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Abstract

We present new theory, heuristics, and algorithms for preprocessing instances of the Stable Marriage problem
with Ties and Incomplete lists (SMTI) and the Hospitals/Residents problem with Ties (HRT). Instances
of these problems can be preprocessed by removing from the preference lists of some agents entries such
that the set of stable matchings is not affected. Removing such entries reduces the problem size, creating
smaller models that can be more easily solved by integer programming (IP) solvers. The new theorems
are the first to describe when preference list entries can be removed from instances of HRT when ties are
present on both sides, and also extend existing results on preprocessing instances of SMTI. A number of
heuristics, as well as an IP model and a graph-based algorithm, are presented to find and perform this
preprocessing. Experimental results show that our new graph-based algorithm achieves a 44% reduction
in the average running time to find a maximum weight stable matching in real-world instances of SMTI
compared to existing preprocessing techniques, and 80% compared to not using preprocessing. We also show
that, when solving MAX-HRT instances with ties on both sides, our new techniques can reduce runtimes
by up to 55%.

Keywords: Preprocessing, Stable Marriage problem, Hospital/Residents problem, Ties and Incomplete
Lists

1. Introduction

Stable matching problems consist of some set (or sets) of agents where each agent ranks a subset of the
other agents in order of preference. The solution to such a problem is a stable pairing of agents, or a stable
matching. Gale and Shapley introduced the notion of stability, as well as the Stable Marriage (SM) problem,
in their seminal paper [9], along with a polynomial-time algorithm to solve SM. An instance of SM consists
of 2n agents split into equal-sized sets called men and women, where each woman ranks all men (and none
of the women) in strict order of preference, and vice-versa. Each man and woman must be paired up (with
a woman and man respectively) into a stable matching. A matching is stable if there are no two people not
currently matched together who would prefer to be matched with each other over their current partner. Two
such people are said to block the matching — they are a blocking pair.

In the same paper [9], Gale and Shapley also introduced the College Admissions problem that models
the problem of allocating students to positions at colleges. This is a stable matching problem similar to
SM, except that while each student can be assigned to at most one college, each college has some positive
integral capacity q such that they can be matched to at most q students. Additionally, students may find
some colleges completely unacceptable, so instead students only rank their acceptable colleges in strict order.
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The Hospital-Residents problem (HR) [27, 29] is a different formalisation of the same College Admissions
model in centralised matching schemes for allocating resident doctors to hospitals. In HR colleges are
replaced with hospitals and students are replaced with resident doctors, with many applications including
the National Resident Matching Program (NRMP) in the US [27], the Canadian Resident Matching Service
(CaRMS) in Canada [28], and the Scottish Foundation Allocation Scheme (SFAS) in Scotland [13]. Further
applications include School Choice in Boston [2], Hungary [5, 6], Spain [6, 26], and Turkey [4, 6].

Just as in the case of HR, one-to-one variants of SM arise when agents are allowed to have unacceptable
partners. These agents will have incomplete preference lists, and the corresponding problem is called Stable
Marriage with Incomplete lists or SMI. The Gale-Shapley algorithm [9] can be modified slightly to find stable
matchings in polynomial time [11], and all stable matchings in a given instance have the same size [10].

A further complication to stable matching problems is encountered when agents are either unable or
unwilling to distinguish between two acceptable potential partners, common in real-world applications.
This creates ties in the preference lists, and the resulting extension of SM is called Stable Marriage with
Ties (SMT). The presence of such ties in preference lists creates three possible definitions for stability,
called weak stability, strong stability, and super-stability [12]. In this paper, we only discuss weak stability,
where a pair is blocking only if both agents strictly prefer each other to their currently assigned partner, as
only under weak stability are stable matchings guaranteed to exist [12]. Trivially, weakly stable matchings
of instances in SMT can be found by breaking ties arbitrarily and then running the deferred acceptance
algorithm of Gale and Shapley [9], and all such stable matchings must, therefore, have the same size.

If a stable matching problem allows both ties and incomplete lists, the resulting problem is called the
Stable Marriage with Ties and Incomplete lists problem (SMTI). In instances of SMTI, weakly stable match-
ings might have different sizes, the problem of finding a maximum cardinality stable matching (called MAX-
SMTI) is NP-hard [23], and the associated problem of determining whether a given pair is in any stable
matching is NP-complete [23].

A special case of SMTI is SMTI with Globally Ranked Pairs (SMTI-GRP). An instance of SMTI is
an instance of SMTI-GRP if each pair of acceptable agents {u, v} can be assigned a numeric score f(u, v)
such that u prefers v over v′ if and only if f(u, v) > f(u, v′), and u is indifferent between v and v′ if and
only if f(u, v) = f(u, v′). Whilst showing the existence of such a function can be used to characterise an
instance of SMTI as an instance of SMTI-GRP, in many applications said function is instead used to create
the SMTI-GRP instance [8]. Despite the restricted nature of this problem, stable matchings in instances
of SMTI-GRP can still have varying sizes, and finding a maximum sized matching is NP-hard [3]. In some
applications, a maximum weight stable matching is desired, where the weight of a matching is the sum of
the weights f(u, v) of each matched pair (u, v). The problem of finding such a matching is called MAX-WT-
SMTI-GRP, and has been applied to the pairing of children with adoptive families by the British charity
Coram [8]. This problem has also been shown to be NP-hard [7].

The Hospitals/Residents problem with Ties (HRT) is the extension of HR that allows agents to express
indifference in their preference lists [16, 17]. It can also be equivalently defined as the extension of SMTI
where one set of agents (the hospitals) is allowed to have positive integral capacities. As an extension of
SMTI, it also is NP-hard to find a maximum cardinality stable matching in HRT, and this problem is called
MAX-HRT. While HRT only allows capacities on one side, the Workers/Firms problem (WF) (also known
as the many-to-many stable matching problem, or stable b-matching problem) generalises SMI to allow
capacities on either side, and the Workers/Firms with Ties problem (WFT) generalises WF to allow agents
to express indifference [22].

MAX-SMTI and MAX-HRT have been solved with constraint programming [24] and integer programming
(IP) techniques [8, 19, 20]. Linear programming models for SM were originally studied for their properties [11,
30], and the same models with integrality constraints have since been used (and in the case of HRT, adapted)
to solve MAX-SMTI and MAX-HRT [19, 20]. Recently the use of dummy variables, constraint merging and
secondary stability constraints has been shown to significantly reduce the time to solve MAX-SMTI, MAX-
WT-SMTI-GRP, and MAX-HRT [8].

A more complete introduction to stable matching problems can be found in [22].
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1.1. Preprocessing stable matching problems
While Gale and Shapley’s original algorithm [9] does find a stable matching in polynomial time, an

extended version [11] removes from the problem preference list entries that will not affect the outcome of
the algorithm. Even though stable matching problems like MAX-SMTI and MAX-HRT are often solved
with IP models, and not the algorithm of Gale and Shapley, the idea of removing preference list entries to
simplify such problems can still be advantageous. Removing preference list entries without modifying the
set of stable matchings shortens preference lists, in turn reducing the size of the models and thus solution
times [8]. This removal of preferences is done before building the IP model, and so it is called preprocessing.

Preprocessing can be performed using variations of the Gale-Shapley algorithm, wherein agents “propose”
in rounds, and based upon the outcomes of such proposals certain pairs may be removed. Such a technique is
known for instances of SMTI where preferences on one side have length at most two [15]. A similar technique
has also been applied to HRT [14] for no restriction on the lengths of the preference lists, namely “Hospitals-
offer” and “Residents-apply”. However, these require that the preference lists of the residents be strictly
ordered (i.e., contain no ties), while the hospitals may have ties in their preference lists. Preprocessing
theory for instances with ties on both sides has recently been introduced for SMTI [8], which we expand
upon, and also extend to HRT. In this theory, pairs that can be removed are identified by considering a
given agent in a stable matching problem, a set of positions they wish to be matched to, and the potential
competition the agent may face for these positions. If the number of positions is greater than the number of
competitors for these positions, then in any stable matching the given agent cannot be assigned to a position
worse than the given set, and so any worse preferences from the agent can be removed. The same paper also
defines a simple preprocessing heuristic (which we describe in Section 3.1.1) to detect such sets, and uses
this heuristic to gain significant improvements in overall solution times on various families of MAX-SMTI
instances, both randomly-generated and application-specific.

1.2. Our contribution
In this paper, we extend the theory behind preprocessing to identify more preference list entries that can

be removed from instances of SMTI without affecting any stable matching. This theory is also extended to
HRT, where existing techniques only worked when one set of agents (the doctors) had strict preferences, while
our new techniques apply when both doctors and hospitals may express ties. A number of new heuristics
are given that find a subset of the preference list entries that can be removed, as well as a polynomial-time
algorithm that finds all the entries in preference lists that can be removed by preprocessing according to our
extended theory. Experimental results show that the average time to solve real-world MAX-WT-SMTI-GRP
instances from Coram is reduced from 149 seconds using existing preprocessing techniques to only 83 seconds
using our new graph-based algorithms. The number of preference list entries removed according to our new
theory is increased by approximately 82%, compared to existing preprocessing techniques, contributing to
this reduced runtime. We demonstrate similar results in randomly-generated instances of MAX-WT-SMTI-
GRP. This increase in the number of preference list entries removed is also shown in the randomly-generated
MAX-WT-SMTI-GRP instances with a similar size, where the average number of entries removed increases
from 83093 to 185437.

For MAX-SMTI problems, we investigate the effect that the length of preference lists can have on the
usefulness of preprocessing. When all candidates have preference lists with 3 entries, relatively few entries
can be removed via preprocessing, and we show that using more complex preprocessing techniques can, at
times, be detrimental. If the candidates have preference lists with 5 entries, we show that preprocessing is
useful, with a reduction from 478 seconds without preprocessing to 437 with heuristic preprocessing. When
the preference list of each candidate has 10 entries, however, we show that it is more useful to introduce
dummy variables [8], and once such variables are introduced, preprocessing is again less effective. When
these dummy variables are present, preprocessing becomes useful when candidates have preference lists
that contain a sizeable proportion of the positions. We show that with 250 agents, preprocessing begins
to have an effect when preference lists of the candidates have 100 entries, and becomes more significant as
longer preference lists are used. When candidate preference lists have 200 entries, we see that total runtime
(preprocessing and solving) is reduced from 138 seconds using no preprocessing, or 128 seconds using existing
preprocessing, to 102 seconds using our new heuristics.
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We also experimentally study instances of HRT. In instances where only the hospitals may have ties in
their preference lists, we report that preprocessing is rarely relevant, and that existing techniques “Hospitals-
offer” and “Residents-apply” [14] are still suitable. However, when ties are present in both sides, we are able
to show a 24% to 55% improvement in runtime on instances with up to 4000 doctors, as well as solving 118
of 120 instances with 8000 doctors compared to 112 with existing techniques.

1.3. Paper layout
Section 2 introduces some of the background, as well as both existing theory and our new theory to

detect more preprocessing opportunities, and the extension of this theory to HRT. An exact algorithm, an
IP model, and several heuristics for finding preprocessing opportunities are given in Section 3. Section 4
describes the results of the experiments carried out to compare these approaches, and our conclusion follows
in Section 5.

2. Background and preprocessing theory

Section 2.1 gives notation and definitions for the stable matching problems we study. Section 2.2 then
describes some of the known preprocessing techniques in the literature. Section 2.3 theoretically identifies
more preprocessing that can be performed, and Section 2.4 then extends these results to stable matching
problems with capacities.

2.1. Definitions and notation
We begin by defining the Workers / Firms problem with Ties (WFT), as the Hospital / Residents problem

with Ties (HRT) and the Stable Marriage problem with Ties and Incomplete Lists (SMTI) are specialisations
of WFT.

An instance I of WFT consists of two sets of agents, which we call positions (P ) and candidates (C). We
denote their sizes as np = |P | and nc = |C|. We use the terms positions and candidates specifically because
our preprocessing is easier to explain when we mentally separate the two sets of agents into distinct types.
However, they are still symmetrically equivalent, so any preprocessing technique applied to candidates can
also be applied to positions and vice-versa.

Each position (respectively candidate) finds some or all of the candidates (respectively positions) ac-
ceptable, and ranks these candidates (respectively positions) in non-increasing order of preference. These
preferences may include ties, where an agent is indifferent between two or more options. In this paper we
assume that if a position p finds a candidate c acceptable, then candidate c also finds p acceptable, and we
will say that the pair (c, p) is acceptable. If a candidate c strictly prefers p1 over p2, we will write p1 ≺c p2.
If c either prefers p1 over p2 or is indifferent between the two, we write p1 �c p2. Each individual candidate c
and position p also has some positive integral capacity (or quota), denoted qc and qp, respectively.

A matching M in an instance of WFT is a subset of C × P such that each candidate c (respectively
position p) occurs in at most qc (respectively qp) pairs, and every (c, p) ∈ M is acceptable. We will write
M(p) for the set of candidates matched with p in M (i.e., M(p) = {c | (c, p) ∈ M}), and we will write
M(c) for the set of positions matched with c in M (i.e., M(c) = {p | (c, p) ∈ M}). In a given matching,
if a candidate c (respectively position p) occurs in exactly qc (respectively qp) pairs, we say they are full.
Otherwise, we say they are undersubscribed. Additionally, if a candidate or position occurs in exactly 0
pairs, we say they are empty. A candidate or position who is empty is simultaneously undersubscribed.

Definition 1. Given an instance I of WFT and a matching M , a pair (c, p) 6∈ M (i.e., p and c are not
matched together) is a blocking pair of I if

• (c, p) is acceptable, and

• either p is undersubscribed, or there is some c′ ∈ M(p) such that c ≺p c′ (i.e., p strictly prefers c to
one of their currently assigned candidates), and
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• either c is undersubscribed, or there is some p′ ∈ M(c) such that p ≺c p′ (i.e., c strictly prefers p to
one of their currently assigned positions).

A matching with no blocking pairs is called stable.

HRT is the restriction of WFT where one set of agents (either all candidates, or all positions) have
unitary capacity, and SMTI is the restriction of WFT where all candidates and all positions have unitary
capacity.

Example 1 gives a sample of the notation used to describe the preferences of agents in individual instances
of SMTI, HRT, and WFT. Each agent is identified, and then followed by its preferences in descending order
such that if p1 comes before p3, then p1 is preferred over p3. A tie in candidate c’s preference list is a group
of positions that candidate c does not distinguish between. We will say that c ranks p1 at the same level or
better than p2 if both p1 and p2 appear in the preference list of c, and if either p1 and p2 appear in the same
tie group, or c prefers p1 to p2. As seen in Example 1, we write [p2 p3] in the preference list of candidate c1
if candidate c1 is indifferent between p2 and p3. Such a tie has length 2. Note that in a given preference
list, if a position is not tied with any other position, such as the position p1 in the preference list of c1, we
can refer to this as a tie of length 1. We define the rank of either an element of a preference list, or a tie
within a preference list, as one plus the number of ties that are strictly preferred to it. Adding one allows
the natural expression “first tie ” to refer to the tie with rank 1.

Example 1. The following is an example of preference lists as expressed by two candidates and three
positions.

c1 : p1 [p2 p3]

c2 : p2 p3

p1 : c1

p2 : c1 c2

p3 : c1 c2

2.2. Existing preprocessing theory for SMTI
An instance I of a stable matching problem is preprocessed by removing entries from preference lists

such that p is removed from the preference list of c only if the pair (c, p) appears in no stable matching
of I, and removing (c, p) does not create any new stable matchings. The removal of these preference list
entries can, as demonstrated in Section 4, have a significant effect on the time taken to find either maximum
cardinality stable matchings, or maximum weight stable matchings. Note that this preprocessing is not
dependent on the specific stable matching problem being solved. Our preprocessing applies to any problem
that searches for one or more stable matchings satisfying some criteria, as it does not remove any existing
stable matching nor introduce any new stable matching. This includes the common problem of finding a
largest stable matching, but also searches for egalitarian stable matchings, or even the problem of counting
the number of stable matchings [22].

Under certain variations of stable matching problems, the existence of a stable matching is not guaranteed
(see e.g., [16, 17, 18]). In an instance of a stable matching problem with no stable matchings, each acceptable
pair vacuously is in no stable matching, and so removing some preference list entries corresponding to pairs
that are not in any stable matching may inadvertently create a new instance that does contain a stable
matching. However, even if an instance of a stable matching problem does admit some stable matchings,
not all pairs that appear in no stable matching can be removed without creating new stable matchings, as
seen in Example 2.
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Example 2. Consider the following instance of SMTI.

p1 : c2 c1 [c3 c4]
p2 : [c1 c3]
p3 : c1 c4
p4 : c3 c4 c2

c1 : [p1 p2] p3
c2 : p4 p1
c3 : p1 [p2 p4]
c4 : p1 p4 p3

It is routine to check that there is no stable matching that contains (c1, p1). To see this, if (c1, p1) is in a stable
matching, then the stable matching must also contain (c2, p4) as otherwise (c2, p1) forms a blocking pair.
Then, to ensure that (c4, p4) is not blocking, the stable matching must contain (c4, p1), a contradiction as the
stable matching already contains (c1, p1). At the same time, however, the only pair that blocks the matching
{(c1, p3), (c2, p4), (c3, p2), (c4, p1)} is (c1, p1), so removing (c1, p1) would create a new stable matching.

The following theorem is a restatement of Theorem 1 in [8]1.

Theorem 1 (Theorem 1 in [8]). Let I be an instance of SMTI. Consider a candidate c and a non-empty set
of positions P such that for every position p ∈ P, (c, p) is an acceptable pair. Let C be the set of candidates
that at least one position in P ranks at the same level or better than c, i.e., C = {c′ | ∃ p ∈ P s.t. c′ �p c}.
If |P| ≥ |C|, then in any stable matching M , candidate c will be allocated a position p′ such that p′ �c p for
at least one p ∈ P.

The gist of this theorem is that for candidate c, P is some set of positions that c finds acceptable and
C contains c’s competition for these (i.e., any candidate who could match with a position p ∈ P such that
(c, p) would not be a blocking pair). If C is small enough compared to P, then candidates in C (excluding c)
cannot possibly take all positions in P. As a result, in any stable matching c must be matched with some
position that is no worse than what c considers to be the worst position in P .

2.3. Identifying additional preprocessing in SMTI
We can extend Theorem 1 as follows:

Theorem 2. Let I be an instance of SMTI. Let us consider a candidate c, a non-empty set of positions P
such that for every position p ∈ P the pair (c, p) is an acceptable pair and a set of positions P ′ such that for
any p′ ∈ P ′

1. the pair (c, p′) is not an acceptable pair, and

2. in any stable matching of I, p′ will be assigned to some candidate (i.e., p′ will not be unassigned).

Let C be the set of all candidates c′ that either:

Criterion 1: at least one position in P ranks c′ at the same level or better than c, i.e.,

∃ p ∈ P s.t. c′ �p c,

or

Criterion 2: at least one position in P ′ finds c′ acceptable

1The original theorem mistakenly does not specify that P (F in [8]) be non-empty; we fix this here.
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holds. If |P| + |P ′| ≥ |C|, then in any stable matching M , candidate c will be allocated a position p? such
that p? �c p for at least one p ∈ P.

This theorem is a specialisation of Theorem 3, and so we skip the proof. Instead, we refer the reader to
the upcoming proof of the latter. Note that Criterion 1 in Theorem 2 does mean that c ∈ C.

In this theorem the set P ′ can contain positions that definitely will be filled, but not by c. These positions
can, however, “use up” candidates that are in C, meaning those candidates can no longer take positions in P.
This might result in there not being enough other candidates to fill positions in P. Therefore, in a stable
matching c cannot be matched with any position it considers worse than all positions in P.

We have not yet indicated how to select P or P ′. Indeed, we demonstrate several methods for determining
both P and P ′ in Section 3. Given appropriate sets P and P ′, Example 3 demonstrates how C is determined
and used to decide whether preprocessing is possible.

Example 3 (Example of use of Theorem 2). Consider an instance of SMTI with nc = 3 and np = 4 (i.e.,
there are 3 candidates and 4 positions). We will preprocess the preference list for c3. The relevant preferences
are as follows:

p1 : c1 c2
p2 : c1 c2 c3
p3 : c2 c3
p4 : c2 c3

c1 : p1 p2
c2 : p1 p2 p3 p4
c3 : p2 p3 p4

We begin by noting that the first choice for p1 is c1, and vice-versa. So, in any stable matching, p1 will
always be assigned to some candidate (we will use this fact in order to apply Theorem 2). Indeed, we could
continue in such a manner to find the unique stable matching in this instance, but we do not proceed in this
manner as our aim is to demonstrate the usage of Theorem 2.

Firstly, consider P = {p2, p3}. Looking at the preferences of p2 and p3, we see that C must contain c1,
c2, and c3, as these are the candidates that at least one of p2 or p3 consider to be at least as good as c3.
This means that |C| > |P|, and so we cannot preprocess.

However, we also know that c3 does not find p1 acceptable, and that p1 will always be matched to some
candidate. So we can also consider P ′ = {p1}. Since the preference list of p1 contains the candidates c1 and
c2, we must add both of these to C, but they are already present so there is no change to C. Now we have
|C| = |P| + |P ′|, and so we can remove from the preference list of c3 any preferences worse than the worst
position in P. That is, we remove the position p4 from the preference list of c3 (and remove c3 from the
preference list of p4).

We can reason through this process as well as follows. If c3 is not matched to p2, then p2 must be matched
to either c1 or c2. If, in addition to this, c3 is also not matched to p3, then p3 must be matched to c2.
This means that p2 must be matched to c1. However, since p1 must be matched to some candidate, this is a
contradiction, as p1 only finds c1 or c2 acceptable. Therefore, c3 must be matched to one of p2 or p3.

2.4. Extending preprocessing to HRT
We extend the above preprocessing results to HRT now. Recall that in HRT, doctors have unitary

capacity while hospitals have positive integral capacities. To preprocess a hospital’s preference list, we
must consider the hospitals as candidates, and must therefore allow all candidates to have positive integral
capacities. However, to preprocess a doctor’s preference list we must consider the doctors as candidates, and
must therefore allow all positions to have positive integral capacities. Thus we must allow positions to refer
to either hospitals or doctors, and similarly for candidates. Our general framework will, therefore, allow
for positive integral capacities in all positions and candidates, but with the caveat that either all positions
have unitary capacity, or all candidates have unitary capacity. This allows us to prove the correctness of
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preprocessing HRT in one theorem. We later give an example demonstrating that this preprocessing does
not immediately extended to instances of WFT.

Our theorem for HRT replaces the sizes of the sets C, P, and P ′ with the sums of the capacities of each
in the criteria for preprocessing. Let A be some set of agents, and let qa be the capacity (quota) of agent a.
We will then write |A|q to mean

∑
a∈A qa.

Theorem 3. Let I be an instance of HRT (i.e., either the candidates have unitary capacity and positions
have positive integral capacities, or vice-versa). Let us consider a candidate c, a non-empty set of positions P
such that for every position p ∈ P, (c, p) is an acceptable pair, a set of positions P ′ such that for any p′ ∈ P ′,
(c, p′) is not an acceptable pair and in any stable matching of I p′ will not be undersubscribed. Let C be the
set of all candidates c′ that either:

Criterion 1: at least one position in P ranks at the same level or better than c, i.e.,

∃ p ∈ P s.t. c′ �p c,

or

Criterion 2: at least one position in P ′ finds acceptable.

If |P|q + |P ′|q ≥ |C|q, then in any stable matching M , candidate c will be full and will only be allocated
positions p? such that p? �c p for at least one p ∈ P.

Proof. Let I, M , c, P, P ′, and C be as given in the theorem, and assume towards a contradiction that either
c is undersubscribed or c is assigned at least one position p+ such that p ≺c p

+ for all p ∈ P.
By the definition, we know that c ∈ C. Since c is either undersubscribed, or not assigned to only positions

p ∈ P, and since |P|q+|P ′|q > |C|q−1, and as every p′ ∈ P ′ will be assigned to capacity with only candidates
c′ ∈ C, by the pigeon hole principle there must be some p ∈ P that is either undersubscribed or full and
assigned some candidate c+ 6∈ C.

We will now show that (c, p) forms a blocking pair. If p is undersubscribed then p would prefer to be
assigned to c, and if p is full, then by construction p prefers c to c+ (otherwise c+ would be in C). Similarly,
if c is undersubscribed then c would prefer to be assigned p, and if c is full then c is assigned p+, and, as
p′ ≺c p

+ for all p′ ∈ P, then c prefers p to p+.
Lastly, we need to show that (c, p) 6∈ M . To do this, we rely on the fact that either c or p must have

unitary capacity. We know that p is either undersubscribed, or assigned some candidate c+ 6= c, so if p has
unitary capacity, then (c, p) 6∈ M . Similarly, we know that c is either undersubscribed, or assigned some
p+ 6= p, and so if c has unitary capacity, then (c, p) 6∈ M .

Thus, as either p or c must have unitary capacity, (c, p) 6∈ M , and so (c, p) will form a blocking pair.

As in Theorem 2, Criterion 1 in Theorem 3 means that c ∈ C.
Note that if we allow both candidates and positions in Theorem 3 to have positive integral capacities,

we may reach a scenario in which both c and p are undersubscribed or prefer each other to one of their
currently assigned partners, even though (c, p) is already in the matching, and so would not form a blocking
pair. Example 4 demonstrates such a scenario.

Example 4. Consider the following instance I of WFT which contains one candidate and two positions,
wherein c1 has a capacity of three, p1 also has a capacity of three, and p2 has a capacity of one.

c1 : p1 p2
p1 : c1
p2 : c1

Clearly the only stable matching is {(c1, p1), (c1, p2)}, but if we preprocess the preference list of p1 with
P = {p1}, then C = {c1}, and we determine that |P|q = |C|q. Thus, if the restriction in Theorem 3 that
ensures either all candidates or all positions have unitary capacity were to be dropped, the pair (c1, p2) would
incorrectly be removed from I. We note that if a pair can appear multiple times in a “matching”, then this
preprocessing theory would apply in an obvious manner.
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Given an instance I of HRT, a candidate c and sets P and P ′ that satisfy Theorem 2, our preprocessing
creates a new instance I ′ by removing from the preference list of c any positions that c considers strictly
worse than all of those in P. It is trivial to see that any stable matching that exists in I must also exist and
be stable in I ′, but the opposite is not as clear. We will show such a result for WFT, which is more general
than either HRT or SMTI. To prove our result, we first need the following lemma.

Lemma 4. Let I be an instance of WFT, let c be some candidate such that in any stable matching in I, c is
always full, let P be some set of positions such that if c is assigned to p in some stable matching of I then
p is in P, and let I ′ be the instance of WFT created from I by marking as unacceptable to c any position
p+ that satisfies p ≺c p

+ for all p ∈ P. Then in any matching M that is stable in I ′, c is full.

With this lemma, which we prove in Appendix A, we can now show that our preprocessing is correct.

Theorem 5. Let I be an instance of WFT, let c be some candidate such that in any stable matching in I,
c is always full, let P be some set of positions such that if c is assigned to p in some stable matching of
I then p is in P, and let I ′ be the instance of WFT created from I by marking as unacceptable to c any
position p+ that satisfies p ≺c p

+ for all p ∈ P. Then any matching M that is stable in I ′ is also stable in
I.

Proof. Assume towards a contradiction that there is a matching M that is stable in I ′ but not stable in
I. By Lemma 4 we know that c must be full in M . As M is not stable in I, there must be some pair
(c+, p+) that blocks M in I but not in I ′. Such a pair must be a pair that was marked as unacceptable
when constructing I ′, and therefore c+ = c.

As c is full in M , let p? ∈ M(c) be a position that satisfies p+ ≺c p?. Such a p? must exist for (c, p+)
to block M in I. However, as p? ∈ M(c), p? was not marked as unacceptable to c when constructing I ′

and so there must be some p′ ∈ P such that p? �c p′. As p′ ∈ P, we also have p′ ≺c p+, which gives us
p? �c p

′ ≺c p
+ ≺c p

?, a contradiction.

Example 5 demonstrates that Theorem 3 is more powerful than “Hospitals-offer” and “Residents-apply” [14],
the existing preprocessing algorithms for HRT.

Example 5. This example demonstrates how Theorem 3 can detect preprocessing that is possible in an
instance of HRT that “Hospitals-offer” and “Residents-apply” [14] are unable to detect. We use p to denote
the hospitals and c to denote the resident for consistency with the theory. In this example, p1 has capacity 1,
p2 has capacity 1, and p3 has capacity 2.

c1 : p3 p2 p1
c2 : p3 p2
c3 : p2 p3 p1

p1 : c3 c1
p2 : c2 [c1 c3]
p3 : [c1 c2 c3]

It is routine to check that neither of “Hospitals-offer” and “Residents-apply” [14] can remove any preference
list entries. However we can preprocess the preference list of c1 by letting P = {p2, p3}. Then C = {c1, c2, c3},
and as qp2

= 1 and qp3
= 2, |P|q = 3 ≥ 3 = |C|q. This results in the removal of the entry p1 from the

preference list of c1. This same result is trivially reasoned by realising that:

• p2 and p3 both find all three doctors acceptable,

• together p2 and p3 have the capacity to accept all three doctors,

• all three doctors find both p2 or p3 acceptable, and

• no doctor prefers p1 over either of p2 or p3.
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3. Algorithms for carrying out preprocessing

This section describes a number of ways in which instances of stable matching problems can be prepro-
cessed. As a reminder to the reader, preprocessing is not only useful when searching for a largest stable
matching: it can be applied to any problem that searches for stable matchings, including different types of
optimality conditions such as egalitarian or minimum-regret, and the problem of counting the number of
stable matchings [22].

Preprocessing a preference list in a stable matching problem is possible if a set P can be found that
satisfies Theorem 1, and further preprocessing can be carried out by identifying sets P and P ′ that satisfy
Theorem 3. In Section 3.1 we give a number of new heuristics for finding such sets P, and Section 3.2
defines an ILP model to find sets P and P ′. Section 3.3 gives a graph-based representation of preprocessing,
along with the proofs demonstrating the equivalence between the graph-based representation and the theory
in Section 2. This graph-based representation is used in Section 3.4 to construct two polynomial-time
algorithms to identify preprocessing. Lastly, Section 3.5 gives a brief discussion on the application of
preprocessing techniques on instances of stable matching problems, rather than on a single preference list.

3.1. Heuristics
We will now define a number of heuristics which can identify sets P that allow preprocessing according

to Theorem 1. While the first heuristic defined in Section 3.1.1 was known in the literature [8] for SMTI,
Theorem 3 allows us to extend it to HRT. All other heuristics are new contributions.

Our experimental results show that while heuristics are not guaranteed to find a maximal reduction in
the lengths of the preference lists, they can still reduce the solution time of the IP models. We show in
Section 4 that the trade-off between preprocessing time and solution time means that, for some scenarios,
these heuristics are preferable over more complex methods that take longer to compute.

We note that while our new theory involves sets P and P ′, by definition when preprocessing a candidate
c only positions that c does not find acceptable might end up in P ′. As such, it is not clear how a suitable
set P ′ could be easily determined, and as a result, we were unable to construct any useful heuristic that also
searched for P ′.

We now present our three heuristics for preprocessing.

3.1.1. Descending order of preference
Given a candidate c with preference list L, the most obvious heuristic for finding a suitable P is to simply

add to P positions p from L in descending order of preference. If, at any point in this process Theorem 1
is satisfied, then preprocessing can occur. This was described in [8], and was shown to be implementable in
O((nc + np)np) time for a given candidate in an instance of SMTI.

In our research into preprocessing, we noted that the implementation used in [8] could be improved by
using a data structure with constant time lookup for storing P. This has no effect on the asymptotic analysis,
but we found it to have significantly improved performance under certain scenarios, which is reported in
Section 4.

3.1.2. Skip larger
When using the heuristic of Section 3.1.1, there are some positions p that, when added to P, cause a

large increase to |C|q. To avoid such issues, these particular positions p that cause a large increase to |C|q
can simply be skipped. We implement three such heuristics, which do not add a position p to P, but instead
skip over it, if adding p to P would cause |C|q to increase by at least 5, 15, or 50 candidates, respectively.
Note that with this terminology, the “descending” heuristic introduced in Section 3.1.1 can also be termed
Skip-∞. This will prove useful when discussing the results of our computational experiments.
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3.1.3. FindBest
As Theorem 3 requires that |C|q be smaller than or equal to |P|q + |P ′|q, it seems reasonable to add to P

a position p that increases |C|q by the smallest amount possible. Finding such a p is possible by calculating
the change in |C|q for each position p that has not yet been added.

Given a preference list L, a slightly quicker method for finding a “good” position p to add to P is to
define the set B as the most-preferred tie in L that contains at least one position not already in P. A “good”
position is then one in B that also increases |C|q by the smallest amount over all positions in B.

3.2. IP Model
We now give an IP model for determining if, given an instance I of HRT, sets P and P ′ can be found

that satisfy Theorem 3.
Let I be an instance of HRT with np positions and nc candidates, and let ck be some particular candidate

whose preference list is being processed. Let ri be the rank of position pi according to candidate ck if pi
finds ck acceptable, and 0 otherwise. Let P ′′ be a set of positions such that for any pi ∈ P ′′, (ck, pi) is not
an acceptable pair, and for any stable matching in I, pi is full in I (we discuss how to determine such a set
P ′′ in Section 3.4.2). Let A = {i | (ck, pi) is acceptable}, let B = {i | pi ∈ P ′′}, and let vij = 1 if and only
if either (a) pi 6∈ P ′′ and position pi considers candidate cj to be at least as good as candidate ck, or (b)
pi ∈ P ′′ and pi finds cj acceptable.

Define binary variables xi for i ∈ A ∪ B that are set to 1 if and only if position pi is in P ∪ P ′, and
binary variables yj that are set to 1 if and only if candidate cj is in C. Note that if xi = 1 for some i ∈ A,
then pi ∈ P, and if xi = 1 for some i ∈ B, then pi ∈ P ′. We also define the variable z to denote the worst
rank of any position in P. An optimal set of preferences to be removed from a preference list can then be
found by solving the following integer programming model:

min z (1)
s.t. z ≥ rixi i ∈ A, (2)∑

i∈A

xi ≥ 1, (3)

∑
i∈A∪B

xiqi ≥
nc∑
j=1

yjqj , (4)

xivij ≤ yj , i ∈ A ∪B, j = 1, . . . , nc, (5)
xi ∈ {0, 1}, i ∈ A ∪B, (6)
yj ∈ {0, 1}, j = 1, . . . , nc, (7)

Constraints (2) ensures that the variable z will denote the worst rank of any position in P. Constraints (3)
ensures that the solution P is nonempty, and constraints (4) ensures that the sets P, P ′, and C satisfy the
capacity requirements of Theorem 3. Lastly, constraints (5) ensure that, if a given position pi is in P, then
any competition that ck has for pi is included in C, or, if a given position pi is in P ′, then any candidate
that pi finds acceptable is in C.

3.3. Graph-based representation of preprocessing
We now give a graph-based representation of preprocessing, which we rely on in Sections 3.4.1 and 3.4.2

to construct algorithms to detect preprocessing. These new preprocessing algorithms construct a graph
iteratively by walking down the preference list, and check the size of a maximum flow of this graph at each
iteration. If a maximum flow is sufficiently small (see Theorem 7 below), then any further entries in the
preference list can be removed.

The graph will be built based on truncations of the preference list of some particular candidate c whose
preference list will be preprocessed. A truncation of a preference list L after t ranks, written Lt, contains
the first t tie groups in L. An example of such a truncation is given in Example 6.
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Definition 2. Given an instance I of HRT, a candidate c, a truncation Lt of their preference list L, and a
set of positions P∗ such that

1. (c, p) is not acceptable for any p ∈ P∗, and

2. any p ∈ P∗ will be full in any stable matching of I,
we construct the graph G[Lt] as follows: First, create one source and one sink vertex. For each p ∈ P∗, add
a vertex for p to G[Lt], and add an edge from p to the sink with capacity qp. Then, for each candidate c′

that p finds acceptable, add the edge from c′ to p with capacity one to G[Lt] (and the vertex c′ if it is not yet
present). Then add to G[Lt] one vertex for each position p in Lt, along with an edge from p to the sink with
capacity qp. For each such position p, find all candidates c′ 6= c such that c′ �p c, and add the edge {c′, p}
to G[Lt] (and the vertex c′ if it is not yet present). Lastly, for each vertex representing a candidate c′ in
G[Lt], add an edge from the source to c′ with capacity qc′ . Note that we specifically avoid having a vertex
for c in this construction.

We note that there is a similarity between P∗ from Definition 2, and P ′ as used in Theorems 2 and 3,
but we highlight the fact that P∗ and P ′ are not necessarily the same sets. Theorem 7, which we give later,
will detail how P ′ may be derived from P∗.

An example of the complete construction of a graph G[Lt] is given in Example 6. However to make the
graphs simpler to read, we will employ a number of simplification techniques when drawing such graphs.
For any truncation Lt drawn as in Example 6, all of the edges are oriented from left to right. For each
candidate c there is one edge from the source to c with capacity qc, for each position p there is one edge
from p to the sink with capacity qp, and there is no other edge incident with either the source or the sink.
With that in mind, we will draw such graphs without the source or sink, and we will say the capacity or
flow of candidate c (respectively position p) to mean the capacity or flow of the edge from the source to
candidate c (respectively the edge from position p to the sink). Unitary capacities of vertices will not be
marked, but non-unitary capacities can be written within brackets next to the vertex names. Example 7
demonstrates a simplified drawing of the graph from Example 6.
Example 6. We will demonstrate the construction of a network G[Lt] now. Let us take an instance I
of HRT with five candidates and four positions such that in any stable matching of I, position p3 will be
assigned to capacity. We only give the required details of the instance for constructing G[L2], where L is the
preference list of c1. Let some of the preferences of the agents be described by the following:

c1 : p1 p2 p4

p1 : c2 c1 c3
p2 : c3 c2 c4 c1
p3 : c4 c5

Within I, all candidates have capacity one, p1 has capacity two, p2 has capacity three, and p3 has capacity
two. As we know that p3 will be assigned to capacity in any stable matching of I, we can also let P∗ = {p3}.
The preference lists not shown (i.e., those of c2, c3, c4, and p4) and the capacities not given will not be
relevant to the construction of G[Lt]. Recall that L2 is the truncation of L after two ranks. Thus, L2 is the
list p1, p2, and we construct G[L2] as shown in Figure 1.

source sink

c2

c3

c4

c5

p1

p2

p3

1
1
1
1

2
3
2

1
1
1
1
1
1

Figure 1: A drawing of G[Lt] from Example 6.
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Example 7. Figure 1 shows an example of G[Lt] drawn. Figure 2 carries the same information as Figure 1,
but in a more readable format. For any G[Lt], all edges between a candidate and a position have capacity
one, so those capacities are not shown. The edges from the source, or to the sink, have been removed, and the
capacities of said edges have instead been either left off (if they are equal to one), or written in parentheses
next to the corresponding candidate or position (if they are greater than one).

c2

c3

c4

c5

p1(2)

p2(3)

p3(2)

Figure 2: A simplified drawing of G[Lt] from Example 6, with no source or sink as per Example 7.

In the rest of this section, we will use this bipartite representation ofG[Lt], and the set U (respectivelyW )
will be used to refer to the set of vertices representing candidates (respectively positions) in this graph.

We begin with the following lemma, which we later use to reason that if there exists in G[Lt] a maximum
flow that leaves at least a capacity qc unused through W , then there must also exist in G[Lt] a (possibly
different) maximum flow such that the flow through vertices corresponding to positions in P∗ must be at
capacity, meaning that any “unused capacity” is available in vertices that correspond to positions c finds
acceptable. This lemma uses concepts from graph theory, specifically maximal flow theory. For a background
on this theory, we point the reader to [21].

Lemma 6. Let I be an instance of HRT, let c be some candidate in I with capacity qc, let Lt be a truncation
of the preference list of c, let P∗ be as defined in Definition 2, let G[Lt] be the graph constructed as per
Definition 2, and let W be all the positions represented in G[Lt]. If there exists a maximum flow F that
satisfies |F | ≤ |W |q − qc, then there exists a flow F ′ that satisfies |F ′| = |F | and the extra criterion that for
any p′ ∈ P∗, the flow through p′ must equal qp′ , the capacity of p′.

Proof. Let F be as given in the lemma. We will write F (p′) to denote the flow in F through p′, and similarly
for flow F ′ which we will create. Let p′ ∈ P ′ be a vertex such that the F (p′) < qp′ , noting that if no such
p′ exists then the theorem holds.

We will create a new flow F ′ such that F ′(p′) = F (p′) + 1, F ′(p) = F (p)− 1 for some p ∈ W \ P ′, and
for any other p= 6∈ {p, p′}, F (p=) = F ′(p=). The result then holds by repeated iteration of this procedure.

We will build an alternating red-blue path that starts at p′ and ends with some p ∈ W \ P∗, at which
point swapping along this path gives the new flow F ′. We will build this path by colouring the edges between
the sets of vertices U and W in G[Lt]. In particular, we will use the colours red and blue. Where we say
red-degree (respectively blue-degree) of a given vertex v, we mean the number of edges incident to v that
are red (respectively blue). Note that unlike common graph colourings, we will allow edges to be assigned
multiple colours. We will show that edges in our alternating path are mono-coloured, but edges in the graph
that are not in our alternating path may be assigned multiple colours.

First, colour all of the edges that carry non-zero flow in F in blue. Note that each edge between U and
W has capacity one, and, by construction, any maximal flow of G[Lt] has integral flow through any edge.
Thus, an edge between U and W is blue if it is at capacity, and not blue otherwise. Now take a stable
matching in I, and colour the edges corresponding to I in red. Again, as any pair can appear at most once
in a matching, each edge either is red if the corresponding pair is in the new stable matching, or is not red
otherwise.

We now iteratively build an alternating red-blue path, starting at p′. As p′ ∈ P∗, it must have a red-
degree of qp′ . However, it must have a blue-degree less than or equal to qp′ − 1 as F (p′) < qp′ . Thus, we
begin our alternating path by taking an edge that is red, and not blue.
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We follow this red edge to some candidate c′. If F (c′) < qc′ , then we can increase the flow in F by
augmenting along the current path, contradicting the fact that F is a maximum flow. Thus it must be that
F (c′) = qc′ , and so c′ must have a blue-degree of qc′ . Trivially, its red-degree must be at most qc′ . So, by
the existence of the red-and-not-blue edge (c′, p′), there must also be a blue-and-not-red edge incident with
c′. We then follow this blue-and-not-red edge to some new position p′′.

If p′′ ∈ P∗ then p′′ must have a red-degree of qp′′ , and a blue-degree of at most qp′′ . By the presence of
the blue-and-not-red edge we followed to reach p′′, there must be a red-and-not-blue edge incident with p′′,
and so we can repeat the above procedure. Therefore this process can be repeated until we reach a position
p ∈ W \ P∗. At this point, we have an even length alternating red-blue path from p′ to p. By the colouring
of the red and blue edges, and as p′ is not at capacity, we can augment the flow in F by selecting the red
edges instead of the blue edges, creating a flow F ′ such that F ′(p′) = F (p′) + 1, F ′(p) = F (p)− 1, and for
any other p= 6∈ {p, p′}, F (p=) = F ′(p=).

Theorem 7. Let Lt be a truncation of the preference list of some candidate c, let P∗ be a set as defined in
Definition 2, let G[Lt] be the graph constructed as per Definition 2, and let W be the positions represented
in G[Lt]. If a maximum flow F of G[Lt] satisfies |F | ≤ |W |c − qc, there exist sets C, P, and P ′ that satisfy
Theorem 3.

Proof. By Lemma 6, we can assume without loss of generality that for any p′ ∈ P∗, p′ is at capacity in F .
We will build up sets U ′ and W ′ iteratively, use these to construct C, P, and P ′, and then show that these
sets satisfy Theorem 3. We build U ′ and W ′ in turn by adding positions to W ′, then candidates to U ′, and
then repeating this process until it terminates.

Let S be the set of positions that are not at capacity in F . Note that the flow in through S in F can be
at most |S|q − qc by the condition of the theorem. We begin by adding to W ′ all positions in S, then repeat
the following:

1. Add the neighbourhood of any position p ∈ W ′ to U ′.

2. For any neighbour n of a candidate c ∈ U ′, if there is some flow in F from c to n, add n to W ′.

First, we note that this process obviously terminates as G[Lt] is a finite graph, and at each step we
increase the size of either U ′ or W ′. Let {s1, s2} be the source and sink in G[Lt] respectively. We will denote
by G′ the induced subgraph on {s1, s2} ∪ U ′ ∪ W ′, and we will denote by F ′ the restriction of F to the
subgraph G′. Note that if F ′ is not a maximum flow, then there is some augmenting path in G′ to increase
the flow of F ′. However, this augmenting path would also exist in G[Lt], which contradicts the fact that F
is a maximum flow. Thus, it must be that F ′ is a maximum flow in G′.

By this construction, if there is a p ∈ W ′ and a candidate c′ such that c finds p acceptable and c′ �p c,
then the edge {c′, p} is in G[Lt], and thus in G′. Similarly, if there is a p′ ∈ W and a candidate c′ such that
p′ is full in any stable matching, (c, p′) is not an acceptable pair, but (c′, p′) is an acceptable pair, then the
edge {c′, p′} is in G[Lt] and thus in G′. Additionally, by the construction of G[Lt], p′ is full in any stable
matching of I. We make use of these facts at the end of the proof.

Next we show that for any c′ ∈ U ′, F ′(c′) = qc′ . We show this by demonstrating that if a candidate
c′ ∈ U ′ is not at capacity in F ′, then there is an augmenting path from c′ to some undersubscribed p, which
contradicts the fact that F ′ is a maximum flow.

Assume that some c′ ∈ U ′ is undersubscribed. Without loss of generality, take c′ ∈ U ′ that is not at
capacity such that (p, c1, p1, c2, . . . , ck, pk, c′) is a shortest path in G′ where:

1. p is not at capacity;

2. ci is at capacity for i ∈ {1, . . . , k}; and

3. there is flow from ci to pi in F ′ for i ∈ {1, . . . , k}.

Such a path is guaranteed to exist by construction as any position is only ever added to G′ if it either is not
at capacity, or if there is flow from some ci already in G′. However, then this path is also an augmenting
path for F ′ in G[Lt], which contradicts the fact that F ′ is a maximum flow.
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As each candidate c′ ∈ U ′ is at capacity, it is clear that the flow F ′ must satisfy |F ′| = |U ′|q. By
construction, we also have a set of positions S ⊆ W such that the flow through S is at most |S|q − qc.
As any other position in W ′ can at most be at capacity, this gives us |F ′| ≤ |W ′|q − qc. We lastly define
C = U ′ ∪ {c}, P = {p | p ∈ W ′ and c finds p acceptable }, and P ′ = W ′ \ P. It clearly follows that
|C|q = |F ′| + qc ≤ |W ′|q = |P|q + |P ′|q, and by the earlier paragraph these sets satisfy the criteria of
Theorem 3, concluding the proof.

Given a preference list L, we can truncate it to create Lt for any positive t. If a truncation Lt satisfies
Theorem 7, then preprocessing according to Theorem 3 is possible with P ⊆ Lt. The following theorem
states that the reverse is also true: that if preprocessing with P according to Theorem 3 is possible, then
for any positive t such that P ⊆ Lt, Lt will satisfy the criteria of Theorem 7.

Theorem 8. Given a candidate c and their truncated preference list Lt, if sets C, P, and P ′ exist that satisfy
Theorem 3 such that P ⊆ Lt, then the graph G[Lt] has a maximum flow F that satisfies |F | ≤ |W |q − qc,
where W is the set of positions represented in G[Lt].

Proof. Construct G[Lt] as per the definition, recalling that U and W denote the candidates and positions
represented in G[Lt] respectively, W = P ∪ P ′, and that U = C \ {c}. The result then holds as any
maximum flow F must satisfy |F | ≤ |C|q − qc (as U = C \ {c}, and all flow must pass through U). So, by
|C|q ≤ |P|q + |P ′|q we have |F | ≤ |W |q − qc.

3.4. Graph-based algorithms
We now give the algorithms that use the construction and theorems from the previous section to identify

preprocessing. For a preference list L of some agent, the algorithms will consider all truncations Lt of L in
ascending order of length (i.e., t), and construct the graph G[Lt] per Definition 2.

If a maximum flow is too large in a given G[Lt] (i.e. |F | > |W |q − qc), then Theorem 8 tells us that
the preference list cannot be preprocessed at this tie level, and longer truncations of L must be considered.
However, Theorem 7 states that if a maximum flow is small enough, preprocessing is possible.

We are also able to take advantage of our particular method of constructing G[Lt]. We build graphs
G[Lt] iteratively, and as we will have a maximum flow at each step, we only need to attempt to augment
this flow at each step, rather than trying to re-build a complete maximum flow. In addition, we also know
that any such augmenting path must include the newest vertex added, else the augmenting path would exist
in the previous iteration, a contradiction. Exploiting these features in the implementation of our algorithms
significantly improved their performance.

Section 3.4.1 gives a basic algorithm that can identify a set P such that preprocessing can be performed
(if such a set exists), but this algorithm will always assume that P ′ = ∅. In Section 3.4.2 we then extend
this algorithm to also identify a suitable set P ′. In Section 4 we will see that this second algorithm, while
identifying more preprocessing, can also take significantly longer to run.

3.4.1. Graph-based algorithm to find P
Algorithm 1 describes the process of building the graphs G[Lt] and finding a maximum flow. If this

algorithm returns some t ≥ 1, then any preference list entries appearing after the t-th tie can be removed.
The algorithm also may return the sentinel value -1, if no preprocessing was detected. Note that this
algorithm only considers the set P; it does not attempt to find a set P ′. The extension to also find P ′ is
described in Section 3.4.2.

Given an instance of HRT with nc candidates and np positions, we must run Algorithm 1 for each
candidate c. Algorithm 1 iterates over each element in the preference list of c exactly once (lines 4-5) for
|L| iterations. We then attempt to extend the current flow by finding augmenting paths from each of the
newly added vertices that correspond to a position. Each position p is only added to G once, but we need
to search for up to qp augmenting paths. Thus, we need to search for augmenting paths a total of

∑
p∈L qp

times. Each such a search could visit each of the O(nc|L|) edges in G at most once. This gives an asymptotic
running time of O(nc|L| ·

∑
p∈L qp) for preprocessing one preference list of length L, and such a preference

list has length at most np, so preprocessing a candidate takes O(ncnp

∑
p∈L qp) time.
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Algorithm 1 Preprocess one preference list
1: Input: Candidate c with preference list L that is to be preprocessed
2: Output: A rank r such that in a stable matching, c will be allocated a position with rank

at most r
3: Let W = ∅, let F = ∅, let G[Lt] be an empty graph
4: for each rank r in L in descending order of preference do
5: for each p in the r-th rank of L do
6: Add a vertex p to G[Lt]
7: Add p to W
8: for each cj 6= c that p considers at least as good as c do
9: if cj 6∈ V (G[Lt]) then

10: Add a vertex cj to G[Lt]
11: end if
12: Add the edge {cj , p} to G[Lt]
13: end for
14: Attempt to find an augmenting path from p to increase the size of F
15: end for
16: if |F | ≤ |W |q − qc then
17: return r
18: end if
19: end for
20: return −1 . To indicate that no guarantee of matching can be given

In an instance of HRT, if some p has non-unitary capacity, then all candidates must have unitary capacity,
and so nc is a trivial upper bound to the set of capacities of the candidates. This results in a running time
of O(n2

cn
2
p) for one candidate, or O(n3

cn
2
p) to complete one pass of preprocessing over all agents.

Example 8 (Example of use of Algorithm 1). Consider an instance of HRT with nc = 4 and np = 4 (i.e.,
there are 4 candidates and 4 positions). Note that as we are demonstrating only Algorithm 1, P ′ = ∅. We
will preprocess the preference list for c1. Let qc1 , the capacity of c1, be 2, and let qc2 = 1. As this is an
instance of HRT, and qc1 > 1, we know that every position must have unitary capacity, and so |W |q = |W |
for any set of positions W . The relevant preferences are as follows:

c1 : p1 p2 p3 p4

p1 : [c1 c2] c4 c3
p2 : c2 c1 c3 c4
p3 : c2 c1 c3 c4
p4 : c2 c3 c1 c4.

Recall that we will be building a graph G[Lt] based on truncations of the preference list of c, and that the
source and sink in G[Lt] are not drawn to simplify the diagrams. At each step, we will look for a maximum
flow F , and, if |F | ≤ |W | − 2, we stop and perform the actual preprocessing.

We start with an empty graph G[Lt]. First, we add a vertex for p1 to the right side of G[Lt] (as p1 is
the most preferred choice of c1), and then we add all candidates who can compete with c1 for position p1 to
the left side of G[Lt]. In our example, this is only c2. We also add an edge from p1 to c2 to indicate that, if
c2 is paired with p1, then (c1, p1) will not form a blocking pair. See Figure 3a.

The maximum flow, indicated in dashed blue in Figure 3a, has size 1. As |W | = 1, |F | > |W | − 2 = −1
and so we cannot preprocess.

On the next step, we add a vertex for p2 to the right side of G[Lt]. As there is already a vertex for c2 in
G[Lt], we do not need to add a new vertex, but only a new edge from p2 to c2. In this new graph, a maximum
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flow (indicated in dashed blue in Figure 3b) still has size 1, and now |W | = 2. However, |F | 6≤ 2 − 2 = 0,
so we must continue the algorithm.

The algorithm continues with the next step, adding a vertex for p3 to the right side of G[Lt]. Again, there
is already a vertex for c2 in G[Lt], so we only need to add a new edge from p3 to c2. In this graph, a maximum
flow (indicated in dashed blue in Figure 3c) still has size 1, but now |W | = 3. Then |F | ≤ |W | − 1, and
we can preprocess. This means we can remove from the preference list of c1 any positions that c1 considers
worse than p3, the last position we added. In this case, this means removing p4 as an option for c1, and
removing c1 as an option for p4. Note that we also now know that c1 will definitely be matched with some
position.

c2 p1

(a) The graph G[L1] after one step of
Algorithm 1. The edge marked in dashed
blue is the maximum matching.

c2 p1

p2

(b) The graph G[L2] after two steps of
Algorithm 1. The dashed blue edge is
one of two maximum flows, both with
size one.

c2 p1

p2

p3

(c) The graph G[L3] after three steps of
Algorithm 1. The dashed blue edge is
one of three maximum flows, all with size
one.

Figure 3: Two steps in preprocessing for Example 8.

Example 9 (Example of Algorithm 1 when ties are present in list being processed). Consider an instance
of SMTI with nc = 4 and np = 3 (i.e., there are 4 candidates and 3 positions). Note that as we are
demonstrating only Algorithm 1, P ′ = ∅, and as we have an instance of SMTI, not HRT, we know that every
agent has unitary capacity, and thus |W |q = |W |. We will preprocess the preference list for p1. Note that
this means we swap the nomenclature for positions and candidates in this example. The relevant preferences
are as follows:

c1 : p1 p2
c2 : p1 p2 p3
c3 : p2 p3 p1
c4 : p2 p1 p3

p1 : [c1 c2] c4 c3

Again starting with an empty graph G[Lt], we first add vertices for both c2 and c1 to G[Lt]. We add
vertices for both as they are tied for most preferred candidates by p1 of the candidates who have not yet been
added. However, for both c1 and c2, p1 is the most preferred position, and so p1 has no potential competition.
This leaves us with a graph of two vertices on the right, but no edges. Therefore |F | ≤ |W | − 1 and so we
can preprocess the preference list of p1 and remove candidates appearing after the tie [c1c2]. That is, we
remove c4 and c3 as options for p1.

3.4.2. Extended graph-based algorithm to find P and P ′

Algorithm 1 does not attempt to find sets P ′ as defined by Theorem 3. To extend Algorithm 1 to
support such sets, we need to know some set P ′′ of positions that are guaranteed to be full in any stable
matching. Note that P ′′ and P ′ are not the same — for a candidate c, P ′ is a subset of P ′′ containing only
positions that c does not find acceptable. A position p can be added to P ′′ if preprocessing the preference
list of p results in the removal of some entries from p’s preference list. We can also add a position p to P ′′

if, when preprocessing the preference list L of p, L has a length of t and preprocessing indicates that L can
be truncated after t ranks. This would result in a truncation of zero preferences from the preference list
of p, but this still means that p is always full in any stable matching. Given this set P ′′, and a candidate
c, we can determine the set P ′. We use this technique to “pre-fill” the graph G[Lt] by replacing line 3 in
Algorithm 1 with Algorithm 2.
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Using Algorithm 2 in conjunction with Algorithm 1 in this manner results in a complexity of O(n3
cn

2
p),

the same as for Algorithm 1 by itself, but we show in Section 4 that using Algorithm 2 can under some cir-
cumstances significantly increase the runtime for preprocessing, and is not a guaranteed overall performance
improvement.

Algorithm 2 Prefill a graph-based on one preference list
1: Input: Candidate c, and a set P ′′ containing positions guaranteed to be filled in any stable

matching
2: Output: A graph G, a set W of positions added to G, and a matching M of G
3: Let W = ∅, let F = ∅, let G be an empty graph
4: for each position p ∈ P ′′ do
5: if c does not find p acceptable then
6: Add a vertex p to G
7: Add P to W
8: for each c′ that p finds acceptable do
9: if c′ 6∈ V (G[Lt]) then

10: Add a vertex for c′ to G[Lt]
11: end if
12: Add the edge {c′, p} to G[Lt]
13: for k = 1, . . . , qp do
14: Attempt to find an augmenting path from p to increase the size of F
15: end for
16: end for
17: end if
18: end for
19: return W , M , G[Lt]

Example 10 (Example of Algorithm 2). Consider an instance of SMTI with nc = np = 4 (i.e., there are
4 candidates and 4 positions). As we have an instance of SMTI, not HRT, we know that every agent has
unitary capacity, and thus |W |q = |W |. We will preprocess the preference list for c3. The relevant preferences
are as follows:

p1 : c1 c2
p2 : c1 c2 c3
p3 : c2 c3
p4 : c2 c3

c1 : p1 p2
c2 : p1 p2 p3 p4
c3 : p2 p3 p4

We also know that p1 ∈ P ′. That is, in any stable matching, position p1 will always be matched to some
candidate. See the first paragraph of Section 3.4.2 for details on how P ′ may be determined.

Starting with an empty graph G[Lt], we first add a vertex for p1 to the right of G[Lt], and then one
vertex for each acceptable candidate for p1 (i.e., c1 and c2) to the left side of G[Lt]. We also add an edge
from each of c1 and c2 to p1. See Figure 4a.

We then start adding vertices by looking at the descending preferences of c3. First is p2, which we add
to the right side of G[Lt], along with edges from p2 to both c1 and c2, so the graph looks like Figure 4b with
a maximum flow in dashed blue. At this point, |F | > |W | − 1, and so we cannot preprocess.

The next position to consider is p3, which is handled similarly to p2 and leaves us with Figure 4c, along
with a maximum flow in dashed blue. We can see that as |F | = 2, and |W | = 3, we have |F | ≤ |W | − 1, so
we can preprocess. This means removing the position p4 from the preference list of c3.
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Note that without using the fact that p1 is always matched to one of either c1 or c2, we would not be able
to determine that c3 will never be matched with p4 in a stable matching. This holds even though c3 does not
find p1 acceptable.

c1

c2

p1

(a) The graph G[L1] after one step of
Algorithm 2. The edge marked in dashed
blue is a maximum flow.

c1

c2

p1

p2

(b) The graph G[L2] after two steps of
Algorithm 2. The dashed blue edges
make up the maximum flow.

c1

c2

p1

p2

p3

(c) The graph G[L3] after three steps
of Algorithm 2. The dashed blue edges
make up one of three maximum flow.

Figure 4: Three steps for preprocessing for Example 10.

3.5. Iteration of preprocessing
All of the preprocessing described earlier in this section explains how to preprocess the preference list of

one agent. This must obviously be repeated for each agent, but in addition to this, it is possible that the
removal of preferences from the list of agent ci may make preprocessing possible for agent pj . There is also
a second consideration if Algorithm 2 is used (i.e., if P ′ is non-empty). In such cases, any changes to P ′

also justify the re-running of preprocessing over all agents.
Our implementation of all preprocessing methods is iterative — each agent has its preference list pre-

processed and if any preprocessing is found, the procedure is repeated for all agents. It is possible to only
repeat the preprocessing algorithm on the agents whose preferences lists were modified as a result of earlier
preprocessing, but initial investigations showed that this had minimal effect on the total runtime of the
preprocessing.

For any iteration method, there is at worst a polynomial number of iterations as each iteration must
either remove a preference (of which there are at most O(ncnp)), or mark an agent as always being full who
had not yet so marked (and there are nc + np agents in total).

It is plausible to assume that if the preprocessing of the first x% of agents results in no changes (for
various values of x), then there will be no preprocessing to complete for any remaining agents either. This
assumption was tested for x ∈ {5%, 10%, 25%, 50%}, and we report none of these percentages resulted in a
noticeable effect on the running time of the preprocessing. This agreed with the observation that often the
earlier iterations of preprocessing both took longer, and removed more preference list entries. In contrast,
the final iterations of preprocessing that removed few or no preferences also ran relatively quickly.

4. Computational results

This section describes our computational experiments on the effectiveness of preprocessing on a number
of different classes of stable matching problems. These include MAX-SMTI, MAX-WT-SMTI-GRP, and
MAX-HRT, and are described in Section 4.1. Section 4.2 details the particular IP models used to solve
these problems, and Section 4.3 describes the experimental setup that we used. Section 4.4 demonstrates
that it is rare for any stable matching problem to contain acceptable pairs that do not affect the set of stable
matchings, but that our theory (and thus Algorithm 1 combined with Algorithm 2) is unable to detect.
Section 4.5 describes the format of our results, including the presentation of resulting data. We show in
Section 4.6 that our new preprocessing techniques improve solution times on MAX-SMTI-GRP by up to
44%. In Section 4.7 we look closely at the impact of preference list lengths on the usefulness of preprocessing
when solving MAX-SMTI, showing that preprocessing is more effective when agents deem at least 40% of
all potential partners as acceptable. Section 4.8 demonstrates that while our new approaches can detect
more preprocessing, doing so is not significant when solving MAX-HRT1S. However Section 4.9 shows that
when solving MAX-HRT2s, preprocessing can reduce the overall time to find a solution by over 50%. We
conclude this section with a discussion in Section 4.10.
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4.1. Problem instances
We tested three different types of problems: SMTI, SMTI-GRP, and HRT. New instances for this

experiment are available from http://dx.doi.org/10.5525/gla.researchdata.904, and were generated
using the same code as [8]. All other instances were taken from the literature [8], and are available at
https://researchdata.gla.ac.uk/664/.

For SMTI-GRP, we solved MAX-WT-SMTI-GRP on 22 real-world instances of the Coram application,
each with 550 agents on one side and 894 agents on the other. We also solved MAX-WT-SMTI-GRP on two
sets of 220 instances, generated to resemble the real-world instances. Each of these two correspond to values
of a parameter κ ∈ {1, 2}, where the number of agents on one side is κ× 550 and the number of agents on
the other side is κ× 894.

For SMTI we first solved MAX-SMTI on a set of 270 instances: 10 each of the 27 possible ways of
combining each possible set of parameters taken from the following:

• nc = np (number of candidates or positions): {10000, 15000, 50000},

• p (preference list length): {3, 5, 10}, and

• d (tie density): {0.75, 0.85, 0.95}.

The number of candidates (nc) and positions (np) were equal for each instance of SMTI. The parameter
“preference list length” is the length of the preference list of each candidate, with each position p ranking
exactly those candidates who find p acceptable. Preference list entries were ordered uniformly at random.
The tie density is the probability of a preference list entry being tied with its successor.

Our results show that preprocessing has significantly more impact when solving MAX-WT-SMTI-GRP
compared to MAX-SMTI. Three factors differ between the MAX-WT-SMTI-GRP instances and the MAX-
SMTI instances: the MAX-WT-SMTI-GRP instances had

• longer preference lists,

• a different objective (maximise weight rather than maximise size), and

• some candidates (respectively positions) being more popular amongst all positions (respectively can-
didates).

Some agents being more popular is not rare in stable matching problems, and this can be modelled using the
skew parameter from the generator of Irving and Manlove [14]. A more complete investigation of the skew
in our instances of SMTI-GRP is given in [8]. We also can model the weight of a pairing (c, p) by summing
together the respective Borda score they assign each other2. We generate an additional set of instances to
investigate the effect of each of these parameters. These additional instances all have nc = np = 250, with
preference lengths in {100, 150, 200}, and skew values in {5, 10, 15, 20}. For each possible selection of values,
we randomly generated 10 different instances.

The HRT instances were split into two distinct groups. The first only allowed ties in the preference lists
of the hospitals, to allow the comparison with “Hospitals offer” and “Residents apply” [11], while the second
set also allows the doctors to have ties in their preference lists.

The first set of instances are denoted HRT-1S (for one-sided ties), and include 3 proprietary instances
taken from the Scottish Foundation Allocation Scheme (SFAS), as well as a number of randomly-generated
instances intended to simulate this historical real-world application taken from the literature. The randomly-
generated instances are again based on all combinations of the following parameter values:

• κ (size): {1, 2, 3, 5, 10}, and

• µ (master list): {0, 5, 15, 25}.

2The Borda score that c assigns to p is equal to the number of ranks in c’s preference list minus the rank of p according to c.
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Size is an indicator of the number of doctors and hospitals in the instance, where a value of κ indicates that
the instance has κ× 759 doctors and κ× 53 hospitals with a combined κ× 775 available posts. The trio of
numbers (759, 53, 775) is taken as an average of the corresponding parameters in the SFAS instances. The
second parameter, µ, is used here to replicate the presence of master lists of doctors, a common theme in
real-world applications. A value of µ = 0 indicates that no master list is present (and hospital preferences are
assigned randomly). Otherwise each doctor is randomly given a score in the range {1, . . . , µ} and hospital
preferences are derived from these scores. Doctor preferences are randomly assigned in each instance of HRT.

The second set of instances, which we have generated, are denoted HRT-2S (for two-sided ties) as they
allow doctors to also express ties in their preference lists. These instances have a tie density of 0.75, and all
combinations of size taken from {1500, 3000, 4000, 8000}, and preference length taken from {5, 10, 25, 50}.
This set of randomly-generated instances are intended to test the scalability of our techniques on instances
of HRT with two-sided ties and their applicability to the current UK-wide scheme for assigning residents
to hospitals, the UK Foundation Programme. The UK Foundation Programme currently has a size of
approximately 8000, and doctors are allowed to express up to 20 preferences [1], but further specifics on tie
density and actual distribution of preference lengths are not known as they are not published.

4.2. Models for solving stable matching problems
The effectiveness of preprocessing is best determined by how much it reduces the time taken to solve the

problem, but this requires a suitable benchmark method for solving each problem. As MAX-SMTI, and by
extension, MAX-HRT, are NP-hard, IP models are commonly used to find optimal solutions [8, 19, 20, 25].
In [8], the authors introduce and compare a number of different modifications of IP models for stable
matching problems. We use the best model (or set of models, if the best model is not clear) according to [8]
as the chosen model(s) for these problems. The three important modifications that can be made are as
follows:

• Stability constraint merging — the merging of stability constraints for a set of agents who are all tied
in some preference list.

• Dummy variables — the introduction of dummy variables that denote whether an agent is matched
with any other agent at a given rank or better.

• Double stability constraints — the use of stability constraints derived from both sets of agents.

For SMTI, we test with two IP models (models M3 and M4 from [8]). Although both of these models
utilise stability constraint merging, they differ in that M4 uses dummy variables and M3 does not. For
SMTI-GRP, we again test with two IP models (models M4 and M6 from [8]). Whilst both utilise dummy
variables, M4 uses stability constraints derived from the preferences of one set of agents while M6 uses
double stability constraints. For HRT, we use two different models. For HRT-1S, we use model N8 from [8],
which uses both merged stability constraints and dummy variables. However, N8 uses specific techniques
that rely on a lack of ties from the doctors, and as such is unsuitable for HRT-2S. Instead, we use model N4
for HRT-2S. The models were selected as they were reported to be the best choice(s) for each given problem
type. For more complete details on these models, we refer the reader to [8].

4.3. Experimental setup
The specific code for both the preprocessing and the IP models for finding optimal solutions is available

from https://dx.doi.org/10.5281/zenodo.3956390, and was compiled with GCC 7.2.0 using -O2 with
Gurobi 7.5.1 as the IP library. All tests were carried out on a computing cluster with two Intel Xeon
E5-2687W v3 CPUs per node, each running at 2.60 gigahertz and with 512 gigabytes of memory. At any
one time, up to 32 instances were running on a single node (corresponding to the 32 physical cores on each
node), and each instance was limited to 15 gigabytes of memory, with the exception of the SMTI instances
with 50000 agents, in which case only 8 instances at a time were run with 63 gigabytes of memory each.
Time limits were set to one hour combined for both preprocessing and IP solving.
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4.4. Completeness of preprocessing
Theorem 3 proves that certain pairs in an instance of a stable matching problem can be removed without

affecting any solution, and Theorem 8 shows that Algorithm 1 combined with Algorithm 2 is guaranteed
to detect if such preprocessing is possible. However, as demonstrated in Example 3, there exist pairs in
instances of stable matching problems that never appear in a stable matching, but that Theorem 3 will not
be able to detect as never appearing in a stable matching. To test the completeness of our preprocessing, we
took each instance I of SMTI with 10000 agents per side and ran Algorithm 1 combined with Algorithm 2
to produce a preprocessed instance I ′. For each acceptable pair (c, p) in I ′, we tested whether a stable
matching exists that contains (c, p). Results showed that for each of the 90 instances, each acceptable pair
(c, p) in I ′ appears in some stable matching of I ′. This suggests that instances of stable matching problems
containing pairs that are not in any stable matching, but are not able to be preprocessed by our theory, are
rare. We did find one such example, Example 3, but finding this example involved a computational search
through thousands of instances of stable matching problems with only four candidates and four positions.

4.5. Presentation of results
The results on the following pages omit some methods of preprocessing. Initial testing on the real-world

MAX-WT-SMTI-GRP instances (see below) showed that the two methods from Section 3.1.3 were orders
of magnitude slower than Algorithm 1, while finding only a subset of the preferences that Algorithm 1
removed. In addition, in these tests using the IP model from Section 3.2 for preprocessing proved to be
too computationally expensive to run any thorough tests on. The implementation required that we solve
nc +np different IPs for each iteration, and whereas most preprocessing techniques took seconds or minutes
to complete, the IP-based algorithm would take days to complete for a single instance.

Table 1 describes the various preprocessing methods tested. We tested our new methods against not using
any preprocessing, P0, and three existing methods, P1, P1’, and P1*. P1 is the descending heuristic [8],
defined in Section 3.1.1, and P1’ is our improved implementation of P1. Both P1 and P1’ were only
used for SMTI, SMTI-GRP, and HRT2S. For HRT1S, we replaced both of P1 and P1’ with P1*, the
“Hospitals-offer” and “Residents-apply” methods [14]. We compared these against P2, P3, and P4, three
new heuristic methods, P5, our new graph-based algorithm, and P6, the extended version of our new graph-
based algorithm.

Table 1: The different preprocessing methods shown in the results section.

Method Description

P0 No preprocessing
P1 Descending heuristic (for SMTI, SMTI-GRP, and HRT-2S only) [8]
P1’ Improved implementation of P1 (for SMTI, SMTI-GRP, and HRT-2S only)
P1* “Hospitals offer” and “Residents apply” (for HRT-1S only) [11]
P2 Skip positions if |C|q would increase by 5 or more
P3 Skip positions if |C|q would increase by 15 or more
P4 Skip positions if |C|q would increase by 50 or more
P5 Algorithm 1 (graph-based)
P6 Algorithm 1 extended with Algorithm 2

Each results table describes various parameters of our experiments as follows. The five left-most columns
in each table correspond to the preprocessing method. The “Name” column is a reference to the type of
preprocessing used, as per Table 1. The “Preferences removed” column is an average of the number of
preference list entries removed from each instance, and the “Prop. removed” column, short for “proportion
removed”, indicates what proportion of preference list entries from the whole instance have been removed.
The “Runtime” is the average running time of the preprocessing step, and the “num. comp.” column, short
for “number completed”, is the number of instances for which the preprocessing step completed in less than
3600 seconds. The remainder of each table is split into two sets (for SMTI), or one set (for HRT) of three
columns, one set of three for each IP model tested for that particular problem type (models M4 and M6
for SMTI-GRP, models M3 and M4 for SMTI, and either model N4 or model N8 for HRT). As a reminder,
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the rationale for the selection of these models is given in Section 4.2. Of these two sets of three columns in
the results tables, the “num. opt.” column, short for “number optimal”, indicates how many instances were
solved to optimality, the “IP Solve” column indicates the average time taken to solve the IP model, and the
“Total” column is the average of the combined preprocessing and solving time for the given preprocessing
method and IP model. Note that preprocessing is run twice per instance in cases where two IP models were
tested. We only show running times from one of these to avoid cluttering the table, which explains why the
sum of the preprocessing runtime and the IP solve runtime does not always equal the total runtime. All
runtimes are given in seconds. A combined time-limit of 3600 seconds was set for all experiments, and if an
optimal solution was not found (including when preprocessing was not completed in under 3600 seconds),
the IP solution time was set to 3600. This was done so that the calculations of averages (which include all
instances, even those not completed to optimality) did not favour scenarios where the preprocessing took
longer (and hence less time was given for the IP solver).

4.6. Results on instances of SMTI-GRP
Table 2 shows results from the real-world instances, indicating that (just as in [8]) preprocessing can

reduce total running time significantly. P5 and P6 both remove significantly more preferences than P1, which
would, in turn reduce the model size, at the cost of an increase in the running time of the preprocessing
step. The best performance is achieved by preprocessing method P5, combined with IP model M6, reducing
total running time by approximately 44% compared to using existing preprocessing techniques, or 80%
compared to not using preprocessing. We note that with preprocessing method P1, model M6 significantly
outperformed model M4, but when using preprocessing method P6, M4 was solved in only 45 seconds. This
was the fastest IP solution time for any choice of model or preprocessing technique by a significant margin.

Comparing preprocessing methods P5 with P6, we see that P6 takes almost four times as long to run
(38 seconds compared to 11 seconds), while only removing approximately 4% more preference list entries.
However, the removal of this extra 4% of preference list entries almost halves the time taken to solve the IP
using M4, showing that the number of preference list entries removed is not necessarily a good indicator for
the reduction in model solution times.

Table 3 shows that for the augmented instances of a similar size to the real-world data, the new graph-
based algorithms again remove significantly more preferences than pre-existing preprocessing methods. How-
ever, the reduction in running times is not as impressive, showing only an approximate 19% reduction in
total run time compared to existing preprocessing techniques, or 56% compared to not using preprocessing.
When we look at augmented instances twice as large as the real-world data (Table 4), we see that no com-
bined method is yet able to solve all 220 instances. Still, our new preprocessing methods are an improvement
over existing methods, with P6 and M4 solving 129 instances compared to the 120 solved using P1 and M4,
or only 103 solved using M4 without preprocessing.

Table 2: Comparison of preprocessing methods on 22 real-world instances.

Preprocessing method M4 M6

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 22 22 404 404 22 465 465
P1 94606 35.5% 25 22 22 222 246 22 150 174
P1’ 94606 35.5% 3 22 22 209 212 22 146 149
P2 90682 36.5% 2 22 22 350 352 22 402 404
P3 76892 32.2% 8 22 22 266 274 22 157 165
P4 90005 34.5% 33 22 22 190 223 22 159 192
P5 165613 61.4% 11 22 22 79 90 22 72 83
P6 172524 63.3% 38 22 22 46 84 22 90 128

4.7. Results on instances of SMTI
For SMTI, we break down results by the length of preference lists rather than by size, as this highlights

when preprocessing is useful. Note that P6 could not even finish preprocessing some of these instances
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Table 3: Comparison of preprocessing methods on 220 augmented instances with κ = 1.

Preprocessing method M4 M6

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s) Total num.

opt.
IP Solve

(s)
Total
(s)

P0 — — — 220 220 151 151 220 164 164
P1 83093 25.2% 25 220 220 82 107 220 79 104
P1’ 83093 25.2% 3 220 220 82 85 220 79 81
P2 72851 27.2% 4 220 220 129 133 220 212 215
P3 64475 21.7% 11 220 220 139 150 220 184 195
P4 78385 24.3% 40 220 220 105 145 220 99 139
P5 180888 67.1% 10 220 220 77 87 220 56 65
P6 185438 68.2% 27 220 220 55 83 220 50 76

Table 4: Comparison of preprocessing methods on 220 augmented instances with κ = 2.

Preprocessing method M4 M6

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 220 103 2334 2334 100 2326 2326
P1 276752 18.1% 267 220 110 2091 2358 112 2049 2319
P1’ 276752 18.1% 22 220 120 2252 2274 119 2234 2257
P2 210545 19.4% 22 220 106 2274 2296 101 2301 2322
P3 178358 14.0% 79 220 102 2289 2368 98 2320 2395
P4 231256 16.1% 329 220 105 2040 2369 100 2055 2382
P5 625791 56.9% 112 220 128 2105 2217 118 2165 2280
P6 646492 58.1% 315 220 129 1900 2215 120 1987 2308

in under 3600 seconds. For such instances, the IP solution time was set to 3600 seconds, as discussed in
Section 4.5, even though without preprocessing, all the instances could be solved. The reader should be
aware that this means the average figures in the “IP Solve” column may be misleading if P6 is able to
preprocess fewer instances than other methods. As a reminder, the “num. comp.” column lists the number
of instances on which preprocessing successfully completed within the 3600 second time limit, and each of
Tables 5, 6, and 7 lists details on running 90 different instances.

Table 5 shows that when preferences have length 3, heuristic methods run in under a second on average,
while P5 and P6 take 50 seconds and almost 30 minutes on average, respectively. The preprocessing appears
to have minimal effect on the IP solution time, so when preferences are very short preprocessing is not
useful. This is consistent across both IP models tested.

Table 5: Comparison of preprocessing methods on 90 MAX-SMTI instances with lists of length 3.

Preprocessing method M3 M4

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 90 90 19 19 90 19 19
P1 2538 3.0% 1 90 90 20 21 90 19 20
P1’ 2538 3.0% 1 90 90 19 20 90 19 20
P2 2589 3.0% 1 90 90 19 20 90 19 20
P3 2538 3.0% 1 90 90 19 20 90 19 20
P4 2538 3.0% 1 90 90 19 20 90 19 20
P5 3731 4.4% 50 90 90 19 68 90 18 68
P6 3731 4.4% 1686 70 70 812 2201 70 811 2161

Table 6 shows experimental results when preferences have a length of 5. Again we see that P5 and P6
both take significantly longer to run than the heuristic preprocessing methods, with P6 only completing the
preprocessing step in under an hour on 69 of the 90 instances. We also start to see a difference between the
IP models, as M3 can solve all 90 instances in anywhere from 397 to 478 seconds, while M4 can only solve 80
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of the 90 and takes upwards of 736 seconds. Looking more closely at the times for M3, we see that without
any preprocessing the model takes almost 480 seconds to solve, while with any of the heuristics it only takes
around 440 seconds to solve. Even P5 is competitive, as while the preprocessing step takes approximately
50 seconds to run (compared to 1 to 2 seconds for the heuristics), this preprocessing reduces the solution
time to below 400 seconds on average.

Table 6: Comparison of preprocessing methods on 90 MAX-SMTI instances with lists of length 5.

Preprocessing method M3 M4

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 90 90 479 479 80 741 741
P1 3345 2.4% 2 90 90 435 437 80 747 748
P1’ 3345 2.4% 1 90 90 440 442 80 748 749
P2 3858 2.7% 1 90 90 441 443 80 744 745
P3 3345 2.4% 2 90 90 452 454 80 751 752
P4 3345 2.4% 2 90 90 446 448 80 750 751
P5 7417 5.2% 51 90 90 397 449 80 737 773
P6 7417 5.2% 1595 69 69 960 2450 60 1276 2479

Table 7 shows experimental results when preferences have a length of 10. We now see that model M4
is outperforming model M3, which is consistent with results in the literature [8]. Again, we also see that
P5 takes longer than all the heuristics (approximately 60 seconds compared to 3 to 5 seconds), and that
P6 takes so long that it can only preprocess 60 of the 90 instances in under an hour. While there are some
differences in the number of instances solved by the different preprocessing methods, we note that the given
solution times would indicate that the difference is not that significant. This is based, in part, on both
P1 and P1’ creating identical models yet P1 is able to solve 4 more instances to optimality than P1’. For
example, closer examination shows that the 4 instances solved after preprocessing with P1, but not after
preprocessing with P1’, were all solved in between 3445 and 3529 seconds, which is within 5% of the timeout
of 3600 seconds. Allowing for a 5% variation in individual runtimes would then account for this discrepancy.

Table 7: Comparison of preprocessing methods on 90 MAX-SMTI instances with lists of length 10.

Preprocessing method M3 M4

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 90 29 2961 2961 43 2505 2505
P1 4757 1.7% 4 90 29 2981 2982 46 2493 2494
P1’ 4757 1.7% 4 90 29 2978 2980 42 2499 2500
P2 13100 4.6% 2 90 33 2879 2880 43 2481 2482
P3 4820 1.7% 5 90 28 2943 2944 45 2506 2508
P4 4757 1.7% 5 90 29 2984 2985 44 2497 2498
P5 20540 7.2% 59 90 32 2870 2875 41 2490 2506
P6 20540 7.2% 1838 60 28 2875 2975 37 2533 2741

While Tables 5, 6, and 7 show that preprocessing can be useful for model M3, they do not show a similar
result for model M4. Yet our results when testing MAX-WT-SMTI-GRP show that preprocessing can be
useful when using model M4 (see, e.g., Table 2). Tables 8, 9, and 10 show the results of using preprocessing
to solve MAX-WT-SMTI on skewed3 instances with fewer agents (nc = np = 250) but with longer preference
lists. Table 8 shows that when preferences are of length 100, model M4 is faster, but we start to also see
some differences in running times. The two graph-based preprocessing algorithms both take a few seconds
longer to run, but result in models that can be solved faster. We see that by using one of P1, P1’, P5, and

3Recall that a skewed instance is one in which certain agents are more popular, and thus ranked more highly across the
board by those that find them acceptable, than other less popular agents.
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P6, each of the 40 instances can be preprocessed and solved in approximately 37 seconds, whereas the other
methods all take approximately 39-40 seconds. This would indicate that, for instances with 250 candidates
and 250 positions, preprocessing is likely to not be useful if candidates each rank fewer than 100 positions,
and only if each candidate ranks 100 or more positions is preprocessing useful.

Table 9 shows times for instances where candidates rank 150 positions, 60% of the total. Again, P5 and
P6 take longer to run, but the benefit is not as evident, with both performing comparably to not using
preprocessing. Instead two heuristics, P2 and P3, offer better total performance, with P2 reducing total
runtime from approximately 88 seconds without preprocessing down to 68 seconds. Table 10 gives results
for instances with preferences of length 200. Here again, the heuristics are the best performers, with P3
solving all instances in an average of 102 seconds compared to 137 seconds without any preprocessing, or
129 seconds using existing preprocessing techniques.

Table 8: Results of solving MAX-WT-SMTI on 40 instances with preferences of length 100.

Preprocessing method M3 M4

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 40 40 83 83 40 39 39
P1 137 0.5% < 1 40 40 84 84 40 37 37
P1’ 137 0.5% < 1 40 40 84 84 40 37 37
P2 3304 13.2% < 1 40 40 72 72 40 40 40
P3 892 3.6% < 1 40 40 81 81 40 39 39
P4 235 0.9% < 1 40 40 83 83 40 40 41
P5 6972 27.9% 4 40 40 55 59 40 32 36
P6 6972 27.9% 4 40 40 55 59 40 32 37

Table 9: Results of solving MAX-WT-SMTI on 40 instances with preferences of length 150.

Preprocessing method M3 M4

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 40 40 215 215 40 88 88
P1 140 3.7% < 1 40 40 213 214 40 86 87
P1’ 140 3.7% < 1 40 40 212 213 40 87 87
P2 5089 13.6% < 1 40 40 195 195 40 67 68
P3 1472 3.9% < 1 40 40 202 202 40 78 79
P4 430 1.1% 1 40 40 211 212 40 86 88
P5 10857 29.0% 4 40 40 164 168 40 83 89
P6 10857 29.0% 5 40 40 164 169 40 84 91

Table 10: Results of solving MAX-WT-SMTI on 40 instances with preferences of length 200.

Preprocessing method M3 M4

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 40 40 824 824 40 137 137
P1 113 0.2% < 1 40 40 764 765 40 128 129
P1’ 113 0.2% < 1 40 40 766 766 40 128 128
P2 6409 12.8% < 1 40 40 557 557 40 105 105
P3 1858 3.7% 1 40 40 689 690 40 100 102
P4 493 1.0% 2 40 40 599 601 40 107 109
P5 13930 27.9% 6 40 39 444 449 40 125 132
P6 13930 27.9% 7 40 39 446 453 40 124 132
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4.8. Results on instances of HRT-1S
In these instances, only the hospitals were allowed to have ties in their preference lists, and so P1* was

able to be tested. The tables detailing the results of this particular experiment are in Appendix B.1. Here
we only report the following summary of the results from the experiments on instances of HRT-1S:

• P1*, P2, P3, and P4 all ran in under a second. Of these, P1* removed the most preference list entries.
P5 took 3 seconds on average, while P6 took well over 2000 seconds on average. Despite taking longer
than P1*, P5 removed < 0.1% more preference list entries than P1*, and P6 removed < 0.1% more
preference list entries than P5.

• P5 and P6 both removed slightly more preference list entries than P1* (at an average of 12208 for
P5/P6, and 12205 for P1*), demonstrating that P1* does not remove all possible preference list entries
even on randomly generated instances.

• The difference in average IP solution time after any of P0, P1*, P2, P3, P4 or P5, ignoring trivial
cases, varies by only a few percent, highlighting the fact that for this particular set of instances, where
doctors must give strict preferences with no ties, adding our preprocessing to the internal preprocessing
of Gurobi is not useful.

4.9. Results on instances of HRT-2S
Recall that instances of HRT-2S allow both hospitals and doctors to express ties in their preference

lists, and therefore, P1* is not applicable. Thus, there were no prior techniques for preprocessing HRT-2S
instances in the literature, and so we compare all of our new techniques versus not using any preprocessing.
Table 11 shows that P3 can cut running times in half, compared to not using preprocessing. Our graph-
based algorithms, P5 and P6, both remove slightly more preferences than P3, but take significantly more
time to do so. P1 removes very few preferences, and so does not significantly affect the running time of
the IP solver. P2 and P4 do remove more preferences than P1, but fewer than P3. We recall that P2 is
Skip-5, whereas P3 is Skip-15, P4 is Skip-50, and P1 can be thought of as Skip-∞. Thus, while we see that
Skip-15 is the better choice for these instances, we theorise that the specific value 15 may be a parameter
that can be tuned for various types of problems. Tables 12 and 13 continue to show similar results, where
P3 removes slightly fewer preferences than either P5 or P6, but as both P5 and P6 run significantly slower,
P3 still gives the best overall runtime. We note that for instances with 1500, or 4000 doctors, P5 and P6
result in the fastest IP solution times, while with 3000 doctors, P3 results in the fastest IP solution times.
Due to the inherent volatility of IP solution times, we do not think any conclusive comparison between P3,
and P5 or P6, can be drawn from this.

When we look at instances of HRT-2S with 8000 doctors, we see results that are consistent with results
on the smaller instances, with P3 performing the best and managing to solve 118 of the 120 instances in
under an hour. Additionally, we see that P5 and P6 are both failing to preprocess many of these larger
instances. Even when P5 or P6 do manage to complete preprocessing in under an hour, a close examination
of the runtimes shows that P3 still sometimes results in the fastest IP solution time.

A more detailed break-down of experimental results by both size and length of preferences is given in
Appendix B.2.

4.10. Discussion
The experimental results showed that our new preprocessing techniques can significantly reduce the time

required to find optimal stable matchings, with a 44% reduction in running time on real-world instances with
the new improvements demonstrated in this paper. However, we also observed that the best preprocessing
technique varies depending on the instance or set of instances being solved.

In instances where preference lists were shorter, the new graph-based algorithms (P5 and P6) were
often not worth the extra computational cost, as the solution times were not affected by the addition of
preprocessing. However even when instances had longer preference lists, preprocessing was useful in reducing
the overall computation time to solve instances. One of the Skip-{5,15,50} preprocessing methods (P2, P3,
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Table 11: Results of solving MAX-HRT on 120 HRT-2S instances with 1500 doctors, and 150 hospitals sharing 1500 posts

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 120 120 53 53
P1 831 4.0% 2 120 120 54 56
P2 3862 9.1% < 1 120 120 43 43
P3 11282 25.7% < 1 120 120 24 25
P4 4373 11.0% 1 120 120 40 42
P5 12136 27.6% 30 120 120 23 54
P6 12136 27.6% 45 120 120 23 68

Table 12: Results of solving MAX-HRT on 120 HRT-2S instances with 3000 doctors, and 300 hospitals sharing 3000 posts

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 120 120 176 176
P1 1637 3.9% 4 120 120 181 185
P2 7778 9.1% 1 120 120 156 157
P3 22579 25.6% 2 120 120 79 81
P4 8820 11.0% 3 120 120 144 147
P5 24415 27.6% 224 120 120 95 319
P6 24415 27.6% 331 120 120 92 423

or P4) was often one of the better, if not the best choice, for preprocessing. However, we also see that the
performance of each of these three does vary, with Skip-15 performing worse than all other preprocessing
methods on MAX-WT-SMTI-GRP instances with κ = 2, but performing better on MAX-HRT-2S instances.
We expect that for certain sets of problems, there is some natural number n such that Skip-n is a good choice
for preprocessing, but said value of n may require tuning. In comparison, our new graph-based methods (P5
and P6) do not require any tuning, but are not always useful in solving instances generated at random. In
comparison, however, they are shown to be useful on the real-world instances, and on instances devised to
mimic real-world instances. We hypothesise that there is some structure present within these instances that
P5 and P6 are able to take advantage of, but we have been unable to precisely determine said structure.

For our real-world and randomly generated MAX-WT-SMTI-GRP instances, our new graph-based al-
gorithms (P5 and P6) were the best performers. The heuristics also generally improved performance, with
some exceptions. The removal of preference list entries can clearly reduce overall running times, however
there is not a clear and strong correlation between the number of entries removed, and either the overall
running time or the IP solution time.

The results on MAX-SMTI instances where candidates have preference lists of length 3 showed that for
these instances, preprocessing was not necessary. Indeed, the time taken to run either method P5 or P6

Table 13: Results of solving MAX-HRT on 120 HRT-2S instances with 4000 doctors, and 400 hospitals sharing 4000 posts

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 120 120 242 242
P1 2167 3.9% 6 120 120 310 316
P2 10242 9.1% 2 120 120 212 214
P3 30116 25.7% 3 120 120 183 186
P4 11662 11.0% 4 120 120 195 199
P5 32558 27.7% 516 120 120 167 683
P6 32558 27.7% 737 120 120 162 900

28



Table 14: Results of solving MAX-HRT on 120 HRT-2S instances with 8000 doctors, and 800 hospitals sharing 8000 posts

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 120 112 905 905
P1 4292 3.9% 18 120 117 854 873
P2 20644 9.1% 5 120 111 810 815
P3 60295 25.8% 8 120 118 726 734
P4 23341 11.0% 11 120 113 811 822
P5 61587 26.8% 1624 89 89 1138 1832
P6 60868 26.6% 2610 63 63 1779 2679

outstrips the time taken to solve any resulting IP model, with P6, in particular, taking over 40 times longer
to complete preprocessing than any IP model took to solve. When preferences are short, then, running
preprocessing is not as important. As candidates express more preferences, preprocessing can be useful, as
can the introduction of dummy variables in the IP models. There is a narrow band where using preprocessing
without dummy variables is important, but if dummy variables are used, candidates must express far longer
preferences for preprocessing to become useful. We show that when candidates express 100 or more (of 250
total) positions in their preference lists, using both dummy variables and one of P2 or P3 results in the
shortest overall time to find a solution.

When instances of HRT only allowed ties in the hospitals’ preferences, preprocessing had minimal impact.
However, when ties were present in the preference lists of the doctors, our new preprocessing allowed six
additional instances with 8000 doctors and 800 hospitals to be solved. Our preprocessing is shown to
consistently improve solution times, with a 53% reduction in average runtime on instances with 1500 doctors,
a 55% reduction in average runtime on instances with 3000 doctors, and 24% reduction in average runtime
on instances with 4000 doctors.

5. Conclusion

This paper has introduced a number of new preprocessing heuristics and algorithms for SMTI, as well
as the first known preprocessing techniques applicable to HRT with ties on both sides. In doing so, we
have given theoretical results extending the existing literature on preprocessing instances of both SMTI
and HRT. On instances of SMTI-GRP, we experimentally show that our new preprocessing methods are
faster by 44% on real-world instances, and continue to show improvement on randomly generated instances.
Further experiments show that, as expected, preprocessing has more impact when candidates express longer
preference lists. We also show that for instances of HRT with ties only present in the hospitals’ preference
lists, our new preprocessing techniques do remove more preference list entries than existing methods, but
performance is not noticeably affected. However our preprocessing techniques are the first that are applicable
when doctors are also allowed to express ties. In such instances, we are able to improve performance by
24–55% depending on the size of the instance, as well as solving 98% of instances with 8000 doctors that
mimic the real-world application involving the UK Foundation Programme, compared to 93% solved without
preprocessing.

Future work includes finding further real-world applications of HRT that would allow both hospitals and
residents to express indifference, and applying these preprocessing techniques to those problems. Prepro-
cessing may also be extended to matching problems with coalitions, the simplest of which is the extension
of HRT that allows couples to take part jointly.
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Appendix A. Proofs

We will prove Lemma 4 in this section, but first need an additional definition, the match profile. The
match profile of a position p in a given matching is a measure of how highly p ranks the candidates to which
it has been assigned.

Definition 3. Given an instance I of WFT, a matching M , and a position p, the match profile of p in M is
a vector (v1, v2, . . . , vr) where r is the maximum rank of a candidate in p’s list and each vi is a non-negative
integer such that vi = k if and only if M(p) contains exactly k candidates that position p lists in its i-th
rank.

Note that for any match profile (v1, v2, . . . , vr) for a position p, we have
∑

vi ≤ qp as a position cannot
be assigned more candidates than their quota allows. For any position p, the set of possible match profiles
for p is therefore finite and can be totally ordered in a lexicographic manner.

Example 11. Given the following preferences, if M(p1) = {c1, c3}, then the match profile of p1 in M is
(1, 0, 1).

p1 : c1 c2 [c3 c4]

p2 : c2 c3

c1 : p1

c2 : p1 p2

c3 : p1 p2

c4 : p2 p1

Next we give an algorithm to resolve a blocking pair in a matching where all current blocking pairs involve
a common and undersubscribed candidate c0. This algorithm adds a blocking pair to a given matching,
removing a different pair if a capacity is exceeded. This may create new blocking pairs, but all newly-created
blocking pairs must involve some common candidate c that is now undersubscribed (but previously wasn’t).
By repeating this process where necessary, the algorithm resolves all new blocking pairs, either producing a
stable matching or strictly increasing the number of positions assigned to c0.

Lemma 9. At any point while running Algorithm 3 with inputs I, M , and c0 that satisfy the requirements of
Algorithm 3, no position has fewer candidates assigned in M ′ than in M , and when the algorithm terminates
at least one position has a better match profile in M ′ than in M .

Proof. If line 9 is reached in the first iteration, the algorithm terminates after inserting the pair (c, p) and so
p has a better match profile and no other position has had any change to its assignments. We can therefore
assume without loss of generality that the algorithm reaches line 11. The algorithm then selects c′ from
M ′(p) as one of p’s worst assignees in M ′. As p is full, and (c, p) is a blocking pair of M ′, p must strictly
prefer c to c′. Therefore, line 12 strictly improves the match profile of p in M ′. No other line removes a
pair from M ′, so the match profile of p can never get worse, thus in each iteration the match profile of some
position p is strictly improved.

The following corollary is a consequence of Lemma 9 and the fact that the set of possible match profiles
for any position is finite and can be totally ordered.

Corollary 1. Algorithm 3 terminates.

Lemma 10. Running Algorithm 3 with inputs I, M , and c0 that satisfy the requirements of Algorithm 3
produces a matching M ′ such that any blocking pair of M ′ involves c0.

Proof. Assume towards a contradiction that M ′ has a blocking pair (c′, p′) with c′ 6= c0. As all blocking pairs
of M involve c0, it must be the case that (c′, p′) becomes a blocking pair at some point in the construction of
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Algorithm 3 Resolve a blocking pair
1: Input: An instance I of WFT, a matching M that is not stable, and a candidate c0 that is

undersubscribed in M , where each blocking pair of M involves c0
2: Output: A matching M ′ such that either (i) M ′ is stable, or (ii) |M ′(c0)| > |M(c0)| and each

blocking pair of M ′ involves c0
3: Let M ′ = M and c = c0
4: loop
5: Let PB be the set of positions that occur in a blocking pair with c in M ′

6: Let (c, p) be a blocking pair of M ′ that satisfies p �c pB for all pB ∈ PB

7: if p is undersubscribed then
8: Add (c, p) to M ′

9: return M ′

10: end if
11: Let c′ ∈ M ′(p) satisfy c′′ �p c′ for all c′′ ∈ M ′(p)
12: Remove (c′, p) from M ′, and add (c, p) to M ′

13: if M ′ contains no blocking pair involving c′ then
14: return M ′

15: end if
16: Let c = c′

17: end loop

M ′. Consider the earliest iteration of the main loop of Algorithm 3 for which (c′, p′) appears as a blocking pair
of the matching being constructed such that (c′, p′) remains a blocking pair until the algorithm terminates.
Let M ′′ be the matching as constructed just as (c′, p′) appears as a blocking pair.

The pair (c′, p′) must appear as a blocking pair in line 12, when c′ has one assignee removed, and
becomes undersubscribed. In particular, this means that c′ was full before line 12 (else (c′, p′) would already
be blocking) and thus after line 12 c′ is underscribed by exactly one position. Then in the next iteration
of the loop, c = c′, and a position p is chosen on line 6. As (c′, p′) has just appeared as a blocking pair,
and c = c′ in this iteration, we know that p′ 6≺c′ p, and as (c′, p′) was not blocking before line 12 in the
previous iteration, it must also be that there is no p′′ ∈ M ′′(c) such that p′ ≺c′ p′′. If p = p′, then the
algorithm adds (c′, p′) to M ′′, contradicting the fact that (c′, p′) remains a blocking pair for the rest of the
algorithm. However, if (c′, p) is added to M ′′ where p 6= p′, then we know that c′ is now full, and there is
no p′′ ∈ M ′′(c′)∪ {p} such that c′ strictly prefers p′ to p′′, but then (c′, p′) is no longer a blocking pair, also
a contradiction.

Lemma 11. Running Algorithm 3 with inputs I, M , and c0 that satisfy the requirements of Algorithm 3
produces a matching M ′ such that either M ′ is stable or |M ′(c0)| > |M(c0)|.

Proof. We see that the first iteration of Algorithm 3’s main loop inserts a pair (c, p) to M ′, where c = c0,
at which point |M ′(c0)| > |M(c0)| holds. We need to show that when the algorithm terminates, either this
still holds or M ′ is stable. From this point, at any point at which a candidate c′ has a position unassigned
(line 12) the algorithm either terminates as c′ is not involved in any blocking pairs, or assigns to c′ to some
other position (at either line 8 or line 12 in the next iteration where c = c′).

If the algorithm terminates after removing a pair (c0, p) without assigning some other position to c0,
then M ′ has no blocking pair involving c0, and in combination with Lemma 10 this means that M ′ has no
blocking pairs and is stable.

Otherwise, for any position unassigned from c0 some other position is assigned to c0 (in addition to the
first position p assigned at the start of this proof), and so |M ′(c0)| > |M(c0)|.

Lemma 4. Let I be an instance of WFT, let c be some candidate such that in any stable matching in I, c is
always full, let P be some set of positions such that if c is assigned to p in some stable matching of I then
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p is in P, and let I ′ be the instance of WFT created from I by marking as unacceptable to c any position
p+ that satisfies p ≺c p

+ for all p ∈ P. Then in any matching M that is stable in I ′, c is full.

Proof. Assume towards a contradiction that there is a matching M such that M is stable in I ′ but c is not
full in M . By the hypothesis of the lemma, M cannot be stable in I, since c is not full in M , so there must
be at least one pair that blocks M in I but not in I ′. By the construction of I ′, any blocking pair of M in I
must be a pair that was marked unacceptable when creating I ′ and therefore any such blocking pair of M
must involve c.

The previous paragraph shows that Algorithm 3 can be run on M in I with c = c0. By repeatedly calling
Algorithm 3 and applying Lemma 11, we can create a matching M ′ from M such that M ′ is stable in I.
Consider the last pair of the form (c, p) added to M ′ such that (c, p) remains in M ′ until M ′ is stable, and
let M ′′ be the matching as constructed just before (c, p) is added (i.e., as (c, p) is a blocking pair of M ′′).
We consider the following two cases: p is undersubscribed in M ′′, and p is full in M ′′. For either case, we
show that (c, p) must have been marked unacceptable in the construction of I ′.

If p is undersubscribed in M ′′, then by Lemma 9, p must also be undersubscribed in M . As M is stable
in I ′, and c is also undersubscribed in M , if (c, p) were not marked as unacceptable in the construction of I ′
then (c, p) would block M in I ′. Therefore, it must be that (c, p) was marked unacceptable to construct I ′.

Now assume that p is full in M ′′. Then, as (c, p) blocks M ′′, there is some c′ ∈ M ′′(p) such that p prefers
c to c′. By Lemma 9, the match profile of p in M ′′ must be at least as good as the match profile of p in M ,
so p must consider c′ to be at least as good as some candidate in M(p). That is, there must be a c′′ ∈ M(p)
such that c′ �p c′′, and so it follows that c ≺p c′′. Again, we see that for (c, p) to not block M in I ′, it must
be that (c, p) was marked unacceptable to create I ′.

We now know that (c, p) must have been marked unacceptable in the construction of I ′, and (c, p) ∈ M ′.
However, this means that p′ ≺c p for all p′ ∈ P. Thus, as M ′ is stable in I, this means that in a stable
matching of I, c is assigned a position not in P, which is a contradiction.

33



Appendix B. Additional result tables

Appendix B.1. HRT-1S
This section consists of Tables B.15, B.16, B.17, B.18, and B.19. These contain results of the experiments

on MAX-HRT1S, as discussed in Section 4.8.

Table B.15: Results of solving MAX-HRT on three real-world instances with approximately 750 doctors.

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 3 3 9 9
P1* 2675 58.5% < 1 3 3 6 6
P2 129 2.8% < 1 3 3 9 9
P3 1914 41.8% < 1 3 3 6 6
P4 1513 33.1% < 1 3 3 8 8
P5 2698 59.0% 1 3 3 6 7
P6 2700 59.1% 98 3 3 6 104

Table B.16: Results of solving MAX-HRT on 150 randomly generated HRT-1S instances with no master list.

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 150 71 2110 2110
P1* 10737 61.2% < 1 150 70 2087 2087
P2 1012 5.8% < 1 150 73 2117 2117
P3 6070 34.5% < 1 150 73 2053 2053
P4 3908 22.2% < 1 150 71 2079 2080
P5 10739 61.2% 4 150 71 2071 2076
P6 8017 53.9% 2422 67 55 2178 2608

Table B.17: Results of solving MAX-HRT on 150 randomly generated HRT-1S instances with a master list containing 5 distinct
scores.

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 150 131 656 656
P1* 10456 59.7% < 1 150 130 637 637
P2 637 2.9% < 1 150 130 659 659
P3 7209 41.7% < 1 150 131 646 646
P4 6015 35.2% < 1 150 129 653 654
P5 10464 59.8% 7 150 129 667 674
P6 7536 51.3% 2229 77 72 1787 2289

Appendix B.2. HRT-2S
The following tables (Table B.20 through to Table B.35) contain results of the same experiments as those

that produced Tables 11, 12, 13, and 14. These tables, however, are split up based not only on size, but also
on lengths of preference lists of the doctors.
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Table B.18: Results of solving MAX-HRT on 150 randomly generated HRT-1S instances a master list containing 15 distinct
scores.

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 150 150 5 5
P1* 13740 78.3% < 1 150 150 3 3
P2 3153 17.8% < 1 150 150 5 5
P3 11705 66.6% < 1 150 150 4 4
P4 11798 67.2% < 1 150 150 4 4
P5 13741 78.3% 3 150 150 3 6
P6 10353 68.9% 2377 67 67 1992 2377

Table B.19: Results of solving MAX-HRT on 150 randomly generated HRT-1S instances with a master list containing 25 distinct
scores.

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 150 150 1 1
P1* 14080 80.2% < 1 150 150 < 1 < 1
P2 3705 21.1% < 1 150 150 1 1
P3 12303 70.1% < 1 150 150 < 1 < 1
P4 12579 71.7% < 1 150 150 < 1 < 1
P5 14080 80.3% 2 150 150 < 1 3
P6 10779 71.1% 2314 82 82 1632 2314

Table B.20: Results of solving MAX-HRT on 30 HRT-2S instances with 1500 doctors expressing preferences of length 5, and
150 hospitals sharing 1500 posts

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 30 30 3 3
P1 497 6.6% < 1 30 30 2 3
P2 342 4.6% < 1 30 30 2 3
P3 897 12.0% < 1 30 30 2 2
P4 521 6.9% < 1 30 30 3 3
P5 952 12.7% < 1 30 30 3 3
P6 952 12.7% 6 30 30 3 8

Table B.21: Results of solving MAX-HRT on 30 HRT-2S instances with 1500 doctors expressing preferences of length 10, and
150 hospitals sharing 1500 posts

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 30 30 8 8
P1 770 5.1% < 1 30 30 8 8
P2 1127 7.5% < 1 30 30 8 8
P3 3002 20.0% < 1 30 30 6 6
P4 1465 9.8% < 1 30 30 7 7
P5 3195 21.3% 4 30 30 8 12
P6 3195 21.3% 15 30 30 7 22

35



Table B.22: Results of solving MAX-HRT on 30 HRT-2S instances with 1500 doctors expressing preferences of length 25, and
150 hospitals sharing 1500 posts

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 30 30 42 42
P1 990 2.6% 2 30 30 43 45
P2 4193 11.2% < 1 30 30 36 37
P3 11998 32.0% < 1 30 30 24 25
P4 4876 13.0% 1 30 30 34 35
P5 12867 34.3% 34 30 30 24 58
P6 12867 34.3% 52 30 30 22 74

Table B.23: Results of solving MAX-HRT on 30 HRT-2S instances with 1500 doctors expressing preferences of length 50, and
150 hospitals sharing 1500 posts

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 30 30 159 159
P1 1069 1.4% 5 30 30 162 167
P2 9785 13.0% 2 30 30 125 126
P3 29232 39.0% 3 30 30 63 66
P4 10629 14.2% 4 30 30 118 122
P5 31530 42.0% 81 30 30 60 141
P6 31530 42.0% 109 30 30 59 168

Table B.24: Results of solving MAX-HRT on 30 HRT-2S instances with 3000 doctors expressing preferences of length 5, and
300 hospitals sharing 3000 posts

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 30 30 10 10
P1 1004 6.7% < 1 30 30 9 10
P2 682 4.5% < 1 30 30 8 8
P3 1787 11.9% < 1 30 30 9 9
P4 1054 7.0% < 1 30 30 9 9
P5 1890 12.6% 3 30 30 13 17
P6 1890 12.6% 52 30 30 13 66

Table B.25: Results of solving MAX-HRT on 30 HRT-2S instances with 3000 doctors expressing preferences of length 10, and
300 hospitals sharing 3000 posts

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 30 30 23 23
P1 1523 5.1% < 1 30 30 23 24
P2 2216 7.4% < 1 30 30 23 23
P3 5932 19.8% < 1 30 30 20 21
P4 2912 9.7% < 1 30 30 21 22
P5 6291 21.0% 29 30 30 31 60
P6 6291 21.0% 123 30 30 32 155
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Table B.26: Results of solving MAX-HRT on 30 HRT-2S instances with 3000 doctors expressing preferences of length 25, and
300 hospitals sharing 3000 posts

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 30 30 109 109
P1 1931 2.6% 4 30 30 108 113
P2 8496 11.3% 1 30 30 101 102
P3 23728 31.6% 2 30 30 68 69
P4 9719 13.0% 3 30 30 96 99
P5 25491 34.0% 222 30 30 94 316
P6 25491 34.0% 370 30 30 91 461

Table B.27: Results of solving MAX-HRT on 30 HRT-2S instances with 3000 doctors expressing preferences of length 50, and
300 hospitals sharing 3000 posts

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 30 30 564 564
P1 2090 1.4% 12 30 30 581 594
P2 19720 13.1% 4 30 30 490 494
P3 58868 39.2% 6 30 30 218 224
P4 21593 14.4% 9 30 30 450 459
P5 63986 42.7% 640 30 30 243 884
P6 63986 42.7% 777 30 30 232 1008

Table B.28: Results of solving MAX-HRT on 30 HRT-2S instances with 4000 doctors expressing preferences of length 5, and
400 hospitals sharing 4000 posts

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 30 30 17 17
P1 1355 6.8% < 1 30 30 15 15
P2 931 4.7% < 1 30 30 16 16
P3 2413 12.1% < 1 30 30 14 14
P4 1422 7.1% < 1 30 30 16 16
P5 2566 12.8% 8 30 30 21 29
P6 2566 12.8% 142 30 30 21 164

Table B.29: Results of solving MAX-HRT on 30 HRT-2S instances with 4000 doctors expressing preferences of length 10, and
400 hospitals sharing 4000 posts

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 30 30 39 39
P1 2018 5.0% 1 30 30 38 39
P2 2993 7.5% < 1 30 30 38 38
P3 7982 20.0% < 1 30 30 34 34
P4 3873 9.7% < 1 30 30 38 39
P5 8493 21.2% 55 30 30 51 106
P6 8493 21.2% 290 30 30 51 342
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Table B.30: Results of solving MAX-HRT on 30 HRT-2S instances with 4000 doctors expressing preferences of length 25, and
400 hospitals sharing 4000 posts

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 30 30 169 169
P1 2542 2.5% 6 30 30 180 186
P2 11149 11.1% 2 30 30 132 134
P3 31797 31.8% 2 30 30 111 113
P4 12983 13.0% 4 30 30 143 147
P5 33994 34.0% 433 30 30 135 568
P6 33994 34.0% 798 30 30 129 927

Table B.31: Results of solving MAX-HRT on 30 HRT-2S instances with 4000 doctors expressing preferences of length 50, and
400 hospitals sharing 4000 posts

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 30 30 740 740
P1 2752 1.4% 18 30 30 1007 1025
P2 25895 12.9% 6 30 30 663 669
P3 78273 39.1% 9 30 30 575 584
P4 28371 14.2% 13 30 30 581 594
P5 85178 42.6% 1566 30 30 461 2027
P6 85178 42.6% 1719 30 30 448 2167

Table B.32: Results of solving MAX-HRT on 30 HRT-2S instances with 8000 doctors expressing preferences of length 5, and
800 hospitals sharing 8000 posts

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 30 30 37 37
P1 2689 6.7% < 1 30 30 39 40
P2 1862 4.7% < 1 30 30 35 35
P3 4823 12.1% < 1 30 30 33 33
P4 2818 7.0% < 1 30 30 34 35
P5 5114 12.8% 54 30 30 52 106
P6 5114 12.8% 1137 30 30 51 1188

Table B.33: Results of solving MAX-HRT on 30 HRT-2S instances with 8000 doctors expressing preferences of length 10, and
800 hospitals sharing 8000 posts

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 30 30 141 141
P1 4013 5.0% 3 30 30 142 145
P2 6010 7.5% < 1 30 30 141 142
P3 15945 19.9% 1 30 30 122 123
P4 7733 9.7% 2 30 30 143 145
P5 16911 21.1% 281 30 30 206 487
P6 16911 21.1% 2142 30 30 198 2339
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Table B.34: Results of solving MAX-HRT on 30 HRT-2S instances with 8000 doctors expressing preferences of length 25, and
800 hospitals sharing 8000 posts

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 30 30 804 804
P1 5063 2.5% 14 30 30 819 833
P2 22385 11.2% 4 30 30 679 683
P3 63629 31.8% 6 30 30 673 679
P4 25726 12.9% 9 30 30 744 753
P5 68243 34.1% 2562 29 29 693 3135
P6 68063 34.0% 3561 3 3 3267 3588

Table B.35: Results of solving MAX-HRT on 30 HRT-2S instances with 8000 doctors expressing preferences of length 50, and
800 hospitals sharing 8000 posts

Preprocessing method Times

Name Preferences
removed

Prop.
removed

Runtime
(s)

num.
comp.

num.
opt.

IP Solve
(s)

Total
(s)

P0 — — — 30 22 2636 2638
P1 5401 1.4% 56 30 27 2418 2475
P2 52318 13.1% 14 30 21 2385 2400
P3 156784 39.2% 24 30 28 2076 2100
P4 57087 14.3% 31 30 23 2324 2356
P5 156077 39.0% 3600 0 0 3600 3600
P6 153381 38.3% 3600 0 0 3600 3600
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