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Forced Oscillation Dynamics of Surface Nanobubbles

Forced Oscillation Dynamics of Surface Nanobubbles
Duncan Dockar,a) Livio Gibelli, and Matthew K. Borg
School of Engineering, Institute of Multiscale Thermofluids, The University of Edinburgh, Edinburgh EH9 3FB,
UK

(Dated: 8 October 2020)

Surface nanobubbles have potential applications in manipulation of nanoscale and biological materials, waste-water
treatment and surface cleaning. These spherically capped bubbles of gas can exist in stable diffusive equilibrium on
chemically patterned or rough hydrophobic surfaces, under supersaturated conditions. Previous studies have investi-
gated their long-term response to pressure variations, which is governed by the surrounding liquid’s local supersat-
uration, however, not much is known about their short-term response to rapid pressure changes, i.e. their cavitation
dynamics. Here, we present Molecular Dynamics simulations of a surface nanobubble subjected to an external oscillat-
ing pressure field. The surface nanobubble is found to oscillate with a pinned contact line, while still retaining a mostly
spherical cap shape. The amplitude frequency response is typical of an underdamped system, with a peak amplitude
near the estimated natural frequency, despite the strong viscous effects at the nanoscale. This peak is enhanced by the
surface nanobubble’s high internal gas pressure, a result of the Laplace pressure. We find that accurately capturing the
gas pressure, bubble volume and pinned growth mode is important for estimating the natural frequency, and we propose
a simple model for the surface nanobubble frequency response, with comparisons made to other common models for a
spherical bubble, a constant contact angle surface bubble, and a bubble entrapped within a cylindrical micropore. This
work reveals the initial stages of growth of cavitation nanobubbles on surfaces, common in heterogeneous nucleation,
where classical models based on spherical bubble growth break down.

I. INTRODUCTION

Rapid variations in pressure can spontaneously form bub-
bles of vapor or gas within a liquid, in a phenomenon known
as cavitation. The repeated formation and subsequent col-
lapse of these bubbles usually causes problems in engineer-
ing, such as in premature wear of turbomachinery.1 How-
ever, at the micro- and nano-scale, these collapsing bubbles
have value in applying powerful, controlled liquid jets onto
specific targets, which can be used for cancer treatment,2,3

enhanced gene and drug delivery,4 waste-water cleaning5,6,
nanomaterial fabrication,7–9 and complex geometry surface
cleaning.10 Other interesting applications depend on the os-
cillatory dynamics of these cavitating bubbles, such as in ul-
trasound contrast agents, where the natural frequency of the
bubble strengthens the signal in medical imaging.11,12

The most commonly used model for the dynamics of a
spherical bubble in the bulk, as shown in Fig. 1(a), is the
Rayleigh–Plesset equation:

RR̈+
3
2

Ṙ2 +
4νṘ

R
=

1
ρ

[
Pg,0

(
R0

R

)3k

− (P∞−Pv)−
2γ

R

]
,

(1)
where ρ and ν are the liquid density and kinematic viscosity,
respectively; R is the radius of the bubble, with initial radius,
R0; Pg,0, P∞, and Pv are the initial gas pressure, far-field liquid
pressure, and vapor pressure, respectively; γ is the liquid–gas
surface tension; k is the exponent of the polytropic gas law,
PgV k = const., where V is the bubble volume.1,13 Dot nota-
tion is used to indicate time-derivatives, e.g. dR/dt = Ṙ, and
d2R/dt2 = R̈.

a)Electronic mail: d.dockar@ed.ac.uk

FIG. 1: Schematics of: (a) a spherical bubble, and (b) a
surface nanobubble, under forced oscillation.

One of the strengths of Eq. (1) is its ability to capture the
rapid bubble dynamics over large changes in scale common in
cavitation, for example, in the unstable growth and collapse
phases, which can be difficult to fully observe in other sim-
ulation and experimental methods.14–17 The Rayleigh–Plesset
equation has also been shown to give good agreement with
hydrodynamic based simulations of vapor bubble formation
around heated nanoparticles,18 and free oscillations of micro-
bubbles with Reynolds numbers as low as Re = 10.19 Re-
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cently, several authors have started using Rayleigh–Plesset
dynamics to model viscous dominated spherical nanobubbles
with Molecular Dynamics (MD) simulations.20–23

Surface nanobubbles are spherical cap shaped bubbles
pinned to a surface with sizes in the nanometre range, as
shown in Fig. 1(b). They have been shown to exist stably
on textured or rough hydrophobic surfaces in supersaturated
solutions, for up to hours or days at a time.9,24–31 Since only
being discovered relatively recently, their cavitation dynam-
ics are still not fully understood. For example, the threshold
liquid pressure at which they experience unstable growth was
found to be lower than the classical Blake threshold for spher-
ical bubbles.32,33 This discrepancy has been previously shown
to be due to the pinning of the three-phase contact line causing
a reduction in surface nanobubble radius of curvature during
constant contact radius (CCR) growth, as well as a different
expression for their spherical cap volume. This CCR growth
mode also means that Eq. (1), which assumes radial growth,
is unsuitable for modeling the growth rate and oscillation dy-
namics of surface nanobubbles. The natural frequencies of
spherical bubbles,34–36 constant contact angle (CCA) surface
bubbles,37 constrained spherical bubbles,38 and gas bubbles
entrapped within micropores39,40 have been previously inves-
tigated, however, there have been no studies specifically on
the oscillating dynamics of surface nanobubbles.

Future technologies that rely on the cavitation dynamics
of these surface nanobubbles, such as in ultrasound contrast
agents or surface cleaning, require understanding of their os-
cillation and growth rates. In this work, we model the forced
oscillation dynamics of a surface nanobubble at varying fre-
quencies, investigate the oscillation shape and pressure bal-
ances across the interface, and compare different models to
predict the bubble’s natural frequency.

It is necessary to fully capture the complex physics behind
surface nanobubbles, in order to clarify the many unclear as-
pects of their dynamics. MD is a high-fidelity simulation tech-
nique that can model such behavior, for example, the contact
line stick/slip dynamics, surface tension effects and diffusive
growth, via fundamental Newtonian dynamics and chemical
intermolecular potentials.33,41–44 The penalty of MD is its ex-
treme computational cost, which limits the bubble sizes that
can be modeled (R∼ 10nm) as well as the largest time scales

of the dynamics (∼ 10ns). Other techniques exist for mod-
eling surface nanobubbles, such as lattice density functional
theory,26 and more recently with continuum-based solvers,
coupling a finite difference scheme with the immersed bound-
ary method to simulate pinned growth under various satura-
tion conditions for µm sized surface nanobubbles.45 However,
these alternative techniques usually take assumptions on the
bubble’s growth, for example that the contact line is pinned,
which is not yet known to be true for the rapid oscillations to
be modeled here, and so we chose MD to accurately capture
this growth mode.

II. MOLECULAR DYNAMICS SIMULATION SETUP

We performed simulations of pinned surface nanobubble
growth using the LAMMPS MD software46 with pressures
enforced at varying frequencies. The fluid system employed
was nitrogen (N2) for the internal gas phase, and water (H2O)
for the external liquid, given that this combination is com-
mon in surface nanobubble literature.9,24,47,48 The fluid do-
main was contained between two walls, with the liquid pres-
sure controlled by vertical motion of the upper wall (referred
from now on as the piston), and the bubble equilibrated on
the lower rigid wall, as shown in Fig. 2, with an enhanced
view of the bubble shown in inset A. Contact line pinning was
provided by a concentric ring pattern of alternating hydropho-
bic (So) and hydrophilic (Si) atom types (similar to our pre-
vious simulation setup in Ref. 33), directly below the surface
nanobubble, as shown in inset B.49

We performed simulations using the coarse-grained mW
model for the liquid,51 and a neutral single-site N2 model
for the gas,52 with relative potential parameters chosen based
on gas solubility.53 The mW model was chosen for its good
agreement with water density and surface tension at ambient
conditions. It is also computationally cheaper than other stan-
dard MD water models such as TIP4P/2005,54 although does
underpredict viscosity.55 The computational gains allowed us
to study large liquid baths surrounding the nanobubble, which
was important for capturing the full inertial and viscous con-
tributions from the surrounding liquid. Interatomic interac-
tions between the mW molecules were modeled using the
Stillinger–Weber (SW) potential:56

USW = ∑
i

∑
j>i

Asεi j

[
Bs

(
σi j

ri j

)ps

−
(

σi j

ri j

)qs]
exp
(

σi j

ri j−asσi j

)
+∑

i
∑
j 6=i

∑
k> j

λsεi jk
[
cosθ jik− cosθs

]2 exp
(

γsσi j

ri j−asσi j

)
exp
(

γsσik

rik−asσik

)
, (2)

where USW is the total potential energy between the system
of atoms interacting by the SW potential;57 atoms i and j are
separated by distance ri j, and likewise atoms i and k are sep-
arated by distance rik; atoms j and k form an angle θ jik, sub-
tended at atom i; ε and σ are the characteristic potential depth

and length-scale, respectively, with the subscripts denoting the
atomic combinations. The fitting parameters As, Bs, as, ps, qs,
λs, θs and γs are chosen to achieve fluid properties similar to
water, and are given in Table I. Potential parameters ε and σ

are given in Table II.
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FIG. 2: Schematic of the MD simulation of a 3D surface nanobubble. The orange spheres are the single-site mW water
molecules, cyan spheres are the single-site N2 molecules, and the dark-grey and yellow atoms are the hydrophilic (Si) and

hydrophobic (So) substrate sections, respectively.50 Some of the mW molecules and dissolved N2 molecules are not shown for
clarity. Inset A shows the surface nanobubble in more detail, and inset B shows the Si/So substrate patterning directly below the

bubble.

TABLE I: Fitting parameters used in Eq. (2) to obtain a
coarse-grained model for monatomic water.51

Fitting parameter Value

As 7.04955627
Bs 0.6022245584
as 1.8
ps 4
qs 0
λs 23.15
θs 109.47◦

γs 1.2

All other interatomic interactions, including interactions
between the water molecules and other atoms/molecules in the
system, were modeled using the Lennard Jones (LJ) potential:

ULJ = ∑
i

∑
j>i

4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]
, (3)

where ULJ is the total potential energy from all the LJ po-
tential interactions; εi j and σi j are the characteristic potential
and length-scale, respectively, between atoms i and j. The LJ
potential pair parameters used for the mW and N2 model sim-
ulations are also shown in Table II, using similar values from
past surface nanobubble simulations.33,42,43 Potential param-
eters between mW molecules and the So and Si atom types
were calibrated in pre-simulations to obtain equilibrium gas-
side contact angles of 35◦ and 99◦, respectively. Potential pa-
rameters between the nitrogen molecules and the wall atom
types were calibrated to achieve similar density fluctuation

TABLE II: Atom types and parameters for interatomic
potential interactions; parameters for atoms in bold are

assumed for pairs of like atoms. Any interaction pairs not
given are equal to zero.

Atom/
Interatomic pair Atom Mass (g/mol) ε (kJ/mol) σ (nm)

mWa 18.015 25.895 0.23925
mW–N2 – 0.41250 0.30713
mW–So – 0.90332 0.24318
mW–Si – 1.8995 0.24318

N2
b 28.013 0.79160 0.37500

N2–So – 2.3334 0.31105
N2–Si – 1.1051 0.31105

a Ref. 51
b Ref. 52

profiles as found in Refs. 33, 42, and 43.
Pressure was applied by the piston, with all piston atoms

subjected to a mean force Fz = −P∞Ap/N, where Ap is the
area of the piston in the (x, y) plane, and N is the number
of piston wall atoms. The negative sign indicates that for a
positive pressure, the force on the piston acts downwards, i.e.
in the negative z direction. Periodic boundaries were applied
in the x and y directions, while non-periodic boundaries were
used in the z direction.

All simulations started from an identical equilibrated
state, which was first achieved by initializing the bub-
ble as a spherical cap shape (to reduce diffusive equili-
bration time), with 3×106 water molecules for the bulk
liquid, 7700 gas molecules in the bubble, and a further
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1872 nitrogen molecules dissolved in the liquid to pro-
vide supersaturation.28,33,42,58,59 Equilibration was performed
at constant temperature T = 300K using a Nosé–Hoover
thermostat46,60,61 and at constant initial pressure P∞,0 =
10MPa (using the piston), until the bubble had reached a
steady size after 1.5ns, with initial gas-side contact angle62

θ0 = 50.5◦ and lateral contact diameter L = 15.11nm. The
equilibrated fluid domain measured 56.4× 56.4× 28.5nm3,
although could expand in the z direction to allow variations in
pressure. The piston comprised of 3.73×105 Si atoms, with
a total mass: mp = 1.21×10−19 kg.

Pressure could be measured in the gas and liquid phases us-
ing the combined kinetic and virial stress tensor,46,63 and was
confirmed to reach equilibrium values after this time. During
the main production MD runs, the thermostat was applied only
to the liquid, which allowed the nitrogen gas phase to expand
without enforcing an adiabatic or isothermal behavior.33 The
velocity Verlet algorithm was used,46 with a time-integration
step of ∆t = 2fs for all simulations.

Relevant parameters of the mW liquid were obtained from
MD pre-simulations, all at 300K: surface tension was mea-
sured from a simple plane interface system under equilibrium
conditions, γ = 65.384mJ/m2;44,64 the dynamic viscosity of
the liquid was measured using the Green–Kubo method65–67,
µ = 3.550×10−4 Pas; density was assumed constant, ρ =
1000kg/m3;55 vapor pressure of the liquid at 300K was as-
sumed Pv = 3.35368×10−3 MPa.55

The volume of the bubble as it changed with time could
be measured as the volume underneath the normalized 50%
isodensity surface contour. A spherical cap profile was fitted
to this surface contour to measure the contact angle, radius of
curvature and lateral contact diameter during growth.

Accurate analysis of the surface nanobubble’s oscillations
requires a semi-infinite domain,39,40,68 which is difficult to
achieve in MD simulations. With computational constraints,
a finite number of molecules were used, which could lead to
possible discrepancies. In order to minimize these effects, a
new length scale was derived in the supplementary material,
to evaluate the far-field limit r∞ at which the inertial effects of
the liquid are uninhibited by the domain’s limited size. We
estimate a minimum size r∞ � [∆P∞ρR6

0/32µ2]1/4 ≈ 2nm,
for our simulations. Despite being an analysis on the iner-
tial effects of the surrounding liquid, the viscosity has a sig-
nificant role, as it dictates the amplitudes of the bubble os-
cillations during pressure-driven dynamics. This limit was
derived strictly for a spherical bubble, however it can give a
rough estimate for a surface nanobubble simulation by setting
R0 = Req,0, where Req,0 = (3V0/4π)1/3 (see Section III). In
practical terms, r∞ can be thought of the distance to the clos-
est domain boundary. We suggest the 28.5nm lengths of our
domain, as shown in Fig. 2, were suitable for this requirement.

The piston was used to enforce the sinusoidal input pres-
sure, however, there was the risk of the piston and bubble
“decoupling” at high sinusoidal frequencies and acting as a
two degree of freedom (DoF) system, where the piston’s own
natural frequency in the system becomes more dominant. If
the piston and bubble interacted as a two DoF system, the am-
plitude of the bubble’s oscillations could not be reliably an-

alyzed. Ideally, we should perform simulations in which the
effect of the piston’s inertia is negligible.

The ratio of the piston’s inertia to the driving pressure was
also derived in the supplementary material:

β =
mpπR3

0Ωd

A2
pµ

, (4)

where β is our dimensionless piston inertia number. Ide-
ally, β � 1, for forcing frequencies close to the natural fre-
quency Ωd ≈ ω0. Eq. (4) was derived for a spherical bub-
ble, but can be approximated for a surface nanobubble by set-
ting R0 = Req,0 again. Interestingly, this dimensionless num-
ber does not depend on pressure amplitude ∆P∞, but instead
depends on the forcing frequency Ωd , and the viscosity µ .
The mass and area of the piston is important with a lighter
and larger piston most likely to avoid these adverse effects.
While there is an A2

p term in the denominator, the piston mass
is typically dependent on the plane area, so the number typ-
ically scales with mp/A2

p ∝ 1/Ap for a fixed piston density.
For oscillations near the peak frequency Ωd ≈ 70rad/ns (see
Section III), β ≈ 0.056, which we assume is low enough to
neglect the piston’s inertia.

III. RESULTS AND DISCUSSIONS

Fourteen MD simulations were run with surface nanobub-
bles subjected to pressure oscillations of the form P∞(t) =
P∞,0 +∆P∞ sin(Ωdt), at varying driving frequencies between
Ωd = 10rad/ns and Ωd = 120rad/ns, chosen to be of similar
order of magnitude to the natural frequency of an equivalent
sized spherical nanobubble (see Eq. (9)). The pressure am-
plitude was kept at ∆P∞ = 5MPa, which is relatively large to
allow measurable changes in the bubble size in the MD sim-
ulations, although was found to be small enough to not cause
strong non-linear effects in the bubble’s response.

For the slowest oscillation case, Ωd = 10rad/ns, the inertial
and viscous forces of the surrounding liquid can be neglected,
and the bubble response is expressed solely in terms of the
pressure balance across the liquid–gas interface:

Pg,0

(
V0

V

)k

−(P∞,0 +∆P∞ sin(Ωdt)−Pv)−
4γ sinθ

L
= 0, (5)

for a spherical cap with volume:

V =
πL3

24sin3
θ
(1− cosθ)2 (2+ cosθ) , (6)

and V0 equal to the initial volume.33 Eq. (5) is equivalent to
the pressure balance (in the square brackets) on the right hand
side of Eq. (1), but now is applicable for a surface nanobubble.
The Laplace pressure 2γ/R is given by the final term on the
left hand side of Eq. (5), with the radius of curvature of a
spherical cap given by:

R =
L

2sinθ
. (7)
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FIG. 3: Variation of the: (a) contact angle θ (red circles), (b)
radius of curvature R (blue squares), and (c) lateral contact

diameter L (green inverted triangles), from the MD
simulations of an oscillating surface nanobubble, with

pressure enforced by a sinusoidal input function,
∆P∞ = 5MPa and Ωd = 10rad/ns. Also shown in (a) and (b)
is the predicted contact angle and radius of curvature, found

using Eqs. (5) and (7), respectively, each with two cases
assuming adiabatic (k = 5/3, solid black line) and isothermal

(k = 1, dashed black line) expansion.

The variation in the surface nanobubble’s contact angle
and radius of curvature with time was solved numerically us-
ing Eqs. (5)–(7) and compared to MD results, as shown in
Figs. 3(a) and (b), respectively. Also shown is the variation in
contact diameter L in Fig. 3(c) to show the surface nanobub-
ble remains pinned; the surface nanobubble is clearly in CCR
growth mode.

There is also some high-frequency noise present in the MD
simulations as can be seen in Fig. 3, which affects the spheri-
cal cap fitting. These are most likely caused by thermal fluc-
tuations, which are more prevalent at the nanoscale;22,69 we
would expect the effects of these fluctuations to be negligible
for larger surface nanobubbles.

Both Eqs. (1) and (5) assume that the polytropic relation

 10

 20

 30

 40

 300  320  340  360  380

G
a

s
 p

re
s
s
u
re

, 
P

g
 (

M
P

a
)

Volume, V (nm
3
)

MD simulation

k=1.658

FIG. 4: Variation of gas pressure with bubble volume for a
surface nanobubble subjected to an oscillating pressure, with

∆P∞ = 5MPa and Ωd = 10rad/ns, plotted on logarithmic
axes. A line is also plotted, corresponding to the fitted

polytropic exponent k = 1.658.

holds, which implies a fixed mass content of the bubble. This
is acceptable for “short” time scales (∼ 1ns for nanobub-
bles), where growth is driven by the instantaneous differ-
ence in gas, liquid and Laplace pressures across the bubble
interface.1 For longer time scales (∼ 10 µs), diffusive dynam-
ics become important, and the surface nanobubble would be
expected to gradually grow via the net influx of gas molecules
across the liquid–gas interface, driven by the surrounding
liquid’s supersaturation variation with pressure, i.e. rectified
diffusion.28,59,70,71 For the purposes of this work, we neglect
the effects of diffusive growth, due to the short timescales
modeled in the MD simulations.

The polytropic exponent k during growth is dependent on
both the bubble’s current size and growth rate,35,36 and was
found by fitting a line to the variation of gas pressure with
bubble volume, as shown in Fig. 4. This polytropic expo-
nent can qualitatively describe the thermodynamic behavior
of the gas, with k = 1 indicating isothermal expansion, and
k = 5/3≈ 1.6667 being adiabatic expansion for a monatomic
gas.72 The fitted value k = 1.658 is very close to the adi-
abatic limit, and so we assume adiabatic expansion in the
Ωd = 10rad/ns oscillation case. The MD results are in bet-
ter agreement with the adiabatic prediction in Figs. 3(a) and
(b), as expected from the fitted value of k.

Prosperetti 35,36 analyzed the thermal behavior and effec-
tive damping of the internal gas phase for spherical bubble
oscillations in terms of the Péclet number Pe = R2

0Ωd/Dg.
The thermal diffusivity of the gas is given by Dg = Kg/ρgCp,
where Kg is the thermal conductivity, ρg is the gas density,
and Cp is the specific heat capacity at constant pressure. Pros-
peretti 35,36 suggested that for Pe . 1, the gas expansion can
be considered isothermal, while adiabatic behavior would be
expected for Péclet numbers approaching ∼ 105. For the bub-
ble cases run here, with the gas initially at Pg,0 = 23.4MPa,
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Pe≈ 7 for the slowest oscillation frequency Ωd = 10rad/ns.55

For such a small bubble close to the solid it may seem surpris-
ing that the observed gas behavior in Fig. 4 is not isothermal,
since the Péclet number is not much greater than 1. How-
ever, it should be noted that with the current MD simulation
setup, the LJ solid atoms of the lower substrate are kept rigid.
This effectively creates an insulated boundary, where no heat
transfer is possible across the gas–solid interface, and this
could artificially lead the gas to more adiabatic behavior. If
the substrate was thermostatted like the liquid, it might result
in nearer isothermal gas expansion, which could be investi-
gated in future work. Heat transfer between the liquid and gas
phases could also have been inhibited by nanoscale interfacial
phenomena, such as the Kapitza resistance, not considered in
the analyses by Prosperetti 35,36 . The slowest oscillation case
exhibited near adiabatic behavior, as shown in Figs. 3 and 4,
so for the rest of the oscillating pressure cases it was assumed
all the bubbles expanded adiabatically, since Pe continues to
increase with increasing Ωd .36

The variation of the pressures acting on the bubble as it
oscillated at Ωd = 10rad/ns in the MD simulation was also
well predicted by the proposed models, as shown in Fig. 5(a).
The liquid pressure variation closely matched the sinusoidal
input function applied from the piston. The gas and Laplace
pressure terms were found to be well predicted by Eq. (5), as
shown in Figs. 5(b) and (c), respectively.

For all driving frequency cases, the surface nanobubble os-
cillated with pinned CCR growth mode; the contact angle
variations all exhibited an oscillatory response and a sinu-
soidal function could be fitted in each case. The contact an-
gle oscillation amplitude was measured, and is shown as a
function of driving frequency in Fig. 6. The oscillation am-
plitude of the surface nanobubble from the MD simulations is
maximum around Ωd = 70rad/ns. By classical harmonic os-
cillator theory, this peak oscillation frequency must be lower
than the system’s natural frequency, due to damping which
could arise from viscous stresses at the liquid–gas interface,
dissipation in the viscous boundary layer across the solid, and
acoustic radiation.35,36,38–40 Various models in literature have
been proposed to estimate the natural frequencies for a spher-
ical bubble, CCA surface bubble, and gas entrapped within a
cylindrical micropore, as will be discussed below with com-
parisons to our MD results.34,37,39

The simplest estimate for the bubble’s natural frequency
can be found by linearizing Eq. (1) for small radial pertur-
bations ξ , i.e. R(t) = R0 + ξ (t), where Ṙ = ξ̇ , and R̈ = ξ̈ .
Ignoring higher orders of ξ , a simplified expression for the
spherical bubble’s oscillation dynamics can be obtained:

ξ̈ +
4ν

R2
0

ξ̇ +
1

ρR2
0

[
3kPg,0−

2γ

R0

]
ξ =

∆P∞

ρR0
f (t), (8)

where f (t) is some time dependent function, e.g. a si-
nusoidal function, as used in these simulations. Eq. (8)
resembles the classical equation for a damped oscillator
ẍ+α ẋ+ω2

0 x = F(t), where x is a generic coordinate frame,
ω0 is the system natural frequency, α is the damping coeffi-
cient, and F(t) is the forcing function.
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FIG. 5: Time variation of: (a) liquid pressure (red circles,
solid line), (b) surface nanobubble gas pressure (blue squares,

dashed line), and (c) Laplace pressure (green inverted
triangles, dot-dashed line), for an oscillating pressure MD
simulation, with ∆P∞ = 5MPa and Ωd = 10rad/ns. The

different pressure contribution terms from Eq. (5) are shown
as lines, assuming adiabatic expansion k = 5/3, and MD

simulation results are represented as symbols.

The natural frequency of a spherical bubble can be found
from Eq. (8):

ω0,M =

[
3kPg,0−2γ/R0

ρR2
0

] 1
2
, (9)

where Pg,0 = P∞,0−Pv + 2γ/R0. Minnaert 34 first derived the
natural frequency of a spherical bubble, without surface ten-
sion effects, which can be obtained from Eq. (9) by setting
γ = 0. Due to its similar form, Eq. (9) is also referred to as the
Minnaert frequency, although modified to account for the ef-
fects of surface tension. Eq. (9) predicts the natural frequency
of the spherical nanobubble to be ω0,M = 32.8rad/ns, us-
ing the surface nanobubble’s radius of curvature from Eq. (7)
and assuming adiabatic expansion as discussed earlier. Fig. 6
clearly shows peak oscillations for the surface nanobubbles
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Blue frequency ω0,B (both modified to account for surface tension), and Miller–Nyborg frequency ω0,N , from Eqs. (9), (10) and
(11), respectively.34,37,39 The full MD results, with comparisons to Eq. (12), for each of the oscillation pressure cases can be

found in the supplementary material.

in our MD simulations at frequencies approximately double
this Minnaert frequency, so we conclude that the Minnaert fre-
quency is not suitable for predicting the surface nanobubble’s
natural frequency.

The natural frequency of a surface bubble expanding with
CCA growth mode was derived by Blue 37 :

ω0,B =

[
3kPg,0−2γ/R0

ρR2
0 (1− cosθ0)

] 1
2
. (10)

Eq. (10) has been modified from Ref. 37 to include the ef-
fects of surface tension again, and the (1− cosθ0) term in the
denominator accounts for the bubble’s spherical cap shape.
Eq. (10) predicts the natural frequency of the surface nanobub-
ble to be ω0,B = 54.4rad/ns, which is larger than the Minnaert
frequency but still less than the peak observed in the MD re-
sults as shown in Fig. 6. Similar to spherical bubble growth,
models based on CCA growth for spherical capped bubbles
assume that the radius of curvature increases with bubble size,
and so does not properly account for the Laplace pressure vari-
ation of the pinned surface nanobubble during oscillations.

Previous investigations into pinned nano and microbub-
ble resonance has so far been dominated by gas trapped in
micropores.39,40,68 Most of these analyses differ from this
work in that they generally assume a flat liquid–gas interface

at equilibrium and that during oscillation the interface profile
is parabolic, rather than maintaining a spherical cap profile.
The most commonly used micropore model is by Miller and
Nyborg 39 :

ω0,N =

[
480πγh+15πkP∞,0L2

16ρL3h

] 1
2

, (11)

where h is the depth of the cylindrical pore, with diameter L.
For our application, we define the micropore depth with equiv-
alent volume to the surface nanobubble, i.e. h = 4V0/πL2.
Since it is assumed a flat interface at equilibrium, the ini-
tial gas pressure would be expected to be equal to the ex-
ternal liquid pressure, hence the P∞,0 term in Eq. (11). Sur-
face nanobubble pressures typically exceed the external liq-
uid pressure by up to ∼ 1MPa.9,25,33,73 Eq. (11) predicts
ω0,N = 59.0rad/ns, which is higher than the previous Min-
naert frequency and Blue frequency models, but still lower
than the peak from the MD simulations, as shown in Fig. 6.

Eqs. (9)–(11) all contain a pressure and surface tension term
in the numerator, which roughly corresponds to the “stiffness”
of the bubble. The gas stiffness follows from the polytropic
law, which requires the initial bubble pressure and volume to
be properly evaluated. The surface tension term derives from
the Laplace pressure during oscillation, and we need to cap-
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ture this specific variation during pinned CCR growth.33 None
of these equations captures all three of these properties, which
is why they fail to provide a suitable estimate for the surface
nanobubble natural frequency, which must exceed the peak
frequency value observed in Fig. 6.

Instead, we have derived a simple model for the damped
CCR oscillations of the surface nanobubbles in the supple-
mentary material:

ϑ̈ +
4ν

R2
eq,0

ϑ̇

+
1

ρR2
eq,0

[
3kPg,0 +

4γ sinθ0

L
cosθ0 (2+ cosθ0)

]
ϑ

= ∆P∞

(2+ cosθ0)sinθ0

ρR2
eq,0

f (t), (12)

where θ(t) = θ0 +ϑ(t) and equivalent radius for a spherical
cap is Req,0 = (3V0/4π)1/3, or:

Req,0 =
L

2sinθ0

[
1
4
(1− cosθ0)

2 (2+ cosθ0)

] 1
3
. (13)

Eq. (12) is adapted from Leighton’s “volume-frame”
Rayleigh–Plesset equation,74 modified for a CCR oscillating
spherical cap bubble, with the pressure balance of the form
in Eq. (5). As such, we accurately capture the appropriate
bubble volume, pressure and Laplace pressure effects on the
stiffness as discussed above, although the inertial and vis-
cous contributions are only approximated. Numerical simu-
lations, for example with potential flow or Stokes flow, could
be performed for the complete description of the surround-
ing liquid flow around these constrained bubbles.38,40 We ig-
nore any of the inertial or viscous effects of the gas phase,
as these are dominated by the surrounding liquid phase.1 We
note that the 4νϑ̇/R2

eq,0 damping term in Eq. (12) only cap-
tures equivalent viscous stresses at the liquid–gas interface, as
is the case in Eq. (1), and does not capture dissipation from the
boundary layer across the solid, nor acoustic radiation.38–40

We estimate the ratio of viscous damping at the liquid–gas
interface to the dissipation in the boundary layer across the
solid approximately equal to

√
2048ν/L2Ωd ≈ 17.8,39 when

Ωd ≈ 10rad/ns, and so we do not consider these additional
dissipation effects significant in our case.

For oscillations driven by a sinusoidal pressure field, i.e.
f (t) = sin(Ωdt), the amplitude of the bubble oscillations is:

ϑa =
pa√(

Ω2
d−ω2

0

)2
+α2Ω2

d

, (14)

where pa = ∆P∞ (2+ cosθ0)sinθ0/ρR2
eq,0 and α = 4ν/R2

eq,0
from Eq. (12), and with natural frequency:

ω0 =

[
3kPg,0 +(4γ sinθ0/L)cosθ0 (2+ cosθ0)

ρR2
eq,0

] 1
2

, (15)

and a maximum amplitude at frequency:

Ωd,max =

√
ω2

0 −
α2

2
. (16)

Eq. (15) has a similar form to Eqs. (9)–(11). There is a 3kPg,0
term that contributes to the system stiffness, however, the sur-
face tension contributions now differ. In Eq. (15) the Laplace
pressure term has a different sign to that in Eqs. (9) and (10),
which is a result of the pinned contact line and CCR growth
mode. This change in sign means an increase in the natural
frequency of the surface nanobubble, while the Req,0 term in
the denominator accounts for the spherical cap shape. Our
proposed natural frequency model is compared with the mod-
els of Minnaert, Blue, and Miller and Nyborg in Table III, with
summaries of their underlying assumptions.

Eqs. (15) and (16) predict the natural and peak oscillation
frequencies to be ω0 = 85.9rad/ns and Ωd,max = 67.4rad/ns,
respectively, assuming adiabatic expansion, as shown in
Fig. 6. This is close to the MD simulations which show the
expected peak oscillation frequency to be in between Ωd =
65rad/ns and Ωd = 70rad/ns.

Eq. (14) predicts the amplitude–frequency variation, and is
in reasonably good agreement with the MD simulations for
low frequencies. The agreement with the MD results breaks
down above the predicted natural frequency, due to the inertial
contributions becoming more dominant, as well as possible
higher oscillation modes; further numerical modeling would
be required to accurately resolve these dynamics. This in-
creasing discrepancy could also be due to the dimensionless
number β , as discussed in Section II, increasing with fre-
quency; for Ωd = 120rad/ns, we have β ≈ 0.1, and so the
piston inertia might be influencing the surface nanobubble’s
oscillation dynamics.

Also shown in Fig. 6 is the predicted response for isother-
mal expansion k = 1, which shows the peak oscillation fre-
quency would decrease, although with an increased oscillation
amplitude at lower frequencies. The distribution of the MD re-
sults is in better agreement assuming adiabatic expansion, as
opposed to isothermal expansion. This also follows from the
earlier discussions, where the slowest oscillation case exhib-
ited near adiabatic expansion.

The criterion ω2
0 − α2/2 > 0 is required for an “under-

damped” bubble from Eq. (16), such that Ωd,max > 0 and not
complex, which is clearly shown in Fig. 6. The peak oscil-
lation frequency is a result of the surface nanobubble’s high
internal gas pressure that counteracts the strong effects of
viscosity at the nanoscale.20–22 The underdamped case can
also be obtained for spherical nanobubbles in more realis-
tic fluid conditions, e.g. P∞,0 = 0.1MPa, γ = 71.69mJ/m2,
µ = 8.53×10−4 Pas55 and R0 = 20nm, where α = 4ν/R2

0
from Eq. (8), and natural frequency from Eq. (9) are used
in Eq. (16) instead. The natural frequency and peak ampli-
tude frequency would now be ω0,M = 8.5rad/ns and Ωd,max =
6.0rad/ns, respectively, for the spherical nanobubble, and so
the peak frequency observed in Fig. (6) is not a particularly
anomalous result.

We assumed for our proposed natural frequency model in
Eq. (15) that the bubble retains a spherical cap shape during
its pinned oscillation mode. The Weber number can assess
the relative effects of the inertial forces against the surface
tension, We = ρR3

0ω2
0/γ; Prosperetti 38 used the square root

of this Weber number to non-dimensionalise the frequency of
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TABLE III: Comparisons of the Minnaert, Blue, and Miller–Nyborg natural frequency models, with our own model proposed
in this paper. The Minnaert and Blue frequency models are both modified from their original reference to account for the

effects of surface tension.

Model Natural frequency Eq. number Assumptions Ref.

Minnaert ω0,M =

[
3kPg,0−2γ/R0

ρR2
0

] 1
2

(9) Spherical bulk bubble; radial expansion. 34

Blue ω0,B =

[
3kPg,0−2γ/R0

ρR2
0 (1− cosθ0)

] 1
2

(10) Spherical cap surface bubble; unpinned CCA
expansion.

37

Miller–Nyborg ω0,N =

[
480πγh+15πkP∞,0L2

16ρL3h

] 1
2

(11) Pinned micro-pore bubble; parabolic oscillation
profile about mean flat interface position.

39

Proposed here ω0 =

[
3kPg,0 +(4γ sinθ0/L)cosθ0 (2+ cosθ0)

ρR2
eq,0

] 1
2

(15)a Spherical cap surface bubble; pinned CCR
expansion.

–

a Additionally, from Eq. (13), Req,0 =
L

2sinθ0

[
1
4
(1− cosθ0)

2 (2+ cosθ0)

] 1
3

constrained spherical droplets and bubbles. For our MD simu-
lation case, setting Req,0 = R0, we obtain We≈ 10. For larger
bubbles the relative effects of the surface tension would be
reduced, although this spherical cap assumption is also essen-
tial for the natural frequency of a surface bubble undergoing
CCA growth mode, as in Eq. (10). This mode was observed
by Blue 37 , who performed experiments of R0 ≈ 70 µm CCA
surface bubbles oscillating at frequencies ≈ 35kHz, equiva-
lent to We≈ 230. We suggest our proposed natural frequency
model is also suitable at comparable Weber numbers, due to
the similar assumptions taken in Ref. 37, and provided that
the contact line remains pinned. Eq. (12) may also need to be
modified to account for additional viscous dissipation across
the solid for oscillations of larger surface nanobubbles as dis-
cussed earlier,39 as well as possible diffusive growth effects
for long-term pressure oscillations.71

IV. CONCLUSIONS

We performed Molecular Dynamics (MD) simulations of
surface nanobubbles subjected to pressures oscillating in the
range of 10 to 120rad/ns. The surface nanobubbles were con-
firmed to oscillate with a constant contact radius (CCR) mode
of growth, due to their pinned contact line.

Despite strong viscous effects at the nanoscale, we could
identify a peak oscillation amplitude in the frequency re-
sponse, characteristic of an “underdamped” system, which
was driven by the surface nanobubble’s high internal gas pres-
sure. We assumed this peak frequency to be at least lower than
the system’s natural frequency, due to damping from viscous
stresses at the bubble surface, as assumed in the Rayleigh–
Plesset equation, as well as viscous boundary layer dissipa-
tion across the solid substrate and acoustic dissipation from
the oscillating interface.35,36,38–40

We estimated different natural frequencies based on the as-
sumptions of: a free spherical bubble, a constant contact an-
gle (CCA) surface bubble, and a bubble entrapped in a cylin-

drical micropore, adapted from Ref. 34, 37 and 39, respec-
tively. We determined that the natural frequency model had
to account for the surface nanobubble’s spherical cap volume,
high internal pressure, and pinned growth mode. We modi-
fied the volume-frame Rayleigh–Plesset model from Ref. 74
to approximate the inertial and viscous contributions for CCR
oscillation dynamics, which was used to predict the natural
frequency and amplitude–frequency response of our surface
nanobubble.

It was found that the bubbles expanded with near adiabatic
behavior in the MD simulations, despite their small size and
close proximity to the liquid and solid surfaces, which would
suggest more isothermal conditions.35,36 We note that the ef-
fect of the rigid solid atoms in our MD simulations could have
provided an insulating effect on the internal gas phase, which
would have led to zero heat transfer across the gas–solid inter-
face. Future work could investigate how the solid temperature
influences the surface nanobubble’s thermal expansion behav-
ior, as well as the possible thermal (Kapitza) resistance across
the liquid–gas interface.

Further simulations could be run with a pinned contact line,
although with larger fluid domains to more accurately capture
the fluid dynamics of the surrounding liquid, and verify the
proposed oscillation models at different scales. Future work
could also investigate the long-term oscillations of these sur-
face nanobubbles, approaching diffusive time scales where the
bubbles could gain mass via rectified diffusion.71

We encourage more experimental investigations of surface
nanobubble oscillation dynamics, to compare to our proposed
models. Surface nanobubbles could be stimulated with ul-
trasound transducers, similar to the application in ultrasound
agents, however, the required GHz frequencies may be higher
than the realistic range of current equipment.11 Alternatively,
the substrate could be driven to these frequencies with laser
pulses,75 although we understand again that the measurement
apparatus would need to be highly sensitive to capture such
nanoscale signals.
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SUPPLEMENTARY MATERIAL

See the supplementary material for a PDF containing the
derivation of our proposed model in Eq. (12), the derivations
of inertial length scales and dimensionless numbers for the
suitability of our MD domains, and MD simulation results at
all oscillation frequencies, with fitted sine wave profile and
results from our proposed model.
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