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Hull geometry optimisation of wave energy converters:
On the choice of the optimisation algorithm and the

geometry definition
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Abstract

It is key in the development of wave energy systems to aim at designing eco-
nomically competitive solutions that enable maximal annual energy production.
Previous studies identify the Wave Energy Converter (WEC) structure, i.e. the
hull, to have one of the largest cost reduction potentials. Due to this potential,
geometry optimisation of WECs has been previously considered, however, most
of these studies have been limited by the simplicity of the employed geometri-
cal shapes and the lack of accurate cost models. It is, therefore, important to
include an adaptable geometry definition capable of generating diverse WEC
shapes, and to account for other factors that can have an effect on costs. These
considerations result in a more challenging optimisation problem, and a more
complex objective function. The goal of this study is to address the challenge of
finding a suitable and efficient optimisation method for WEC geometry design.
In this paper, different geometry definitions, such as using simple shapes or
B-spline surfaces, and different meta-heuristic optimisation algorithms, such as
genetic algorithms or particle swarm optimisation are applied to this problem to
find the most suitable choices. Results show an improvement in final objective
function values of up to 224% when using an adaptable geometry definition and
up to 11% when employing the most suitable optimisation algorithm compared
to previous results.In conclusion, the choice of the different elements of the op-
timisation formulation have a large impact on the quality of the optimisation
results and should be based on preliminary studies as presented here.
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Nomenclature Definition Units
b Half beam m
d Draft m
f Objective function NA
g Gravitational acceleration m/s2

Ca Added damping kg/s, (kg m)/s, or
(kg m2)/s

Hm0 Significant wave height m
Ma Added mass kg, kg m, or kg m2

MaxGen Maximum number of iterations
defined for an optimisation

NA

NElite Number of elite individuals used
for reinsertion in genetic
algorithm

NA

NInd Number of individuals in
genetic algorithm

NA

NPair Number of pairings in genetic
algorithm

NA

NParents Number of parents in genetic
algorithm

NA

P̄ Mean annual power W
Ppm Power per metre crest length W/m
r Radius m
S Submerged surface area m2

Te Energy period s
V Submerged volume m3

vn Vertex NA
w Half width m
Z Device’s intrinsic impedance

matrix
kg/s, (kg m)/s,
and (kg m2)/s

Zc Control impedance matrix kg/s, (kg m)/s,
and (kg m2)/s

x Vector of decision variables NA
λ wavelength m
ϕ Acceleration constants in

particle swarm optimisation
algorithm

NA

ωe energy frequency of the sea state rad/s
ξ Device oscillation m
AES Average number of Evaluations

to a Solution
NA

CW Capture Width m
CWR Capture Width Ratio %
DoF Degree of Freedom NA
GA Genetic Algorithm NA
MBF Mean Best Fitness NA
PSO Particle Swarm Optimisation NA
PTO Power Take-Off NA
SR Success Rate NA
WEC Wave Energy Converter NA
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1. Introduction

High energy potential is found in ocean waves. For this reason, many differ-
ent types of Wave Energy Converters (WECs) have been developed, with the
goal of designing devices with reduced costs and increased annual energy produc-
tion. Design optimisation offers the opportunity to explore more of the design
space while avoiding expensive build and test iterations and it has been used to
improve energy efficiency of a range of commercially developed systems. It has
been applied, for example, to improve efficiency of buildings [1], hybrid solar-
wind generation plants [2], also in combination with storage technologies [3], or
Combined Cooling, Heating and Power (CCHP) systems [4]. This type of de-
sign optimisation is particularly relevant for emerging technologies such as wave
energy converters, where improved early stage designs have a great impact on
technology advancement towards commercialisation.

From previous studies, it is known that one of the largest cost reduction
potentials is associated with the Wave Energy Converter (WEC) structure, i.e.
the hull [5, 6]. Apart from the high capital expenditure associated with the
device hull, the geometry of the hull is crucial for the device hydrodynamics,
and thus for the annual energy production. The cost reduction potential and
key hydrodynamic characteristics associated to the device hull have resulted in
a number of device hull geometry optimisation studies, which not only aim at
maximising performance, but also minimising costs. A point absorber based
on simple hull shapes using cylindrical geometries was studied by Gilloteaux
et al. in [7] to understand the effect of different control strategies on optimal
device size. Kurniawan et al. optimised dumbbell-like shapes in [8] considering
their total surface area as a proxy for costs. In [9] using a similar methodology,
they optimised an oscillating wave surge device, where the position of the axis
of rotation was also considered as an optimisation variable. Costello et al. [10]
optimised a barge-shaped device using a detailed cost model versus a maximising
energy absorption only approach. Other types of devices such as two-body point
absorbers were optimised in a multi-objective optimisation set-up by Blanco et
al. in [11]. Oscillating Water Columns (OWC) have also been extensively studied
by Weber et al., for example, in [12]. Power Take-Off (PTO) systems and the
applied control strategies are also known to have a large impact on system
dynamics and the potential for cost reduction [5]. These systems have been
extensively studied and optimised, and some studies exist which simultaneously
optimise geometry and PTO-parameters, such as the one previously mentioned
by Gilloteaux et al. [7]. Due to their potential impact on system dynamics and
structural loads mooring lines have also been optimised, for example, in [13].

All of the above studies used geometry definitions based on simple shapes
such as cylinders, barges or ellipsoids. An approach capable of generating very
diverse shapes was developed by McCabe et al., using a more complex geometry
definition based on B-spline surfaces. An initial method applied to a surging and
pitching device was presented in [14]. The method was further developed and
applied to a surging only device in [15], where geometries were optimised using
a single-objective genetic algorithm. Shapes were optimised to maximise mean
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annual absorbed power, and mean annual absorbed power in combination with
the submerged volume. Complex shapes with high curvatures and thin cross-
sections resulted from optimisations using submerged volume in the objective
function, which might not be cost-effective to manufacture.

Results from previous studies are limited by the choice of geometry definition
and valid only for specific conditions. That is, resulting shapes might just be
optimal for very specific sea conditions, within previously selected base shapes
(e.g. cylinders), and for specific modes for power extraction; and they may
not be cost-effective to manufacture. It is, therefore, important to be able
to generate a diverse range of improved WEC designs while considering costs,
in order to explore more of the design space and identify promising solutions.
Having a more flexible and comprehensive optimisation set-up, however, makes
the optimisation problem more challenging, since the number of optimisation
variables and constraints is increased, and the objective function can become
more complex and time consuming to calculate. Ensuring convergence to a near
globally optimal shape, and achieving this within an acceptable timescale, is not
trivial and requires a thorough exploration of the optimisation algorithm.

There is a clear need for the development of a flexible and comprehensive
method for hull geometry optimisation, due to the relevance of design optimi-
sation tools at early design stages, the high cost associated with the structure
and the lack of a general methodology and best practices for WEC geometry
optimisation. As previously identified by Weber et al. in [16], this is key for the
advancement of wave energy technologies. Such a method for hull geometry op-
timisation represents a fundamental design aid for technology developers, but it
can also serve funding bodies to assess different technologies, since it will build
on a methodology for design comparison.

The present paper addresses this gap by finding a suitable and efficient op-
timisation method for WEC geometry optimisation. With this purpose, the
geometry definition and the choice of the optimisation algorithm are studied.
Different geometry definitions are compared: a hemisphere, a vertical cylinder,
a barge and bi-cubic B-spline surfaces. In addition, different objective func-
tions are considered based on the mean annual power P̄ , the submerged volume
V , and the submerged surface area S (P̄ , P̄

V
1
3
, P̄

V
2
3
, P̄V ,

P̄
S , and P̄

S
1
2

), for a device

oscillating in surge only, and in surge, heave and pitch. To find the most suit-
able optimisation algorithm for each case, a range of meta-heuristic algorithms
are applied to this problem, including different single-objective Particle Swarm
Optimisation (PSO) and Genetic Algorithm (GA) implementations.

First, the general formulation of the optimisation problem is introduced
in section 2.1 and some background is provided in section 2.2 by introducing
the method developed by McCabe in [14, 15] capable of generating very diverse
shapes, and which serves as a starting point for this study. The required assump-
tions and the verification of the re-implemented method are briefly discussed in
sections 2.3 and 2.4, respectively. The extensions that were used to increase its
robustness are presented in section 2.5. The enhanced method introduced here
is used as a baseline to analyse two main elements of the optimisation process:
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the optimisation algorithms and the geometry definition. The approach and
studied cases employed to investigate the most suitable optimisation algorithm
and geometry definition for wave energy converter geometry optimisation are
introduced in section 3. The obtained results are then discussed in section 4,
where first the most suitable algorithm for each of the studied cases is identified,
and then these are applied to optimisation approaches using different geome-
try definitions. The main conclusions drawn from this study are presented in
section 5.

2. Methodology

In this section, the basic formulation of the optimisation problem is intro-
duced. To be able to study the suitability of geometry definition and optimi-
sation algorithms for wave energy converter geometry optimisation, a baseline
method was used. Its implementation is discussed in this section. The method
was re-implemented based on two publications [14, 15]. Further considerations,
not mentioned in those two publications, were found necessary for the correct
functioning of the optimisation. Additionally, the original implementation was
applied to a surging only device, whereas the implementation used here applies
to devices oscillating in any degree of freedom or combination of degrees of
freedom. Although this is not the focus of this paper, the main characteristics
of this re-implemented method and an overview of the additionally required
considerations are introduced in the following for context and to facilitate re-
producibility.

2.1. Optimisation problem

A single objective optimisation problem is defined as a problem in which
the optimal values for a number of decision variables xi are searched so that
an objective function f(x) is minimised or maximised. The search space Ω, i.e.
the full range of possible decision variable values, is constrained through bounds
and non-linear constraints defining restrictions between certain variable combi-
nations. The solution space ∆ i.e. the space of feasible solutions for the studied
objective function, can be constrained by various equality gj and inequality hk
constraints. This is represented mathematically below in the standard form [17].

min f(x)

objective function:

decision variable:

equality constraint:

inequality constraint:

f(x), for f ∈ ∆

x = {x1, ..., xm} ∈ Ω

gj(x) = 0 for j = 1, .., n

hk(x) ≤ 0 for k = 1, .., o

(1)

A WEC geometry optimisation process is characterised by the way the geom-
etry is defined (including the decision variables), the objective function(s) used
to evaluate the generated geometries, and the optimisation algorithms applied
to select geometries and generate improved ones. An overview of the geometry
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optimisation process is given in Figure 1. Each of the main steps represented in
this figure are introduced in the subsequent sections.

Geometry Definition

Converged?

End

Start

Evaluation according to 

objective function

Generation of new 

solutions

Optimisation Procedure

Simple shapes: 

sphere, cylinder, barge

Adaptable geometry:

B-spline surface

Storing of best 

solutions

Yes

No

Single objective:

 P, P/V1/3,  P/V2/3, P/V, P/S, P/S1/2

PSOGA

Recombination and 

Mutation 

Ranking, Selection 

and Elitism

Global Best and 

Local Best update

Velocity and 

position update

Figure 1: Flow chart of the optimisation procedure, showing an overview of the studied ele-
ments. Both simple shapes and adaptable geometry definitions, as well as, Genetic Algorithms
(GA) and Particle Swarm Optimisation (PSO) algorithms are investigated in this study [18].

The focus of this paper is to study the suitability of different geometry defi-
nitions and optimisation algorithms. The studied areas are marked in Figure 1
with dashed lines. The considered geometry definitions comprise a hemisphere,
a vertical cylinder, a barge and bi-cubic B-spline surfaces. GA and PSO algo-
rithms are applied to the single-objective optimisation problem.

2.2. Re-implemented method

The method introduced by McCabe in [15] is used as a reference, due to the
ability of this method to generate very diverse shapes free of designer bias.

Geometry definition

The WEC hull geometry is defined based on a polyhedron with an x-z-
symmetry plane. As shown in Figure 2, the corner points are used as vertices,
between which further control points are defined through interpolation. The
surface is then approximated by bicubic B-spline surfaces. Some of the vertices’
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coordinates are fixed, since the vertices lie on the free surface or on the symmetry
plane, but the rest (22 in total) can be changed randomly within defined ranges.
Note that spherical coordinates (rn, θn, φn) are used for each vertex Vn.

z

x y

v4

v2
v11

v5

v6

v10

v8

v7

θ

ϕ
v9

v1
v3

z

y
r

z

yr

d

z

x y
d

b w

Figure 2: Geometry definition based on a polyhedron with numbered vertices Vn and vertex
coordinates (rn, θn, φn). Additionally, some example representations of interpolated points
are shown in grey [18], adapted from Figure 1 in [15].

Geometry evaluation according to the objective function

In McCabe’s original implementation [15] shapes were optimised to maximise
P̄ , P̄ /V and P̄ / 3

√
V . All objective functions, hence, include the mean annual

power P̄ , produced by the wave energy converter. The power calculation pro-
cedure, as well as the scatter diagram for the considered location can be found
in [15]. The hydrodynamic model and the transfer of the method in [15] to a
multiple modes-of-motion oscillating WEC is presented in [19]. An overview
is provided here for completeness. The hydrodynamic model is based on the
assumptions that ocean waves can be described using potential flow theory (i.e.
irrotational flow, and inviscid and incompressible fluid), wave heights are small
relative to the wave length, and body oscillations are also small. This means
that linear wave theory can be applied, and the system oscillations can be de-
scribed as the superposition of multiple harmonic oscillations. Furthermore, the
system is assumed to have reached steady-state oscillatory motion. Based on
these assumptions the system can be described in the frequency domain.

The mean annual power is calculated for a particular site and WEC geome-
try. The wave energy resource is represented with irregular uni-directional waves
in a fully developed sea using a Bretschneider spectrum [20]. The algorithm is
implemented in Matlab and uses WAMIT - a frequency-domain program based
on a Boundary Element Method (BEM)-, to calculate the hydrodynamic char-
acteristics for each shape based on the frequencies selected to represent the
spectrum. A frequency range from 0.02 to 3 rad/s is considered. The yearly
average power is obtained with the sea states occurrence matrix. The volume
for each geometry can be obtained from WAMIT.
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For power absorption, a semi-optimal linear control is used, that brings
the device’s natural frequency to match the energy frequency of the sea state
ωe = 2π

Te
calculated as in [21]. The corresponding control force is composed of

constant inertia, damping and stiffness terms, which are defined according to
[22] so that the control impedance matrix Zc equals the complex conjugate of the
device’s intrinsic impedance Z∗ at the energy period, where ∗ denotes complex
conjugate. The application of this control strategy results in an equation of
motion which is independent of the hull’s inertia and hydrostatic stiffness.

Despite using a frequency-domain hydrodynamic model, the time series of
the device oscillation and of the instantaneous power are calculated to be able
to apply stroke and PTO rating constraints. The instantaneous power absorbed
by the PTO is set to zero if the device oscillation is outside of the predefined
stroke limits, and is set to the maximum power limit given by the PTO rating,
if this rating is exceeded. This analysis is performed for N time steps with
∆t = 0.2s and tN ≈ 2π

∆ω . This results in a non-repeating time series.
The geometry is considered to be an infeasible solution, if the final an-

nual power production is negative or if it exceeds the maximum capture width
CW,MAX of an axisymmetric body for the available power per meter crest length.
CW,MAX can be calculated for different combinations of modes of motion accord-
ing to [22]. For the surge; and surge, heave and pitch cases studied, CW,MAX

equals λ/π and 3λ/π, respectively. λ here represents the wavelength calculated
from the energy period for each sea state. Although the bodies considered in
the present implementation are not axisymmetric, this upper bound also serves
the present case by ensuring that the calculated average power per sea state
does not surpass the theoretical limit of average power available in the sea.

Parameter constraints

Parameter constraints common to all optimisation problems are summarised
here. PTO stroke constraints ξMIN (i) and ξMAX(i) are applied on each degree-
of-freedom. In addition, a PTO rating PPTO,MAX is enforced. The device’s
submerged volume V is constrained to avoid the optimisation to converge into
very large or very small shapes. The mean power production is restricted by
the capture width CW,MAX of an axisymmetric body depending on the modes
of motion and the power per metre crest length Ppm available in the considered
sea state. These constraints are listed below and, when applicable, they were
mentioned at the corresponding stage of the geometry evaluation.

ξMAX(i) = 5m; 10m | i = 1, 2, 3

ξMAX(i) = π/4 | i = 4, 5, 6

ξMIN (i) = −ξMAX(n) | i = 1, 2, 3, 4, 5, 6

PPTO,MAX = 2.5MW ; 5MW

250m3 ≤ V ≤ 4000m3

0 MW ≤ P̄ ≤ CW,MAX · Ppm

8



From the results in [15] it can be observed that differences in ξMAX(i) and
PPTO,MAX result in larger or lower mean annual power production values, but
do not have a significant effect on the resulting shapes. For this reason, if not
otherwise specified, ξMAX(i) = 5 m | i = 1, 2, 3 and PPTO,MAX = 2.5 MW were
used for the optimisation runs performed within this study.

Optimisation procedure

In the previously mentioned studies, both meta-heuristic optimisation meth-
ods such as genetic algorithms [23, 8, 9, 14, 15], and evolutionary algorithms [11]
have been used. Additionally, exact methods based on direct search approaches,
such as the simplex algorithm [7] or the simple pattern search [10] have been
applied. Gomes et al. [24] apply both exact and meta-heuristic methods to the
geometry optimisation problem. For problems with a reduced number of op-
timisation variables, as was the case in [7] and [24], exact methods might be
able to provide optimal solutions with less computational effort. However, as
the geometry definition and the objective function become more complex, meta-
heuristic methods have a high potential to perform better, as they have proven
to be more suitable for finding good enough solutions for complex problems
within an acceptable time scale [25]. That is, in cases where the objective func-
tion has multiple maxima and minima, meta-heuristic algorithms have proven
to perform a more effective search of the solution space and to be more likely
to find global optima when compared for instance to gradient based methods.
Through their strategic stochastic approach, meta-heuristic algorithms are less
dependent on previously analysed solutions. Additionally, in cases where the ob-
jective function is not differentiable, for example, due to discontinuities caused
by the applied constraints, gradient methods cannot be employed. It was also
discussed in [26], that meta-heuristic methods are particularly suitable for this
application when compared to gradient based methods, due to spurious oscilla-
tions found in the objective function, as a result of the numerical approximations
employed in the hydrodynamic model.

In the original implementation, genetic algorithms are used which are based
on evolution theory featuring the survival of the fittest individuals within a pop-
ulation. The initial population - composed of a defined number of individuals
(NInd) - is a set of WEC shapes, in this case, represented by random com-
binations of the optimisation variables described earlier. The geometries are
assessed based on the objective function and are assigned a fitness value accord-
ing to Baker’s linear ranking algorithm [27]. A number of individuals in each
generation are selected through Stochastic Universal Sampling to pair by Inter-
mediate Recombination [28] (NParents), which create a defined number of new
individuals - depending on the number of pairings per individual (NPairings) -
that will carry forward their genetic information. Some characteristics of these
new individuals are mutated using the Breeder Genetic Algorithm Mutation [28]
with a mutation rate of three over the number of variables (Nvars) to ensure
that further characteristics that might improve the individual’s fitness and that
were not present in the first generation can be evaluated. Mutation helps to
search more of the solution space and avoids convergence on a particular lo-
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cal optimum. To keep all characteristics of the best performing individuals in
the following generations, a number of the fittest individuals of the assessed
generation (NElite) are reinserted in the following one - this is known as Elite
Reinsertion. To keep the population size constant throughout all generations
only NInd −NElite children are selected for reinsertion. The new generation is
then again assessed based on the objective function. In the original implemen-
tation this process was iterated 50 times in four separate optimisation runs, and
the 22 best individuals of the four runs were then used in a further optimisation
run with 50 more generations.This involves 5010 function evaluations.

2.3. Implementation details and assumptions

The higher-order method in WAMIT was employed, which uses B-splines
instead of piecewise-constant values across discretization areas to represent the
velocity potential on surfaces in a continuous manner. To achieve this, the
characteristics of the employed B-splines need to be defined. Splines of order
k = 4 are used, and the orders of Gauss quadrature used for the inner and outer
integrations are defined based on this as k and k+1, respectively, as described in
the manual [29]. The number of subdivisions defined in WAMIT is equivalent to
the number of knot spans in a B-spline. See [30] for the used B-spline definition
in WAMIT, which is based on [31].

In [15], McCabe mentions the use of the iterative solver in WAMIT. However,
when using the higher-order method, the WAMIT manual [29] does not recom-
mend the use of the iterative solver, due to a decrease in convergence. For this
reason and after the iterative and block-iterative solvers proved to have conver-
gence difficulties, the direct solver was used. Since convergence to the analytical
solution is not ensured by the direct solver, a convergence study was performed
for different optimised geometries by altering the number of B-spline subdivi-
sions and comparing to low-order results. Based on these results, to achieve
a good trade-off between calculation accuracy and run time, two patches were
defined one for the submerged surface (Patch 1) and one for the interior free
surface (Patch 2), each with 13 subdivisions in the parametric direction u, and 3
subdivisions in the parametric direction v, following WAMITs definition of the
parametric directions. A representation of a hull defined with this method is
shown in Figure 3, where the two patches and their defined parametric directions
can be identified.
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Figure 3: Example hull geometry approximated with two B-spline surfaces, identified as Patch
1, and Patch 2. The parametric directions u and v as defined for each patch are also represented
here [18].

For all runs the irregular frequency removal option of WAMIT was used.
This prevents the optimisation algorithm from converging on solutions that
generate numerical errors due to irregular frequencies in WAMIT.

2.4. Method verification

The method in [15] was re-implemented and verified. In this process some
extensions were found necessary for the optimisation problem to be robustly
defined. An overview of the performed studies within this work to verify and
expand the re-implemented method is provided in this and the following sub-
sections. The main additional requirements discussed here are: 1) Additional
constraints needed to be defined to ensure that the generated shapes were closed
and not self-crossing. 2) A number of error checks needed to be introduced to
avoid the optimisation from selecting shapes that generated numerical errors
in the calculation of the hydrodynamic coefficients. These extensions were key
in allowing for the investigation of the most suitable geometry definitions and
optimisation algorithms, since with the more complex and adaptable geome-
try definition, these improved implementations challenged the optimisation to
search more of the design space. This improved search increased the proba-
bility of generating solutions that produced unexpected errors. Additionally,
the enhanced method discussed here is applicable to any degree-of-freedom. In
summary, these extensions increase the robustness of the optimisation approach,
since they enable the application of the method to a much wider range of prob-
lems of WEC design optimisation.

With regards to the geometry definition, the interpolation strategy repre-
sented in Figure 4 for a set of points had to be modified for the geometry to be
closed. With reference to Figure 2, the φ value of points interpolated between
vertex V7, and the vertices V5, V6, V10 and V11 was not interpolated but the
φ value of the latter vertices was adopted. For example, φ7−5 = φ5. This is
because φ7 is defined to be zero. In the case of the point interpolated between
vertex V7 and vertex V11, not doing the above results in a geometry that does
not close, because the interpolated points do not lie on the symmetry plane.
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Figure 4: Interpolation scheme for the generation of additional points for the B-spline approx-
imation based on the polyhedron vertices [18], adapted from [14].

To reproduce McCabe’s results, first the power calculation was verified with
one of the benchmark shapes described in [15], as well as one of the resulting
optimal geometries. The optimal geometry resulting from power maximisation
in the case of a maximal power restriction on the PTO of 5MW and a maximal
stroke of 5m (see Figure 3 and associated text in [15]) approaches a hemispher-
ical shape. The power calculation results show good agreement with McCabe’s
results with a percentage difference of around 6.3%. To understand the source
of the variation, a study was performed here to obtain the percentage devia-
tion due to the use of random phase shifts for the superposition of the spectral
components of the waves. The percentage deviation due to varying phase shifts
in each power calculation was found to be only 0.1-0.2%. Additionally, the
error introduced by eliminating frequencies between 3 and 4 rad/s in the spec-
trum representation, which were considered in [15], and using a step size of
0.2s instead of 0.05s was studied. This was found to result in a difference in
the calculated power of only 0.14%. According to these results, the average
power is underestimated in comparison to McCabe’s results with a percentage
difference of 6%. This is considered an acceptable difference, which can stem
from differences in the numerical implementation, such as the WAMIT set-up,
including the choice of solver and the resolution of the analysis, which was de-
scribed in more detail in section 2.3. The differences can also originate in the
implementation of the power calculation, such as in the choice of the time step
size for the evaluation of the instantaneous power. This is mentioned in [19].

After verification of the geometry definition and the power calculation, the
optimisation process was tested for the three objective functions described in [15].
It was found that a number of extensions were necessary to ensure a robust op-
timisation set-up, which are detailed in the following section. Through a new
verification of the optimisation process, it was proven that the introduced ex-
tensions did not affect the ability of the optimisation process to converge into
the same type of optimal solutions as before the extension. The obtained mean
annual power values with objective function −P̄/V were, however, only about
60% of the values obtained by McCabe. Although this cannot be concluded
from the work presented in [15], this could be due to the shapes obtained by
McCabe being self-crossing and generating numerical errors in WAMIT, which
resulted in erroneously high mean annual power values.
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2.5. Method extensions

The required extensions to the method, as detailed in [15], are presented
here.

2.5.1. Geometry definition

It was found that the definition of the geometry was not robust enough, and
that self-crossing geometries could result if no further constraints were defined.
An example of such self-crossing geometries is shown in Figure 5. To avoid
self-crossing geometries from being generated in the optimisation process, the
range of φn for n = 2, 5, 8, 10 was constrained. This was done so that vertices
V2 and V5 were always in octant ‘V (+x +y -z)’, and V8 and V10 in octant ‘VI
(-x +y -z)’:

π

16
≤ φn ≤ π/2 for n = 2, 5

π

2
≤ φn ≤ 15π/16 for n = 8, 10

(a) (b)

Figure 5: Example of a self-crossing geometry resulting from an optimisation with the re-
implemented method with objective function −P̄ /V . (a) Complete submerged. The blue
arrow indicates wave direction [18]. (b) Hull cut at z=-4 m [18].

2.5.2. Numerical errors

Some geometries caused numerical errors in the estimation of the hydro-
dynamic coefficients in WAMIT, which can missguide the optimisation search.
To avoid this from happening, multiple checks were introduced after the hy-
drodynamic coefficient calculation, so that shapes generating these errors are
penalised and no objective function evaluation is performed for them. The error
checks were implemented so that they should detect any faults in the geometry
evaluation without unnecessarily reducing the feasible solution space. It was
also necessary to keep the process computationally efficient. Defective geome-
tries were identified and not evaluated. Various implementations and thresholds
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were tested to ensure their effectiveness. This was done by 1) applying the dif-
ferent implementations to preliminary optimisation results, and 2) running the
optimisation with the various implementations that proved to work in the first
step. The numerical checks introduced in the following paragraphs were found
to give the best trade-off in the fulfilment of these requirements.

A first check for WAMIT convergence consists in comparing the displaced
volume calculated automatically by WAMIT using three separate approaches.
For this reason, the three values of the volume are compared in the first instance.
If any of the three volumes differs by more than 2% from their mean value, the
geometry is penalised by setting P̄=0, V=Inf and S=Inf.

For certain shapes and numbers of patch subdivisions for the calculation of
the velocity potential, some diagonal terms of the damping coefficient matrix
attained negative values at some frequencies. This could result in an erro-
neous power calculation or could be indicative of non-converged results for the
hydrodynamic coefficients. To avoid the selection of geometries resulting in er-
roneously high power values, the lowest value of the added damping coefficient
over all frequencies Ca,MIN = min(Ca(ω)) is evaluated in relation to the high-
est value Ca,MAX = max(Ca(ω)). This is done for each diagonal term (i.e.
degree of freedom) separately. If the value is sufficiently negative (Ca,MIN <
0 and |Ca,MIN | > Ca,MAX · 10−2), the geometry is penalised. If, however, the
value is small and negative (Ca,MIN < 0 and |Ca,MIN | ≤ Ca,MAX · 10−2), diag-
onal added damping coefficient values for each frequency are evaluated and if
they are negative they are set to zero.

A specific combination of vertices can also result in numerical errors in
WAMIT. To be able to identify these combinations and discard the associated
geometries, the following approach was taken. Firstly, the Degrees of Freedom
(DoFs) at which the highest Ma,MIN/Ma,MAX and Ca,MIN/Ca,MAX ratios oc-
cur are identified as DoFMa,MAX

and DoFCa,MAX
, respectively. The frequencies

at which these occur are also established ωMa,DOFMAX
and ωCa,DOFMAX

. Then
the coordinates of the vertices describing the geometry are varied slightly (by
multiplying them with 1.0001). At the previously identified DoFs and frequen-
cies, the maximal values of the added mass (Ma,DOFMAX) and added damping
(Ca,DOFMAX) coefficients are compared to equivalent coefficient values obtained
for the sightly varied geometry (Ma,check and Ca,check). If the difference be-
tween Ma,check and Ma,DOFMAX , or Ca,check and Ca,DOFMAX is greater than
0.1 ·Ma,DOFMAX or 0.1 · Ca,DOFMAX , respectively, the geometry is penalised
and the objective function is not evaluated.

For some geometries, despite having positive added damping values, the hy-
drodynamic coefficients varied so widely when analysed with different numbers
of B-spline subdivisions, that the calculated average power showed large fluc-
tuations. In some other cases, WAMIT happened to run with a set number of
subdivisions, but did not run for many of the other combinations. Since WAMIT
convergence cannot be proven in these cases, geometries exhibiting this type of
behaviour should not be considered. With this purpose, two additional reso-
lutions ((14,14,4,4) and (12,12,4,4)) for the WAMIT solution were used, and if
any of the mentioned issues were encountered in both cases, geometries were pe-
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nalised and not evaluated further. The resolutions are denoted by ‘the number
of knot spans in u-direction for patch 1, the number of knot spans in u-direction
for patch 2, the number of knot spans in v-direction for patch 1, and the number
of knot spans in v-direction for patch 2’.

3. Study cases

In this section, the studied cases and approaches employed to investigate
the most suitable choice of optimisation algorithm and geometry definition for
WEC geometry optimisation are introduced. The objective functions used to
study both choices are introduced first. Then the approach to find the most
suitable optimisation algorithm is presented. The most suitable optimisation
algorithms were then used to identify the most suitable geometry definition.
Small modifications to the most suitable optimisation algorithms had to be
considered for the different geometry definitions, which are also reported here.

3.1. Geometry evaluation according to the objective function

Multiple metrics have been analysed on their suitability for comparison of
WECs [32, 33], where the Levelised Cost of Energy represents the ultimate met-
ric for this purpose, because it depicts the price of energy generation for a certain
technology. However, this is very difficult to quantify reliably due to lack of data
and experience at initial stages of a WEC design process. For this reason, alter-
native metrics have been previously used for WEC comparison, such as, mean
annual power and annual energy production [7, 24], Capture Width (CW) [34]
or Capture Width Ratio (CWR) [35, 36, 37]. Although when compared to CW,
CWR takes into consideration device size in the objective function, and this
avoids the optimisation from converging on very big devices, the definition of
a characteristic length for different types of devices is not straightforward. A
few different metrics are selected here to assess how optimal geometries vary
depending on the selected metric and on the choice of the device’s characteristic
size. In this way, their suitability as the objective function of a WEC optimisa-
tion process can be assessed. An overview is given below, where P̄ represents
the mean annual power, V the submerged volume, and S the submerged surface
area. P̄ is calculated here for a site off the West-Shetland shelf employing the
scatter diagram in [15].

The annual average power and the displaced volume V were employed in the
objective functions of the original implementation [15], where the volume’s cubic
root was used as a proxy for a characteristic length. The following objective
functions are, therefore, minimised in the optimisation process:

f1 = −P̄ = f(x1, x2, ..., x22), (2)

f2 = − P̄
3
√
V

= f(x1, x2, ..., x22), (3)
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f3 = − P̄
V

= f(x1, x2, ..., x22), (4)

New objective functions are introduced based on the actual submerged sur-
face area S, where its square root is also used as a proxy for a characteristic
length, and the displaced volume raised to the power of 2/3 is used as a proxy
for the submerged surface area. These objective functions are also set to be
minimised within the optimisation process.

f4 = − P̄

V 2/3
= f(x1, x2, ..., x22) (5)

f5 = − P̄
S

= f(x1, x2, ..., x22) (6)

f6 = − P̄√
S

= f(x1, x2, ..., x22) (7)

3.2. Optimisation Algorithms

Different optimisation algorithms can be more suitable for different types of
problems, and their set-up and parameter tuning will have an effect on their
efficiency and effectiveness. Meta-heuristic methods are more suitable to solve
complex problems with many optimisation variables, since they are generally
able to find a good enough solution within an acceptable time scale, whereas the
computational time required with exact methods increases rapidly with problem
complexity [25]. For this reason, two meta-heuristic optimisation algorithms are
applied to this study, particle swarm optimisation and genetic algorithms. Each
of these algorithms is implemented with various setting variations to be able to
identify the better performing combination of parameter values.

To find an implementation that is capable of achieving better results with
less function evaluations, a different approach than presented in section 2.2 as
used by McCabe is applied here. The optimisation process is iterated until a
maximum number of generations (MaxGen = 100) is reached, after which it
is hoped that the genetic algorithm will converge on a relatively optimal WEC
shape. Additionally, another termination criterion was introduced, so that if the
objective function integer, calculated in [W] and [m], does not improve over 20
generations after a minimum of 50 generations, the optimisation is considered
to have converged.

Genetic Algorithm

Genetic Algorithms (GAs) were introduced in section 2.2 with the re-implemented
method. Genetic algorithms are implemented based on the GA Toolbox from
the University of Sheffield [38]. The considered parameter variations are listed
in Table 1.
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Table 1: Overview of GA implementations based on different parameter combinations.

Implem. NInd NParents NPairings NElite
1 [15] 22 10 2 2

2 22 20 1 2
3 44 42 1 2
4 44 40 1 4
5 22 20 2 2

Particle Swarm Algorithm

Particle Swarm Optimisation (PSO) is based on the behaviour of bird flock-
ing and fish schooling, where solutions of the optimisation problem are repre-
sented by particles moving in space. The position of a particle i is described by
vector xi ∈ Rn and its movement by vector vi ∈ Rn. In each optimisation step
t each particle changes its position and velocity based on: its previous position
xi(t− 1) and velocity vi(t− 1); its best previous position pi; and the best posi-
tion found in the swarm so far pg according to equations (8) and (9), where a
weighting of the particle’s inertia through an inertia factor ϕic is included.

xi(t) = xi(t− 1) + vi(t). (8)

vi(t) =ϕic · vi(t− 1) + ϕ1 · rand1 · (pi − xi(t− 1))

+ ϕ2 · rand2 · (pg − xi(t− 1)).
(9)

Acceleration constants control the weight of the local and global best values
in the update formula. Limits for the sum of these parameters were defined
following the recommendations by Perez et al. [39] to ensure stability of the
algorithm.

0 < ϕ = ϕ1 + ϕ2 < 4 (10)

The inertia factor is defined as in equation (11), so that it increases in each
generation (Gen) [39]. This is because it is assumed that towards the end of
the optimisation process less exploration of the solution space will be required
and the solutions will be already converging towards an optimum, around which
more exploitation will be beneficial.

ϕic = ϕic,high − ϕic,low ∗ (Gen− 1)/(MaxGen− 1). (11)

Two options for the calculation of the inertia lower and upper limits are used.
In option #1 the limits are fixed following the recommendation in [40] with:

ϕic,upper = 0.9; ϕic,lower = 0.4.

In option #2 the limits are defined based on the attraction factors ϕ1 and ϕ2

following the recommendation in [39]

ϕic,lower = (ϕ1 · ϕ2)/2− 1; ϕic,upper = max(0.9, ϕic,lower).
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How constraint variations are dealt with can be defined in different ways. Here
two options are considered: ‘absorb’, where the velocity is set to 0, and ‘reflect’,
where the velocity is set to the negative of the current velocity. In both cases,
the optimisation variable exceeding the bounds is set equal to the exceeded
bound.

The implementation of this algorithm is based on the code given in [41]. This
implementation uses a global best topology, and includes an inertia weight in
the update function. The considered parameter variations are listed in Table 2.

Table 2: Overview of PSO implementations based on different parameter combinations.

Implem. NInd ϕic ϕ1 ϕ2 ϕ Constraint
1 22 #1 0.5 1.25 1.75 ‘absorb’
2 44 #1 0.5 1.25 1.75 ‘absorb’
3 66 #1 0.5 1.25 1.75 ‘absorb’
4 22 #1 0.5 1.25 1.75 ‘reflect’
5 22 #1 1.25 0.5 1.75 ‘absorb’
6 22 #1 0.5 0.5 1 ‘absorb’
7 22 #1 1.25 1.25 2.5 ‘absorb’
8 22 #1 2 2 4 ‘absorb’
9 22 #2 0.5 1.25 1.75 ‘absorb’

Performance indicators

To evaluate the performance of a single-objective optimisation algorithm
different indicators can be used. Because of the stochastic nature of most meta-
heuristic algorithms, multiple runs of the same algorithm are required to es-
timate their performance. Each case is run three times, to allow for a fairer
comparison of the algorithm performance. For context, when new algorithms
are introduced it is common practice to repeat runs around 100 times for a
fair algorithm comparison. In this case, proven algorithm implementations are
applied, so that the use of three repetitions is considered sufficient to be able to
recognise advantageous and disadvantageous trends of the different implemen-
tations. Once advantageous trends have been recognised, further repetitions of
the better performing algorithm implementations could be carried out for more
detailed comparison.

According to [42], the metrics commonly used as indicators for algorithm
performance are:

• Mean Best Fitness (MBF)
MBF is used to measure the effectiveness or solution quality of the al-
gorithm. It employs the average of the best objective function value at
the end of the optimisation run for multiple runs of the same algorithm
set-up.

• Average number of Evaluations to a Solution (AES)
AES is a measure for algorithm efficiency or speed, independent from the
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used hardware. Given that the required result of the search is known,
the number of function evaluations until the successful solution has been
found is used. This value is averaged over a set of successful runs.

• Success Rate (SR)
SR is a measure for the robustness of the algorithm. It can be calculated
as the percentage of runs that find a solution of the required quality. This
is applicable to cases where the optimal solution can be identified or a
criterion such as a threshold describing sufficient quality of the solution
can be defined.

Since the optimal solution is not known, instead of the Average number of
Evaluations to a Solution (AES), the averaged best objective function value is
plotted here against the number of function evaluations as an indicator of the
algorithm efficiency. With the same reasoning, the Success Rate (SR) cannot
be quantified. For this reason, a threshold for each objective function is defined,
to identify successful solutions. For the objective functions used by McCabe,
the best objective function values achieved in the runs using his optimisation
algorithm set-up with the extended implementation of the method are used as
thresholds. For the other cases, a 5% deviation of the best objective value
achieved over all runs is used as the threshold value. In both cases, these are
referred to as the ‘Threshold’ in the results. When comparing with McCabe’s
results (indicated as ‘McCabe’ in the results), as well as with the results from
the extended method, it should be considered that, due to the optimisation
set-up, those final objective function values were achieved after 5,010 function
evaluations. The Mean Best Fitness (MBF) is calculated from the best objec-
tive function values at the end of the optimisation process. For both the AES
equivalent and MBF, the absolute values of the objective function results are
used in the discussion of the results, since they were just set to be negative so
that the optimisation is formulated as a minimisation problem.

3.3. Geometry definition

Four different geometry definitions are used, to identify their limitations and
suitability for different problems. These are represented in Figure 6, with two
axisymmetric floaters: a) a hemisphere, and b) a vertical cylinder; and two x-z
plane symmetric bodies: c) a barge and d) a B-spline surface approximating
vertices of a polyhedron as in [15]. For an equitable comparison between the
different cases, the variable bounds used for the simple shapes are comparable
to those used for the B-spline approach, and are summarised in Table 3.

The most suitable optimisation algorithms found for each case were applied
when investigating the suitability of the geometry definitions. Due to the lower
number of decision variables some of the algorithm parameters needed to be
adjusted.

The adapted PSO implementations vary only in the number of variables and
individuals, but in the case of the GA implementations, equivalent parameter
definitions had to be defined, which are represented in Table 4. The number of
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Figure 6: Geometry definitions [18]: a) Hemisphere, b) Vertical cylinder, c) Barge, d) Poly-
hedron defining B-spline surface with numbered vertices and example representations of the
interpolated points in grey (Adapted from Figure 1 in [15]). The x-z plane is assumed to be
a symmetry plane.

Table 3: Overview of optimisation problem formulations using different geometry definitions.

Geometry
Definition

Decision
Variables

Variable Bounds

a r 2.5m ≤ r ≤ 12.5m
b r, d 2.5m ≤ r, d ≤ 12.5m
c w, b, d 2.5m ≤ w, b, d ≤ 12.5m

d [15] 22
coordinates

2.5m ≤rn ≤ 12.5m

−7π/16 ≤θn ≤ −π/16

π/16 ≤φn ≤ 15π/16

| n = 1, .., 11

| n = 4, 5, 6, 10, 11∣∣ n = 2*, 3, 5*, 6, 8*, 10*

* More restrictive bounds were applied in these cases, see section 2.2.

individuals was taken as 12 for the cases where 22 individuals had been used
before, and 24 for the cases where 44 individuals had been employed. This
is to ensure a minimum number of individuals in the population, since one to
three individuals (equalling the number of optimisation variables) would not be
enough for a population based optimisation algorithm to function correctly.

Within the genetic algorithm implementations, the mutation rate cannot
be defined as before in dependence of the number of variables and is defined
instead through a constant rate of 3/11. In this way, in average the one (for the
hemisphere) to the three (for the barge) genes have 3/11 probability of being
mutated. This is, the mutation of one of the genes of three individuals out of
11 per generation can be expected for the one variable case, of one gene of six
individuals for the two variable case, and of one gene of nine individuals for the
three variable case.
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Table 4: Summary of GA equivalent implementations for simple shapes.

Implementation NInd NParents NPair NElite MaxGen

GA-IV 24 20 1 4 70
GA-V 12 10 2 2 75

4. Results

4.1. Suitability of the optimisation algorithm

The previously introduced implementations of the genetic and particle swarm
optimisation algorithms are applied to a single DoF (Surge) and a multi-DoF

(Surge, Heave and Pitch) oscillating device using objective functions P̄ , P̄

V
1
3

,

P̄

V
2
3

, P̄
V , P̄S , and P̄

S
1
2

. A detailed discussion of the results is given here for two of

the studied cases. These are used as examples to demonstrate the process for
selection of the most suitable algorithms for each case. Results for the other
cases can be found in Appendix A. All results are summarised in section 4.1.4
in Table 8.

4.1.1. P̄ /V - Surge

The effectiveness and robustness of the algorithms are measured through
the MBF and SR, respectively. The results of these indicators are summarised
in Table A.12. The best performing algorithms in terms of MBF are PSO-
II and PSO-III followed by PSO-VIII and GA-IV. The SR is relatively high
for most algorithms, indicating that the chosen threshold value achieved with
McCabe’s optimisation algorithm set-up was rather low. This could be due to
the optimisation set-up in [15] not being the most suitable for this optimisation
problem.

Regarding the algorithms efficiency and speed, the averaged best objective
function values per function evaluation are represented in Figures 7 (a) and
(b) for the GA and PSO implementations, respectively. PSO-I and PSO-VII
have the steepest improvement in objective function value in the first 500 func-
tion evaluations. After that, PSO-VIII takes over, approaching the optimal
value faster than PSO-II and PSO-III. PSO-VIII has the same slope and ob-
jective function values as PSO-II around 1,800 and 2,200 function evaluations.
However, the evaluation of PSO-VIII ends at this point, and PSO-II continues
improving and reaches convergence around 3,200 function evaluations. To in-
vestigate this behaviour further, PSO-VIII was run for further 50 generations.
The implementation surpasses PSO-II after 2,200 evaluations and then follows
a similar trend achieving higher objective function values.

Overall, algorithms with a higher number of individuals (PSO-II, PSO-III
and GA-IV) seem to have a performance advantage versus the other algorithms.
However, no further improvement is achieved by increasing the number of indi-
viduals to three times the number of variables (PSO-III) instead of two times
(PSO-II). Additionally, high acceleration constant values, seem to allow for a
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quicker search of the optimisation space than the increased number of individu-
als. In summary, the most suitable optimisation algorithms for the optimisation
of a single-body oscillating in one DoF aiming at maximising the ratio of mean
power to submerged volume are PSO-VIII followed by PSO-II. GAs seem to
have a slower convergence in this case.

Due to the rapid initial improvement in objective function achieved by PSO-
VIII, and the later similar behaviour of PSO-II, a combination of the beneficial
characteristics of these two implementations was studied. For this reason, an
implementation (PSO-X) with the following characteristics was evaluated for 50
and 75 generations:

Table 5: Additional PSO implementation for a surging only case, minimising −P̄ /V .

Implementation NInd ϕic ϕ1 ϕ2 ϕ Constraint
PSO-X 44 a) 2 2 4 ’absorb’

The MBF achieved with this combined algorithm is of 749.102 W/m3 with
a success rate of three out of three runs achieving the threshold value if run for
50 generations and of 783.881 W/m3 with an SR of 100% if run for 75 genera-
tions. According to Figure 7 (b), a faster initial progression is achieved, but a
similar behaviour to PSO-VIII can be observed after 1,000 function evaluations.
Overall, PSO-VIII run for 150 generations still showed the best results.

4.1.2. P̄ /V - Surge, Heave and Pitch

In the multimodal case, the highest MBF is achieved by PSO-II, which
also achieves this value consistently with 100% success rate. This is shown in
Table A.13.

In terms of convergence speed (see Figures 7 (c) and (d)), although algo-
rithms such as PSO-VII and PSO-VIII show a faster improvement in the initial
function evaluations, PSO-II takes over after 1,000 function evaluations, and
reaches convergence after 2,000 function evaluations.

Overall, PSO-II shows the best performance. However, a combination of
the characteristics of the PSO implementation VII and II was investigated to
accelerate the initial improvement of PSO-II. For this reason, an implementation
(PSO-X) with the following characteristics was studied:

Table 6: Additional PSO implementation for a surging, heaving and pitching case, minimising
−P̄ /V .

Implementation NInd ϕic ϕ1 ϕ2 ϕ Constraint
PSO-X 44 a) 1.25 1.25 2.5 ’absorb’

This new implementation has an MBF of 2,704.970 W/m3 and a success rate
of one every three runs achieving the threshold value. It also does not seem to
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perform better in terms of speed. For this reason, PSO-II is finally selected as
the most suitable algorithm for this case.
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(a) Surge, GA (b) Surge, PSO

(c) Surge, Heave and Pitch, GA (d) Surge, Heave and Pitch, PSO

Figure 7: Mean best objective value per number of function evaluations using f3 = −P̄ /V for a surging only device for (a) GA and (b) PSO
implementations and for a device oscillating in surge, heave and pitch for (c) GA and (d) PSO implementations [18].
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4.1.3. Other cases

In all other cases, the most suitable algorithms were chosen following the
same logic as introduced above based on the obtained results. The results for
each of the studied cases are provided in the appendix for completeness. The
most suitable optimisation algorithms for each case are summarised in Table 8.

As discussed above, some additional implementations were tested after anal-
ysis of the results, to ensure that the most suitable implementation for each
case was found. This was only necessary in one additional situation. That
is, when using objective function P̄ /V 2/3 for a surging only device, a further
implementation was studied to better understand the effects of each of the pa-
rameters. Although it was found that PSO-III showed the best performance,
the combination of PSO-III with an implementation showing a faster initial con-
vergence such as PSO-V was investigated. An implementation (PSO-X) with
the following combined characteristics was considered:

Table 7: Additional PSO implementation for a surging only case, minimising −P̄ /V 2/3.

Implementation NInd ϕic ϕ1 ϕ2 ϕ Constraint
PSO-X 66 a) 1.25 0.5 1.75 ’absorb’

4.1.4. Summary

The most suitable algorithms found for each of the studied cases are sum-
marised in Table 8.

Table 8: Summary of the most suitable optimisation algorithms for the studied cases.

Objective
function

Surge Surge, Heave and Pitch

f1 = −P̄ GA-IV GA-V

f2 = − P̄
3√
V

PSO-VIII PSO-IX

f3 = − P̄
V PSO-VIII PSO-II

f4 = − P̄
V 2/3 PSO-III PSO-VIII

f5 = − P̄A GA-IV PSO-I

f6 = − P̄√
A

PSO-VIII PSO-VIII

In optimisation approaches using objective functions f1 and f5, most al-
gorithms converged into similar solutions. This could be an indicator of the
optimisation problem being less complex. In these cases, GA’s seemed to have
a slight advantage over PSO implementations, where the generation of larger
numbers of children seemed beneficial, exploring the solution space around the
known solutions. In the multiple-DoF case utilising f5, a PSO implementation
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showed better suitability, where a higher weight towards the global best solution
was beneficial.

On the contrary f4 showed the largest spread of solution quality depending
on the used algorithm, which could be an indicator of the optimisation problem
being more complex. In general, this seemed to be the case for the volume based
objective functions f2, f3 and f4, and for f6 for which PSO implementations
performed better than GA implementations. Implementations with a higher
attraction towards the global best solution performed well in all cases except
for the f4 = − P̄

V 2/3 multiple-DoF case, where bigger steps towards both the
global and local best solutions were more advantageous. The latter was also
beneficial for the single-DoF f1, f2 and f3 cases, and for all f6 cases. However,
for the single-DoF case optimised for f4, having a higher number of individuals
proved advantageous. When these characteristics were combined for f3, no
improvement in the results was seen.

In general, the use of twice to three times the number of variables for the
population size seemed to have a positive effect, although this did not consis-
tently result in the best solutions. GA implementations with less than twice the
number of variables for the population size did not perform well, and their use
is, thus, discouraged. The application of the ‘reflect’ constraint handling option
and of low acceleration constants, such as in PSO-VI, did not show any benefit,
and are, therefore, not recommended.

4.2. Suitability of the geometry definition

This evaluation is performed for a surging only device and a surging, heaving
and pitching device for the same location off the Shetland shelf. The different
geometry definitions are compared based on the achieved objective function
values at the end of the optimisation process. For consistency with the previous
sections, the absolute numbers of the objective function values are reported
here. The optimisation results for f1 = −P̄ , f3 = −P̄ /V and f5 = −P̄ /A are
summarised in Tables 9, 10 and 11, respectively.

All simple shapes achieve higher mean annual power production values than
the optimal shape using the B-spline definition (which follows from McCabe [15])
for the surging only case optimised to maximise the mean annual power. How-
ever, in the three DoF case, McCabe’s shape definition achieves the highest
value, although it performs very similarly to the optimal barge. It should be
noted here that both the optimal cylinder’s and the barge’s volume approach
the maximum set volume of 4000m3, whereas the shape defined through the
B-spline surface has lower volumes of 3400m3 and 2260m3. Due to the other
constraints imposed on the geometry (such as the upper bounds on the radii)
it could be that constraints are more restrictive on volume for the designer-bias
free shape than for the simple shapes.

When comparing the optimal results achieved with f3, between 181% and
224% higher absolute objective function values are achieved with McCabe’s
shape definition for the single-DoF case, and between 136% and 141% higher
absolute objective function values for the multiple-DoF case.
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Analogously, higher absolute objective function values are achieved for f5

with between 20% and 114% higher absolute objective function values for the
single-DoF case, and between 121% and 152% higher absolute objective function
values achieved for the multiple-DoF case.

Overall, the more adaptable shape definition implemented here generally
obtains more suitable shapes for optimisation problems, where the objective
function accounts for costs, or where more than one DoF of oscillation is con-
sidered.

Table 9: Overview of optimisation problem results for various shape definitions for objec-
tive function f1 = −P̄ . Previously obtained objective function values with B-spline surface
definition are given for reference.

DoFs Geometry
Definition

P̄ [kW] Variables [m]

Surge

with [15] 359.890
(a) 368.718 r=12.057
(b) 392.872 r=10.548 , d=11.443
(c) 413.524 w=7.718, b=10.282, d=12.496

Surge, Heave
and Pitch

with [15] 954.684
(a) 851.116 r=10.705
(b) 917.261 r=11.683 , d=9.328
(c) 954.068 w=6.930, b=12.500, d= 11.544

Table 10: Overview of optimisation problem results for various shape definitions for objective
function f3 = −P̄ /V . Previously obtained objective function values with B-spline surface
definition are given for reference.

DoFs Geometry
Definition

P̄ /V
[kW]

Variables [m]

Surge

with [15] 881.903
(a) 271.813 r=4.929
(b) 305.095 r=2.526, d=12.500
(c) 313.536 w=2.500, b=2.500, d=10.003

Surge, Heave
and Pitch

with [15] 3,056.609
(a) 1,267.877 r= 5.156
(b) 1,140.612 r=5.319 , d=2.814
(c) 1,295.417 w=12.500, b=2.500, d=2.500
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Table 11: Overview of optimisation problem results for various shape definitions for objective
function f5 = −P̄ /A. Previously obtained objective function values with B-spline surface
definition are given for reference.

DoFs Geometry
Definition

P̄ /S
[kW]

Variables [m]

Surge

with [15] 518.589
(a) 241.869 r= 6.484
(b) 429.864 r=5.491, d=6.657
(c) 410.237 w=3.626, b=8.357, d=9.237

Surge, Heave
and Pitch

with [15] 2,875.168
(a) 1,091.692 r= 5.247
(b) 1,557.632 r= 5.276 , d= 2.860
(c) 1,276.621 w= 2.500, b=10.015, d=2.500

5. Conclusions

The method for wave energy converter geometry optimisation presented by
McCabe [15] was re-implemented and extended for robustness. The key ele-
ments of such an optimisation process were identified (the geometry definition,
the objective function, the optimisation algorithm and the formulation of the
optimisation problem) and a set of alternatives for each of the elements was
defined. Here the suitability of the geometry definition and of the optimisation
algorithm were studied by comparing results for a 1 Degree-of-Freedom (DoF)
oscillating device and a 3 DoF case. In addition, six different objective functions
were considered which used the ratio of the mean annual power to cost proxies
based on the submerged volume or the submerged surface area.

A difference in the complexity of the solution spaces was identified in relation
to the employed objective function. The solution space seems to be less complex
for objective functions f1 = −P̄ , and f5 = − P̄A , where most algorithms tend to
quickly converge on similar solutions. The objective functions space seems to
be more complex for submerged volume based objective functions f2 = − P̄

3√
V

,

f3 = − P̄
V and f4 = − P̄

V 2/3 , where algorithms show a diverse behaviour and more
convergence difficulty. In the former case, genetic algorithm implementations
are preferred, where higher numbers of children per generation appear to be
advantageous. In the latter case, particle swarm optimisation implementations
performed better, where an advantage was found in the use of higher accelera-
tion constants and higher numbers of individuals in the population. A preferred
algorithm for each combination of objective function and DoFs was found, with
improvements in objective function values compared to McCabe’s results of up
to 11% while reducing the number of function evaluations and, hence, computa-
tion time up to about 50% of the original implementation’s values. The use of
the most suitable implementation for each case as found here is recommended.

The most suitable algorithms were then adapted and applied to simpler
geometry definitions: a hemisphere, a vertical cylinder and a barge. Overall,
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the adapted version of McCabe’s shape definition procedure obtained better
performing geometries when the objective function accounted for costs, with
up to 224% higher absolute objective function values achieved with this more
complicated and adaptable shape definition.

For future wave energy converter geometry optimisation studies, the authors
recommend the use of adaptable geometry definitions, such as suggested by
McCabe, due to their potential to find better trade-offs of performance and
costs. Further improvements or analysis of McCabe’s shape definition that
could be considered in the future are, 1) ensuring a smooth transition at the
symmetry plane, by enforcing the splines to be perpendicular to the symmetry
plane at their crossing points and 2) considering different radius and volume
constraints.

The results found in the present study define the most suitable methods
for two of the key elements of a wave energy converter hull geometry optimisa-
tion. These results are a stepping stone towards the definition of a flexible and
comprehensive method for hull geometry optimisation to aid device design for
technology developers. The study of the most suitable methods for wave energy
converter device comparison can also serve funding bodies to assess different
technologies.

In a further study, the authors will compare the results from single-objective
and multi-objective optimisation algorithms. This study was performed in order
to establish the suitability of the objective functions and to determine the best
formulation for the optimisation problems.
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function evaluations, and MBF and SR values
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Table A.12: Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to
objective function f3 = −P̄ /V for a surging only device.

Algorithm Implementation MBF [W/m3] SR [-]

GA

I 559.603 2/3
II 586.740 1/3
III 686.580 3/3
IV 742.797 3/3
V 623.343 3/3

PSO

I 629.225 3/3
II 802.664 3/3
III 801.038 3/3
IV 546.416 1/3
V 596.608 2/3
VI 491.306 0/3
VII 642.171 2/3
VIII 759.251 (820.155)* 3/3
IX 629.388 2/3

* Note that the number in brackets is the value achieved when running this
algorithm for 150 generations instead of 100 generations.

Table A.13: Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to
objective function f3 = −P̄ /V for a surging, heaving and pitching device.

Algorithm Implementation MBF [W/m3] SR [-]

GA

I 2,488.561 0/3
II 2,576.965 0/3
III 2,692.504 1/3
IV 2,528.971 0/3
V 2,654.185 0/3

PSO

I 2,768.118 0/3
II 3,001.301 2/3
III 2,931.454 3/3
IV 2,638.838 0/3
V 2,564.598 0/3
VI 2,449.370 0/3
VII 2,936.040 2/3
VIII 2,795.731 1/3
IX 2,686.212 0/3
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(a) Surge, GA (b) Surge, PSO

(c) Surge, Heave and Pitch, GA (d) Surge, Heave and Pitch, PSO

Figure A.8: Mean best objective value per number of function evaluations using f1 = −P̄ for a surging only device for (a) GA and (b) PSO
implementations and for a device oscillating in surge, heave and pitch for (c) GA and (d) PSO implementations [18].
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Table A.14: Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to
objective function f1 = −P̄ for a surging only device.

Algorithm Implementation MBF [kW] SR [-]

GA

I 356.663 0/3
II 358.515 1/3
III 360.992 2/3
IV 361.725 2/3
V 359.259 2/3

PSO

I 349.550 0/3
II 355.532 1/3
III 348.037 0/3
IV 345.141 0/3
V 351.985 0/3
VI 350.634 0/3
VII 351.723 1/3
VIII 351.798 0/3
IX 347.839 0/3

Table A.15: Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to
objective function f1 = −P̄ for a device oscillating in surge, heave and pitch.

Algorithm Implementation MBF [kW] SR [-]

GA

I 946.324 3/3
II 948.775 3/3
III 949.641 3/3
IV 944.707 3/3
V 951.860 3/3

PSO

I 945.930 3/3
II 944.719 3/3
III 945.649 3/3
IV 931.182 3/3
V 947.410 3/3
VI 948.780 3/3
VII 937.472 3/3
VIII 936.870 3/3
IX 938.881 3/3
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(a) Surge, GA (b) Surge, PSO

(c) Surge, Heave and Pitch, GA (d) Surge, Heave and Pitch, PSO

Figure A.9: Mean best objective value per number of function evaluations using f2 = −P̄ /V
1
3 for a surging only device for (a) GA and (b) PSO

implementations and for a device oscillating in surge, heave and pitch for (c) GA and (d) PSO implementations [18].
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Table A.16: Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to

objective function f2 = −P̄ /V
1
3 for a surging only device.

Algorithm Implementation MBF [kW/m] SR [-]

GA

I 29.034 0/3
II 27.996 0/3
III 31.139 0/3
IV 31.778 0/3
V 32.151 2/3

PSO

I 29.832 0/3
II 28.667 0/3
III 30.678 1/3
IV 28.704 0/3
V 27.441 0/3
VI 28.551 0/3
VII 29.952 1/3
VIII 31.726 2/3
IX 31.288 1/3

Table A.17: Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to

objective function f2 = −P̄ /V
1
3 for a device oscillating in surge, heave and pitch.

Algorithm Implementation MBF [kW/m] SR [-]

GA

I 115.820 1/3
II 112.549 1/3
III 116.437 1/3
IV 119.007 3/3
V 119.377 2/3

PSO

I 116.782 1/3
II 119.091 2/3
III 113.328 1/3
IV 107.415 0/3
V 112.271 2/3
VI 111.111 1/3
VII 118.903 2/3
VIII 106.736 1/3
IX 119.923 3/3
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(a) Surge, GA (b) Surge, PSO

(c) Surge, Heave and Pitch, GA (d) Surge, Heave and Pitch, PSO

Figure A.10: Mean best objective value per number of function evaluations using f4 = −P̄ /V
2
3 for a surging only device for (a) GA and (b) PSO

implementations and for a device oscillating in surge, heave and pitch for (c) GA and (d) PSO implementations [18].
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Table A.18: Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to

objective function f4 = −P̄ /V
2
3 for a surging only device.

Algorithm Implementation MBF [W/m2] SR [-]

GA

I 4,603.590 0/3
II 4,674.434 0/3
III 4,757.015 0/3
IV 4,872.999 0/3
V 4,766.316 0/3

PSO

I 3,431.302 0/3
II 4,928.454 0/3
III 5,225.255 1/3
IV 4,045.098 0/3
V 4,765.205 0/3
VI 3,417.741 0/3
VII 4,079.769 0/3
VIII 4,429.795 0/3
IX 4,079.888 0/3

Table A.19: Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to

objective function f4 = −P̄ /V
2
3 for a device oscillating in surge, heave and pitch.

Algorithm Implementation MBF [kW/m2] SR [-]

GA

I 16.938 0/3
II 17.005 0/3
III 17.535 0/3
IV 17.794 0/3
V 17.243 0/3

PSO

I 17.901 1/3
II 17.978 1/3
III 18.802 2/3
IV 16.336 0/3
V 17.482 0/3
VI 16.578 0/3
VII 18.642 2/3
VIII 19.450 3/3
IX 17.088 1/3
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(a) Surge, GA (b) Surge, PSO

(c) Surge, Heave and Pitch, GA (d) Surge, Heave and Pitch, PSO

Figure A.11: Mean best objective value per number of function evaluations using f5 = −P̄ /S for a surging only device for (a) GA and (b) PSO
implementations and for a device oscillating in surge, heave and pitch for (c) GA and (d) PSO implementations [18].
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Table A.20: Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to
objective function f5 = P̄ /S for a device oscillating in surge only.

Algorithm Implementation MBF [kW/m2] SR [-]

GA

I 515.265 3/3
II 515.346 3/3
III 515.862 3/3
IV 517.412 3/3
V 516.145 3/3

PSO

I 512.556 3/3
II 512.952 3/3
III 516.646 3/3
IV 509.957 3/3
V 516.223 3/3
VI 514.651 3/3
VII 514.637 3/3
VIII 507.149 3/3
IX 510.017 3/3

Table A.21: Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to
objective function f5 = −P̄ /S for a device oscillating in surge, heave and pitch.

Algorithm Implementation MBF [kW/m2] SR [-]

GA

I 2,751.441 3/3
II 2,752.951 2/3
III 2,779.303 2/3
IV 2,739.368 2/3
V 2,762.598 2/3

PSO

I 2,852.934 3/3
II 2,851.767 3/3
III 2,872.462 3/3
IV 2,625.956 0/3
V 2,818.093 3/3
VI 2,729.297 2/3
VII 2,786.743 2/3
VIII 2,805.595 2/3
IX 2,799.169 3/3
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(a) Surge, GA (b) Surge, PSO

(c) Surge, Heave and Pitch, GA (d) Surge, Heave and Pitch, PSO

Figure A.12: Mean best objective value per number of function evaluations using f6 = −P̄ /S
1
2 for a surging only device for (a) GA and (b) PSO

implementations and for a device oscillating in surge, heave and pitch for (c) GA and (d) PSO implementations [18].
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Table A.22: Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to

objective function f6 = −P̄ /S
1
2 for a device oscillating in surge only.

Algorithm Implementation MBF [kW/m] SR [-]

GA

I 11.781 1/3
II 11.721 2/3
III 12.061 2/3
IV 12.023 2/3
V 11.798 1/3

PSO

I 11.997 2/3
II 12.187 3/3
III 12.074 3/3
IV 11.843 2/3
V 12.074 2/3
VI 11.777 3/3
VII 12.130 3/3
VIII 12.203 3/3
IX 11.781 3/3

Table A.23: Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to

objective function f6 = −P̄ /S
1
2 for a device oscillating in surge only.

Algorithm Implementation MBF [kW/m] SR [-]

GA

I 39.332 2/3
II 39.334 0
III 38.288 0
IV 38.208 0
V 38.637 1/3

PSO

I 39.829 2/3
II 38.660 1/3
III 39.526 1/3
IV 37.952 0
V 38.610 0
VI 39.242 1/3
VII 40.239 2/3
VIII 40.317 2/3
IX 38.500 1/3
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