (between 17.3% and 24.3%, Fig. 95). There are also	Formatted: Font color: Auto
337	significant Mesoproterozoic (between 7% and 12%) and Paleoproterozoic (between	Formatted: Font color: Auto
338	17% and 26%) contributions. The former Mesoproterozoic population clearly stands out	Formatted: Font color: Auto
339	in samples AG-12 and AG-18 with ages clustering at ca. 1001 (7.2%) and 1025 Ma ₇	Formatted: Font color: Auto Formatted: Font color: Auto
340	(6.3%), respectively, and the latter in samples AG-Paleoproterozoic population is	Formatted: Font color: Auto
341	clearly identified in sample AG-14 and AG-17 with ages grouping at ca. 1893 and 2032	Formatted: Font color: Auto
342	Ma, and ca. 2011 Ma, respectively (13.2%) (Fig. 9). Despite having similar age	Formatted: Font color: Auto
343	distribution patterns, there5). There is a noteworthy difference in sample AG-17; the	Formatted: Font color: Auto
344	percentage of Paleozoic datesages (36%) in this sample AG-17 (36%) is twice as high	Formatted: Font color: Auto
345	as that in the other three samples $(15\% \text{ to } 19\%)$ (Fig. 95).	Formatted: Font color: Auto

Combining a total of 522 concordant or nearly concordant406 dates (Concordia ranging between 90% and 110%, Table S1 in Supplementary material) obtained from

these fourthe most similar samples (AG12, AG14 and AG18 of Lomo de Bas quartzites,

-(Formatted:	Font color:	: Auto
\neg	Formatted:	Font color:	: Auto
-(Formatted:	Font color:	: Auto
1	Formatted:	Font color:	: Auto
4	Formatted:	Font color:	Auto
-{	Formatted:	Font color:	: Auto
(F	
7	Formatted:	Font color:	Auto
_	Formattad	Fort colory	Auto
	Formatted:	Font color:	Auto
	Formatted:	Font color:	Auto
-1	Formatted:	Font color:	: Auto
_	Formattad	Fort colory	Auto
	Formatted:		Auto
	Formatted:	Font color:	Auto
1	Formatted:	Font color:	Auto
7	Formatted:	Font color:	: Auto
Y	Formatted:	Font color:	: Auto
1	Formatted:	Font color:	: Auto
-(Formatted:	Font color:	: Auto
-	Formatted:	Font color:	: Auto
-{	Formatted:	Font color:	: Auto
-	Formatted:	Font color:	: Auto

349	a new-; see Kolmogorov-Smirnov test-S in table S2 in the Supplementary material), the		
350	age distribution pattern withis characterised by dates ranging from 284283 to 3195 Ma		Formatte
351	is shown in (Fig. 0. These dates are Delegacic (21%) Neoproterozoic (45%).	$\overline{\ }$	Formatte
551	$\frac{1}{1}$ shown in $\frac{1}{1}$ ig. 5. These dates are rate of $\frac{1}{1}$ and $\frac{1}{1}$ in $\frac{1}{1}$		Formatte
352	Mesoproterozoic (9%), Paleoproterozoic (20%), Neoarchean (5%) and Mesoarchean		Formatte
353	(1%) (Fig. 9).). Within the 11167 Paleozoic zircon grains, there are Early Permian		Formatte
354	($\frac{2}{2}$ one grain, 283 ± 14 , 1.5% with respect to the total amount of Paleozoic grains).	$\overline{}$	Formatte
		<u> </u>	Formatte
355	Carboniferous $(44306 \pm 4 \text{ to } 359 \pm 8 \text{ Ma}, 40\%)$, Devonian $(12368 \pm 6 \text{ to } 405 \pm 6 \text{ Ma}, 40\%)$		Formatte
356	<u>9</u> %), Silurian (<u>2442 ± 10 Ma, 1.5</u> %), Ordovician (<u>7460 ± 12 to 484 ± 8 Ma, 9</u> %) and		Formatte
357	Cambrian dates ($\frac{33486 \pm 7 \text{ to } 540 \pm 7 \text{ Ma}}{39\%}$) (Fig. 95).		Formatte
250	The CL impring of singer spins from the Tabal Err of the Mulhartin		Formatte
338	The CL imaging of Zirconszircon grains from the Tanai Fm of the Mulnacen		Formatte
359	tectonic ensembleunits (samples AG-1 and AG-2) shows grains with continuous		
360	oscillatory zoning and partially resorbed cores overgrown by low and high U rims (Fig.		
361	2 in S3 Supplementary material). There are also grains with sector zoning and		
362	structureless grains (Fig. 1 in S3 Supplementary material).		
363	Individually, samples AG-1 and AG-2 contain Jurassic zirconszircon grains with		
364	the youngest zircon grains yielding 206 Pb/ 238 U dates of 195 ± 8 Ma, and 179 ± 5 Ma,		Formatte
365	respectively. TheyBoth samples also have a Permian age, within uncertainty, for the		
366	youngest zircon population populations with Permian ages at 275 ± 8 Ma (MSWD = 1.4		
367	and probability = 0.25) and 277 \pm 4 Ma (MSWD = 1.12 and probability = 0.35),		
368	respectively. Their age distribution patterns are also $comparable_{2}$ with Carboniferous		
369	and Ediacaran peaks at ca. 334 and 331 Ma, and ca. 610 and 598 Ma, respectively (Fig.		
370	106). However, there are some differences: i) a minor Early Tonian peak in sample AG-		
371	1 at ca. 939 Ma; ii) a higher percentage of Mesozoic and Paleozoic dates in sample AG-		
372	2; iii) greater percentage of Mesoproterozoic and Paleoproterozoic zirconszircon grains		
373	in sample AG-1; and iv) lack of Mesoarchean dates in sample AG-2 (Fig. 106).		
	15		

Formatted:	Font color: Auto
Formatted:	Font color: Auto
Formatted:	Font color: Auto
Formatted:	Font color: Auto

ed: Not Superscript/ Subscript

The 259 concordant or nearly concordant dates from samples AG-1 and AG-2 (Concordia ranging between 90% and 110%, Table S1 in Supplementary material) were combined in ana KDE age distribution pattern with dates from 179 to 2811 Ma, which are mainly Neoproterozoic (43.5%), Paleozoic (32%) and Paleoproterozoic (13%), with minor Mesozoic (2%), Mesoproterozoic (7%), Neoarchean (2%) and Mesoarchean dates (0.5%) (Fig. 106). The 83 Paleozoic zircon grains have Permian (254 ± 11 to 298 ± 8 Ma, 23% with respect to the total amount of Paleozoic grains), Carboniferous ($\frac{305 \pm 9}{1000}$ to 355 ± 10 Ma, 52%), Devonian (363 ± 11 to 410 ± 12 Ma, 7%), Silurian (424 ± 12 to 428 ± 13 Ma, 2%), Ordovician (454 ± 13 to 482 ± 14 Ma, 7%) and Cambrian dates (506 \pm 14 to 540 \pm 23 Ma, 9%), while the six Mesozoic zircon grains have two Jurassic (179) ± 5 to 195 ± 8 Ma) and four Triassic (209 ± 9 to 239 ± 9 Ma) dates (Fig. 106).

54.1.2. SIMS results of sample AG-13 (orthogneiss) – Lower Lomo de Bas tectonic unit Twenty-six grains from this orthogneiss were analysed and 27 of the 31 analyses yielded concordant or nearly concordant dates between 191 and 2345 Ma (Fig. 117). Eleven dates plot in a single population with a ²⁰⁴Pb corrected ²⁰⁶Pb/²³⁸U mean age of 294 ± 2 Ma (MSWD = 0.75 and probability = 0.68) (Fig. <u>117</u>). These dates are from zirconszircon grains with continuous oscillatory zoning, Th/U ratios between 0.030 and 0.615 and common Pb content from 0.05% to 0.26% (Table S1 in Supplementary material). Therefore, this mean age could represent the best estimate of the crystallization age of the protolith.

There are also seven 7 slightly younger dates between 264 and 286 Ma defining a tail negatively skewed towards younger ages (Fig. 127), which may relate to Pb loss undetectable with a discordance filter (see Spencer et al., 2016). These dates are from grains with continuous oscillatory zoning (Fig. 3 in S3 Supplementary material), and

one rim from a composite grain, Th/U ratios between 0.062 and 0.692 and much higher common Pb contents (up to 0.35% (%; Table S1 in Supplementary material). Thus, they were not takingtaken into account for the age calculation in order to avoid including dates from grains with possible Pb loss. The youngest ²⁰⁴Pb corrected ²⁰⁶Pb/²³⁸U date for this dataset is 191 ± 3 Ma (Table S1 in Supplementary material). This date is from the rim of a composite grain, has a Th/U ratio of 0.011 and could be related to a metamorphic event in this arealinked to the intrusion of Early Jurassic mafic rocks (Puga et al., 2011).

54.1.3. SHRIMP IIe/mc datationsanalysis on zirconszircon grains from sample AG-

16 (orthogneiss) – Lower Lomo de Bas tectonic unit

Sample AG-16 provided scarce euhedral bipyramidal prismatic zirconszircon

crystals with dimensions between 80 and 200 µm. The CL imaging shows partially resorbed cores overgrown by low or high U rims with well-defined oscillatory zoning and a few grains with continuous oscillatory zoning (Fig. 4 in S3 Supplementary

material).

Twenty-one U-Pb analyses on 18 different crystals yielded 15 concordant or nearly concordant dates (discordance <5%) ranging from 284 to 674 Ma (Fig. 118). Eight of those 13 analyses plotted as a single population with a ²⁰⁷Pb corrected 206 Pb/ 238 U mean age of 289 ± 3 Ma (MSWD = 1.4 and probability = 0.20) (Fig. 12) and8). All these analysis were fromperformed in grains with continuous oscillatory zoning, U and Th contents of 205-1415 and 53-426 ppm, respectively, and Th/U ratios between 0.07 and 1.03 (Table S1 in Supplementary material). This The obtained mean age is therefore considered the best estimate of the crystallization age of the

protolithparent rocks for the orthogneiss. The remaining dates (330 to 674 Ma) were

Formatted: Pattern: Clear Formatted: Pattern: Clear

Formatted: Pattern: Clear

from cores of composite grains and grains with continuous oscillatory zoning and are considered inherited cores and xenocrysts, respectively (Fig. 128).

4.2. Alpujárride Complex

54.2.1. LA-ICPMS results from samples from the Micaschists and Quartzite Fm The CL images of zirconszircon grains of samples AG-4, AG-5, AG-6 and AG-7 from the Micaschists and Quartzite Fm show grains with continuous oscillatory zoning and complex grains with a partially resorbed core overgrown by low or high U rim. There are also a few grains with sector zoning and structureless grains (Fig. 5 in S3 Supplementary material). Some similarities are distinguished on the The age distribution patterns of these fourthe 4 aforementioned samples show some similarities (Fig. 139, and see Kolmogorov-Smirnov test-S in table S2 in the Supplementary material). There are two main peaks: i) a main Ediacaran peak with ages between ca. 600 and 631 Ma; and ii) a secondary Early Tonian-Late Stenian peak with ages between ca. 996 and 1040 Ma. However, some differences are also noteworthy: i) samples AG-6 and AG-7, located at the top of the formation, have an Early Orosirian-Late Rhyacian population at ca. 2055 and 2033 Ma, respectively, that is absent in samples AG-4 and AG-5 at the base of the formation (Fig. 139); ii) samples from the top of the formation also have a Paleoarchean component that is lacking at the bottom; iii) there were no Mesoarchean dates found in sample AG-6; iv) the age of the youngest zircon grains decreases from the bottom to the top of the formation; that is, from 328 ± 10 Ma and 306 ± 6 Ma in samples AG-4 and AG-5, respectively, to 296 ± 4 Ma and 299 ± 7 Ma in samples AG-6 and AG-7, respectively; and finally, v) the youngest zircon population in sample AG-5

is Late Carboniferous (308 ± 4 Ma) contrasting with those from the other three samples

449	that are Cambrian-Early Ediacaran (sample AG-4, 551 \pm 5 Ma; sample AG-6, 507 \pm 10
450	Ma; and sample AG-7; 558 \pm 7 Ma (Text S2 and Fig. S4 in Supplementary material).
451	Combining the 562 concordant or nearly concordant-U-Pb data (Concordia
452	ranging between 90% and 110%, Table S1 in Supplementary material) for the four
453	samples of Micaschits and Quartzite Fm produces an age distribution pattern composed
454	of Paleozoic (11%), Neoproterozoic (51%), Mesoproterozoic (11%), Paleoproterozoic
455	(17%), Neoarchean (8%), Mesoarchean (1.5%) and Paleoarchean dates (0.5%) (Fig. 13).
456	These(Fig. 9). These data cluster into five main peaks at ca. 309, 602, 1039, 2054 and
457	2547 Ma (Fig. 139). Within the 63 Paleozoic zircon grains, there are: Permian ($\frac{296 \pm 4}{100}$)
458	to 298 ± 7 Ma, 5% with respect to the total amount of Paleozoic grains), Carboniferous
459	$(304 \pm 5 \text{ to } 359 \pm 9 \text{ Ma}, 32\%)$, Devonian $(365 \pm 8 \text{ to } 390 \pm 7 \text{ Ma}, 9\%)$, Ordovician (448)
460	\pm 13 to 482 \pm 10 Ma, 14%) and Cambrian dates (460 \pm 17 to 541 \pm 9 Ma, 40%) (Fig.
461	<u>139</u>).
462	

54.2.2. LA-ICPMS results from samples from the Middle Triassic Meta-detrital Fm The CL imaging of zirconszircon grains from samples AG-9, AG-11, and AG-15 shows grains with continuous oscillatory zoning and some partially resorbed cores with low or high U overgrowths. There are also grains with sector zoning (Fig. 6 in S3 Supplementary material).

Their The youngest zircon grains in these samples have ²⁰⁶Pb/²³⁸U dates ranging between from 214 ± 2 and 288 ± 4 Ma, while their youngest zircon populations have $^{206}\text{Pb}/^{238}\text{U}$ mean ages varying between 287 \pm 1 Ma (sample AG-11, MSWD = 1.11 and probability = 0.35) and 474 \pm 3 Ma (sample AG-15, MSWD = 0.71 and probability = 0.54).

473	The age distribution pattern<u>patterns</u> from these samples <u>displays</u> display two or
474	three main populations: a Permian-Late Carboniferous peak (ca. 287 Ma in samples
475	AG-9 ; 16.2%, and AG-11); 6.0%), one or two Ediacaran-Cryogenian peaks (from ca.
476	546 to ca. 661 Ma, in all samples): 4.4%, 12.0%, and 7.3%) and a Tonian-Stenian peak
477	(from ca. 963 to ca. 1016 Ma in samples AG-9 <u>: 19.1%</u> and AG-15 <u>): 6.5%)</u> (Fig. <u>1410</u>).
478	The dates of samples AG-9, AG-11, and AG-15 from the Meta-detrital Fm range
479	from 214 Ma to 2941 Ma, and are Paleozoic ($\frac{275 \pm 3 \text{ to } 541 \pm 7 \text{ Ma}}{17\%}$ to 39%),
480	Neoproterozoic (542 ± 8 to 998 ± 13 Ma, 34% to 57%), Mesoproterozoic (1004 ± 13 to
481	<u>1552 ± 37 Ma.</u> 6% to 13%), Paleoproterozoic (<u>1655 ± 26 to 2451 ± 24 Ma.</u> 7% to 13%)
482	and Neoarchean (2503 ± 28 to 2762 ± 47 Ma, 4% to 7%) in age. It is worthy to
483	noteworth noting that only sample AG-15 yielded a fewone Mesoarchean dates
484	(1%)date (2941 \pm 15 Ma, 1%) and sample AG-11 yielded one Triassic date (214 \pm 2
485	Ma, 1%), (Fig. 1410). When we combine the 392 concordant or nearly concordant U-
486	Pb data (Concordia ranging between 90% and 110%, Table S1 in Supplementary
487	material) from samples AG-9, AG-11, and AG-15, we obtain an age distribution pattern
488	composed of Mesozoic (0.5%), Paleozoic (30%), Neoproterozoic (44%),
489	Mesoproterozoic (9%), Paleoproterozoic (11%), Neoarchean (5%), and Mesoarchean
490	dates (0.5%)-a cumulate age distribution pattern (Fig. 1410). These data cluster into
491	five <u>three</u> main peaks at ca. 316, 588, 990, 7960, and 2610 Ma<u>287, 570, 964Ma</u> (Fig.
492	14 <u>10</u>). Within the 119 Paleozoic zircon grains, there are: Permian ($\frac{33275 \pm 3 \text{ to } 298 \pm 3}{1000000000000000000000000000000000000$
493	8.0 Ma, 32% with respect to the total amount of Paleozoic grains), Carboniferous
494	$(28299 \pm 7 \text{ to } 356 \pm 3 \text{ Ma}, 29\%)$, Devonian $(366 \pm 4 \text{ to } 417 \pm 4 \text{ Ma}, 3\%)$, Silurian (434)
495	\pm 11 to 443 \pm 4 Ma, 3%), Ordovician (445 \pm 6 to 482 \pm 7 Ma, 17%), and Cambrian
496	dates (490 ± 7 to 541 ± 7 Ma, 16%) (Fig. 4410).
497	

98	5 <u>4</u> .2.3. LA-ICPMS results from samples from the Miñarros quartz mylonites	
99	The CL images of zircon grains from the Miñarros quartz mylonites (sample	
00	AG-19) show grains with continuous oscillatory zoning and composite grains with cores	
01	overgrown by low and high U rims (Fig. 7 in S3 Supplementary material). One hundred	
02	and fifty one analyses were performed on selected zirconszircon grains and 145 yielded	
03	concordant or nearly concordant dates between 297 and 3105 Ma. Those dates are	
04	Palaeozoic (297 ± 5 to 535 ± 8 Ma, 30%), Neoproterozoic (545 ± 6 to 992 ± 13 Ma,	
05	42%), Mesoproterozoic (1002 ± 10 to 1201 ± 12 Ma, 7%), Paleoproterozoic (1707 ± 69	
06	to 2431 ± 20 Ma, 15%), Neoarchean (2528 ± 18 to 2696 ± 21 Ma, 5%) and	
07	Mesoarchean ($\frac{2974 \pm 18 \text{ to } 3105 \pm 23 \text{ Ma}}{18}$), and cluster into six main populations at	
08	ca. 300, 305, 550, 566, 622 and 986 Ma (Fig. 14 <u>10</u>). The 43 Paleozoic zircon grains	
09	include Permian (297 ± 5 to 298 ± 4 Ma, 7% with respect to the total amount of	
10	Paleozoic grains), Carboniferous (299 ± 4 to 320 ± 4 Ma, 46%), Devonian (386 ± 5 to	
11	<u>413 ± 8 Ma.</u> 5%), Ordovician (<u>463 ± 6 to 483 ± 5 Ma.</u> 19%), and Cambrian dates (<u>495 ±</u>	
12	<u>6 to 535 ± 8 Ma,</u> 23%) (Fig. <u>1410</u>). The youngest zircon 206 Pb/ 238 U date is 297 ± 5 Ma	
13	and the youngest zircon population, comprising 10 dates, has a mean $^{206}\text{Pb}/^{238}\text{U}$ age of	
14	300 ± 1 Ma (MSWD = 0.64 and probability = 0.76).	
15	<u>ــــــــــــــــــــــــــــــــــــ</u>	Formatted: Font: Italic
16	54.2.4. SHRIMP IIe/mc datations on zirconszircon grains from sample AG-26	
17	(orthogneiss)	
18	Zircon grains from AG-26 are abundant and euhedral bipyramidal prisms	
19	with lengths of about 250 to 80 μm and widths of 100 to 50 $\mu m.$ Most are brownish	
20	translucent crystals. CL imaging shows composite grains with partially resorbed	
21	cores overgrown by thick high U rims. Most of the cores show continuous	

22	oscillatory zoning truncated by the dark rims (Fig. 8 in S3 Supplementary
23	material). Both domains were targeted for the analysis.
24	Sixteen U-Pb measurements on 16 different dark rims yielded 14 concordant or
25	nearly concordant dates ranging from 14 to 250 Ma (Fig. 1511). Six dates plot in a
26	single population with a 207 Pb corrected 206 Pb/ 238 U mean age of 15.8 ± 0.2 Ma (MSWD
27	= 0.69, probability = 0.63) (Fig. $\frac{1511}{15}$). These dates are from zircon with U and Th
28	contents between 4006 and 7413, and 6 and 14 ppm, respectively, and Th/U between
29	0.001 and 0.004 (Table S1 in Supplementary material).
30	Thirty analyses were performed on 30 cores from different crystals and all these
31	analyses yielded concordant or nearly concordant dates between 30 and 288 Ma (Fig.
32	$\frac{1612}{10}$). Fifteen analyses plot in a single population with a ²⁰⁷ Pb corrected ²⁰⁶ Pb/ ²³⁸ U
33	<u>mean</u> age of 283 ± 2 Ma (MSWD = 0.76 and probability = 0.71) (Fig. <u>1612</u>). These
34	analyses are from zirconszircon grains with U and Th contents between 377 and 1919,
35	and 32 and 137 ppm, respectively, and Th/U between 0.05 and 0.21 (Table S1 in
36	Supplementary material).
37	
38	54.3. Maláguide Complex and unconformable Middle Miocene red conglomerates
39	and sandstones
40	Samples LP-16-AZ and AG-10 contained zircon grains displaying either
41	continuous oscillatory zoning, partially resorbed cores overgrown by low or high U
42	rims, or sector zoning. There were also a few structureless zircon grains (Fig. 9 in S3
43	Supplementary material)
44	The youngest zircon grains in these two samples have $^{206}\text{Pb}/^{238}\text{U}$ ages of 277 \pm 7
45	and 283 \pm 15 Ma, respectively, while the youngest zircon populations have mean

46	$^{206}\text{Pb}/^{238}\text{U}$ ages of 279 \pm 3 Ma (MSWD = 0.57 and probability = 0.63) and 492 \pm 8 Ma
47	(MSWD = 1.3 and probability = 0.28), respectively.
48	The age distribution patterns of samples AG-10 and LP-16-AZ are significantly
49	different (Fig. 47 <u>13</u>). The two main populations in sample AG-10 are Ediacaran
50	(population between 587 ± 14 and 615 ± 16 Ma, mean at ca. 602 Ma): 12.8%) and
51	Stenian (population between 1064 ± 30 and 1085 ± 22 Ma, mean at ca. 1074 Ma);
52	4.0%), while in sample LP-16-AZ, they are Carboniferous (population between 299 ± 7
53	and 310 ± 8 Ma, mean at ca. 305 Ma) 17.8%) and Ediacaran (population between 597 ±
54	<u>14 and 618 ± 16 Ma, mean at ca. 608 Ma). The percentage of Paleozoic grains</u>
55	in sample LP-16AZ16-AZ is also almost four times higher than that in sample AG-10,
56	while the Neoproterozoic component in sample AG-10 is almost double that in sample
57	LP-16-AZ. Furthermore, Mesoarchean and Neoarchean dates are lacking in sample LP-
58	16-AZ, which does contain a Paleoarchean population component.
59	The dates from the two samples (Fig. $\frac{1713}{13}$) include Paleozoic ($\frac{277 \pm 7 \text{ to } 528 \pm 1}{123}$)
60	<u>13 Ma,</u> 14 to 52%), Neoproterozoic (546 ± 12 to 992 ± 21 Ma, 33 to 50%),
61	Mesoproterozoic (1002 ± 26 to 1588 ± 21 Ma, 5 to 9 %), and Paleoproterozoic (1793 ± 26 to 1588 ± 21 Ma, 5 to 9 %).
62	<u>43 to 2499 \pm 33 Ma, 9 to 20%). Sample AG-10 also includes Neoarchean (2515 \pm 15 to</u>
63	2605 ± 32 Ma, 6%), and Mesoarchean (3000 ± 17 Ma, 1%) zircon grains, while sample
64	LP-16-AZ also includes <u>one</u> Paleoarchean (<u>3375 ± 18 Ma,</u> 1%) zircon grains grain.
65	Within the Paleozoic zircon population, the main difference is the increase (by one
66	order of magnitude) in the number of Carboniferous and Permian grains from 3 and 2 in
67	sample AG-10 to 33 and 18 in sample LP-16-AZ, respectively. The character of the
68	remaining Paleozoic grains is similar in AG-10 and LP-16-AZ (3 and 2 Devonian
69	grains, 1 and 1 Silurian grains, 2 and 10 Ordovician grains, and 7 and 6 Cambrian grains
70	in each sample, respectively).
	23

Samples AG-3 and AG-20 from the unconformable Middle Miocene red conglomerates and sandstones contain zircon grains with either continuous oscillatory zoning or sector zoning (Fig. 10 in S3 Supplementary material). There are also some composite grains with a partially resorbed core overgrown by a thick rim, very similar to those previously described in the Micaschists and Quartzite Fm of the AC. Sample AG-20 also includes a few structureless zircon grains (Fig. 10 in S3 Supplementary material)

The youngest zircons from samples AG-3 and AG-20 have ²⁰⁶Pb/²³⁸U dates of 248 ± 8 and 177 ± 7 Ma, respectively, while their youngest zircon populations have mean ${}^{206}\text{Pb}/{}^{238}\text{U}$ ages of 582 ± 7 Ma (MSWD = 1.3 and probability = 0.23) and 292 ± 3 Ma (MSWD = 0.91 and probability = 0.47), respectively.

The age distribution patterns of AG-3 and AG-20 are slightly different (Fig. 1814). There is only one main population in sample AG-3 (Early Ediacaran: ca. 605 Ma);: 12.8%), while there are three main populations in sample AG-20 (Late Ediacaran: ca. 574 Ma;, 8.5%; Cryogenian: ca. 691 Ma;, 6.4%; Orosirian: ca. 2007 Ma;. 6.4%). Moreover, the percentage of Paleozoic (270 ± 6 to 535 ± 12 Ma) zircon grains in sample AG-20 (22%) is almost three times higher than that in AG-3-(300 ± 7 to 508 ± 13 , 8%). The Mesoarchean component (2848 ± 31 to 3119 ± 28 Ma) in sample AG-3 (5%) is fourteenten times greater than that in sample AG-20- (with only one grain at 3081 ± 35 Ma, ca. 0.5%). Paleoarchean zircons zircon grains are absent in sample AG-20, but present in sample AG-3 (3205 ± 24 Ma) (Fig. $\frac{1814}{18}$). Regarding the Mesozoic component, (177 to 249 Ma), sample AG-3 contains one Triassic zircon grain with 248 ± 8 Ma, while sample AG-20 contains one Jurassic zircon grain. The number of Paleozoic grains also differs, with 11 and 31 grains in samples AG-3 and AG-20,

respectively. The main difference in the Paleozoic component is the lack of Permian

grains in sample AG-3 and the content of Carboniferous grains (three in AG-3 to eight in AG-20). Samples AG-3 and AG-20 contain the same number of number of Devonian grains (4), and a similar number of Silurian (1 and 3, respectively), Ordovician (1 and 5, respectively), and Cambrian grains (2 and 4, respectively). with 177 ± 7 Ma.

6. Discussion

602	6The main difference in the Paleozoic component is the lack of Permian grains
603	in sample AG-3, while sample AG-20 contains 7 grains with dates ranging between 270
604	\pm 6 and 298 \pm 7 Ma. They also differ in the content of Carboniferous (3 grains in AG-3;
605	300 ± 7 to 309 ± 7 Ma, and to 8 grains in AG-20; 304 ± 8 to 334 ± 7 Ma), Silurian (1
606	grain, 435 ± 17 Ma in AG-3, and 3 grains, from 428 ± 12 to 440 ± 10 Ma in AG-20),
607	Ordovician (1 grain, 446 \pm 11 Ma in AG-3, and 5 grains, from 453 \pm 10 to 485 \pm 10 Ma
608	in AG-20) and Cambrian grains (2 grains, 504 ± 14 to 508 ± 13 Ma in AG-3, and 4
609	grains, from 487 ± 11 to 535 ± 12 Ma, in AG-20). Samples AG-3 and AG-20 contain
610	the same number of number of Devonian grains (4 grains, 368 ± 10 to 412 ± 11 Ma in
611	<u>AG-3, and 360 ± 9 to 368 ± 10 Ma in AG-20).</u>
612	
613	5. Discussion
614	<u>5</u> .1. Depositional age of the graphite-bearing formations of the Nevado-Filábride
615	and Alpujárride complexes
616	Within the upper or lower Lomo de Bas units, the four4 studied samples yielded
617	youngest zirconszircon grains with <u>4</u> dates between 284 ± 14 and 323 ± 5 Ma, while
618	their. As previously stated, we also provide youngest populations (see Dickinson and
619	Gehrels, 2009 for the method, and Sharman and Malkowski; 2020 for a discussion).
620	Their youngest populations vary between 321 ± 2 and 336 ± 2 Ma (see text S2 and Fig.

621	S4 in Supplementary material). Therefore, the youngest dates point towards Early
622	Permian-Late Carboniferous maximum depositional ages (MDA). However, as data
623	from the orthogneisses samples AG-13 and AG-26 highlight, some of the youngest
624	zircon dates can be related to Mesozoic metamorphic events and/or Pblead loss.
625	Therefore, we prefer the more conservative approach of using the youngest detrital
626	zircon populations , and thus<u>.</u> Therefore , we propose a MDA between 321 ± 2 and $336 \pm$
627	2 Ma for the quartzites of the Lomo de Bas (i.e., Carboniferous).
628	The minimum depositional age of these rocks is defined by samples AG-13 and
629	AG-16, the The orthogneiss bodies within the Lomo de Bas blacksblack schists and
630	quartzites (Álvarez and Aldaya, 1985; Álvarez, 1987) with are strongly deformed and
631	metamorphosed, making it difficult to determine whether they represent volcanic rocks
632	or intrusive plutons. However, in either case, these units can help define the minimum
633	depositional age of the Lomo de Bas rocks, as they are located in the uppermost part of
634	the succession (see Fig. 4). If they are volcanic rocks coeval with deposition, they
635	indicate the age of the uppermost layers, and if they are plutons which were intruded
636	post-deposition, they constrain the minimum depositional age of the Lomo de Bas
637	rocks. Samples AG-13 and AG-16 yield ²⁰⁶ Pb/ ²³⁸ U ages for the protolithsparent rocks of
638	294 \pm 2 Ma (MSWD = 0.75 and probability = 0.68) and 289 \pm 3 Ma (MSWD = 1.4 and
639	probability = 0.20), respectively. The $\frac{\text{ages}age}{\text{age}}$ of both orthogneisses just overlap within
640	uncertainty and, together with the previous MDA, definedefines a depositional age for
641	the quartzitic rocks of the Lomo de Bas units between Bashkirian (Late Carboniferous)
642	and Artinskian-Sakmarian (Early Permian).
643	This Late Carboniferous age agrees is compatible with the presence of Early-
644	Middle Devonian fossils in the dark marbles below the quartzites of the upper tectonic

645 unit (Eifelian-Emsian, c.f. Lafuste and Pavillon, 1976; Laborda-López et al., 2013,

2015a, b), and also supports the presence of several superposed tectonic units as suggested by Laborda-López et al. (2013, 2015a, b). The youngest ²⁰⁶Pb/²³⁸U zircon dates in samples from the Micaschists and Quartzite Fm of the AC (AG-4, AG-5, AG-6 and AG-7) are Early Permian-Late Carboniferous (328 \pm 10 Ma and 296 \pm 4 Ma), but the youngest populations in these samples are highly variable; Cambrian-Late Ediacaran (between 507 and 558 Ma) in samples AG-4, AG-6 and AG-7, and Late Carboniferous (308 Ma) in sample AG-5 at the base of the Micaschists and Quartzite Fm. ASample AG-5 indicates a MDA of Late Pennsylvanian age-is proposed for the AC Micaschists and Quartzite Fm.

65.2. Provenance of zircon in Late Carboniferous samples

The studied samples from both the Lomo de Bas rocks and the Micaschists and Quartzite Fm include Carboniferous grains (498.9% of total grains in the NFC, and 203.6% of grains in the AC) that could have been sourced from Late-Variscan and Variscan felsieigneous rocks, widely distributed within occupying more than one third of the outcrops of the whole Iberian Massif, and surrounding areasessentially, ca. one half of the Central Iberian Zone (e.g. Arranz and Lago, 2004; Bea, 2004; Casquet and Galindo, 2004; Gallastegui et al., 2004; Ribeiro et al., 2019). Furthermore, they could have been sourced from the oldest granitoids within the Variscan remnants in the Betic Chain, essentially the older orthogneisses in the NFC with U-Pb ages of ca. 301 Ma (Gómez-Pugnaire et al., 2004, 2012). The Carboniferous rocks of both the NFC and AC also include a number of Early Ordovician, Silurian and Devonian dates (234.4% of grains in the NFC and $\frac{152.7\%}{152.7\%}$ of grains in the AC with dates between 484 and 365 Ma₂, which). Ordovician zircon grains may have no known source in pre-Carboniferous rocks-come from the Ollo de Sapo magmatic event (Montero et al., 2007, 2009, Díez-

	28
695	possibility is that they were directly sourced from eroded rocks within the Rheic Ocean
694	(Pereira et al., 2012, 2017; Pérez-Cáceres et al., 2017; Accotto et al., 2020). The second
693	convergent margin during Middle Late Devonian subduction of the Rheic Ocean
692	that they were sourced from an unexposed magmatic arc along the Avalonian
691	derived from Avalonian terranes, based on two slightly different hypotheses. The first is
690	As previously mentioned, these Devonian grains are interpreted as having been
689	al., 2008).
688	below the allochthonous complexes of the Galicia-Tras-Os-Montes (Martínez Catalan et
687	from the Cantabrian Zone (Pastor Galán et al., 2013), and, iv) in the syn-orogenic rocks
686	2012, 2014, 2017<u>2</u>017a ; Pérez-Cáceres et al., 2017), and iii) in the Carboniferous rocks
685	metasediments from both the South Portuguese and Ossa-Morena zones (Pereira et al.,
684	the Eastern Moroccan Meseta (Accotto et al., 2020), ii) in Late Paleozoic
683	have also been described: i) in the Late Devonian Debdou-Mekkam Metasediments in
682	2010). However,), and also within metasediments-containing those Devonian grains
681	within granites in the the Sehoul Block in the Western Moroccan Meseta (Tahiri et al.,
680	Galán et al., 2013, where their sources are explored). For example, they are found
679	Devonian zircon source rocks-Devonian grains are onlyrelatively abundant (see Pastor-
678	Ocean (e.g. Sánchez Martínez et al., 2007, 2012). In the surrounding Variscan terranes,
677	allochthonous complexes where rocks with Silurian and later subduction of the Rheic
676	developed during rifting, spreading, Zone (Gutiérrez-Alonso et al., 2008), or from the
675	of these zircon grains could be in the Avalonian terranes. In fact, felsic magmatism was
674	Cantabrian, and West Asturian Leonese zones of the Iberian Massif. The nearest source
673	from the volcanic event that is now starting to be recognized in the Central Iberian,
672	2013; Pereira et al., 2018), while Silurian and Devonian grains may have originated
671	Montes et al., 2010) or other igneous bodies (Rubio-Ordóñez et al. 2012; Talavera et al.,

Formatted: English (United Kingdom) Formatted: English (United Kingdom) Formatted: English (United Kingdom) Formatted: English (United Kingdom)

96	suture zone, where zircon grains of these ages occur (e.g. Fernandez Suarez et al., 2002;
97	Sánchez-Martínez et al., 2007; Martínez Catalán et al., 2008; Pastor-Galán et al., 2013).
98	However, the main detrital zircon component in the Carboniferous rocks of both
99	the NFC and AC is pre-Cambrian, with two main populations: i) an Early
00	Neoproterozoic population between ca. 574 and 602 Ma (Ediacaran Cryogenian) (Text
)1	S2 in Supplementary material), and ii) a Mesoproterozoic population between ca. 1014
)2	and 1039 Ma (Stenian) (Fig. 19; Text S2 in Supplementary material). These populations
)3	represent the Cadomian Pan African orogeny developed in Gondwana and the Tonian-
)4	Stenian magmatic event that took place in the Arabian Shield (see Bea et al., 2010),
)5	respectively. Furthermore, the NFC and AC Carboniferous rock also contain an
)6	Orosirian (ca. 2.0-2.1-Ga), recording the Eburnean orogeny, and a Neoarchean (ca. 2.5-
)7	2.7 Ga) population. However, the main detrital zircon component in the Carboniferous
)8	rocks of both the NFC and AC is pre-Cambrian, and includes 4 zircon age populations:
)9	Ediacaran-Cryogenian (39.4% in the NFC at ca. 574 Ma, and 5.2% in the AC at ca. 602
0	Ma), Tonian-Stenian (3.6% in the NFC at ca. 1014 Ma, 5.3% in the AC at ca. 1039
1	Ma), Orosirian (3.8% in the NFC at ca. 2024 Ma, and 4.8% in the AC at ca. 2054 Ma).
2	and Neoarchean (1.7% in the NFC at ca. 2659 Ma, and 1.6% in the AC at ca. 2547
3	Ma). The first of these four populations represents the Cadomian-Pan-African orogeny.
4	developed in Gondwana and the peri-Gondwanan terranes, like the Meguma and West
5	Avalonia terranes. The second one represents the Tonian-Stenian magmatic event in the
6	Arabian Shield at ca. 1.0 Ga (see Bea et al., 2010; Fernández-Suárez et al., 2014;
7	Meinhold et al., 2014). The Orosirian population represents the Eburnean orogeny, and
8	the ages of the basement in the cratonic areas of the Saharan Metacraton (see Meinhold
9	<u>et al., 2014).</u>

2		
4 5		
5		
7	720	Similar age patterns with these four peaks are found within the Carboniferous
8 9	721	and older rocks from the Central Iberian, Cantabrian, and West Asturian-Leonese zones
10 11	722	of the Iberian Massif (see Talavera et al., 2012, 2015; Pastor Galán et al., 2013;
12 13	723	Fernández-Suárez et al., 2014; Shaw et al., 2014; Gutierrez-Alonso et al., 2015) (Fig.
14 15	724	19). If we focus on the Pre-Carboniferous rocks, Fernandez Suarez et al. (2014) studied
16 17	725	the age of zircon from Ediacaran and Early Cambrian rocks of the Cantabrian and
18	726	Central Iberian zones and found two populations ca. 0.55-0.75 Ga and ca. 0.85-1.15 Ga,
20	727	and also minor Paleoproterozoic (ca. 1.9 2.1 Ga) and Archean (ca. 2.4 2.6 Ga)
21 22	728	populations (Fig. 19D). Talavera et al. (2012, 2015) also determined similar age
23 24	729	patterns in Ediacaran to Early Ordovician rocks of the Central Iberian Zone. Shaw et al.
25 26	730	(2014) sampled and studied the Lower Ordovician Armorican quartzite trough the
27 28	731	Central Iberian, Cantabrian, and West Asturian Leonese zones, and their age pattern
29 30	732	(n=1173) also shows the above-mentioned peaks with Ediacaran-Cryogenian (ca. 617
31 32	733	Ma), Tonian Stenian (ca. 1.21 Ga), Orosirian (ca. 2.0 Ga), and Neoarchean (ca. 2.6 Ga)
33 34	734	populations (Fig. 19D). Furthermore, Gutierrez Alonso et al. (2015) studied Silurian-
35	735	Devonian sedimentary rocks from the same two paleogeographic zones and found also
37	736	the same four populations: Ediacaran Cryogenian (c. 0.55 0.8 Ga), Tonian Stenian
38 39	737	(0.85–1.2 Ga), Palaeoproterozoic (c. 1.8–2.2 Ga) and Archaean (c. 2.5–3.3 Ga)
40 41	738	(Fig.19C). In summary, the same four age peaks were found in all these works, albeit
42 43	739	with differences in the proportion of grains in each population (Fig. 19). Stephan et al.
44 45	740	(2019) include those areas with similar pre-Ediacaran age patterns to their East African-
46 47	741	Arabian zircon province, and included the Central Iberian, Cantabrian, and West
48 49	742	Asturian-Leonese zones of the Iberian Massif.
50 51	743	We can also compare the results presented here with those obtained on samples
52 53	744	of a similar age from the Betic Cordillera, Iberian massif <u>Massif</u> and surrounding areas-,
54 55		30
56		
57		
58		
59 60		
61		

Formatted: English (United States)

745	as the Pyrenees, Montagne Noire and Mouthoumet massifs (Martínez et al., 2016) (Fig.	
746	S5 in the Supplementary material). In the Betic Cordilleras, the Lomo de Bas units have	
747	usually been interpreted as part of the Veleta units of the NFC (i.e. Álvarez and Aldaya,	
748	1985; Álvarez, 1987), and their quartzites correlated with the Late Carboniferous	
749	Aulago Fm in the Sierra de Filabres area (Jabaloy-SanchezSánchez et al., 2018;	
750	Rodríguez-Cañero et al., 2018), which also include the Ediacaran-Cryogenian and	
751	Stenian populations mentioned above (Fig. 19A).Jabaloy-Sánchez et al., 2018) (Fig. S5	
752	in Supplementary material). The main difference is a larger proportion of Devonian and	
753	Carboniferous zircon grains within the Lomo the Bas rocks (13 and 49 grains,	
754	respectively), when compared to those from the Aulago Fm (7 and 4 grains,	
755	respectively; Jabaloy-Sánchez et al., 2018) (Fig. 19A). S5 in Supplementary material).	
756	Furthermore, the age pattern of sample Ri119 from the Paleozoic basement of a tectonic	
757	unit of the Sebtide/Alpujárride Complex in the Internal Rif (n=144 analyses, Azdimousa	
758	et al., 2019) also yields a similar pattern to that in Late Carboniferous samples from the	
759	AC and NFC with two main populations at ca. 532 and 992 Ma (Fig. 19B). S5 in	
760	Supplementary material).	
761	Similar age patterns with these four peaks are found within the Carboniferous	
762	and older rocks from the Central Iberian, Cantabrian, and West Asturian-Leonese zones	
763	of the Iberian Massif (see Talavera et al., 2012, 2015; Pastor-Galán et al., 2013;	
764	Fernández-Suárez et al., 2014; Shaw et al., 2014; Gutierrez-Alonso et al., 2015) (Fig.	Formatted: English (United States)
765	Pereira et al. (2014, 2020) studied the Late Carboniferous sediments from the Ossa-	
766	Morena and South Portuguese zones of the Iberian Massif (see Pereira et al., 2012,	
767	2014, 2020, and references therein) (Fig. 19H). Within these rocks, those from the	
768	Ossa-Morena Zone were deposited in a continental environment (Santa Susana Fm	
769	Pereira et al., 2020), with an age pattern that includes a main Early Carboniferous	
l		
	24	

770	population at ca. 354 Ma, but also Cryogenian (ca. 647 Ma) and Rhyacian (ca. 2128	
771	Ma) secondary populations (Pereira et al., 2020) (Fig. 19H). However, the age patterns	
772	lack the Stenian and Neoarchean populations present in the NFC and AC samples (Fig.	
773	19). Furthermore, marine detritic sediments were also deposited in the South-	
774	Portuguese Zone, and their age patterns are very similar to those of the Ossa Morena	
775	Zone. Those marine detritic sediments from the South Portuguese Zone include the	
776	Devonian (ca. 405 Ma), Ediacaran Cryogenian (ca. 639 Ma), and Orosirian populations	
777	(ca. 2068 Ma), and they lack the Stenian and Neoarchean ones (Brejeira and Mira Fms	
778	from Pereira et al., 2014) (Fig. 19).	
779	On the other hand, Upper Carboniferous samples from the Cantabrian Zone	
780	studied by Pastor-Galán et al. (2013) yield very similar age distribution patterns to those	
781	of the Lomo de Bas (NFC) and Micaschists and quartzites Fm (AC), with the only	
782	difference being the existence of an Early Carboniferous peak (ca. 335 Ma, "Variscan")	
783	in the rocks from the Betic Cordillera (Fig. 19C). Martínez et al. S5 in Supplementary	
784	material).	
785	If we compare the studied samples with the previously discussed age patterns	
786	using the MDS plot, we found that all the samples from the Late Carboniferous rocks	
787	from the NFC (Jabaloy-Sánchez et al., 2018; this work), AC (Azdimousa et al., 2109;	
788	this work) and the Cantabrian Zone (Pastor-Galán et al., 2013) are very similar except	
789	for sample AG-17 (Fig. 15). This similarity is indicated by a clustering of all samples	
790	from the NFC, AC and the Cantabrian Zone to the upper left of the plot, while sample	
791	AG-17 plots near the centre (Fig. 15),	
792	Martínez et al. (2016) analyzed Late Carboniferous rocks from the NE Iberian	Formatted: English (Australia)
793	Peninsula and South France, including samples from the Catalonian Massif, Minorca,	
794	Montagne Noire Massif, Mouthoumet Massif, Pyrenees, and Priorat, but Massif. In	Formatted: English (Australia)
1		
	32	

95	order to compare these samples with our data, we have calculated discordance for their
96	dataset, and selected the age patterns show 780 ages with Concordia between 90% and
797	110%. The MDS plot shows no similarity with the previously discussed data except for
798	sample AG-17, which together with the samples from Martínez et al. (2016), grouped in
799	a different cluster to those of the NFC, AC and the Cantabrian Zone (Fig. 15). The main
800	differences only inthat explain the Stenian and Neoarchean populations. Theobserved
801	dissimilarity between these Late Carboniferous samples from Martinez et al (2016)
302	usuallyare the lack of a Stenian peak (Montagne Noire Massif, Mouthoumet Massif,
303	Pyrenees, and Priorat Massif) , or <u>, if present</u> it is a minor one (Catalonian Massif and
804	Minorca), and) in the samples from Martinez et al (2016). Furthermore, the Neoarchean
805	population is also absent in the Catalonian Massif, Mouthoumet Massif, Pyrenees, and
306	Priorat Massif areas, but not in the samples from Minorca and Montagne Noire Massif
807	(Fig. 19E and F).
808	Dinis et al. (2018) and Pereira et al. (in press) studied the Late Carboniferous
309	sediments from the Ossa-Morena (Santa Susana Fm: samples StSz2 and StSz4 from
810	Dinis et al., 2018, and SS-1 and SS-2 from Pereira et al., in press). In the MDS plot,
811	they do not show any similarity with the samples from NFC, AC or the Cantabrian
812	Zone, except in the case of the comparison between AG-17 and SS-2 and StSz4
813	samples. The Santa Susana Fm samples plot far from the other two clusters on the MDS
314	diagram. (Fig. 15). The main difference is the lack of the Stenian and Neoarchean
815	populations in the latter samples. Furthermore, Pereira et al. (2014) studied the South
816	Portuguese Zone of the Iberian Massif (Fig. S5 in Supplementary material), where Late
817	Carboniferous sediments were deposited in the Mira Fm (Serpukhovian-Bashkirian,
818	samples ST-8 and SC-6 from Pereira et al., 2014) and in the Brejeira Fm (Bashkirian-
819	Moscovian, samples AJ-1, AM-3, and TH-5 from Pereira et al., 2014). Samples from
	33

Formatted: English (Australia)

Formatted: English (Australia)
Formatted: English (Australia)
Formatted: English (Australia)
Formatted: English (Australia)
Paumattada Fasilata (Australia)
Formatted: English (Australia)

Formatted: English (Australia)

both the Mira and Brejeira Fms essentially show no similarity with the samples from the NFC, AC and Cantabrian Zone in the MDS plot, although the AM-3, and TH-5 samples
show some similarity with the cluster from sample AG-17 and those from NE Iberian
Peninsula and South France (Martinez et al., 2016) (Fig. 15).

All these data suggest that the Late Carboniferous sediments of both the NFC and the AC were sourced and recycled from Variscan rocks containing zircon grains from the Cantabrian, West Asturian-Leonese, and Central-Iberian zones of the Iberian Massif, but they also include a small amount of zircons derived from the Avalonian terranes. Furthermore, the sediments incorporated a small number of zircon grains derived from the Late-Variscan felsic rocks. The sediments were mainly pelites rich in organic material, quartz-rich sandstones (quartzwackes in the case of the NFC, Jabaloy, 1993; Rodríguez-Cañero et al., 2018), and black limestones (with conodonts in the case of the NFC rocks; Rodríguez-Cañero et al., 2018) suggesting deposition in open marine anoxic environments (Rodríguez-Cañero et al., 2018). This points to an environment similar to the Carboniferous foreland basins developed in the Cantabrian Zone of the Iberian Massif (see Matte, 2001, Rodríguez-Cañero et al., 2018; Jabaloy-Sánchez et al., 2018) as the most likely paleogeographic location of both complexes (Fig. 2016).

In Late Carboniferous times, the Variscan belt was already formed in Western and Central Europe (e.g. Matte, 2001), and most of the rocks of the Cantabrian, West Asturian-Leonese, Central-Iberian zones were deformed and stacked with the rocks of the Rheic Ocean suture zone (i.e. Pastor-Galán et al., 2013). Rocks from the Variscan belt, including rocks from those three stacked zones, were being eroded at Late Carboniferous, and their <u>zireonszircon grains</u> had been stored within the coetaneous sediments in the Cantabrian Zone (see Pastor-Galán et al., 2013), and NFC (Jabaloy-

344	Sánchez et al., 2018). Our data indicate the same case for the rocks of the AC (Fig.
345	<u>2016</u>).
346	On the other hand, the published data from the samples from the MC with
847	Carboniferous-Early Permian ages have Early Carboniferous (at ca. 329 and 347 Ma
848	respectively), Early Ordovician-Cambrian (ca. 445 and 491 Ma), Ediacaran-Cryogenian
349	(ca. 589 and 649 Ma), Tonian (ca. 932 Ma), and Orosirian populations (ca. 2002 and
350	2080 Ma) (sample CM-10 from the Marbella conglomerateConglomerate from Esteban
851	et al., 2017, Fig. 19A;and sample Ri121 from Azdimousa et al., 2019, Fig 19G). <u>S5 in</u>
852	Supplementary material). However, they show a difference in the number of
353	Neoarchean zircon grains (ca. 2.6 Ga), which are more abundant in the sample Ri121
354	from Azdimousa et al., 2019, Fig. 19G). The age distribution patterns for both samples
855	also include a small number of Devonian zircons, most likely sourced in S5 in
856	Supplementary material). In the Avalonian terranes, such as the Schoul block (Accotto
857	et al., 2020). Those data suggest that the main source area for the Marbella
858	conglomerate described in Esteban et al. (2017) was the West African Craton and
859	derived terranes (i.e. Ossa Morena Zone according to Esteban et al., 2017). However,
860	the age pattern of sample Ri121 from Azdimousa et al. (2019) is very similar to that
861	found in the NFC and AC Carboniferous rocks, suggestingMDS plot, they are located
862	within the same source areas.cluster as sample AG-17 and those from North-eastern
363	Iberian Peninsula and South France. Therefore, the paleogeographic most likely location
364	of the MC seems slightly different from that of the NFC and AC, realm was not at the
865	southern paleomargin of Iberia (Esteban et al., 2107), but in the same paleomargin as
866	the North-eastern Iberian Peninsula and in this location the sediments were sourced
867	from the Cantabrian, West Asturian-Leonese, Central-Iberian zones, or the Ossa

Morena Zone (Esteban et al., 2017) and/or the Moroccan Variscides (Figs

20).South France rocks.

65.3. Lower Permian orthogneissesto Triassic samples from the NFC (Cantal unit), AC and MC

The sampleSample AG-26 from the Cabezo Blanco orthogneiss within the Cantal unit yielded zirconszircon grains with textures similar to those described by Gómez-Pugnaire et al., (2004, 2012) in the NFC. The CL imaging of these grains shows cores with continuous oscillatory zoning truncated by dark U-rich rims. These cores vielded a 207 Pb corrected 206 Pb/ 238 U age of 283 ± 2 Ma, while the dark overgrowths have yielded a ²⁰⁷Pb corrected ²⁰⁶Pb/²³⁸U age of 15.8 ± 0.2 Ma. We propose the former age as the age of the igneous protolithparent rocks of the Cabezo Blanco orthogneiss and the latter age as the age of a metamorphic event affecting this orthogneiss. Similar metamorphic ages have been determined within zirconszircon grains from the NFC (López Sánchez-Vizcaíno et al., 2001, 15.0 ± 0.6 Ma; Gómez-Pugnaire et al., 2004, $2012_{\frac{1}{2}}$ 16.5 ± 0.4 Ma and $17.3 \pm \pm 0.4$ Ma respectively). Furthermore, similar ages were also determined from Lu-Hf on garnets (Platt et al., 2006, between 18 and 14 Ma) and multimineral isochrons on samples of this complex (Kirchner et al., 2016; three ages of 20.1 ± 1.1 , 16.0 ± 0.3 , and 13.3 ± 1.3 Ma). However, the metamorphic zirconszircon grains from the AC typically have slightly older ages (Sánchez-Rodriguez and Gebauer, 2000, 19.9 ± 1.7 Ma.; Platt et al., $2003_{\frac{1}{2}}$ ages between 22.7 and 21.3 Ma_{$\frac{1}{2}$} Esteban et al., 2007, 19.2 ± 1.1 Ma-), and the AC has yielded additional older ages including a garnet Lu-Hf age of 25 ± 1 Ma (Blichert-Toft et al., 1999), and a garnet and clinopyroxene Sm-Nd age of 21.5 ± 1.8 Ma (Zindler et al., 1983). Therefore, we propose that the Cantal unit is part of the NFC as already proposed by García-Tortosa (2002).
6.4. Permian to Triassic metadetrital samples from the NFC

Samples AG-1 and AG-2 come from two quartzites in the upper part of the Tahal Fm within the Mulhacén units. They yielded very similar zircon age patterns, the youngest zircon 206 Pb/ 238 U dates being Jurassic (195 ± 8 Ma and 179 ± 5 Ma, respectively) and the youngest zircon population being Early Permian (275 \pm 8 Ma and 277 ± 4 Ma, respectively). These data match the 259 concordant-nearly concordant analyses from the Tahal Fm published by Jabaloy-Sánchez et al. (2018), in which the youngest zircon population was Early Permian (275 ± 2 Ma) as well (Fig. 21CS6 in

Supplementary material).

An estimate of the MDA for the sources of the Tahal Fm based on the youngest zirconszircon grains points to Jurassic. However, our preference is a more conservative estimate for the MDA based on the youngest populations and our proposal is an age younger than Early Permian (275 ± 8 Ma), in agreement with the data provided by Jabaloy-Sánchez et al. (2018), and Santamaría-López and Sanz de Galdeano (2018) for the same rocks in Sierra Nevada and Sierra de los Filabres,

Formatted: Font: Bold

6.5. Permian to Triassic metadetrital samples from the AC

The youngest zircon dates for samples AG-9, AG-11, and AG-15 from the Meta-detrital Fm of the AC are Triassic-Early Permian (between 214 \pm 2 Ma and 288 \pm 4 Ma) and the youngest zircon populations are Early Permian (287 \pm 2, AG-9, and 287 \pm 1, AG-11) to Early Ordovician (474 \pm 3 Ma, AG-15). We have used the same approach described above to estimate the MDA of the Meta-detrital Fm, proposing an Early Permian (Artinskian) MDA for this formation, older than the Middle Triassic stratigraphic age (ca. 247 to ca. 237 Ma, see Simon and Visscher, 1983; Maate et al.,

1993; García Tortosa et al., 2002; Martín-Rojas et al., 2010). Furthermore, the youngest zircon 206Pb/238U date and the youngest zircon population in sample AG-19 from the Miñarros unit are 297 ± 5 Ma and 300 ± 1 Ma, respectively, indicating an older MDA (Gzhelian, Late Pennsylvanian). Samples AG-9, AG-11, AG-15 and AG-19 have similar age patterns to the samples from the Tahal Fm (NFC).

6.6. Permian to Triassic metadetrital samples from the MC

The youngest zircon grains from samples AG-10 and LP-16-AZ from the Saladilla Fm of the MC yielded 206 Pb/ 238 U dates between 277 ± 7 and 282 ± 15 Ma. Moreover, the youngest zircon populations were 492 ± 8 Ma and 279 ± 3 Ma, respectively, pointing to an Early Permian MDA.

6.75.4. Provenance for zircon of the the Permian to Triassic meta-detrital samples A common feature of the samples with a Permian MDA from the three complexes (NFC, AC and MC) is an increase in the number of Paleozoic zirconszircon grains with respect to the older Carboniferous samples (Fig. 21). In fact, the S6 in Supplementary material). The Permian MDA samples show an increase in the number of Permian and Carboniferous zircon grains indicating erosion of Variscan and Late-Variscan felsic rocks in the source areas. In the NFC, the Tahal Fm contains 21% to 27 % Permian-Carboniferous grains (the values are the percentage of the total number of analyses of each sample) (254 to 355Ma), while the Late Carboniferous Lomo de Bas quartzites have 5% to 18% Carboniferous grains, with only two Permian grains. Within the AC, the Meta-detrital Fm has variable contents of Permian-Carboniferous grains (from 3 to 31%, the values are the percentage of the total number of analyses of each sample), while the Late Carboniferous Micaschists and Quartzite Fm has 3% to 6%.

Furthermore, in the MC, the Saladilla Fm also displays a variable content of Permian-Carboniferous grains (from 4% to 38%); while the Lower Carboniferous Morales Fm (sample Ri121 from Azdimousa et al., 2019) has 6% Carboniferous grains, and the Permian Marbella Conglomerate (Esteban et al., 2017) has 12 % Permian and Carboniferous grains. Samples from the Tahal Fm (NFC) have Carboniferous populations between ca. 331 and ca. 334 Ma ("Variscan"), Ediacaran populations between ca. 598 and ca. 610 Ma ("Cadomian"-"Pan-African"), and a Tonian population at ca. 939 Ma (Fig. 21), S6 in Supplementary material). If the "Variscan grains" are excluded (i.e. post-Late Devonian grains which are younger than 370 Ma), the age distribution pattern is similar to that of the Aulago Fm (Jabaloy-Sánchez et al., 2018) and of the Lomo de Bas quartzites, except for a lower number of Tonian-Stenian (ca. 1.0 Ga) and Neoarchean (ca. 2.61 Ga) grains (Fig. 20Figs. S5 and S6 in Supplementary material). The age distribution patterns for samples from the Meta-detrital Fm (AC) are similar to those in the above mentioned samples from the Tahal Fm (NFC) (Fig. 21).S6 in Supplementary material). Samples from the Meta-detrital Fm also have Permian ("Late-Variscan" at 287Ma), Ediacaran-Cryogenian ("Pan-African", from ca. 546 to ca. 660 Ma) populations, with minor Tonian-Stenian (from ca. 963 to ca. 1016 Ma) and Rhyacian ("Eburnean", ca. 2060 Ma) populations (Fig. 21). S6 in Supplementary material). If the <370 Ma zircon grains are excluded, the age distribution pattern is similar to that obtained by combining the Micaschists and Quartzite Fm (AC) datasets (Fig. 21S6 in Supplementary material). In the Saladilla Fm (MC), there are Permian ("Late-Variscan" between ca. 279 and 305 Ma), and Ediacaran-Cryogenian populations ("Pan-African", from ca. 602 to 677 Ma), with minor Stenian (ca. 1074 Ma), Orosirian ("Eburnean", ca. 1937 Ma) and

Neoarchean (ca. 2106 Ma) peaks (Fig. 21).S6 in Supplementary material). They differ
from the data of the Carboniferous-Early Permian samples from the same MC (Esteban
et al., 2017; Azdimousa et al., 2019), not only in the presence of the Early Permian
population, but also in the Stenian and Neoarchean peaks. This distinction in the age
patterns is due to the erosion and incorporation of material from Late-Variscan felsic
rocks and the increasing number of zirconszircon grains sourced from the Cantabrian,
West Asturian-Leonese and Central-Iberian zones.

The similarity between the age patterns of samples with Early Permian MDA from the three complexes and those of the Permian Early Triassic from the Iberian ranges (Sánchez Martínez et al., 2012) suggests that they were deposited in the same Permian Triassic basins.

6.8Comparing these samples with Permian MDA with Permian and Triassic samples from the Iberian Peninsula (Sánchez Martínez et al., 2012; Pastor-Galán et al., 2013; Pereira et al. 2016; Dinis et al., 2018; Gama et al., in press) using the MDS plot, we found that samples from the Tahal Fm (NFC), Meta-detrital Fm (AC) and Saladilla Fm are quite similar, and they project towards the centre of the figure (Fig. 17), while sample LP-16-AZ is slightly separated, thus suggesting that all these samples have the same source area. Furthermore, all show similarities with most of the samples from the Iberian Chain (Sánchez Martínez et al., 2012), Cantabrian Zone (Pastor-Galán et al., 2013), Permian El Viar Basin (Dinis et al., 2018), Triassic Lusitanian Basin (Pereira et al., 2016; Dinis et al., 2018), Triassic Alentejo Basin (Pereira et al., 2017b; Dinis et al., 2018), and Triassic Algarve Basin (Pereira et al., 2017b; Dinis et al., 2018; Gama et al., in press). These similarities can be seen in the MDS plot in which samples PT2, PT4

992 and PT5 from the Iberian Chain (Sánchez-Martínez et al., 2012), PG2 and PG3 from the

3	Cantabrian Zone (Pastor-Galán et al., 2013), V152 and V154 from the Viar Basin (Dinis
4	et al,., 2018), CM2, SBM-6 and SBM-7 from the Algarve Basin (Pereira et al 2017b;
5	Gama et al., in press), SC-4 from the Alentejo Basin (Pereira et al 2017b), and SO and
6	CO from the Lusitania Basin (Pereira et al., 2016; Dinis et al., 2018) cluster together
7	with the samples from the Betic Cordillera (Fig. 17).
8	A major question is what tectonic process induced these differences. Vissers
9	(1992) found an Upper Carboniferous to Permian extensional event in the Pyrenees
0	synchronous with uplift and emergence of large parts of the crust and deposition of
1	continental sediments in fault-bounded extensional half-grabens. Subsequently, García-
2	Navarro and Fernández (2004) found an Early Permian faulting event in the SW Iberian
3	Peninsula where strike-slip and normal faults generated the intracontinental, Early
4	Permian El Viar basin. Those data suggest that during the Permian to Early Triassic
5	breakup of Pangea, tectonic uplift along major normal faults may have exposed
6	different levels of Variscan crust, including the Late-Variscan granitoids, to erosion.
7	
8	5.5. Unconformable Middle Miocene red conglomerates and sandstones
9	The samples from Middle Miocene sediments have only two Mesozoic zircon
0	grains (248 \pm 8 and 177 \pm 7 Ma), and their youngest zircon population has a mean
1	$^{206}\text{Pb}/^{238}\text{U}$ age of 292 \pm 3 Ma, pointing to an Early Permian MDA. Their age
2	distribution patterns correspond to mixing of zirconszircon grains from the AC and MC.
3	confirming that after experiencing HP metamorphism during Oligocene-Early Miocene
4	times (Zindler et al., 1983; Blichert-Toft et al., 1999; Sánchez-Rodriguez and Gebauer,
5	2000; Platt et al., 2003; Esteban et al., 2007), the AC rocks were exhumated and eroded
6	at the surface during the Middle Miocene. It is noteworthy that those these
7	unconformable Middle Miocene sediments were formed at the surface at the same time
	41

1018	that the Cantal unit (sample AG-26) and the NFC werewas experiencing metamorphism		
1019	in depth. However, the most important conclusions is that there is no record of any		
1020	major felsic rock formation event after the Early Permian times in the AC or MC,		
1021	although several stages of continental rifting and the subduction of the AC took place		
1022	during this period (e.g. Jabaloy-Sánchez et al., 2019).		
1023	The U-Pb zircon data presented here have implications for the evolution of both		
1024	the Variscan and Alpine chains in the western Mediterranean area. The main		
1025	implications for the Variscan chain is the existence of Late Carboniferous sedimentary		
1026	basins eastwards of the Iberian Massif, which recorded the erosion of the Variscan		
1027	Chain formed during the LateDevonianCarboniferous, and were also affected by the		
028	Late Carboniferous-Early Permian Late Variscan magmatic event. The		
1029	sedimentsedimentary record in these basins was metamorphosed from Oligocene to		
030	Middle Miocene times to form the graphite-rich successions of the NFC and AC during		
031	the Alpine orogeny.		
1032	During the Permian-Triassic, the break-up of Pangea took place and resulted in		
1033	the formation of three different paleogeographic realms:		
1034	i) the Nevado-Filábride realm continued near the Iberian Massif		
1035	southeastern paleomargin,		
1036	ii) the Alpujárride realm separated from the Iberian Massif by rifting		
1037	during the Triassic-Jurassic (Martín Rojas et al. 2009; Puga et al., 2011),		
038	iii) the Maláguide realm separated from the southernNorth-eastern		
1039	paleomargin of Iberia (Esteban et al., 2107) during the Jurassic (e.g., Martín-Martín et		
1040	al. 2006).		
1041	Those three realms amalgamated during the Cenozoic; first, the AC subducted		
1042	below the MC, and later, the NFC subducted below the two previously amalgamated		
	42		

43	complexes at Early Middle Miocene times. During these processes, the Cantal unit was
44	partially fused, leading to the formation of migmatitesmelt, leading to the formation
45	of migmatites. Another line of correlation is the age of the felsic intrusive rocks
46	reported here and in previous works (Gómez-Pugnaire et al., 2014; 2012). The Permian
47	age of the volumetrically minor intrusive bodies (301 to 282 Ma, Gómez-Pugnaire et
48	al., 2004, 2012; this work) is similar to granites in the CZ (286 to 297 Ma; Gutiérrez-
49	Alonso et al., 2011), while the significantly more abundant granites in the WALZ and
50	the CIZ are, in general, older (321 to 290 Ma, Martins et al., 2019, and references
51	therein).
52	
53	7. Conclusions
54	New U-Pb detrital zircon ages in rocks from the Águilas Arc provide maximum
55	depositional ages for their protoliths. U-Pb zircon ages of orthogneisses help to
56	constrain their true depositional ages.parent rocks. Orthogneisses in the NFC may have
57	volcanic or plutonic parent rocks, but as they are located in the uppermost part of the
58	Lomo de Bas succession, they can indicate a minimum depositional age for these rocks
59	(Sakmarian- Artinskian, 294 ± 2 Ma and 289 ± 3 Ma), regardless of their igneous
60	classification. In the NFC, the true depositional age of the Lomo de Bas schists and
61	quartzites is Late Carboniferous to Early Permian (ranging between 321 ± 2 and $\frac{293 \pm 2}{2}$
62	$\frac{2289 \pm 3}{2}$ Ma), while the MDA of the Tahal Fm is confirmed as Early Permian. In the
63	AC, the MDA of the Micaschists and Quartzite Fm is also Late Carboniferous (308 ±4
64	Ma), and that of the Meta-detrital Fm is Early Permian (287 \pm 1 Ma). Furthermore, the
65	MDA of the Saladilla Fm (Maláguide Complex) is also Early Permian (279 \pm 3 Ma).
66	The age patterns from the Upper Carboniferous rocks of the NFC and AC are
67	similar, and also similar to those from Upper Carboniferous of the Cantabrian Zone of
	43

the Iberian Massif, suggesting similar source areas. The most likely paleogeographical location of both complexes was in Late Carboniferous marine basins located eastwards of the Iberian Massif. However, the age patterns show differences compared with those from the Upper Carboniferous rocks of the MC, and from the South Portuguese and Ossa-Morena zones of the Iberian Massif. On the other hand, age patterns from Upper Carboniferous rocks of the MC show some similarities with those from the Ossa-Morena Zone. North-eastern Iberian Peninsula and South Francia. Therefore, the paleogeographic location of the MC could have been different from that of the NFC and AC, and it was probably located near the Ossa-Morena Zone and the other rocks derived from the West African Craton. The samples with Early Permian MDA from the three complexes (NFC, AC, and MC) have more Paleozoic zirconszircon grains than the Late Carboniferous samples, and similar age patterns, suggesting. This data can be explained if zircon grains from the main Variscan orogenic relief were recycled, while unroofing of footwalls of faults also exposed Late Variscan granitoids at the surface. It is possible that they these zircon grains were deposited in the same basin, likely the long-lived Iberian Permian-Triassic depositional basins. Samples from the unconformable Middle Miocene sediments have Early Permian MDA (292 ± 3 Ma) and age distribution patterns corresponding to a mixing of zirconszircon grains from the AC and MC, and thus, do not record formation of felsic rocks since the Early Permian. Acknowledgements This paper is dedicated to the memory of Dr. Fernando Álvarez Lobato, who

passed away while this contribution was written. We are indebted to Mike Hall and

Brad McDonald for their technical support on sample preparation and LA-ICPMS,

respectively. The CL imaging was carried out in Curtin University's Microscopy & Microanalysis Facility, whoseof which instrumentation has been partially funded by the University, State and Commonwealth Governments, and the Scanning Electron Microscope (SEM) Facility at the University of Edinburgh. Analysis in the John de Laeter Centre GeoHistory Facility was enabled by AuScope (auscope.org.au) and the Australian Government via the National Collaborative Research Infrastructure Strategy (NCRIS). This work is supported by grants CGL2016-75224-R, and CGL2015-71692-P (MINECO/FEDER, Spain) and RNM-208 (Junta de Andalucía, Spain). This is the IBERSIMS Publication No. 70.

1103 References

8 1104	Accotto, C., Martínez Poyatos, D.J., Azor, A., Jabaloy-Sánchez, A., Talavera, C.,
0 1105	Evans, N.J., Azdimousa, A., 2020. Tectonic evolution of the Eastern Moroccan
1 2 1106	Meseta: from Late Devonian fore-arc sedimentation to Early Carboniferous
$\frac{3}{4}$ 1107	collision of an Avalonian promontory. Tectonics, <u>38</u> ,
5 6 ¹¹⁰⁸	e2019TC005976, https://doi.org/10.1029/2019TC005976
7 1109	Accotto, C., Martínez Poyatos, D.J., Azor, A., Talavera, C., Evans, N.J., Jabaloy-
9 1110	Sánchez, A., Azdimousa, A., Tahiri, A.; El Hadi, H., 2019. Mixed and recycled
1 1111	detrital zircons in the Paleozoic rocks of the Eastern Moroccan Meseta:
3 1112	paleogeographic inferences. Lithos 338-339, 73-86 . Doi: ,
.4 5 1113	https://doi.org/10.1016/j.lithos.2019.04.011
6 7 1114	Aldaya, F., Álvarez, F., Galindo-Zaldívar, J., González-Lodeiro, F., Jabaloy, A.,
.8 9 1115	Navarro-Vilá, F., 1991. The Maláguide-Alpujárride contact (Betic Cordilleras,
0 1 1116	Spain): a brittle extensional detachment, Comptes Rendus de l'Académie des
2 1117 3	Sciences de Paris 313, 1447-1453.
4	45

1			
2 3			
4 5			
6 7	1118	Álvarez, F., 1987, Subhorizontal shear zones and their relation to nappe movements in	Formatted: English (United States)
8	1119	the Cantal and Miñarros units Eastern Betic Zone (Spain). Geologie en	
9 10	1120	Minhammer (C. 101.110	
11 12	1120		
13	1121	Alvarez, F., Aldaya, F., 1985. Las unidades de la Zona Bética en la región de Aguilas-	
14	1122	Mazarrón (Prov. de Murcia). Estudios Geológicos 41, 139-146.	
16 17	1123	Arranz, E., Lago, M., 2004. El plutonismo sin- y tardi-varisco en los Pirineos. In: Vera,	
18	1124	J.A., (Ed.) Geología de España, SGE-IGME, Madrid, 263-266.	
20	1125	Azdimousa, A., Jabaloy-Sánchez, A., Talavera, C., Asebriy, L., González-Lodeiro, F.,	
21 22	1126	Evans, N.J. 2019. Detrital zircon U-Pb ages in the Rif Belt (northern Morocco):	
23 24	1127	Paleogeographic implications. Gondwana Research 70, 133-150Doi-	Formatted: French (France)
25 26	1128	https://doi.org/10.1016/j.gr.2018.12.008	Formatted: French (France)
27 28	1129	Balanyá, J.C., García-Dueñas, V., 1987. Les directions structurales dans le Domaine	
29	1130	d'Alborán de part et d'autre du Détroit de Gibraltar. Comptes Rendus de	Formatted: French (France)
31 32	1131	l'Académie des Sciences de Paris 304, 929-932.	
33	1132	Bea, F., 2004. La naturaleza del magmatismo de la Zona Centroibérica: consideraciones	
34 35	1133	generales y ensayo de correlación. In: Vera, J.A., (Ed.) Geología de España,	
36 37	1134	SGE-IGME, Madrid, 128-133.	
38 39	1135	Bea, F., Montero, P., Talavera, C., Abu Anbar, M., Scarrow, J., Molina, J.F., Moreno,	Formatted: Spanish (Spain)
40 41	1136	J.A., 2010. The palaeogeographic position of Central Iberia in Gondwana during	Formatted: English (United States)
42	1137	the Ordovician: evidence from zircon geochronology and Nd isotopes. Terra	Formatted: Spanish (Spain)
43 44	1138	Nova 22, 341-346.	
45 46	1139	Booth-Rea, G., Silva Barroso, P.G., (2008). Mapa Geológico de España escala	
47 48	1140	1:50.000. Edición Digital. Hoja 975, Puerto Lumbreras. Instituto Geológico y	
49 50	1141	Minero de España, Madrid	Formatted: Spanish (Spain)
51 52			
53			
54 55		46	
56 57			
58			
59 60			
61			
62 63			
64			

1		
2 3		
4		
5 6		
7 1142	Blichert-Toft, J., Albarède, F., Kornprobst, J., 1999, Lu-Hf isotope systematics of garnet	Formatted: English (United States)
8 9 1143	pyroxenites from Beni Bousera, Morocco: Implications for basalt origin. Science	Formatted: Spanish (Spain)
10 11 1144	283, 1303-1306	
$\frac{12}{13}$ 1145	Booth-Rea, G., Silva Barroso, P.G., Bardají Azcárate, T., Martín Serrano, A., (2009).	
14 1146 15	Mapa Geológico de España escala 1:50.000. Edición Digital. Hoja 997, Águilas.	
16 ₁ 147	Instituto Geológico y Minero de España, Madrid.—	
18 1148 19	Bowring, S.A., Schmitz, M.D., 2003. High-precision U-Pb zircon geochronology and	
20 1149	the stratigraphic record. Reviews in Mineralogy and Geochemistry 53, 305-326.	
$21 \\ 22 \\ 1150$	https://doi.org/10.2113/0530305	
23 24 ¹ 151	Casquet, C., Galindo, C., 2004. Magmatismo varisco y postvarisco en la Zona de Ossa-	Formatted: English (United Kingdom)
25 26 ¹¹⁵²	Morena. In: Vera, J.A., (Ed.) Geología de España, SGE-IGME, Madrid, 194-	
²⁷ 1153 28	198.	
29 ₁ 154 30	Chalouan, A., Michard, A., El Kadiri, K., Negro, F., Frizon de Lamotte, D., Soto J.I.,	Formatted: Spanish (Spain)
31 1155 32	Saddiqi, O., 2008. The Rif Belt. In: Michard, A., Frizon de Lamotte, D., Saddiqi,	
33 1156	O., Chalouan, A., (Eds.) Continental Evolution: The Geology of Morocco.	
34 35 1157	Lecture Notes in Earth Sciences, vol 116, pp. 203-302, Springer-Verlag, Berlin	
36 37 1158	Heidelberg.	
38 39 1159	Dallmeyer, R.D., Martínez Catalán, J.R., Arenas, R., Gil Ibarguchi, J.I., Gutiérrez-	
40 41 ¹¹⁶⁰	Alonso, G., Farias, P., Aller, J., Bastida, F., 1997. Diachronous Variscan	
42 43	tectonothermal activity in the NW Iberian Massif: Evidence from 40Ar/39Ar	
$\frac{44}{45}$ 1162	dating of regional fabrics. Tectonophysics 277, 307–337. Doi:	Formatted: English (United States)
46 1163 47	https://doi.org/10.1016/s0040-1951(97)00035-8	Formatted: English (United States)
48 1164	Dickinson, W.R., Gehrels, G.E., 2009. Use of U-Pb ages of detrital zircons to infer	
49 50 1165	maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic	
51 I 52		
53		
54 55	47	
56		
57 58		
59		
60		
61 62		
63		
64		
65		

1			
2 3			
4			
5 6			
7	1166	database. Earth and Planetary Science Letters 288 (1-2), 115-125,	
8 9	1167	https://doi.org/10.1016/j.epsl.2009.09.013	
10 11	1168	Díez-Montes, A., Martínez-Catalán, J.R., Bellido Mulas, F., 2010. Role of the Ollo de	
12 13	1169	Sapo massive felsic volcanism of NW Iberia in the Early Ordovician dynamics	
14 15	1170	of northern Gondwana. Gondwana Research 17, 363-376,	
16	1171	https://doi.org/10.1016/j.gr.2009.09.001	
18	1172	Dinis, P.A., Fernandes, P., Jorge, R.C.G.S., Rodrigues, B., Chew, D.M., Tassinari, C.G.,	
19 20	1173	2018. The transition from Pangea amalgamation to fragmentation: constraints	
21 22	1174	from detrital zircon geochronology on West Iberia paleogeography and sediment	
23 24	1175	sources. Sedimentary Geology 375, 172-187.	
25	1176	Durand-Delga, M., Escalier des Orres, P., Fernex, F., 1962. Sur la présence de	Formatted: French (France)
∠6 27	1177	Iuragique et d'Oligopère e l'euset de Carthogene (Earagne méridionale)"	Formatted: French (France)
28 29	1170	Comptes Dandus de l'Académie des Sejances de Daris 255, 1755, 1752	
30	11/8	Comptes Rendus de l'Academie des Sciences de Paris 255, 1755-1755.	
31 32	1179	Espinosa Godoy, J., Herrera López, J.L., Pérez Rojas, A., 1972. Mapa Geológico de	
33 34	1180	España escala 1:50.000. Hoja 997bis, Cope. Instituto Geológico y Minero de	
35	1181	España, Madrid	
36 37	1182	Esteban, J.J., Cuevas, J., Tubía, J.M., Liati, A., Seward, D., Gebauer, D., 2007. Timing	
38 39	1183	and origin of zircon-bearing chlorite schists in the Ronda peridotites (Betic	
40 41	1184	Cordilleras, Southern Spain). Lithos 99, 121-135.	
42 43	1185	Esteban, J.J., Cuevas, J., Tubía, J.M., Gutiérrez-Alonso, G., Larionov, A., Sergeev, S.,	
44	1186	Hofmann, M., 2017. U-Pb detrital zircon ages from the Paleozoic Marbella	
46	1187	Conglomerate of the Malaguide Complex (Betic Cordilleras, Spain).	
47 48	1188	Implications on Paleotethyan evolution. Lithos 290-291, 34-47.	Formatted: English (Australia)
49 50	1189	Fernández-Fernández, E.M., Jabaloy-Sánchez, A., Nieto, F., González-Lodeiro, F.,	
51 52	1190	2007. Structure of the Maláguide Complex near Vélez Rubio (Eastern Betic	
53			
54 55		48	
56			
57 58			
59			
60			
6⊥ 62			
63			
64			
0.0			

1		
2 3		
4		
5		
6 7 1191	Cordillera, SE Spain). Tectonics 26, TC4008	Formatted: English (United States)
9 [°] 1192	https://doi+.org/10.1029/2006TC002019	Formatted: English (United States)
10 11 ¹¹⁹³	Fernández-Suárez, J., Gutiérrez-Alonso, G., Jeffries, T.E., 2002. The importance of	
12 13 1194	along-margin terrane transport in northern Gondwana: insights from detrital	
14 15	zircon parentage in Neoproterozoic rocks from Iberia and Brittany. Earth and	
16 1196 17	Planetary Science Letters 204, 75-88.	
18 1197	Fernández-Suárez, J., Gutiérrez-Alonso, G., Pastor-Galán, D., Hofmann, M., Murphy,	Formatted: English (United Kingdom)
19 20 1198	J.B., Linnemann, U., 2014. The Ediacaran–Early Cambrian detrital zircon record	
21 22 ¹¹⁹⁹	of NW Iberia: possible sources and paleogeographic constraints. International	
23 24 1200	Journal of Earth Sciences 103, 1335–1357. Doi: https://doi.org/10.1007/s00531-	
25 26 ¹²⁰¹	013-0923-3	
27 28 1202	Gallastegui et al., 2004. Magmatismo. In: Vera, J.A., (Ed.) Geología de España, SGE-	Formatted: English (Australia)
29 ₁₂₀₃ 30	IGME, Madrid, 63-68.	Formatted: English (Australia)
31 1204 32	Gama, C., Pereira, M.F., Crowley, Q.G., Dias da Silva, Í., Silva, J.B., in press. Detrital	
33 1205 34	zircon provenance of Triassic sandstone of the Algarve Basin (SW Iberia):	
35 1206	Evidence of Gondwanan- and Laurussian-type sources of sediment. Geological	
36 37 1207	Magazine. https://doi.org/10.1017/S0016756820000370	
38 39 1208	García-Navarro, E., Fernández, C., 2004. Final stages of the Variscan orogeny at the	
40 41 1209	southern Iberian Massif: lateral extrusion and rotation of continental blocks.	
42 43 1210	Tectonics, 23:TC6001. https://doi.org/10.1029/2004TC001646	
44 1211 45	García Tortosa, F.J., Leyva Cabello, F., Bardaji Azcárate, T., 2012. Mapa Geológico de	
46 1212 47	España escala 1:50.000. Edición Digital. Hoja 976, Mazarrón. Instituto	
48 1213	Geológico y Minero de España, Madrid.	
49 50		
51		
52 53		
54		
55	49	
56		
57 58		
59		
60		
61		
62 63		

214	García Tortosa, F.J., López-Garrido, A.C., Sanz de Galdeano, C., 2000. Présence du	
215	complexe tectonique Malaguide à l'ouest de Carthagéne (zone interne Bétique,	
216	Espagne). Comptes Rendus de l'Académie des Sciences de Paris 330, 139-146.	
217	García-Tortosa, F.J., 2002. Los Complejos Tectónicos Alpujárride y Maláguide en el	
218	sector oriental de la Zona Interna Bética. Estratigrafía, relaciones tectónicas y	
219	evolución paleogeográfica durante el Triásico. PhD Thesis, Universidad de	
220	Granada.	
221	Geel, T., 1973. The geology of the Betic of Malaga, the Subbetic and the zone between	
222	these two units in the Velez Rubio area (Southern, Spain). GUA Papers of	
223	Geology.	
224	Gómez-Pugnaire, M.T., Franz, G., 1988. Metamorphic evolution of the Paleozoic series	
225	of the Betic Cordilleras (Nevado-Filabride complex, SE Spain) and its	
226	relationship with the Alpine orogeny. Geologische Rundschau 77, 619-640.	
227	Gómez-Pugnaire, M.T., Galindo-Zaldívar, J., Rubatto, D., González-Lodeiro, F., López	
228	Sánchez-Vizcaíno, V., Jabaloy, A., 2004. A reinterpretation of the Nevado-	
229	Filábride and Alpujárride Complex (Betic Cordillera): field, petrography and U-	
230	Pb ages from orthogneisses western Sierra Nevada, S Spain). Schweizerische	
231	Mineralogische und Petrographische Mitteilungen 84, 303-322.	
232	Gómez-Pugnaire, M.T., Rubatto, D., Fernández-Soler, J.M., Jabaloy, A., López	
233	Sánchez-Vizcaíno, V., González-Lodeiro, F., Galindo-Zaldívar, J., Padrón-	
234	Navarta, J.A., 2012. U-Pb geochronology of Nevado-Filábride gneisses:	
235	evidence for the Variscan nature of the deepest Betic complex (SE Spain).	
236	Lithos 146-147, 93-111.	
237	Gutiérrez-Alonso, G., Murphy, J.B., Fernández-Suárez, J., Hamilton, M.A., 2008.	

Formatted: French (France)

Rifting along the northern, Gondwana margin and the evolution of the

1		
2		
3		
4		
5		
7 1239	Rheic, Ocean: a Devonian age for the El Castillo volcanic, rocks (Salamanca,	
⁸ 9 1240	Central Iberian Zone). Tectonophysics 461, 157-65,	
10 11 1241	https://doi.org/10.1016/j.tecto.2008.01.013	
12 13 1242	Gutiérrez-Alonso, G., Fernández-Suárez, J., Jeffries, T.E., Johnston, S.T., Pastor-Galán,	
14 1243 15	D., Murphy, J.B., Franco, M.P., Gonzalo, J.C., 2011. Diachronous post-orogenic	
16 ₁₂₄₄ 17	magmatism within a developing orocline in Iberia, European Variscides.	
18 1245 19	Tectonics 30, TC5008. http://dx.doi.org/10.1029/2010TC002845	
20 1246	Ireland, T.R., Williams, I.S., 2003. Considerations in zircon geochronology by SIMS.	
21 22 1247	Reviews in Mineralogy and Geochemistry 53, 215-241,	
23 24 ¹²⁴⁸	https://doi.org/10.2113/0530215	
25 26 ¹²⁴⁹	Jabaloy, A., 1993. La estructura de la región occidental de la Sierra de los Filabres	Formatted: English (United Kingdom)
27 28 1250	(Cordilleras Béticas). Tierras del Sur, Universidad de Granada, Granada, Spain	(Spain)
29 ₁₂₅₁ 30	9, pp. 1-261.	
31 1252 32	Jabaloy-Sánchez, A., Talavera, C., Gómez-Pugnaire, M.T., López Sánchez-Vizcaíno,	
33 1253	V., Vázquez, M., Rodríguez-Peces, M.J., Evans, N.J., 2018, U-Pb ages of	
35 1254	detrital zircons from the Internal Betics: A key to deciphering paleogeographic	
36 37 1255	provenance and tectonostratigraphic evolution. Lithos 318–319, 244–266. Doi:	Formatted: English (United Kingdom)
38 39 1256	https://doi.org/10.1016/j.lithos.2018.07.026	Formatted: English (United Kingdom)
40 41 1257	Kirchner, K.L., Behr, W.M., Loewy, S., Stockli, D.F., 2016. Early Miocene subduction	Formatted: English (United States)
42 43 1258	in the western Mediterranean: Constraints from Rb-Sr multimineral isochron	
⁴⁴ 1259 45	geochronology. Geochemistry, Geophysics, Geosystems 17Doi:-,	
46 1260 47	https://doi.org/10.1002/2015GC006208	Formatted: English (United States)
48 1261	Kroner, U., Romer, R.L., 2013. Two plates - Many subduction zones: The Variscan	
50 1262	orogeny reconsidered. Gondwana Research 24, 298-329.	
51 52 1263	Laborda-López, C., Aguirre, J., Donovan, S.K., 2013. Asociaciones de macrofósiles en	
53 54		
55	51	
56		
57		
58		
59		
60		
61		
62		
63		

2			
3 4			
5			
7 1264	rocas metamórficas del Complejo Nevado-Filábride (Zonas Internas de la		
8 9 1265	Cordillera Bética) en Águilas, Murcia (SE España). Tafonomía y		
10 11 1266	biocronoestratigrafía, XXIX Jornadas de Paleontología, Abstracts, pp 83-84.		
12 13 1267	Laborda-López, C., Aguirre, J., Donovan, S.K., 2015a. Surviving metamorphism:		
$\frac{14}{15}$ 1268	taphonomy of fossil assemblages in marble and calc-silicate schist. Palaios 30,		
16 ₁₂₆₉	668-679.		
18 1270	Laborda-López, C., Aguirre, J., Donovan, S.K., Navas-Parejo, P., Rodríguez, S., 2015b.		
20 1271	Fossil assemblages and biochronology of metamorphic carbonates of the		
21 22 1272	Nevado-Filábride Complex from the Águilas tectonic arc (SE Spain). Spanish		
23 24 1273	Journal of Palaeontology 30, 275-292.		
25 26 1274	Lafuste, M.L.J., Pavillon, M.J., 1976. Mise en évidence d'Eifélien daté au sein des		
$27 \\ 1275 \\ 28$	terrains métamorphiques des zones internes des Cordillères bétiques. Intérêt de		
29 ₁₂₇₆ 30	ce nouveau repère stratigraphique: Comptes Rendus de l'Académie des Sciences		
31 1277 32	de Paris 283,- <u>1</u> 015-1018.		
33 1278 34	Leine, L., 1968. Rauhwackes in the Betic Cordilleras, Spain: Nomenclature, description		
35 1279	and genesis of weathered carbonate breccias of tectonics origin. PhD Thesis		
37 1280	University of Amsterdam 112 p.		
38 39 1281	López Sánchez-Vizcaino, V., Connolly, J.A.D., Gómez-Pugnaire, M.T., 1997.		
$40 \\ 41 \\ 1282$	Metamorphism and phase relations in carbonate rocks from the Nevado-		
$\begin{smallmatrix}42\\43\end{smallmatrix}1283$	Filábride Complex (Cordilleras Béticas, Spain): application of the Ttn + Rt +		
44 1284 45	Cal + Qtz + Gr buffer. Contributions to Mineralogy and Petrology 126, 292-302.		
46 1285 47	López Sánchez-Vizcaíno, V., Rubatto, D., Gómez-Pugnaire, M.T., Tommsdorff, V,		
48 1286	Müntener, O., 2001. Middle Miocene high-pressure metamorphism and fast		
50 1287	exhumation of the Nevado-Filábride Complex, SE Spain, Terra Nova 13, 327-		
51 52 1288	332.		
53 54			
55 56	52		
50 57			
58			
59 60			
61			
62			
0.3			

Formatted: English (United States)

Formatted: English (United States)

1		
2		
3		
5		
6 7 1289	Ludwig, K.R., 2003, User's Manual for Isoplot 3.00: a Geochronological Toolkit for	
8 9 1290	Microsoft Excel Berkeley Geochronology Center Special Publication 4, p. 4.	
10 11 1291	Ludwig, K.R., 2009. SQUID II., a user's manual, Berkeley Geochronology Center	
$\frac{12}{13}$ 1292	Special Publication 2, 2455 Ridge Road, Berkeley, CA 94709, USA 22.	
14_{1293}	Maate, A., Sole De Porta, A.N., Martín-Algarra, A., 1993. Données paléontologiques	Formatted: Spanish (Spain)
16 ₁₂₉₄	nouvelles sur le Carnien des séries rouges des Maghrébides (Ghomarides et	
18 1295	Dorsale calcaire du Rif septentrional, Maroc). Comptes Rendus de l'Académie	
19 20 1296	des Sciences de Paris 316, 137-143.	
21 22 1297	Martín-Algarra, A., 1987. Evolución geológica alpina del contacto entre las Zonas	Formatted: French (France)
23 24 1298	Internas y las Zonas Externas de la (Cordillera Bética). Ph D Thesis,	
$^{25}_{26}$ 1299	Universidad de Granada Martin-Algarra, 1987.	
$\frac{27}{28}$ 1300	Martínez Catalán, J.R., Arenas, R., Díaz García, F., Abati, J., 1997. Variscan	
29 1301	accretionary complex of northwest Iberia: Terrane correlation and succession of	
31 1302	tectonothermal events. Geology 25, 1103-1106.	
32 33 1303	Martínez Catalán, J.R., Fernández-Suárez, J., Meireles, C., González clavijo, E.,	
34 35 1304	Belousova, E., Saeed, A., 2008, U-Pb detrital zircon ages in synorogenic	
36 37 1305	deposits of the NW Iberian Massif (Variscan belt): interplay of Devonian-	
38 39 1306	Carboniferous sedimentation and thrust tectonics. Journal of the Geological	
40 41 1307	Society 165, 687-698.	
$\substack{42\\43}1308$	Martínez Catalán, J.R. 2012. The Central Iberian arc, an orocline centered in the Iberian	
44 1309 45	Massif and some implications for the Variscan belt. International Journal of	
46 1310 47	Earth Sciences 101, 1299-1314.	
48 1311	Martínez Catalán, J.R., 2011. Are the oroclines of the Variscan belt related to late	
50 1312	Variscan strike-slip tectonics? Terra Nova 23(4), 241-247.	
51 52		
53		
54		
55	53	
56		
57		
58		
59		
6U 61		
©⊥ 60		
0⊿ 62		
64		
65		

1		
2		
3 4		
5		
6 7 1313	Martínez-Catalán, J.R., Arenas, R., Díaz-García, F., Abati, J., 1997. Variscan	
8 9 1314	accretionary complex of NW Iberia: terrane correlation and succession of	
$10 \\ 11 \\ 1315$	tectonothermal events. Geology 25,1103-1106.	
12 13 1316	Martín-Martín, M., Martin-Rojas, I., Caracuel, J.E., Estevez-Rubio, A., Martin-Algarra,	
14 1317 15	A., Sandoval, J., 2006. Tectonic framework and extensional pattern of the	
16 ₁₃₁₈ 17	Malaguide Complex from Sierra Espuña (Internal Betic Zone) during Jurassic-	
18 1319 19	Cretaceous: implications for the Westernmost Tethys geodynamic evolution.	
20 1320	International Journal of Earth Sciences 95, 815-826.	
21 22 1321	Martín-Rojas, I., Somma, R., Delgado, F., Estévez, A., Iannace, A., Perrone, V.,	
23 24 ¹³²²	Zamparelli, V., 2010. Role of sea-level change and synsedimentary extensional	
25 26 ¹³²³	tectonics on facies and architecture of Ladinian-Carnian carbonate depositional	
27 28 1324	systems (Alpujarride complex, Betic Internal Zone, SE Spain). Geogaceta 48,	
29 ₁₃₂₅ 30	63-66.	
31 1326	Martín-Rojas, I., Somma, R., Delgado, F., Estevez, A., Iannace, A., Perrone, V.,	Formatted: Spanish (Spain)
32 33 1327	Zamparelli, V., 2009. Triassic continental rifting of Pangea: evidence from the	Formatted: English (United States)
34 35 1328	Alpujarride carbonates (Betic Cordillera, SE Spain). Journal of the Geological	
36 37 1329	Society, London 166, 447-458.	
38 39 1330	Martins, H.C.B., Ribeiro, M.A., Almeida, A., 2019. Variscan Magmatism at the Central	
40 41 1331	Iberian Zone, the Central and Northern Border. In: C. Quesada, Oliveira, J.T.	
42 43 1332	(eds.), The Geology of Iberia: A Geodynamic Approach, Regional Geology	
44 ₁₃₃₃ 45	Reviews, Vol. 2, 510-513. https://doi.org/10.1007/978-3-030-10519-8_13	
46 1334 47	Marzoli, A., Renne, P., Piccirillo, E.M., Ernesto, M., DeMin, A., 1999. Extensive -200	Formatted: Spanish (Spain)
48 1335	million-year-old -continental -flood -basalts of the Central Atlantic Magmatic	Formatted: English (United States)
50 1336	Province. Science 284, 616-618.	Formatted: English (United States)
51		Formatted: English (United States)
52 52		Formatted: English (United States)
53 54		

2			
4			
5			
7 ¹	1337	Matte, Ph., 1991. Accretionary history and crustal evolution of the Variscan belt in	
8 9	1338	Western Europe. Tectonophysics 196, 309-337.	
10 11	1339	Matte, Ph., 2002. Variscides between the Appalachians and the Urals: Similarities and	Formatted: English (United States)
12 13	1340	differences between Paleozoic subduction and collision belts. In: Martínez	
14 15	1341	Catalán, J.R., Hatcher, R.D. Jr, Arenas, R., Díaz García, F. (eds), Variscan-	
16 17	1342	Appalachian dynamics: The building of the late Paleozoic basement: Boulder,	
18:	1343	Colorado, Geological Society of America Special Paper 364, 239-251.	
19 20 1	1344	Matte, P., 2001. The Variscan collage and orogeny (480-290 Ma) and the tectonic	
21 22 ¹	1345	definition of the Armorica microplate: a review. Terra Nov. 13, 122–128-	Formatted: English (United Kingdom)
23 24	1346	https://doi+.org/10.1046/j.1365-3121.2001.00327.x	Formatted: English (United Kingdom)
25	1847	Meinhold G Morton A.C. Mark Fanning C. Howard J.P. Phillins, R.J. Strogen	Formatted: English (United Kingdom)
26 27	1348	D Whitham A G 2014 Insights into crust formation and recycling in North	
28 29	1349	Africa from combined U-Pb Lu-Hf and Q isotope data of detrital zircons from	
30 31	1350	Devonian sandstone of southern Libya Geological Society London Special	
32	1351	Publications 386, 281-292, https://doi.org/10.1144/SP386.1	
34	1352	Murnhy I.B. Gutierrez-Alonso G. Nance R.D. Fernandez-Suarez I. Kennie I.D.	Formatted: English (United Kingdom)
35	1552	Mulphy, J.B., Gutterez-Alonso, G., Nance, K.D., Fernandez-Suarez, J., Kepple, J.D.,	
37 38	1555	Quesada, C., Strachan, R.A., Dostal, J., 2006. Origin of the Rheic Ocean: rifting	Formatted: English (United States)
39 40	1354	along a Neoproterozoic suture? Geology 34, 325-328.	
41 42	1355	Montero, P., Bea, F., González-Lodeiro, F., Talavera, C., Whitehouse, M.J., 2007.	
43	1356	Zircon ages of the metavolcanic rocks and metagranites of the Ollo de Sapo	
44 45	1357	Domain in central Spain: Implications for the Neoproterozoic to Early	
46 : 47	1358	Palaeozoic evolution of Iberia. Geological Magazine 144, 963–976.	
48 1 49	1359	Montero, M.P., Talavera, C., Bea, F., González Lodeiro, F., Whitehouse, M. J., 2009.	
50 ¹	1360	Zircon geochronology of the Ollo de Sapo Formation and the age of the	
51 52	1361	Cambro–Ordovician rifting in Iberia. Journal of Geology 117, 174–191.	
53 54	I		
55 56		55	
57			
58 59			
60			
61 62			
63			
64 65			

3			
4			
5 6			
7 1	1362	Murphy, J.B., Nance, R.D., Cawood, P.A., 2009. Contrasting modes of supercontinent	Formatted: English (United States)
8 9 ¹	1363	formation and the conundrum of Pangea. Gondwana Research 15, 408-420.	
10 11	1364	Nance et al., 2010 Nance, R.D, Gutiérrez-Alonso, G., Keppie, J.D., Linnemann, U.,	
12 13	1365	Murphy, J.B., Quesada, C., Strachan, R.A., Woodcock, N.H., 2010. Evolution of	
14 _] 15	1366	the Rheic Ocean. Gondwana Research 17, 194-222Doi:	
16 j 17	1367	https://doi.org/10.1016/j.gr.2009.08.001	Formatted: English (United States)
18 1 19	1368	Pastor-Galán, D., Gutiérrez-Alonso, G., Murphy, J.B., Fernández-Suárez, J., Hofmann,	
20 1 21	1369	M., Linnemann, U., 2013a2013, Provenance analysis of the Paleozoic sequences	Formatted: English (United States)
22 ¹	1370	of the northern Gondwana margin in NW Iberia: Passive margin to Variscan	
23 24	1371	collision and orocline development. Gondwana Res. Research 23, 1089–1103	Formatted: Spanish (Spain)
25			Formatted: Spanish (Spain)
26	1372	https://doi+.org/10.1016/j.gr.2012.06.015	Formatted: Spanish (Spain)
27	1373	Pereira M.F. Castro A. Fernández C. Rodríguez C. 2018 Multiple Paleozoic	Formatted: Spanish (Spain)
28		recenta, ini. r., castro, A., remaindez, c., Roungdez, c., 2010. Multiple rateozote	Formatted: Spanish (Spain)
30	1374	magmatic-orogenic events in the Central Extremadura batholith (Iberian	
31] 32	1375	Variscan belt, Spain). Journal of Iberian Geology 44, 309-333.	
331	1376	Pereira, M.F., Pereira, M.F., Gutiérrez-Alonso, G., Murphy, J.B., Drost, K., Gama, C.,	Formatted: English (United Kingdom)
35 ¹	1377	Silva, J.B., 2017, Birth and demise of the Rheie Ocean magmatic are(s):	Formatted: English (United Kingdom)
36 37 ¹	1378	Combined U-Pb and Hf isotope analyses in detrital zireon from SW Iberia	
38 39 ¹	1379	silicielastic strata. Lithos 278-281, 383-399.	Formatted: Spanish (Spain)
40 41	1380	Percira, M.F., Chichorro, M., Johnston, S.T., Gutiérrez-Alonso, G., Silva, J.B.,	Formatted: English (United Kingdom)
42 43	1381	Linnemann, U., Hofmann, M., Drost, K., 2012. The missing Rheic Ocean	
44 ₁ 45	1382	magmatic arcs: provenance analysis of Late Paleozoic sedimentary clastic rocks	
46 1 47	1383	of SW Iberia. Gondwana Research 3-4(22), 882-891.	
48 1	1384	Pereira, M.F., Gama, C., Chichorro, M., Silva, J.B., Gutiérrez-Alonso, G., Hofmann,	
50 ¹	1385	M., Linnemann, U., Gärtner, A., 2016. Evidence for multi-cycle sedimentation	
51 52	1		
53			
54			
55		56	
56			
5/ 50			
50 50			
60			
61			
62			
63			

1			
2 3			
4			
5 6			
71	1386	and provenance constraints from detrital zircon U-Pb ages: Triassic strata of the	
8 9 ¹	1387	Lusitanian basin (western Iberia). Tectonophysics 681, 318-331.	
10 11	1388	Pereira, M.F., Gama, C., Dias da Silva, I., Silva, J.B., Hofmann, M., Linnemann, U.,	
12 13	1389	Gärtner, A., in press. Chronostratigraphic framework and provenance of the	
14	1390	Ossa-Morena Zone Carboniferous basins (SW Iberia). Solid Earth Discussions,	
16 j	1391	https://doi.org/10.5194/se-2020-26	
18 1	1392	Pereira, M.F., Gutiérrez-Alonso, G., Murphy, J.B., Drost, K., Gama, C., Silva, J.B.,	Formatted: English (United Kingdom)
19 20 1	1393	2017a, Birth and demise of the Rheic Ocean magmatic arc(s): Combined U-Pb	Formatted: English (United Kingdom)
21 22 []]	1394	and Hf isotope analyses in detrital zircon from SW Iberia siliciclastic strata.	
23 24	1395	Lithos 278-281, 383-399.	Formatted: Spanish (Spain)
25	1396	Pereira, M.F., Ribeiro, C., Gama, C., Drost, K., Chichorro, M., Vilallonga, F.,	
26 27	1397	Hofmann, M., Linnemann, U., 2017b. Provenance of upper Triassic sandstone.	
28 29 _]	1398	southwest Iberia (Alentejo and Algarve basins): tracing variability in the	
30 31 1	1399	sources. International Journal of Earth Sciences 106, 43-57.	
32	1400	https://doi.org/10.1007/s00531-016-1295-2	
34	1401	Pereira M.E. Ribeiro C. Vilallonga E. Chichorro M. Drost K. Silva I.B.	
36		Alberdoire L. Hofmonn M. Linnamonn U. 2014 Variability over time in the	
37 ¹ 38	1402	Abardeno, E., Hormann, M., Enniemann, O., 2014. Variability over time in the	
39 ¹ 40	1403	sources of South Portuguese Zone turbidites: evidence of denudation of different	
41 42	1404	crustal blocks during the assembly of Pangaea. International Journal of Earth	
43	1405	Sciences 103, 1453-1470 	
44 j 45	1406	Pérez-Cáceres, I., Martínez Poyatos, D., Simancas, J.F., Azor, A., 2017. Testing the	Formatted: English (United Kingdom)
46] 47	1407	Avalonian affinity of the South Portuguese Zone and the Neoproterozoic	Tomatee. English (onited States)
48	1408	evolution of SW Iberia through detrital zircon populations. Gondwana Res. 42,	Formatted: Spanish (Spain)
49 50 ¹	1409	177	Formatted: Spanish (Spain)
51			Formatted: Spanish (Spain)
52			Formatted: Spanish (Spain)
53			
54		F 7	
55		57	
56			
57 58			
59			
60			
61			
62			
63			
64			
65			

1		
2		
3 4		
5		
6 7 1410	Perri, F., Critelli, S., Martín-Algarra, A., Martín-Martín, M., Perrone, V., Mongelli, G.,	
8 9 1411	Zattin, G., 2013. Triassic redbeds in the Malaguide Complex (Betic Cordillera-	Formatted: English (United States)
10 11 1412	Spain): Petrography, geochemistry and geodynamic implications. Earth-Science	
$^{12}_{13}$ 1413	Reviews 117, 1-28.	
$14 \\ 1414 \\ 15$	Platt, J.P., Whitehouse, M.J., Kelley, S.P., Carter, A., Hollick, L., 2003. Simultaneous	
16 1415 17	extensional exhumation across the Alboran Basin: Implications for the causes of	
18 1416	late orogenic extension. Geology 31 31, 251-254.	
20 1417	Platt, J.P., Anczkiewicz, R., Soto, J.I., Kelley, S.P., Thirlwall, M., 2006. Early Miocene	Formatted: English (Australia)
21 22 1418	continental subduction and rapid exhumation in the western Mediterranean.	Formatted: English (United States)
23 24 ¹⁴¹⁹	Geology 34, 981-984.	
25 26 ¹ 420	Pratt, J.R., Barbeau, D.L., Garver, J.I., Emran, A., Izykowski, T.M., 2015. Detrital	
$\frac{27}{28}$ 1421	Zircon Geochronology of Mesozoic Sediments in the Rif and Middle Atlas Belts	
29 ₁₄₂₂ 30	of Morocco: Provenance Constraints and Refinement of the West African	
31 ₁₄₂₃	Signature. J. Geol. 123, 177–200-, https://doi:.org/10.1086/681218	Formatted: Spanish (Spain)
33 1424 34	Puga, E., Nieto, J.M., Diaz de Federico, A., Portugal, E., Reyes, E., 1996. The intra-	Formatted: Spainsi (Spain) Formatted: Font: Calibri, Spanish (Spain)
35 1425	orogenic Soportujar Formation of the Mulhacén Complex; evidence for the	Formatted: Spanish (Spain)
36 37 1426	polyciclic character of the Alpine orogeny in the Betic Cordilleras. Eclogae	
38 39 1427	Geologicae Helvetiae 89, 129-162.	
$40 \\ 41 \\ 1428$	Puga, E., Fanning, M., Díaz de Federico, A., Nieto, J.M., Beccaluva, L., Bianchini, G.,	Formatted: English (United Kingdom)
$\begin{smallmatrix}42\\43\end{smallmatrix}{1429}$	Díaz-Puga, M.A., 2011. Petrology, geochemistry and U-Pb geochronology of	
$\begin{smallmatrix}44\\1430\\45\end{smallmatrix}$	the Betic Ophiolites: Inferences for Pangaea break-up and birth of the	
46 ₁₄₃₁ 47	westernmost Tethys Ocean. Lithos 124, 255-272.	
48 1432 49	Puga, E., Díaz de Federico, A., Nieto, J.M., 2002. Tectonostratigraphic subdivision and	
50 1433 51	petrological characterisation of the deepest complexes of the Betic zone: a	
52 1434	review. Geodinamica Acta 15, 23-43.	
54		
55	58	
56		
57		
59		
60		
61		
62		
63		
C 1		
64 65		

1		
2		
3 4		
5		
6 7 1435	Ribeiro, M.L., Castro, A., Almeida, A., González Menéndez, L., Jesus, A. Lains, J.A.,	
8 9 1436	Lopes, J.C., Martins, H.C.B., Mata, J., Mateus, A., Moita, P., Neiva, A.M.R.,	
10 11 1437	Ribeiro, M.A., Santos, J.F., Solá, A.R., 2019, Variscan magmatism. In: Quesada,	
12 13 1438	C., Oliveira, J.T. (Eds.), The Geology of Iberia: A Geodynamic Approach,	
14 1439 15	Regional Geology Reviews 2, 497-526.	
16 ₁₄₄₀ 17	Rodriguez-Cañero, R., Jabaloy-Sánchez, A., Navas-Parejo P, Martín-Algarra, A., 2018.	
18 1441 19	Linking Palaeozoic palaeogeography of the Betic Cordillera to the Variscan	
20 1442 21	Iberian Massif: new insight through the first conodonts of the Nevado-Filábride	
22 1443	Complex. International Journal of Earth Sciences (Geologische Rundschau)	Formatted: English (United States)
23 24 ¹⁴⁴⁴	107(5), 1791-1806 . Doi: <u>https://doi.org/</u>10.1007/s00531-017-1572-8	Formatted: English (United States)
25 1445 26 1445	Rubio-Ordóñez, A., Valverde-Vaquero, P., Corretgé, L.G., Cuesta-Fernández,	
² / 1446 28	A., Gallastegui, G., Fernández-González, M., Gerdes, A., 2012. An early	
29 ₁₄₄₇ 30	Ordovician tonalitic-granodioritic belt along the Schistose-Greywacke Domain	
31 1448 32	of the Central Iberian zone (Iberian Massif, Variscan belt). Geological Magazine	
33 1449 34	149(5), 927-939, https://doi.org/10.1017/S0016756811001129	
35 1450 36	Sánchez Martínez, S., De la Horra, R., Arenas, R., Gerdes, A., Galán-Abellán, A.B.,	Formatted: Spanish (Spain)
37 1451	López-Gómez, J., Barrenechea, J.F., Arche, A., 2012. U-Pb Ages of Detrital	
39 1452	Zircons from the Permo-Triassic Series of the Iberian Ranges: A Record of	
$\substack{40\\41}$ 1453	Variable Provenance during Rift Propagation. The Journal of Geology 120, 135-	
$\begin{smallmatrix}42\\43\end{smallmatrix}$	154.	
44 1455 45	Sánchez-Martínez, S., Arenas, R., García, F.D., Martínez Catalán, J.R., Gómez-	
46 1456 47	Barreiro, J., Pearce, J.A., 2007. Careon ophiolite, NW Spain: suprasubduction	
48 1457 49	zone setting for the youngest Rheic Ocean floor. Geology 35, 53-56.	Formatted: Spanish (Spain)
50 1458	Sánchez-Rodriguez, L., Gebauer, D., 2000, Mesozoie formation of pyroxenites and	
52 1459	gabbros in the Ronda area (southern Spain), followed by early Miocene	
54 54	50	
55 56	55	
57		
58		
59 60		
61		
62		
63		

1		
2 3		
4		
5 6		
7 1460	subduction metamorphism and emplacement into the middle crust: U-Pb	
8 9 1461	sensitive high-resolution ion microprobe dating of zircon: Tectonophysics 316,	
10 11 1462	19-44.	
$\frac{12}{13}$ 1463	Sánchez-Navas, A., García-Casco, A., Martín-Algarra, A., 2014. Pre-Alpine discordant	Formatted: Spanish (Spain)
14 14 15	granitic dikes in the metamorphic core of the Betic Cordillera: tectonic	Formatted: English (United States)
16 1465	implications. Terra Nova 26, 477-486 . Doi :, https://doi.org/ 10.1111/ter.12123	Formatted: Spanish (Spain)
18 1466	Sánchez-Navas, A., García-Casco, A., Mazzoli, S., Martín-Algarra, A., 2017.	Formatted: Spanish (Spain)
20 1467	Polymetamorphism in the Alpujarride Complex, Betic Cordillera, South Spain.	Formatted: English (United States)
21 22 1468	The Journal of Geology 125, 637-657.	
23 24 ¹⁴⁶⁹	Sánchez-Rodriguez, L., Gebauer, D., 2000, Mesozoic formation of pyroxenites and	
25 26 ¹ 470	gabbros in the Ronda area (southern Spain), followed by early Miocene	
27 ₁₄₇₁ 28	subduction metamorphism and emplacement into the middle crust: U-Pb	
29 ₁₄₇₂	sensitive high-resolution ion microprobe dating of zircon: Tectonophysics 316,	
31 1473	<u>19-44.</u>	
32 33 1474	Santamaría-López, A., Sanz de Galdeano, C., 2018. SHRIMP U–Pb detrital zircon	
34 35 1475	dating to check subdivisions in metamorphic complexes: a case of study in the	
36 37 1476	Nevado-Filábride complex (Betic Cordillera, Spain). International Journal of	
38 39 1477	Earth Sciences,-doi: https://doi.org/10.1007/s00531-018-1613-y	Formatted: English (Australia)
40 41 1478	Sharman, G.R., Malkowski, M.A., 2020, Needles in a haystack: Detrital zircon UePb	
42 ₁₄₇₉	ages and the maximum depositional age of modern global sediment. Earth-	
44 1480 45	Science Reviews 203, 103109, https://doi.org/10.1016/j.earscirev.2020.103109	
46 1481	Shaw, J., Gutierrez-Alonso, G., Johnston, S.T., Galan, D.P., Pastor-Galan, D., 2014.	Formatted: English (United States)
4 7 48 1482	Provenance variability along the Early Ordovician north Gondwana margin:	
49 50 1483	Paleogeographic and tectonic implications of U-Pb detrital zircon ages from the	
51 I 52		
53 54		
55	60	
56 57		
58		
59 60		
61		

1			
2			
3 4			
5			
6 7	1484	Armorican Quartzite of the Iberian Variscan belt. Geological Society of America	
8	1485	Bulletin 126, 702-719. Doi:, https://doi.org/10.1130/B30935.1	Formatted: English (United States)
10	1406	Shaw L. Johnston S.T. Cutiémar Alance C. Wail A.D. 2012 Orealines of the	 Formatted: English (United States)
11 12	1487	Variscan orogen of Iberia: paleocurrent analysis and paleogeographic	
13 14	1407	implications. Earth and Planatary Science Latters 320, 330, 60, 70	
15	1+00	implications. Earth and Franciary Science Letters 329-330, 00-70.	
16 17	1489	Simancas, F., 2019. Variscan Cycle. In: Quesada, C., Oliveira, J.T. (Eds.), The Geology	
18 19	1490	of Iberia: A Geodynamic Approach, Regional Geology Reviews 2, 1-26.	
20 21	1491	Simon, O., Visscher, H., 1983. El Pérmico de las Cordilleras Béticas. In: Martínez-Diaz	 Formatted: Spanish (Spain)
22	1492	C (Ed.), Carbonífero y Pérmico de España: Actas X Congreso Internacional	
23 24	1493	Carbonífero. IGME, Madrid 453-499.	 Formatted: English (United States)
25 26	1494	Spencer, C.J., Kirkland, C.L., 2016. Visualizing the sedimentary response through the	
27 28	1495	orogenic cycle: a multidimensional scaling approach. Lithosphere 8, 29-37,	
29 30	1496	https://doi.org/10.1130/L479.1	
31	1497	Spencer, C.J., Kirkland, C.L., Taylor, R.J.M., 2016. Strategies towards statistically	
32 33	1498	robust interpretations of in situ U-Pb zircon geochronology. Geoscience	
34 35	1499	Frontiers 7, 581-589, http://dx.doi.org/10.1016/j.gsf.2015.11.006	
36 37	1500	Stephan, T., Kroner, U., Romer, R.L., 2019. The pre-orogenic detrital zircon record of	 Formatted: English (United States)
38 39	1501	the Peri-Gondwanan crust. Geological Magazine 156, 281-307. Doi:	 Formatted: Spanish (Spain)
40 41	1502	https://doi.org/10.1017/S0016756818000031	 Formatted: Spanish (Spain)
42 43	1503	Tahiri, A., Montero, P., El Hadi, H., Martínez Poyatos, D., Azor, A., Bea, F., Simancas,	
44	1504	J.F., González Lodeiro, F., 2010. Geochronological data on the Rabat-Tiflet	 Formatted: English (United States)
46	1505	granitoids: their bearing on the tectonics of the Moroccan Variscides. J. African	
47 48	1506	Earth Sci. 57, 1–13, <u>https://doi+.org/</u> 10.1016/j.jafrearsci.2009.07.005	Formatted: English (United States)
49 50	1507	Talavera, C., Montero, P., Martínez Poyatos, D., Williams, I.S., 2012. Ediacaran to	Formatted: English (United States)
51			
52 53	1508	Lower Ordovician age for rocks ascribed to the Schist–Graywacke Complex	
54			
55		61	
56 57			
58			
59			
60			
61 62			

1			
2 3			
4			
5			
6 7	1509	(Iberian Massif, Spain): Evidence from detrital-Bea, F., González Lodeiro, F.,	
8 9	1510	Whitehouse, M., 2013. U-Pb zircon SHRIMP U-Pb geochronology. Gondwana	 Formatted: English (Australia)
10 11	1511	Res. 22, 928-942. doi:10.1016/j.gr.2012.03.008 of the Cambro-Ordovician	Formatted: English (Australia)
12 13	1512	metagranites and metavolcanic rocks of central and NW Iberia. International	
14 15	1513	Journal of Earth Sciences 102, 1–23.	 Formatted: Spanish (Spain)
16 17	1514	Tendero, J.A., Martín-Algarra, A., Puga, E., Díaz de Federico, A., 1993.	
18 19	1515	Lithostratigraphie des métasédiments de l'association ophiolitique Nevado-	
20 21	1516	Filabride (SE Espagne) et mise en evidence d'objets ankéritiques évoquant des	
22	1517	foraminiféres planctoniques du Crétacé: conséquences paléogéographiques.	
24	1518	Comptes Rendus de l'Académie des Sciences Paris 316, 1115-1122.	
25 26	1519	Vermeesch, P., 2012. On the visualisation of detrital age distributions. Chemical	 Formatted: French (France)
27 28	1520	Geology, v.312-313, 190-194, <u>https://doi+.org/10.1016/j.chemgeo.2012.04.021</u>	Formatted: French (France)
29	1521	θ	Formatted: French (France)
30	1-00		
31 32	1522	Vermeesch, P., 2013. Multi-sample comparison of detrital age distributions. Chemical	
33 34	1523	Geology 341, 140-146, https://doi.org/10.1016/j.chemgeo.2013.01.010	
35	1524	Vissers, R.L.M., 1981. A structural study of the Central Sierra de los Filabres (Betic	
37	1525	Zone, SE Spain), with emphasis on deformational processes and their relation to	
38 39	1526	the Alpine Metamorphism. GUA Papers of Geology 15, 1-154.	
40 41	1527	Vissers, R.L.M., 1992. Variscan extension in the Pyrenees. Tectonics 11(6), 1369-1384.	
42 43	1528	https://doi.org/10.1029/92TC00823	
44 45	1529	Voet, H.W., 1967. Geological investigations in the Northern Sierra de Los Filabres	
46	1530	around Macael and Cóbdar, southeastern Spain. Ph.D. Thesis, Amsterdam	
48	1531	University, The Netherlands.	
49 50	1532	Williams, J.R., Platt, J.P., 2017. Superposed and refolded metamorphic isograds, and	
51 52	1533	superposed directions of shear during late-orogenic extension in the Alborán	
53 54			
55		62	
56 57			
58			
59			
ьU 61			
62			
63			

1	
2 3	
4	
5	
6 7 1534	Domain, southern Spain. Tectonics 36, 756-786. Doi:, https://doi.org/10.1002/
9 1535	2016TC004358
$10 \\ 11 \\ 1536$	Wilson, M., 1997. Thermal evolution of the Central Atlantic passive margins:
$\frac{12}{13}$ 1537	continental break-up above a Mesozoic super-plume. Journal of the Geological
$^{14}_{15}$ 1538	Society of London 154, 491-495.
16 ₁₅₃₉ 17	Wissink, G.K., Wilkinson, B.H., Hoke, G.D., 2018. Pairwise sample comparisons and
18 1540 19	multidimensional scaling of detrital zircon ages with examples from the North
20 1541 21	American platform, basin, and passive margin settings. Lithosphere 10, 478-491,
22 1542	https://doi.org/ 10.1130/L700.1
23 24 ¹⁵⁴³	Zindler, A., Staudigel, H., Hart, S.R., Endres, R., Goldstein, S., 1983, Nd and Sm
25 26 ¹⁵⁴⁴	isotopic study of a mafic layer from Ronda ultramafic complex. Nature 304,
²⁷ 1545 28	226.
29 ₁₅₄₆ 30	
31 ₁₅₄₇ 32	Figure and Table captions:
33 1548 34	Figure 1 (A) Tectonic sketch of the Southwestern Mediterranean Sea; (B) Tectonic
35 1549	map of the Betic Cordillera.
30 37 1550	
38 39 1551	Figure 2 Geological map of the south-eastern Betic Chain with outcrops of the three
$\frac{40}{41}$ 1552	tectonic complexes of the Internal zones and the location of the Águilas Arc marked
42 43 1553	(see Fig. 1B for location).
⁴⁴ 1554 45	
46 1555 47	Figure 3 Geological map of the central area of the Águilas Arc (modified from
48 1556	Espinosa Godoy et al., 1972; Booth-Rea and Silva-Barroso, 2008; Booth-Rea et al.,
50 1557	2009; García-Tortosa et al., 2012), with the location of the studied samples. See location
51 52 ¹⁵⁵⁸	in Fig. 2.
53	
55	63
56	
57 58	
59	
60	
61 62	
o⊿ 63	
64	
65	

59	
50	Figure 4 Lithological columns of the studied successions in the NFC. AC and MC
51	with the location of the studied samples. Yellow stars: meta-detrital samples; red stars:
52	meta-igneous samples. Both lithological columns have the same vertical scale.
53	Successions for the <u>NFC</u> Lomo de Bas units were compiled from Laborda-López et al.
54	(2013, 2015a, b) and Booth-Rea et al (2009). The succession of the NFC Mulhacén
55	units compiled from Booth-Rea and Silva-Barroso (2008), and Booth-Rea et al. (2009).
56	
57	Figure 5. Lithological columns of the studied successions in the AC with the location
58	of the studied samples. Yellow stars: meta detrital samples; red stars: meta igneous
59	samples. All lithological columns have the same vertical scale. Successions for the AC
70	were compiled with data from Booth-Rea and Silva-Barroso (2008), Booth-Rea et al.
71	(2009), and García-Tortosa et al. (2012). Succession from the MC Sierra de las
72	Estancias area was compiled from Fernández-Fernández et al. (2007), while the
73	succession of the MC Cabo Cope unit is from Espinosa Godoy et al. (1972), and García-
74	Tortosa et al. (2012).
75	
76	Figure 6 Geological map of the southern area of the Águilas Arc, near san Juan de los
77	Terreros village, with the location of the Cabezo Blanco orthogneiss and the AG-26
78	sample (modified from Booth Rea et al., 2009). See location in Fig. 2.
79	
80	Figure 7 Geological map of the northeastern area of the Sierra de las Estancias with
81	the location of sample LP-16-AZ (modified from Fernández-Fernández et al., 2007).
82	See location in Fig. 2.
83	
	64

Figure 8. Lithological columns of the studied successions in the MC with the location of the studied samples. Yellow stars: meta-detrital samples. All lithological columns have the same vertical scale. The succession from the Sierra de las Estancias area was compiled from Fernández-Fernández et al. (2007). The succession of the Cabo Cope unit is from Espinosa Godoy et al. (1972), and García-Tortosa et al. (2012).

Figure 95.- Results of U-Pb analyses on detrital zirconszircon grains from Lomo de Bás units (NFC): combination of Kernel Density Estimates plots (KDE, black lines), frequency (grey bars), and relative abundance of age groups based on ²⁰⁶Pb/²³⁸U (for dates < 1.5 Ga) and ²⁰⁷Pb/²⁰⁶Pb (for dates > 1.5 Ga) ages. (A) sample AG-12; (B) sample AG-14; (C) sample AG-17, (D) sample AG-18, (E) Cumulative KDE (blue line) and frequency (grey bars) for the Lomo de Bás samples; (F) zoom for the ages ranging from 0 to 541 Ma.

Figure 106.- Results of U-Pb analyses of detrital zirconszircon grains from Tahal Fm samples (Mulhacén units, NFC): combination of Kernel Density Estimates plots (KDE, black lines), frequency (grey bars), and relative abundance of age groups based on 206 Pb/ 238 U (for dates < 1.5 Ga) and 207 Pb/ 206 Pb (for dates > 1.5 Ga) ages. (A) sample AG-1; (B) sample AG-2; (C) Cumulative KDE (blue line) and frequency (grey bars) for the samples of the Tahal Fm; (D) zoom for the ages ranging from 0 to 541 Ma.

Figure 117.- Results of U-Pb analyses on the core of zirconszircon grains from orthogneiss AG-13 (Lomo de Bas units, NFC): (A) conventional Concordia diagram, ²⁰⁴Pb corrected, with the concordant data (95% > Concordia > 105%); (B) conventional Concordia diagram, ²⁰⁴Pb corrected, with the most concordant data; (C) probability

density plots (red line) and frequency (blue bars) for the concordant data (95% > Concordia > 105%); (D) weighted average of the most concordant data.

Figure 128.- Results of U-Pb analyses on the core of zirconszircon grains from the orthogneiss AG-16 (Lomo de Bas units, NFC): (A) conventional Concordia diagram with all the data; (B) conventional Concordia diagram, 207 Pb corrected, with the most concordant data (90% > Concordia > 110%); (C) probability density plots (red line) and frequency (blue bars) for the most concordant data; (D) weighted average of the most concordant data.

Figure 139.- Results of U-Pb analyses on detrital zirconszircon grains from samples
from the Micaschists and Quartzite Fm (AC): combination of Kernel Density Estimates
plots (KDE, black lines), frequency (grey bars), and relative abundance of age groups
based on ²⁰⁶Pb/²³⁸U (for dates < 1.5 Ga) and ²⁰⁷Pb/²⁰⁶Pb (for dates > 1.5 Ga) ages. (A)
sample AG-4; (B) sample AG-5; (C) sample AG-6, (D) sample AG-7, (E) Cumulative
KDE (blue line) and frequency (grey bars) for the samples from the Micaschists and
Quartzite Fm ; (F) zoom for the ages ranging from 0 to 541 Ma.

Figure 1410.- Results of U-Pb analyses on detrital zirconszircon grains from samples
from the Meta-detritiedetrital Fm (AC: AG-9, AG-11, and AG-15), and from the
Miñarros mylonites and breccias (AC: AG-19): combination of Kernel Density
Estimates plots (KDE, black lines), frequency (grey bars), and relative abundance of age
groups based on ²⁰⁶Pb/²³⁸U (for dates < 1.5 Ga) and ²⁰⁷Pb/²⁰⁶Pb (for dates > 1.5 Ga)
ages. (A) sample AG-9; (B) sample AG-11; (C) sample AG-15, (D) sample AG-19, (E)
Cumulative KDE (blue line) and frequency (grey bars) for the samples from the Meta-

detriticdetrital Fm (AG-9, AG-11, and AG-15); (F) zoom for the ages ranging from 0 to 541 Ma.

Figure 1511. - Results of U-Pb analyses on the black rims of zircon from the Cabezo Blanco orthogneiss AG-26 (Cantal unit): (A) conventional Concordia diagram with all the data; (B) conventional Concordia diagram, ²⁰⁷Pb corrected, with the maximum at ca. 16 Ma; (C) probability density plots (red line) and frequency (blue bars) for all then data; (D) weighted average of the ca. 16 Ma age.

Figure 1612.- Results of U-Pb analyses on the cores of zircon from the Cabezo Blanco
orthogneiss AG-26 (Cantal unit): (A) conventional Concordia diagram with all the data;
(B) conventional Concordia diagram, ²⁰⁷Pb corrected, with the main population; (C)
probability density plots (red line) and frequency (blue bars) for all then data; (D)
weighted average of the main population.

Figure 1713.- Results of U-Pb analyses on detrital zirconszircon grains from samples from the Saladilla Fm (MC): combination of Kernel Density Estimates plots (KDE, black lines), frequency (grey bars), and relative abundance of age groups based on $^{206}Pb/^{238}U$ (for dates < 1.5 Ga) and $^{207}Pb/^{206}Pb$ (for dates > 1.5 Ga) ages. (A) sample AG-10; (B) sample LP-16-AZ; (C) Cumulative KDE (blue line) and frequency (grey bars) for the samples of the Saladilla Fm; (D) zoom for the ages ranging from 0 to 541 Ma.

Figure 1814.- Results of U-Pb analyses on detrital zirconszircon grains from samples
 from the unconformable Middle Miocene rocks: combination of Kernel Density

Estimates plots (KDE, black lines), frequency (grey bars), and relative abundance of age groups based on ²⁰⁶Pb/²³⁸U (for dates < 1.5 Ga) and ²⁰⁷Pb/²⁰⁶Pb (for dates > 1.5 Ga) ages. (A) sample AG-3; (B) sample AG-20; (C) Cumulative KDE (blue line) and frequency (grey bars) for the samples of the Middle Miocene rocks; (D) zoom for the ages ranging from 0 to 541 Ma.

Figure 19.- Comparison between the combined KDE plots determined in Paleozoic samples of the studied area and other regions of the Iberian Peninsula and South France: (A) Lomo de Bas units vs Aulago Fm (Jabaloy-Sánchez et al., 2018); (B) Micaschists and Quartzite Fm vs sample Ri 119 from the Sebtide Complex (Azdimousa et al., 2019); (C) Silurian-Devonian rocks from the Cantabrian and Central Iberian zones (Gutíerrez-Alonso et al., 2015) vs Late Carboniferous rocks from the Cantabrian Zone (Pastor-Galán et al., 2013); (D) Lower Ordovician Armorican Quartzite (Shaw et al., 2014) vs Ediacaran and Early Cambrian rocks from the Cantabrian and Central Iberian zones (Fernandez-Suarez et al., 2014); (E) Upper Carboniferous rocks from the Pyrenees (Martínez et al., 2016) vs Upper Carboniferous rocks from the Catalonian Massif (Martínez et al., 2016); (F) Upper Carboniferous rocks from the Montagne Noire and Mouthoumet massifs (Martínez et al., 2016), vs Upper Carboniferous rocks from the Priorat Massif (Martínez et al., 2016), vs Upper Carboniferous rocks from Minorca (Martínez et al., 2016); (G) Upper Carboniferous rocks from MC (sample 121, Azdimousa et al., 2019) vs Early Permian Marbella Conglomerate (Esteban et al., 2017); (H) Upper Carboniferous Mira and Brejeira Fms from the South Portuguesse Zone (Pereira et al., 2014) vs Upper Carboniferous Santa Susana Fm from the Ossa Morena Zone (Pereira et al., 2020). 15.- A) Multidimensional scaling (MDS) plot of the

Late Carboniferous samples from the Betic Cordillera (NFC, AC and MC), Iberian

Massif and South France. B) Shepard plot for the MDS.

Figure 2016. Paleogeographic reconstruction of the eastern Variscan belt at Early Bashkirian times (modified from Simancas et al. (2005) for NW Africa and from Martínez-Catalán (2011) and Rodríguez-Cañero et al. (2017) for Europe). The proposed location of the NFC, AC and MC with respect to other Variscan Iberian Terranes is included. CIZ, Central Iberian; CZ, Cantabrian; GTMZ, Galicia-Trás-os-Montes; MGCZ, Mid-German Crystalline; MZ, Moldanubian; OMZ, Ossa-Morena; RHZ, Rheno-Hercynian; SPZ, South Portuguese; STZ, Saxo-Thuringian; TBZ, Teplá-Barrandian; WALZ, West Asturian-Leonese. Figure 21.- Comparison between the combined KDE plots determined in Permian Triassic rocks of the studied area with those from older rocks from the same complexes. Combined KDE from Permian Triassic samples from the Iberian Massif and Iberian Chain are also included: (A) Samples from the MC: Upper Carboniferous rocks from MC (sample 121, Azdimousa et al., 2019), vs Early Permian Marbella Conglomerate (Esteban et al., 2017), vs Middle Triassic Saladilla Fm; (B) Samples from the AC: Micaschists and Quartzite Fm, vs sample Ri-119 from the Sebtide Complex (Azdimousa et al., 2019), vs Early Middle Triassic Meta detritic Fm; (C) Samples from the NFC: Aulago Fm (Jabaloy-Sánchez et al., 2018), vs Lomo de Bas units, vs Tahal Fm (combination of the data from Jabaloy Sánchez et al., 2018 and this work); (D) Permian rocks from the Cantabrian Zone (Pastor Galán et al., 2013), vs Permian rocks from the Iberian Chain (Sánchez-Martínez et al., 2012), vs Lower Triassic rocks from the Iberian Chain (Sánchez Martínez et al., 2012). 17.- A) Multidimensional scaling

1	
2	
3 4	
5	
6 7 1708	(MDS) plot of the Permian Triassic samples from the Betic Cordillera (NFC, AC and
8 0 1709	MC). Iberian Massif and Iberian Chain, B) Shepard plot for the MDS
10	NO, for an massi and for an entrie of shoping provide and most
11^{1710}	
12 1711 13	Table 1 Sketch of the Tectonic complexes and units mentioned in the text and
$\frac{14}{15}$ 1712	available ages from every lithological formation.
16 ₁₇₁₃	
17	Table 2 Details of the complex and the analysis convict out. (*) LTM accordinates
19 1714	<u>Table 2</u> Details of the samples and the analyses carried out, (*) 0 TW coordinates,
20 1715 21	ED_1950 ellipsoid, zone 30 S.
22 1716	
23 24	
25	
26 27	
28	
29 30	
31	
32 33	
34	
35 36	
37	
38 39	
40	
41 42	
43 44	
45	
46 47	
48	
49 50	
51	
52 53	
54	70
55 56	,,,
57	
59	
60 61	
62	
63 64	

~	-	
6	5	

Figure 4

MALÁGUIDE COMPLEX

0 0

Ε

Figlements of the Variscan Belt

Outcropping/Covered

External thrust belt and foredeep basin Allochtonous terranes with ophiolites and high-P rocks Parautochthon/ lower allochton

Gondwanan zones with strong Cadomian imprint

Variscan miogeocline fold and thrust metamorphic belt

Variscan foreland thrust belt

Variscan foreland thrust belt in NW Africa

Internal Zones of the Betic-Rif Belt

Armorican

Massif

Îberian Massif Massi

Central

Axis of rifting in -Triassic -Early Jurassic times

Bohemian Massif

Rhenish

Massif

RHZ

FCN

ECM

BETIC CORDILLERA

Tectonic Complex	NEVADO-FILÁBRIDE COMPLEX (NFC)		Tectonic units of which adscription has been revised in this work	ALPUJÁRRIDE COMPLEX (AC)	MALÁGUIDE COMPLEX (MC)		
Geographical area	Sierra de Los Filabres area	Águilas Arc	Águilas Arc	Águilas Arc	Sierra de las Estancias	Águilas Arc	
T e c t o n i c	Marbles and Calc-Schists Fm: atributed from pre-Permian (Gómez-Pugnaire et al., 2012) to Cretaceous ages (Tendero et al., 1993) M Metaevaporite Fm: atributed from Permian- u Triassic (Leine, 1968; Vissers, 1981) to Paleogene ages (Puga et al., 1996) h a c é n Tahal Fm: Permian (Santamaría and Sanz de Galdeano, 2018) to Permian-Early Triassic (Jabaloy-Sánchez et al., 2018) n i t s	Marbles and Calc-Schists Fm: atributed from pre-Permian (Gómez-Pugnaire et al., 2012) to Cretaceous ages (Tendero et al., 1993) h a Metaevaporite Fm: atributed from Permian- c Triassic (Leine, 1968; Vissers, 1981) to Paleogene ages (Puga et al., 1996) u n i Tahal Fm: Permian (Santamaría and Sanz t de Galdeano, 2018) to Permian-Early s Triassic (Jabaloy-Sánchez et al., 2018) Lomo de Bas higher unit: Graphite- bearing micaschist, of unknown ages	Black schists and quartzites (unknown a u n n t i a t Migmatitic gneisses, schists with kyanite and sillimanite. Orthogneisses. (unknown ages)	R Meta-carbonate Fm: Middle to Late a Triassic (García-Tortosa et al., 2012) m u o o n e t t Triassic (Martín-Rojas et al., 2010; e García-Tortosa et al., 2010; e García-Tortosa et al., 2012) L Meta-carbonate Fm: Middle to Late Triassic (García-Tortosa et al., 2012) s P a I o Meta-detrital Fm: Permian to Middle	Xiquena Fm (Eocene, Geel, 1973) Castillón Fm (Late Triassic to Jurassic, Geel, 1973) M a i á Saladilla Fm (Middle- Late Triassic, Perri et u al., 2013) i d e	C Castillón Fm (Late Triassic to Jurassic, Geel, 1973) u n C t Saladilla Fm (Middle- p Late Triassic, Perri e et al., 2013)	
u n t s	 V (Santamaría and Sanz de Galdeano, 2018) V Aulago Fm Late Carboniferous (Rodríguez- Cañero et al., 2018; Jabaloy-Sánchez et al., 2018) t 	 covering Middle Devonian marbles (Lafuste and Pavillon, 1974; Laborda-López et al., 2013) d e t a Lomo de Bas higher unit: Graphitebearing schists and phyllites with quartzites older than Middle Devonian u t 		m Triassic (Martín-Rojas et al., 2010; a García-Tortosa et al., 2012) s u n i t Micaschists and Quartzite Fm (pre- Permian ages)	Carboniferous (Martín- C Algarra, 1987) e s s i o n		
	u n Veleta Schists- Late Carboniferous i (Santamaría and Sanz de Galdeano, 2018) t s	i s t Lomo de Bas lower unit: Graphite-bearing s micaschist, and quarzites of unknown age		i ^o ñ u Quartz mylonites & carbonate breccias a n of unknown age r i r t o			

Sample	Tectonic Complex	Tectonic Unit	Lithostratigraphic Formation	Stratigraphic age	- Lithology	Location (*)		_	
						x	Y	Type of analyses	l otal number of analyses/Conc. analyses
AG-1	NFC	Mulhacén units	Tahal Fm	Permian-Triassic	quartzite	620445	4158007	LA-ICPMS	150/134
AG-2	NFC	Mulhacén units	Tahal Fm	Permian-Triassic	quartzite	621448	4155480	LA-ICPMS	140/121
AG-12	NFC	Lomo de Bas lower unit	Graphite-bearing micaschist, and ferruginous quarzites	Paleozoic?	quartzite	635001	4151913	LA-ICPMS	150/142
AG-14	NFC	Lomo de Bas lower unit	Graphite-bearing micaschist, and ferruginous quarzites	Paleozoic?	quartzite	636050	4154168	LA-ICPMS	140/136
AG-17	NFC	Lomo de Bas upper unit	Upper graphitic schists, phyllites, and quartzites	Paleozoic?	quartzite	630645	4155136	LA-ICPMS	130/119
AG-18	NFC	Lomo de Bas upper unit	Upper graphitic schists, phyllites, and quartzites	Paleozoic?	quartzite	630642	4155187	LA-ICPMS	133/128
AG-13	NFC	Lomo de Bas lower unit	-	?	orthogneiss	636008	4152026	SIMS	-
AG-16	NFC	Lomo de Bas lower unit	-	?	orthogneiss	639505	4152611	SHRIMP	-
AG-4	AC	Las Palomas unit	Micaschists and Quartzite Fm	Paleozoic?	quartzite	620932	4147486	LA-ICPMS	152/139
AG-5	AC	Las Palomas unit	Micaschists and Quartzite Fm	Paleozoic?	quartzite	622546	4148545	LA-ICPMS	152/146
AG-6	AC	Las Palomas unit	Micaschists and Quartzite Fm	Paleozoic?	quartzite	626053	4142476	LA-ICPMS	150/135
AG-7	AC	Las Palomas unit	Micaschists and Quartzite Fm	Paleozoic?	quartzite	629645	4143760	LA-ICPMS	151/139
AG-19	AC	Miñarros unit	Meta-detritic Fm	?	quartzite	630637	4155209	LA-ICPMS	151/145
AG-9	AC	Las Palomas unit	Meta-detritic Fm	Permian-Middle Triassic	quartzite	632958	4143805	LA-ICPMS	152/136
AG-11	AC	Las Palomas unit	Meta-detritic Fm	Permian-Middle Triassic	quartzite	632773	4149245	LA-ICPMS	147/133
AG-15	AC	Ramonete unit	Meta-detritic Fm	Middle Triassic	quartzite	634212	4156247	LA-ICPMS	143/123
AG-26	AC?	Cantal unit	-	?	orthogneiss	618187	4137767	SHRIMP	-
LP-16-AZ	MC	Lower Maláguide unit (Sierra de Las Estancias)	Saladilla Fm	Middle-Late Triassic	quartzite	588593	4168969	LA-ICPMS	150/138
AG-10	MC	Cabo Cope unit	Saladilla Fm	Middle-Late Triassic	quartzite	633303	4143026	LA-ICPMS	150/126
AG-3	-	-	Conglomerates and sandstones	Middle Miocene	Conglomerate	628202	4154639	LA-ICPMS	151/138
AG-20	-	-	Conglomerates and sandstones	Middle Miocene	Sandstone	627476	4156840	LA-ICPMS	150/141

Supplementary material

Click here to access/download e-component Supplementary material.docx Supplementary material Table S1

Click here to access/download e-component Table S1 analytical data.xls Supplementary material Table S2

Click here to access/download **e-component** Table S2.xls Supplementary material Table S3

Click here to access/download **e-component** Table S3.xlsx RDM Data Profile XML

Click here to access/download **RDM Data Profile XML** GR-D-20-00209_DataProfile.xml